1
|
Flint DB, Bright SJ, McFadden C, Konishi T, Martinus DKJ, Manandhar M, Ben Kacem M, Bronk L, Sawakuchi GO. An empirical model of carbon-ion relative biological effectiveness based on the linear correlation between radiosensitivity to photons and carbon ions. Phys Med Biol 2024; 69:245011. [PMID: 39530708 PMCID: PMC11632915 DOI: 10.1088/1361-6560/ad918e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/31/2024] [Accepted: 11/12/2024] [Indexed: 11/16/2024]
Abstract
Objective.To develop an empirical model to predict carbon ion (C-ion) relative biological effectiveness (RBE).Approach.We used published cell survival data comprising 360 cell line/energy combinations to characterize the linear energy transfer (LET) dependence of cell radiosensitivity parameters describing the dose required to achieve a given survival level, e.g. 5% (D5%), which are linearly correlated between photon and C-ion radiations. Based on the LET response of the metrics D5%and D37%, we constructed a model containing four free parameters that predicts cells' linear quadratic model (LQM) survival curve parameters for C-ions,αCandβC, from the reference LQM parameters for photons,αXandβX, for a given C-ion LET value. We fit our model's free parameters to the training dataset and assessed its accuracy via leave-one out cross-validation. We further compared our model to the local effect model (LEM) and the microdosimetric kinetic model (MKM) by comparing its predictions against published predictions made with those models for clinically relevant LET values in the range of 23-107 keVμm-1.Main Results.Our model predicted C-ion RBE within ±7%-15% depending on cell line and dose which was comparable to LEM and MKM for the same conditions.Significance.Our model offers comparable accuracy to the LEM or MKM but requires fewer input parameters and is less computationally expensive and whose implementation is so simple we provide it coded into a spreadsheet. Thus, our model can serve as a pragmatic alternative to these mechanistic models in cases where cell-specific input parameters cannot be obtained, the models cannot be implemented, or for which their computational efficiency is paramount.
Collapse
Affiliation(s)
- David B Flint
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Scott J Bright
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Conor McFadden
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Teruaki Konishi
- Department of Radiation Regulatory Science Research, Institute for Radiological Science, National Institutes for Quantum Science and Technology, Inage-ku, Chiba, Japan
| | - David K J Martinus
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX, United States of America
| | - Mandira Manandhar
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Mariam Ben Kacem
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Lawrence Bronk
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Gabriel O Sawakuchi
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX, United States of America
| |
Collapse
|
2
|
Alcocer-Ávila M, Levrague V, Delorme R, Testa É, Beuve M. Biophysical modeling of low-energy ion irradiations with NanOx. Med Phys 2024; 51:9358-9371. [PMID: 39287463 DOI: 10.1002/mp.17407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/22/2024] [Accepted: 08/27/2024] [Indexed: 09/19/2024] Open
Abstract
BACKGROUND Targeted radiotherapies with low-energy ions show interesting possibilities for the selective irradiation of tumor cells, a strategy particularly appropriate for the treatment of disseminated cancer. Two promising examples are boron neutron capture therapy (BNCT) and targeted radionuclide therapy with α $\alpha$ -particle emitters (TAT). The successful clinical translation of these radiotherapies requires the implementation of accurate radiation dosimetry approaches able to take into account the impact on treatments of the biological effectiveness of ions and the heterogeneity in the therapeutic agent distribution inside the tumor cells. To this end, biophysical models can be applied to translate the interactions of radiations with matter into biological endpoints, such as cell survival. PURPOSE The NanOx model was initially developed for predicting the cell survival fractions resulting from irradiations with the high-energy ion beams encountered in hadrontherapy. We present in this work a new implementation of the model that extends its application to irradiations with low-energy ions, as the ones found in TAT and BNCT. METHODS The NanOx model was adapted to consider the energy loss of primary ions within the sensitive volume (i.e., the cell nucleus). Additional assumptions were introduced to simplify the practical implementation of the model and reduce computation time. In particular, for low-energy ions the narrow-track approximation allowed to neglect the energy deposited by secondary electrons outside the sensitive volume, increasing significantly the performance of simulations. Calculations were performed to compare the original hadrontherapy implementation of the NanOx model with the present one in terms of the inactivation cross sections of human salivary gland cells as a function of the kinetic energy of incident α $\alpha$ -particles. RESULTS The predictions of the previous and current versions of NanOx agreed for incident energies higher than 1 MeV/n. For lower energies, the new NanOx implementation predicted a decrease in the inactivation cross sections that depended on the length of the sensitive volume. CONCLUSIONS We reported in this work an extension of the NanOx biophysical model to consider irradiations with low-energy ions, such as the ones found in TAT and BNCT. The excellent agreement observed at intermediate and high energies between the original hadrontherapy implementation and the present one showed that NanOx offers a consistent, self-integrated framework for describing the biological effects induced by ion irradiations. Future work will focus on the application of the latest version of NanOx to cases closer to the clinical setting.
