1
|
Shameer M, Vijai Anand K, B M Parambath J, Columbus S, Alawadhi H. Direct detection of melamine in milk via surface-enhanced Raman scattering using gold-silver anisotropic nanostructures. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 327:125412. [PMID: 39541644 DOI: 10.1016/j.saa.2024.125412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/14/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
As the degree of anisotropy in nanoparticle morphology increases, the resulting electromagnetic enhancement can be significantly intensified. Herein, we have attempted to develop anisotropic gold-silver (a-AuAg) nanoparticles deposited on a titanium sheet (a-AuAg@Ti) as a highly efficient Surface-enhanced Raman Spectroscopy (SERS) sensor for rapid detection of health-hazardous milk adulterants like melamine. Hierarchical a-AuAg nanoparticles have been synthesized via a facile seed and growth-mediated method, followed by immobilization on a titanium sheet using a drop-casting technique. The structural, morphological, chemical, and optical properties of a-AuAg@Ti sensors have been systematically investigated and correlated with their respective SERS performance. Morphological analysis revealed the occurrence of triangular, hexagonal, and pentagonal-shaped nanoparticles with an average particle size of ∼ 23 to 26 nm. Preliminary SERS analysis using Rhodamine 6G (R6G) probe molecule revealed significantly higher SERS activity for a-AuAg nanoparticles compared to their spherical counterparts. This could be attributed to the lightning rod effect associated with the synthesized anisotropic nanostructures. An enhancement factor of 1.7 x 108 has been estimated for a-AuAg@Ti sensor with excellent signal reproducibility. Further, the efficacy of melamine detection has been investigated by spiking it into water and milk samples. The estimated lower detection limit (LDL) near picomolar and nanomolar concentrations have been obtained for melamine-spiked samples in water and milk, respectively. High-performance liquid chromatography analysis for melamine revealed an LDL of only 0.1 µM, indicating the higher sensitivity of a-AuAg@Ti SERS sensor. Moreover, we have also analyzed commercial milk products to verify the melamine contents, but none of them showed melamine-specific fingerprint bands. Our findings highlight the superior sensitivity of a-AuAg@Ti substrates for real-time melamine detection, making them excellent optical sensing tools for food safety analysis.
Collapse
Affiliation(s)
- Mohamed Shameer
- Center for Advanced Materials Research, Research Institute of Sciences and Engineering, University of Sharjah, PO Box 27272, Sharjah, United Arab Emirates; Department of Physics, Sathyabama Institute of Science & Technology, Chennai 600 119, Tamil Nadu, India
| | - Kabali Vijai Anand
- Department of Physics, Sathyabama Institute of Science & Technology, Chennai 600 119, Tamil Nadu, India.
| | - Javad B M Parambath
- Center for Advanced Materials Research, Research Institute of Sciences and Engineering, University of Sharjah, PO Box 27272, Sharjah, United Arab Emirates; Department of Physics, Sathyabama Institute of Science & Technology, Chennai 600 119, Tamil Nadu, India; Department of Chemistry, Sathyabama Institute of Science & Technology, Chennai 600 119, Tamil Nadu, India
| | - Soumya Columbus
- Center for Advanced Materials Research, Research Institute of Sciences and Engineering, University of Sharjah, PO Box 27272, Sharjah, United Arab Emirates
| | - Hussain Alawadhi
- Center for Advanced Materials Research, Research Institute of Sciences and Engineering, University of Sharjah, PO Box 27272, Sharjah, United Arab Emirates; Department of Applied Physics and Astronomy, University of Sharjah, PO Box 27272, Sharjah, United Arab Emirates
| |
Collapse
|
2
|
Liu J, Chen C, Lu J, Wang Y, Zhai J, Zhao H, Lu N. Template-confined assembly of Ag nanocubes: An approach to fabricate SERS substrate with good performance. Talanta 2024; 269:125442. [PMID: 38029608 DOI: 10.1016/j.talanta.2023.125442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/15/2023] [Accepted: 11/18/2023] [Indexed: 12/01/2023]
Abstract
Surface-enhanced Raman scattering (SERS) is an important analytical technique. Its detection sensitivity and reproducibility depend on the density and distribution of SERS hotspots. Self-assembly is an efficient method to produce of SERS substrates due to its easy accessibility. However, the assembled defects can hardly be avoided on large area, which could lower the density and uniformity of the hotspots, leading to poor SERS performance. Herein, we report a method to reduce the defects by taking a patterned substrate as template to confine the assembly of Ag nanocubes. The template was prepared based on the combination of photo lithography and self-assembly. Confined by the template, the Ag nanocubes were assembled closely in each dots of the pattern. The limit of detection (LOD) is down to 3.42 × 10-17 M and the enhanced factor (EF) is up to 3.44 × 1010 on the prepared substrate for detecting rhodamine 6G (R6G). In addition, the relative standard deviation (RSD) of the different substrates is 8.75 %. The assembled Ag nanocubes exhibits high sensitivity and reproducibility as SERS substrate, which are contributed by the formation of high-density and uniform hotspots. The prepared substrate can be used for detecting trace amounts of melamine in milk with LOD of 2.06 × 10-7 M and RSD of 6.91 %, so the substrate is applicable for analyzing various analytes.
Collapse
Affiliation(s)
- Jiaqi Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Chunning Chen
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Jiaxin Lu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Yalei Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Jingtong Zhai
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Hongkun Zhao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Nan Lu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, PR China.
| |
Collapse
|
3
|
Ziad R, Columbus S, Elgamouz A, Daoudi K, Kawde AN, Ramachandran K, Gaidi M. Multi-functional silver nanoprism-titanium dioxide hybrid nanoarrays for trace-level SERS sensing and photocatalytic removal of hazardous organic pollutants. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 297:122701. [PMID: 37054569 DOI: 10.1016/j.saa.2023.122701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 03/14/2023] [Accepted: 03/31/2023] [Indexed: 05/14/2023]
Abstract
Owing to the excellent optoelectronic properties of metal nanoparticle-semiconductor interfaces; hybrid substrates with superior catalytic and sensing properties can be designed. In the present study, we have attempted to evaluate anisotropic silver nanoprisms (SNP) functionalized titanium dioxide (TiO2) particles for multifunctional applications such as SERS sensing and photocatalytic decomposition of hazardous organic pollutants. Hierarchical TiO2/SNP hybrid arrays have been fabricated via facile and low-cost casting techniques. The structural, compositional, and optical characteristics of TiO2/SNP hybrid arrays were well elucidated and correlated to SERS activities. SERS studies revealed that TiO2/SNP nanoarrays possess almost 288 times enhancement compared to bare TiO2 substrates and 2.6 times enhancement than pristine SNP. The fabricated nanoarrays demonstrated detection limits down to 10-12 M concentration levels and lower spot-to-spot variability of ∼ 11%. The photocatalytic studies showed that almost 94 and 86% of rhodamine B and methylene blue were decomposed within 90 min of visible light exposure. Besides, two times enhancement in photocatalytic activities of TiO2/SNP hybrid substrates was also observed than bare TiO2. The highest photocatalytic activity was exhibited by SNP to TiO2 molar ratio of 1.5 × 10-3. The electrochemical surface area and the interfacial electron-transfer resistance were increased with the increment in TiO2/SNP composite load from 3 to 7 wt%. Differential Pulse Voltammetry (DPV) analysis revealed a higher RhB degradation potential of TiO2/SNP arrays than SNP or TiO2. The synthesized hybrids exhibited excellent reusability without any significant deterioration in photocatalytic properties over five successive cycles. TiO2/SNP hybrid arrays were proved to be multiple platforms for sensing and degrading hazardous pollutants for environmental applications.