Collapse
Affiliation(s)
- Mario Alcocer-Ávila
- Université Claude Bernard Lyon 1, CNRS/IN2P3, IP2I Lyon, UMR 5822, Villeurbanne, France
| | - Victor Levrague
- University of Grenoble Alpes, CNRS, Grenoble INP, LPSC-IN2P3, Grenoble, France
| | - Rachel Delorme
- University of Grenoble Alpes, CNRS, Grenoble INP, LPSC-IN2P3, Grenoble, France
| | - Étienne Testa
- Université Claude Bernard Lyon 1, CNRS/IN2P3, IP2I Lyon, UMR 5822, Villeurbanne, France
| | - Michaël Beuve
- Université Claude Bernard Lyon 1, CNRS/IN2P3, IP2I Lyon, UMR 5822, Villeurbanne, France
| |
Collapse
|
3
|
Hilgers G, Schwarze M, Rabus H. Nanodosimetric investigation of the track structure of therapeutic carbon ion radiation part 1: measurement of ionization cluster size distributions. Biomed Phys Eng Express 2024; 10:065030. [PMID: 39288784 DOI: 10.1088/2057-1976/ad7bc1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/17/2024] [Indexed: 09/19/2024]
Abstract
At the Heidelberg Ion-Beam Therapy Center, the track structure of carbon ions of therapeutic energy after penetrating layers of simulated tissue was investigated for the first time. Measurements were conducted with carbon ion beams of different energies and polymethyl methacrylate (PMMA) absorbers of different thicknesses to realize different depths in the phantom along the pristine Bragg peak. Ionization cluster size (ICS) distributions resulting from the mixed radiation field behind the PMMA absorbers were measured using an ion-counting nanodosimeter. Two different measurements were carried out: (i) variation of the PMMA absorber thickness with constant carbon ion beam energy and (ii) combined variation of PMMA absorber thickness and carbon ion beam energy such that the kinetic energy of the carbon ions in the target volume is constant. The data analysis revealed unexpectedly high mean ICS values compared to stopping power calculations and the data measured at lower energies in earlier work. This suggests that in the measurements the carbon ion kinetic energies behind the PMMA absorber may have deviated considerably from the expected values obtained by the calculations. In addition, the results indicate the presence of a marked contribution of nuclear fragments to the measured ICS distributions, especially if the carbon ion does not cross the target volume.
Collapse
Affiliation(s)
- Gerhard Hilgers
- Physikalisch-Technische Bundesanstalt, Braunschweig and Berlin, Germany
| | - Miriam Schwarze
- Physikalisch-Technische Bundesanstalt, Braunschweig and Berlin, Germany
| | - Hans Rabus
- Physikalisch-Technische Bundesanstalt, Braunschweig and Berlin, Germany
| |
Collapse
|
4
|
Dordevic M, Fattori S, Petringa G, Fira AR, Petrovic I, Cuttone G, Cirrone GAP. Computational approaches in the estimation of radiobiological damage for human-malignant cells irradiated with clinical proton and carbon beams. Phys Med 2024; 117:103189. [PMID: 38043325 DOI: 10.1016/j.ejmp.2023.103189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/26/2023] [Accepted: 11/24/2023] [Indexed: 12/05/2023] Open
Abstract
PURPOSE The use of Monte Carlo (MC) simulations capable of reproducing radiobiological effects of ionising radiation on human cell lines is of great importance, especially for cases involving protons and heavier ion beams. In the latter, huge uncertainties can arise mainly related to the effects of the secondary particles produced in the beam-tissue interaction. This paper reports on a detailed MC study performed using Geant4-based approach on three cancer cell lines, the HTB-177, CRL-5876 and MCF-7, that were previously irradiated with therapeutic proton and carbon ion beams. METHODS A Geant4-based approach used jointly with analytical calculations has been developed to provide a more realistic estimation of the radiobiological damage produced by proton and carbon beams in tissues, reproducing available data obtained from in vitro cell irradiations. The MC "Hadrontherapy" Geant4 application and the Local Effect Model: LEM I, LEM II and LEM III coupled with the different numerical approaches: RapidRusso (RR) and RapidScholz (RS) were used in the study. RESULTS Experimental survival curves are compared with those evaluated using the highlighted Geant4 MC-based approach via chi-square statistical analysis, for the combinations of radiobiological models and numerical approaches, as outlined above. CONCLUSION This study has presented a comparison of the survival data from MC simulations to experimental survival data for three cancer cell lines. An overall best level of agreement was obtained for the HTB-177 cells.
Collapse
Affiliation(s)
- Milos Dordevic
- Vinca Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Serena Fattori
- Istituto Nazionale di Fisica Nucleare (INFN), Laboratori Nazionali del Sud (LNS), Catania, Italy.
| | - Giada Petringa
- Istituto Nazionale di Fisica Nucleare (INFN), Laboratori Nazionali del Sud (LNS), Catania, Italy
| | - Aleksandra Ristic Fira
- Vinca Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Ivan Petrovic
- Vinca Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Giacomo Cuttone
- Istituto Nazionale di Fisica Nucleare (INFN), Laboratori Nazionali del Sud (LNS), Catania, Italy
| | - G A Pablo Cirrone
- Istituto Nazionale di Fisica Nucleare (INFN), Laboratori Nazionali del Sud (LNS), Catania, Italy; Centro Siciliano di Fisica Nucleare e Struttura della Materia, Catania, Italy; Dipartimento di FISICA ED ASTRONOMIA "Ettore Majorana" - Università degli Studi di Catania, Catania, Italy
| |
Collapse
|
5
|
The 'stealth-bomber' paradigm for deciphering the tumour response to carbon-ion irradiation. Br J Cancer 2023; 128:1429-1438. [PMID: 36639527 PMCID: PMC10070470 DOI: 10.1038/s41416-022-02117-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/01/2022] [Accepted: 12/08/2022] [Indexed: 01/14/2023] Open
Abstract
Numerous studies have demonstrated the higher biological efficacy of carbon-ion irradiation (C-ions) and their ballistic precision compared with photons. At the nanometre scale, the reactive oxygen species (ROS) produced by radiation and responsible for the indirect effects are differentially distributed according to the type of radiation. Photon irradiation induces a homogeneous ROS distribution, whereas ROS remain condensed in clusters in the C-ions tracks. Based on this linear energy transfer-dependent differential nanometric ROS distribution, we propose that the higher biological efficacy and specificities of the molecular response to C-ions rely on a 'stealth-bomber' effect. When biological targets are on the trajectories of the particles, the clustered radicals in the tracks are responsible for a 'bomber' effect. Furthermore, the low proportion of ROS outside the tracks is not able to trigger the cellular mechanisms of defence and proliferation. The ability of C-ions to deceive the cellular defence of the cancer cells is then categorised as a 'stealth' effect. This review aims to classify the biological arguments supporting the paradigm of the 'stealth-bomber' as responsible for the biological superiority of C-ions compared with photons. It also explains how and why C-ions will always be more efficient for treating patients with radioresistant cancers than conventional radiotherapy.
Collapse
|
6
|
Sarrut D, Arbor N, Baudier T, Borys D, Etxebeste A, Fuchs H, Gajewski J, Grevillot L, Jan S, Kagadis GC, Kang HG, Kirov A, Kochebina O, Krzemien W, Lomax A, Papadimitroulas P, Pommranz C, Roncali E, Rucinski A, Winterhalter C, Maigne L. The OpenGATE ecosystem for Monte Carlo simulation in medical physics. Phys Med Biol 2022; 67:10.1088/1361-6560/ac8c83. [PMID: 36001985 PMCID: PMC11149651 DOI: 10.1088/1361-6560/ac8c83] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 08/24/2022] [Indexed: 11/12/2022]
Abstract
This paper reviews the ecosystem of GATE, an open-source Monte Carlo toolkit for medical physics. Based on the shoulders of Geant4, the principal modules (geometry, physics, scorers) are described with brief descriptions of some key concepts (Volume, Actors, Digitizer). The main source code repositories are detailed together with the automated compilation and tests processes (Continuous Integration). We then described how the OpenGATE collaboration managed the collaborative development of about one hundred developers during almost 20 years. The impact of GATE on medical physics and cancer research is then summarized, and examples of a few key applications are given. Finally, future development perspectives are indicated.