Collapse
Affiliation(s)
- Rania Ziad
- Pure and Applied Chemistry Group, Department of Chemistry, College of Sciences, University of Sharjah, P. O. Box 27272, United Arab Emirates; Center for Advanced Materials Research, Research Institute of Sciences and Engineering, University of Sharjah, P. O. Box 27272, Sharjah, United Arab Emirates
| | - Soumya Columbus
- Center for Advanced Materials Research, Research Institute of Sciences and Engineering, University of Sharjah, P. O. Box 27272, Sharjah, United Arab Emirates.
| | - Abdelaziz Elgamouz
- Pure and Applied Chemistry Group, Department of Chemistry, College of Sciences, University of Sharjah, P. O. Box 27272, United Arab Emirates.
| | - Kais Daoudi
- Center for Advanced Materials Research, Research Institute of Sciences and Engineering, University of Sharjah, P. O. Box 27272, Sharjah, United Arab Emirates; Department of Applied Physics and Astronomy, University of Sharjah, P. O. Box 27272, Sharjah, United Arab Emirates.
| | - Abdel-Nasser Kawde
- Pure and Applied Chemistry Group, Department of Chemistry, College of Sciences, University of Sharjah, P. O. Box 27272, United Arab Emirates
| | - Krithikadevi Ramachandran
- Center for Advanced Materials Research, Research Institute of Sciences and Engineering, University of Sharjah, P. O. Box 27272, Sharjah, United Arab Emirates
| | - Mounir Gaidi
- Center for Advanced Materials Research, Research Institute of Sciences and Engineering, University of Sharjah, P. O. Box 27272, Sharjah, United Arab Emirates; Department of Applied Physics and Astronomy, University of Sharjah, P. O. Box 27272, Sharjah, United Arab Emirates
| |
Collapse
|
4
|
Daoudi K, Columbus S, Falcão BP, Pereira RN, Peripolli SB, Ramachandran K, Hadj Kacem H, Allagui A, Gaidi M. Label-free DNA detection using silver nanoprism decorated silicon nanoparticles: Effect of silicon nanoparticle size and doping levels. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 290:122262. [PMID: 36577246 DOI: 10.1016/j.saa.2022.122262] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 11/26/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
In the present work, we have fabricated silver nanoprism (AgNPrs)/silicon nanoparticle (SiNPs) hybrid arrays for highly sensitive detection of biomolecules via surface-enhanced Raman spectroscopy (SERS) technique. SiNPs having 7 to 37 nm in size and with phosphorous doping varying from 1 × 1019 to 1 × 1020 cm-3 were synthesized in nonthermal plasma synthesis. SiNPs were further immobilized on glass substrates using spin-coating, followed by deposition of AgNPrs using the drop-casting method. SERS studies showed that AgNPrs/SiNPs hybrid arrays exhibit substantial amplification of fingerprint bands of rhodamine 6G (R6G) compared to bare silicon as the reference. Raman signal intensity was found to be dependent on the size of SiNPs, with the largest nanoparticles exhibiting the highest SERS enhancement. In addition, an increase in phosphorous doping concentration was found to reduce R6G peak intensities. AgNPrs/SiNPs hybrid arrays showed excellent stability over time and high spot-to-spot reproducibility as well. Moreover, hybrid arrays enabled DNA detection through intense vibrational modes of human genomic DNA, with a lower detection limit of 1.5 pg/µL; indicating that AgNPrs/SiNPs sensors can serve as a reliable and cost-effective biosensing platform for rapid and label-free analysis of biomolecules.