Collapse
Affiliation(s)
- David Sarrut
- Université de Lyon; CREATIS; CNRS UMR5220; Inserm U1294; INSA-Lyon; Université Lyon 1, Léon Bérard cancer center, Lyon, France
| | - Nicolas Arbor
- Université de Strasbourg, IPHC, CNRS, UMR7178, F-67037 Strasbourg, France
| | - Thomas Baudier
- Université de Lyon; CREATIS; CNRS UMR5220; Inserm U1294; INSA-Lyon; Université Lyon 1, Léon Bérard cancer center, Lyon, France
| | - Damian Borys
- Department of Systems Biology and Engineering, Silesian University of Technology, Gliwice, Poland
| | - Ane Etxebeste
- Université de Lyon; CREATIS; CNRS UMR5220; Inserm U1294; INSA-Lyon; Université Lyon 1, Léon Bérard cancer center, Lyon, France
| | - Hermann Fuchs
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria
- Medical University of Vienna, Department of Radiation Oncology, Vienna, Vienna, Währinger Gürtel 18-20, A-1090 Wien, Austria
| | - Jan Gajewski
- Institute of Nuclear Physics Polish Academy of Sciences, Krakow, Poland
| | | | - Sébastien Jan
- Université Paris-Saclay, Inserm, CNRS, CEA, Laboratoire d'Imagerie Biomédicale Multimodale (BioMaps), F-91401 Orsay, France
| | - George C Kagadis
- 3DMI Research Group, Department of Medical Physics, School of Medicine, University of Patras, Patras, Greece
| | - Han Gyu Kang
- National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Assen Kirov
- Memorial Sloan Kettering Cancer, New York, NY 10021, United States of America
| | - Olga Kochebina
- Université Paris-Saclay, Inserm, CNRS, CEA, Laboratoire d'Imagerie Biomédicale Multimodale (BioMaps), F-91401 Orsay, France
| | - Wojciech Krzemien
- High Energy Physics Division, National Centre for Nuclear Research, Otwock-Świerk, Poland
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Lojasiewicza 11, 30-348 Krakow, Poland
- Centre for Theranostics, Jagiellonian University, Kopernika 40 St, 31 501 Krakow, Poland
| | - Antony Lomax
- Center for Proton Therapy, PSI, Switzerland
- Department of Physics, ETH Zurich, Switzerland
| | | | - Christian Pommranz
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tuebingen, Roentgenweg 13, D-72076 Tuebingen, Germany
- Institute for Astronomy and Astrophysics, Eberhard Karls University Tuebingen, Sand 1, D-72076 Tuebingen, Germany
| | - Emilie Roncali
- University of California Davis, Departments of Biomedical Engineering and Radiology, Davis, CA 95616, United States of America
| | - Antoni Rucinski
- Institute of Nuclear Physics Polish Academy of Sciences, Krakow, Poland
| | - Carla Winterhalter
- Center for Proton Therapy, PSI, Switzerland
- Department of Physics, ETH Zurich, Switzerland
| | - Lydia Maigne
- Université Clermont Auvergne, Laboratoire de Physique de Clermont, CNRS, UMR 6533, F-63178 Aubière, France
| |
Collapse
|
7
|
Li H. Biological effectiveness and relative biological effectiveness of ion beams for in-vitro cell irradiation. Cancer Sci 2022; 113:2807-2813. [PMID: 35642350 PMCID: PMC9357665 DOI: 10.1111/cas.15446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/17/2022] [Accepted: 05/24/2022] [Indexed: 11/26/2022] Open
Abstract
Biological effectiveness and relative biological effectiveness are critical for proton and ion beam radiotherapy. However, the relationship between the two quantities and physical character of ion beams is not well established. By analyzing 1188 sets of in‐vitro cell irradiation experiments using ion beams ranging from protons to 238U, compiled by the Particle Irradiation Data Ensemble (PIDE) project, the biological effectiveness of the ion beams, with cell survival fractionation (SF) as the endpoint, was found to be dependent on the fluence and linear energy transfer (LET) of the ion beam. Consequently, the relative biological effectiveness of the ion beam to photon beam was also established as a function of LET. A common form of relationship among SF, fluence, and LET was found to be valid for all ion beam experiments. The close form relationship could be used for proton and ion beam radiotherapy applications.