Collapse
Affiliation(s)
- Kais Daoudi
- Centre for Advanced Materials Research, Research Institute of Sciences and Engineering, University of Sharjah, PO Box 27272, Sharjah, United Arab Emirates; Department of Applied Physics and Astronomy, College of Sciences, University of Sharjah, PO Box 27272, Sharjah, United Arab Emirates.
| | - Soumya Columbus
- Centre for Advanced Materials Research, Research Institute of Sciences and Engineering, University of Sharjah, PO Box 27272, Sharjah, United Arab Emirates
| | - Bruno P Falcão
- CICECO, Department of Physics, University of Aveiro, 3810-193 Aveiro, Portugal; Department of Physics and I3N, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Rui N Pereira
- Department of Physics and I3N, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Suzana B Peripolli
- CICECO, Department of Materials and Ceramic Engineering, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Krithikadevi Ramachandran
- Centre for Advanced Materials Research, Research Institute of Sciences and Engineering, University of Sharjah, PO Box 27272, Sharjah, United Arab Emirates
| | - Hassen Hadj Kacem
- Department of Applied Biology, College of Sciences, University of Sharjah, PO Box 27272, Sharjah, United Arab Emirates
| | - Anis Allagui
- Centre for Advanced Materials Research, Research Institute of Sciences and Engineering, University of Sharjah, PO Box 27272, Sharjah, United Arab Emirates; Department of Sustainable and Renewable Energy Engineering, College of Engineering, University of Sharjah, PO Box 27272, Sharjah, United Arab Emirates
| | - Mounir Gaidi
- Centre for Advanced Materials Research, Research Institute of Sciences and Engineering, University of Sharjah, PO Box 27272, Sharjah, United Arab Emirates; Department of Applied Physics and Astronomy, College of Sciences, University of Sharjah, PO Box 27272, Sharjah, United Arab Emirates; Laboratoire de Photovoltaïque, Centre de Recherches et des Technologies de l'Energie, Technopole de Borj-Cédria, Hammam-Lif 2050, Tunisia
| |
Collapse
|
5
|
Trahan J, Profili J, Robert-Bigras G, Mitronika M, Richard-Plouet M, Stafford L. Optical response of plasmonic silver nanoparticles after treatment by a warm microwave plasma jet. NANOTECHNOLOGY 2023; 34:195701. [PMID: 36724504 DOI: 10.1088/1361-6528/acb7f9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
This work investigates the effect of plasma treatment on the morphology and composition of 15 × 15 mm2silver nanoparticle (70-80 nm) thin films. The silver nanoparticles are deposited onto thermal silica (SiO2/Si) substrates by spin-coating, then they are treated by an open-to-air microwave argon plasma jet characterized by a neutral gas temperature of 2200 ± 200 K. Scanning electron microscopy analysis reveals that the number of isolated nanoparticles in the film sample decreases after exposure to multiple jet passes, and that polygonal structures with sharp corners and edges are produced. Similar structures with much rounder edges are obtained after conventional thermal annealing at temperatures up to 1300 K. Based on localized surface plasmon resonance analysis in the range of 350-800 nm, the main extinction band of silver nanoparticles experiences a redshift after treatment with the plasma jet or with thermal annealing. Moreover, both treatments induce surface oxidation of the nanoparticles, as evidenced by x-ray photoelectron spectroscopy. However, only the plasma-exposed samples exhibit a significant rise in the surface-enhanced Raman scattering (SERS) signal of oxidized silver at 960 cm-1. 29×29μm2mappings of hyperspectral Raman IMAging (RIMA) and multivariate curve resolution analysis by log-likelihood maximization demonstrate that the SERS signal is controlled by large-scale micrometer domains that exhibit sharp corners and edges.
Collapse
Affiliation(s)
- J Trahan
- Département de Physique, Université de Montréal, 1375 ave Thérèse-Lavoie-Roux, Montréal, QC, H2V 0B3, Canada
| | - J Profili
- Département de Physique, Université de Montréal, 1375 ave Thérèse-Lavoie-Roux, Montréal, QC, H2V 0B3, Canada
| | - G Robert-Bigras
- Département de Physique, Université de Montréal, 1375 ave Thérèse-Lavoie-Roux, Montréal, QC, H2V 0B3, Canada
| | - M Mitronika
- Université de Nantes, CNRS, Institut des Matériaux Jean Rouxel, IMN, F-44000 Nantes, France
| | - M Richard-Plouet
- Université de Nantes, CNRS, Institut des Matériaux Jean Rouxel, IMN, F-44000 Nantes, France
| | - L Stafford
- Département de Physique, Université de Montréal, 1375 ave Thérèse-Lavoie-Roux, Montréal, QC, H2V 0B3, Canada
| |
Collapse
|
6
|
Hernández Rodríguez C, Pérez Bueno JDJ, Maldonado Pérez AX, Ruiz Flores M, Oza G. Photoelectrocatalytic activity of silicon nanowires decorated with electroless copper nanoparticles and graphene oxide using a plasma jet for removal of methyl orange under visible light †. RSC Adv 2023; 13:10621-10635. [PMID: 37021106 PMCID: PMC10069624 DOI: 10.1039/d3ra00932g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 03/28/2023] [Indexed: 04/05/2023] Open
Abstract
Silicon nanowires (SiNWs) have been studied due to their interesting properties, such as light trapping and catalytic activity for removing organic molecules. In this work, silicon nanowires are decorated with copper (SiNWs-CuNPs), graphene oxide (SiNWs-GO), and both copper and graphene oxide GO (SiNWs-CuNPs-GO). They were prepared and tested as photoelectrocatalysts to remove the azoic dye methyl orange (MO). The silicon nanowires were synthesized by the MACE process using HF/AgNO3 solution. The decoration with copper nanoparticles was made by galvanic displacement reaction utilizing a copper sulfate/HF solution, while decoration with GO was achieved using an atmospheric pressure plasma jet system (APPJ). The as-produced nanostructures were then characterized by SEM, XRD, XPS, and Raman spectroscopy. Cu(i) oxide was generated during the decoration with copper. Cu(ii) oxide was produced when SiNWs–CuNPs were exposed to the APPJ. GO was successfully attached on the surface of silicon nanowires and silicon nanowires decorated with copper nanoparticles. The photoelectrocatalytic activity of silicon nanostructures was tested under visible light, leading to an MO removal efficiency of 96% within 175 min with SiNWs–CuNPs-GO, followed by SiNWs-CuNPs, SiNWs-GO, undecorated SiNWs, and bulk silicon. Silicon nanowires (SiNWs) have been studied due to their interesting properties, such as light trapping and catalytic activity for removing organic molecules.![]()
Collapse
Affiliation(s)
- Carlos Hernández Rodríguez
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica, S. C. Parque Tecnológico Querétaro – SanfandilaPedro EscobedoQuerétaro76703Mexico
| | - José de Jesús Pérez Bueno
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica, S. C. Parque Tecnológico Querétaro – SanfandilaPedro EscobedoQuerétaro76703Mexico
| | - Alejandra Xochitl Maldonado Pérez
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica, S. C. Parque Tecnológico Querétaro – SanfandilaPedro EscobedoQuerétaro76703Mexico
| | - Missael Ruiz Flores
- Tecnológico de Estudios Superiores de San Felipe del Progreso, Av. Tecnológico s/n, Ejido TecnológicoSan Felipe del ProgresoEstado de México50640Mexico
| | - Goldie Oza
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica, S. C. Parque Tecnológico Querétaro – SanfandilaPedro EscobedoQuerétaro76703Mexico
| |
Collapse
|
7
|
Exosome detection via surface-enhanced Raman spectroscopy for cancer diagnosis. Acta Biomater 2022; 144:1-14. [PMID: 35358734 DOI: 10.1016/j.actbio.2022.03.036] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 03/10/2022] [Accepted: 03/22/2022] [Indexed: 02/07/2023]
Abstract