Collapse
Affiliation(s)
- Heng Li
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
8
|
Ali Y, Monini C, Russeil E, Létang JM, Testa E, Maigne L, Beuve M. Estimate of the Biological Dose in Hadrontherapy Using GATE. Cancers (Basel) 2022; 14:1667. [PMID: 35406438 PMCID: PMC8996851 DOI: 10.3390/cancers14071667] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/16/2022] [Accepted: 03/18/2022] [Indexed: 12/10/2022] Open
Abstract
For the evaluation of the biological effects, Monte Carlo toolkits were used to provide an RBE-weighted dose using databases of survival fraction coefficients predicted through biophysical models. Biophysics models, such as the mMKM and NanOx models, have previously been developed to estimate a biological dose. Using the mMKM model, we calculated the saturation corrected dose mean specific energy z1D* (Gy) and the dose at 10% D10 for human salivary gland (HSG) cells using Monte Carlo Track Structure codes LPCHEM and Geant4-DNA, and compared these with data from the literature for monoenergetic ions. These two models were used to create databases of survival fraction coefficients for several ion types (hydrogen, carbon, helium and oxygen) and for energies ranging from 0.1 to 400 MeV/n. We calculated α values as a function of LET with the mMKM and the NanOx models, and compared these with the literature. In order to estimate the biological dose for SOBPs, these databases were used with a Monte Carlo toolkit. We considered GATE, an open-source software based on the GEANT4 Monte Carlo toolkit. We implemented a tool, the BioDoseActor, in GATE, using the mMKM and NanOx databases of cell survival predictions as input, to estimate, at a voxel scale, biological outcomes when treating a patient. We modeled the HIBMC 320 MeV/u carbon-ion beam line. We then tested the BioDoseActor for the estimation of biological dose, the relative biological effectiveness (RBE) and the cell survival fraction for the irradiation of the HSG cell line. We then tested the implementation for the prediction of cell survival fraction, RBE and biological dose for the HIBMC 320 MeV/u carbon-ion beamline. For the cell survival fraction, we obtained satisfying results. Concerning the prediction of the biological dose, a 10% relative difference between mMKM and NanOx was reported.
Collapse
Affiliation(s)
- Yasmine Ali
- Institut de Physique des 2 Infinis de Lyon, Université Claude Bernard Lyon 1, CNRS/IN2P3, 4 rue Enrico Fermi, 69622 Villeurbanne, France; (Y.A.); (C.M.); (E.T.); (M.B.)
| | - Caterina Monini
- Institut de Physique des 2 Infinis de Lyon, Université Claude Bernard Lyon 1, CNRS/IN2P3, 4 rue Enrico Fermi, 69622 Villeurbanne, France; (Y.A.); (C.M.); (E.T.); (M.B.)
| | - Etienne Russeil
- Laboratoire de Physique de Clermont, Université Clermont Auvergne, CNRS/IN2P3, 4 Avenue Blaise Pascal, 63178 Aubière, France;
| | - Jean Michel Létang
- CREATIS, Université Claude Bernard Lyon 1, CNRS UMR5220, Inserm U1294, INSA-Lyon, Université Lyon 1, 69373 Lyon, France;
| | - Etienne Testa
- Institut de Physique des 2 Infinis de Lyon, Université Claude Bernard Lyon 1, CNRS/IN2P3, 4 rue Enrico Fermi, 69622 Villeurbanne, France; (Y.A.); (C.M.); (E.T.); (M.B.)
| | - Lydia Maigne
- Laboratoire de Physique de Clermont, Université Clermont Auvergne, CNRS/IN2P3, 4 Avenue Blaise Pascal, 63178 Aubière, France;
| | - Michael Beuve
- Institut de Physique des 2 Infinis de Lyon, Université Claude Bernard Lyon 1, CNRS/IN2P3, 4 rue Enrico Fermi, 69622 Villeurbanne, France; (Y.A.); (C.M.); (E.T.); (M.B.)