As nanoscale extracellular vesicles, exosomes are secreted by various cell types, and they are widely distributed in multiple biological fluids. Studies have shown that tumor-derived exosomes can carry a variety of primary tumor-specific molecules, which may represent a novel tool for the early detection of cancer. However, the clinical translation of exosomes remains a challenge due to the requirement of large quantities of samples when enriching the cancer-related exosomes in biological fluids, the insufficiency of traditional techniques for exosome subpopulations, and the complex exosome isolation of the current commercially available exosome phenotype profiling approaches. The evolving surface-enhanced Raman scattering (SERS) technology, with properties of unique optoelectronics, easy functionalization, and the particular interaction between light and nanoscale metallic materials, can achieve sensitive detection of exosomes without large quantities of samples and multiplexed phenotype profiling, providing a new mode of real-time and noninvasive analysis for cancer patients. In the present review, we mainly discussed exosome detection based on SERS, especially SERS immunoassay. The basic structure and function of exosomes were firstly introduced. Then, recent studies using the SERS technique for cancer detection were critically reviewed, which mainly included various SERS substrates, biological modification of SERS substrates, SERS-based exosome detection, and the combination of SERS and other technologies for cancer diagnosis. This review systematically discussed the essential aspects, limitations, and considerations of applying SERS technology in the detection and analysis of cancer-derived exosomes, which could provide a valuable reference for the early diagnosis of cancer through SERS technology. STATEMENT OF SIGNIFICANCE: Surface-enhanced Raman scattering (SERS) has been applied to exosomes detection to obtain better diagnostic results. In past three years, several reviews have been published in exosome detection, which were narrowly focus on methods of exosome detection. Selection and surface functionalization of the substrate and the combination detection with different methods based on SERS will provide new strategies for the detection of exosomes. This review will focus on the above aspects. This emerging detection method is constantly evolving and contributing to the early discovery of diseases in the future.
Collapse
|
8
|
Daoudi K, Ramachandran K, Alawadhi H, Boukherroub R, Dogheche E, Khakani MAE, Gaidi M. Ultra-sensitive and fast optical detection of the spike protein of the SARS-CoV-2 using AgNPs/SiNWs nanohybrid based sensors. SURFACES AND INTERFACES 2021; 27:101454. [PMID: 34957346 PMCID: PMC8440322 DOI: 10.1016/j.surfin.2021.101454] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/29/2021] [Accepted: 08/31/2021] [Indexed: 05/18/2023]
Abstract
Severe acute respiratory syndrome SARS-CoV-2 virus led to notable challenges amongst researchers in view of development of new and fast detecting techniques. In this regard, surface-enhanced Raman spectroscopy (SERS) technique, providing a fingerprint characteristic for each material, would be an interesting approach. The current study encompasses the fabrication of a SERS sensor to study the SARS-CoV-2 S1 (RBD) spike protein of the SARS-CoV-2 virus family. The SERS sensor consists of a silicon nanowires (SiNWs) substrate decorated with plasmonic silver nanoparticles (AgNPs). Both SiNWs fabrication and AgNPs decoration were achieved by a relatively simple wet chemical processing method. The study deliberately projects the factors that influence the growth of silicon nanowires, uniform decoration of AgNPs onto the SiNWs matrix along with detection of Rhodamine-6G (R6G) to optimize the best conditions for enhanced sensing of the spike protein. Increasing the time period of etching process resulted in enhanced SiNWs' length from 0.55 to 7.34 µm. Furthermore, the variation of the immersion time in the decoration process of AgNPs onto SiNWs ensued the optimum time period for the enhancement in the sensitivity of detection. Tremendous increase in sensitivity of R6G detection was perceived on SiNWs etched for 2 min (length=0.90 µm), followed by 30s of immersion time for their optimal decoration by AgNPs. These SiNWs/AgNPs SERS-based sensors were able to detect the spike protein at a concentration down to 9.3 × 10-12 M. Strong and dominant peaks at 1280, 1404, 1495, 1541 and 1609 cm-1 were spotted at a fraction of a minute. Moreover, direct, ultra-fast, facile, and affordable optoelectronic SiNWs/AgNPs sensors tuned to function as a biosensor for detecting the spike protein even at a trace level (pico molar concentration). The current findings hold great promise for the utilization of SERS as an innovative approach in the diagnosis domain of infections at very early stages.
Collapse
Affiliation(s)
- Kais Daoudi
- Centre for Advanced Materials Research, Research Institute of Sciences and Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates
- Department of Applied Physics and Astronomy, University of Sharjah, Sharjah 27272, United Arab Emirates
- Laboratory of Nanomaterials, Nanotechnology and Energy, Department of Physics, Faculty of Sciences of Tunis, University of Tunis, El Manar, El Manar, Tunis 2092, Tunisia
| | - Krithikadevi Ramachandran
- Department of Applied Physics and Astronomy, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Hussain Alawadhi
- Centre for Advanced Materials Research, Research Institute of Sciences and Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates
- Department of Applied Physics and Astronomy, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Rabah Boukherroub
- CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520, IEMN, University of Lille, Lille 59000, France
| | - Elhadj Dogheche
- Université Polytechnique Hauts de France, IEMN DOAE CNRS, Campus Le Mont Houy, Valenciennes Cedex 59309, France
| | - My Ali El Khakani
- Institut National de la Recherche Scientifique, INRS-Énergie, Matériaux et Télécommunications, 1650, Blvd. Lionel-Boulet, Varennes, QC J3X-1S2, Canada
| | - Mounir Gaidi
- Centre for Advanced Materials Research, Research Institute of Sciences and Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates
- Department of Applied Physics and Astronomy, University of Sharjah, Sharjah 27272, United Arab Emirates
- Laboratoire de Photovoltaïque Centre de Recherches et des Technologies de l'Energie, Technopole de Borj-Cédria, BP 95, Hammam-Lif 2050, Tunisia
| |
Collapse
|
9
|
Hammouche J, Daoudi K, Columbus S, Ziad R, Ramachandran K, Gaidi M. Structural and morphological optimization of Ni doped ZnO decorated silicon nanowires for photocatalytic degradation of methylene blue. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108763] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
10
|
Fast, highly sensitive and label free detection of small genetic sequence difference of DNA using novel Surface-Enhanced Raman Spectroscopy nanostructured sensor. SENSING AND BIO-SENSING RESEARCH 2021. [DOI: 10.1016/j.sbsr.2021.100406] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
11
|
Gaidi M, Daoudi K, Columbus S, Hajjaji A, Khakani MAE, Bessais B. Enhanced photocatalytic activities of silicon nanowires/graphene oxide nanocomposite: Effect of etching parameters. J Environ Sci (China) 2021; 101:123-134. [PMID: 33334508 DOI: 10.1016/j.jes.2020.08.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/06/2020] [Accepted: 08/11/2020] [Indexed: 05/08/2023]
Abstract
Homogeneous and vertically aligned silicon nanowires (SiNWs) were successfully fabricated using silver assisted chemical etching technique. The prepared samples were characterized using scanning electron microscopy, transmission electron microscopy and atomic force microscopy. Photocatalytic degradation properties of graphene oxide (GO) modified SiNWs have been investigated. We found that the SiNWs morphology depends on etching time and etchant composition. The SiNWs length could be tuned from 1 to 42 µm, respectively when varying the etching time from 5 to 30 min. The etchant concentration was found to accelerate the etching process; doubling the concentrations increases the length of the SiNWs by a factor of two for fixed etching time. Changes in bundle morphology were also studied as function of etching parameters. The SiNWs diameter was found to be independent of etching time or etchant composition while the size of the SiNWs bundle increases with increasing etching time and etchant concentration. The addition of GO was found to improve significantly the photocatalytic activity of SiNWs. A strong correlation between etching parameters and photocatalysis efficiency has been observed, mainly for SiNWs prepared at optimum etching time and etchant concentrations of 10 min and 4:1:8. A degradation of 92% was obtained which further improved to 96% by addition of hydrogen peroxide. Only degradation efficiency of 16% and 31% has been observed for bare Si and GO/bare Si samples respectively. The obtained results demonstrate that the developed SiNWs/GO composite exhibits excellent photocatalytic performance and could be used as potential platform for the degradation of organic pollutants.