| |
Collapse
|
9
|
The Effect of Hypoxia on Relative Biological Effectiveness and Oxygen Enhancement Ratio for Cells Irradiated with Grenz Rays. Cancers (Basel) 2022; 14:cancers14051262. [PMID: 35267573 PMCID: PMC8909589 DOI: 10.3390/cancers14051262] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/11/2022] [Accepted: 02/25/2022] [Indexed: 12/31/2022] Open
Abstract
Grenz-ray therapy (GT) is commonly used for dermatological radiotherapy and has a higher linear energy transfer, relative biological effectiveness (RBE) and oxygen enhancement ratio (OER). GT is a treatment option for lentigo maligna and lentigo maligna melanoma. This study aims to calculate the RBE for DNA double-strand break (DSB) induction and cell survival under hypoxic conditions for GT. The yield of DSBs induced by GT is calculated at the aerobic and hypoxic conditions, using a Monte Carlo damage simulation (MCDS) software. The RBE value for cell survival is calculated using the repair–misrepair–fixation (RMF) model. The RBE values for cell survival for cells irradiated by 15 kV, 10 kV and 10 kVp and titanium K-shell X-rays (4.55 kV) relative to 60Co γ-rays are 1.0–1.6 at the aerobic conditions and moderate hypoxia (2% O2), respectively, but increase to 1.2, 1.4 and 1.9 and 2.1 in conditions of severe hypoxia (0.1% O2). The OER values for DSB induction relative to 60Co γ-rays are about constant and ~2.4 for GT, but the OER for cell survival is 2.8–2.0 as photon energy decreases from 15 kV to 4.55 kV. The results indicate that GT results in more DSB induction and allows effective tumor control for superficial and hypoxic tumors.
Collapse
|
10
|
Plante I, Poignant F, Slaba T. Track Structure Components: Characterizing Energy Deposited in Spherical Cells from Direct and Peripheral HZE Ion Hits. Life (Basel) 2021; 11:life11111112. [PMID: 34832988 PMCID: PMC8619431 DOI: 10.3390/life11111112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/13/2021] [Accepted: 10/15/2021] [Indexed: 12/01/2022] Open
Abstract
To understand the biological effects of radiation, it is important to determine how ionizing radiation deposits energy in micrometric targets. The energy deposited in a target located in an irradiated tissue is a function of several factors such as the radiation type and the irradiated volume size. We simulated the energy deposited by energetic ions in spherical targets of 1, 2, 4, and 8 µm radii encompassed in irradiated parallelepiped volumes of various sizes using the stochastic radiation track structure code Relativistic Ion Tracks (RITRACKS). Because cells are usually part of a tissue when they are irradiated, electrons originating from radiation tracks in neighboring volumes also contribute to energy deposition in the target. To account for this contribution, we used periodic boundary conditions in the simulations. We found that the single-ion spectra of energy deposition in targets comprises two components: the direct ion hits to the targets, which is identical in all irradiation conditions, and the contribution of hits from electrons from neighboring volumes, which depends on the irradiated volume. We also calculated an analytical expression of the indirect hit contributions using the local effect model, which showed results similar to those obtained with RITRACKS.
Collapse
Affiliation(s)
| | | | - Tony Slaba
- NASA Langley Research Center, Hampton, VA 23681, USA;
| |
Collapse
|
11
|
Friedrich T, Pfuhl T, Scholz M. Update of the particle irradiation data ensemble (PIDE) for cell survival. JOURNAL OF RADIATION RESEARCH 2021; 62:645-655. [PMID: 33912970 PMCID: PMC8273790 DOI: 10.1093/jrr/rrab034] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 01/18/2021] [Indexed: 06/12/2023]
Abstract
The particle irradiation data ensemble (PIDE) is the largest database of cell survival data measured after exposure to ion beams and photon reference radiation. We report here on the updated version of the PIDE database and demonstrate how to investigate generic properties of radiation dose response using these sets of raw data. The database now contains information of over 1100 pairs of photon and ion dose response curves. It provides the originally published raw data of cell survival in addition to given linear quadratic (LQ) model parameters. If available, the raw data were used to derive LQ model parameters in the same way for all experiments. To demonstrate the extent of the database and the variability among experiments we focus on the dose response curves after ion and photon radiation separately in a first step. Furthermore, we discuss the capability and the limitations of the database for analyzing properties of low and high linear energy transfer (LET) radiation response based on multiple experiments. PIDE is freely available to the research community under www.gsi.de/bio-pide.