Collapse
Affiliation(s)
- Mounir Gaidi
- Department of Applied Physics and Astronomy, University of Sharjah, Sharjah 27272, United Arab Emirates Sharjah; Centre for Advanced Materials Research, Research Institute of Sciences and Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates Sharjah; Laboratoire de Photovoltaïque, Centre de Recherches et des Technologies de l'Energie, Technopole de Borj-Cédria, Hammam-Lif 2050, Tunisia.
| | - Kais Daoudi
- Department of Applied Physics and Astronomy, University of Sharjah, Sharjah 27272, United Arab Emirates Sharjah; Centre for Advanced Materials Research, Research Institute of Sciences and Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates Sharjah
| | - Soumya Columbus
- Centre for Advanced Materials Research, Research Institute of Sciences and Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates Sharjah; Sharjah Research Academy, University City, Sharjah 60999, United Arab Emirates Sharjah
| | - Anouar Hajjaji
- Laboratoire de Photovoltaïque, Centre de Recherches et des Technologies de l'Energie, Technopole de Borj-Cédria, Hammam-Lif 2050, Tunisia
| | - My Ali El Khakani
- Institut National de la Recherche Scientifique (INRS), INRS-Énergie, Matériaux et Télécommunications, 1650, Blvd. Lionel-Boulet, Varennes, QC J3X-1S2, Canada
| | - Brahim Bessais
- Laboratoire de Photovoltaïque, Centre de Recherches et des Technologies de l'Energie, Technopole de Borj-Cédria, Hammam-Lif 2050, Tunisia
| |
Collapse
|
12
|
Das D, Karmakar L. Autogenic single p/n-junction solar cells from black-Si nano-grass structures of p-to-n type self-converted electronic configuration. NANOSCALE 2020; 12:15371-15382. [PMID: 32656561 DOI: 10.1039/d0nr03927f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Photovoltaic performance of solar cells automatically improves when the absorber layer itself simultaneously acts as the anti-reflection nanostructure with an enhanced active absorber area on the front surface. Combined physical and chemical etching of p-c-Si wafers by (Ar + H2) plasma in inductively coupled low-pressure plasma CVD produces various nanostructures with subsequent minimization of reflectance. At a reduced temperature, the rate constant of thermal diffusion of atomic-H in the Si-network becomes smaller, leading to enhanced chemical etching reactions that further increase at an elevated RF power. Regrowth of the SiHn precursors produced by etching and subsequent hydrogenation in the plasma develops a high density of elongated nano-grass structures, which further align with sharp tips via Ar+ ion bombardment and elimination of loosely bound amorphous over-layers, on application of negative dc substrate bias during real-time etching and regrowth. A significantly reduced reflectance (∼0.5%) via coherent light trapping within the uniformly distributed vertically aligned nano-grass surfaces evolves truly black-silicon (b-Si) nanostructures, which further self-convert from the p-type to n-type electronic configuration via etching-mediated modification of B-H bonds from BH1 to BH2 and/or BH3 states, producing autogenic p/n junctions. Using (Ar + H2) plasma etched b-Si nano-grass structures at low temperature (∼200 °C), one-step fabrication of autogenic single p/n-junction proof-of-concept solar cells is accomplished. There is plenty of room for further progress in device performance.
Collapse
Affiliation(s)
- Debajyoti Das
- Energy Research Unit, School of Materials Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata - 700 032, India.
| | - Laxmikanta Karmakar
- Energy Research Unit, School of Materials Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata - 700 032, India.
| |
Collapse
|