Collapse
Affiliation(s)
- Thomas Friedrich
- GSI Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt, Germany
| | - Tabea Pfuhl
- GSI Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt, Germany
- Institut für Festkörperphysik, TU Darmstadt, 64289 Darmstadt, Germany
| | - Michael Scholz
- GSI Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt, Germany
| |
Collapse
|
12
|
Monte Carlo transport of swift protons and light ions in water: The influence of excitation cross sections, relativistic effects, and Auger electron emission in w-values. Phys Med 2021; 88:71-85. [PMID: 34198025 DOI: 10.1016/j.ejmp.2021.06.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 05/05/2021] [Accepted: 06/04/2021] [Indexed: 11/21/2022] Open
Abstract
PURPOSE To develop a particle transport code to compute w-values and stopping power of swift ions in liquid water and gases of interest for reference dosimetry in hadrontherapy. To analyze the relevance of inelastic and post-collisional processes considered. METHODS The Monte Carlo code MDM was extended to the case of swift ion impact on liquid water (MDM-Ion). Relativistic corrections in the inelastic cross sections and the post-collisional Auger emission were considered. The effects of introducing different electronic excitation cross sections were also studied. RESULTS The stopping power of swift ions on liquid water, calculated with MDM-Ion, are in excellent agreement with recommended data. The w-values show a strong dependence on the electronic excitation cross sections and on the Auger electron emission. Comparisons with other Monte Carlo codes show the relevance of both the processes considered and of the cross sections employed. W and w-values for swift electron, proton, and carbon ions calculated with the MDM and MDM-Ion codes are in very close agreement with each other and with the 20.8 eV experimental value. CONCLUSION We found that w-values in liquid water are independent of ion charge and energy, as assumed in reference dosimetry for hadrontherapy from sparse experimental results for electron and ion impact on gases. Excitation cross sections and Auger emission included in Monte Carlo codes are critical in w-values calculations. The computation of this physical parameter should be used as a benchmark for micro-dosimetry investigations, to assess the reliability of the cross sections employed.
Collapse
|
13
|
Chan CC, Chen FH, Hsiao YY. Impact of Hypoxia on Relative Biological Effectiveness and Oxygen Enhancement Ratio for a 62-MeV Therapeutic Proton Beam. Cancers (Basel) 2021; 13:2997. [PMID: 34203882 PMCID: PMC8232608 DOI: 10.3390/cancers13122997] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/07/2021] [Accepted: 06/09/2021] [Indexed: 01/11/2023] Open
Abstract
This study uses the yields of double-strand breaks (DSBs) to determine the relative biological effectiveness (RBE) of proton beams, using cell survival as a biological endpoint. DSB induction is determined when cells locate at different depths (6 positions) along the track of 62 MeV proton beams. The DNA damage yields are estimated using Monte Carlo Damage Simulation (MCDS) software. The repair outcomes are estimated using Monte Carlo excision repair (MCER) simulations. The RBE for cell survival at different oxygen concentrations is calculated using the repair-misrepair-fixation (RMF) model. Using 60Co γ-rays (linear energy transfer (LET) = 2.4 keV/μm) as the reference radiation, the RBE for DSB induction and enzymatic DSB under aerobic condition (21% O2) are in the range 1.0-1.5 and 1.0-1.6 along the track depth, respectively. In accord with RBE obtained from experimental data, RMF model-derived RBE values for cell survival are in the range of 1.0-3.0. The oxygen enhancement ratio (OER) for cell survival (10%) decreases from 3.0 to 2.5 as LET increases from 1.1 to 22.6 keV/μm. The RBE values for severe hypoxia (0.1% O2) are in the range of 1.1-4.4 as LET increases, indicating greater contributions of direct effects for protons. Compared with photon therapy, the overall effect of 62 MeV proton beams results in greater cell death and is further intensified under hypoxic conditions.
Collapse
Affiliation(s)
- Chun-Chieh Chan
- Department of Electrical Engineering, National Chung Hsing University, Taichung 40227, Taiwan;
| | - Fang-Hsin Chen
- Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan 33302, Taiwan;
- Radiation Biology Research Center, Institute for Radiological Research, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Radiation Oncology, Chang Gung Memorial Hospital—Linkou Branch, Taoyuan 33305, Taiwan
| | - Ya-Yun Hsiao
- Department of Radiology, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
- Department of Medical Imaging and Radiological Sciences, Chung Shan Medical University, Taichung 40201, Taiwan
| |
Collapse
|
14
|
Guardiola C, Bachiller-Perea D, Prieto-Pena J, Jiménez-Ramos MC, García López J, Esnault C, Fleta C, Quirion D, Gómez F. Microdosimetry in low energy proton beam at therapeutic-equivalent fluence rate with silicon 3D-cylindrical microdetectors. Phys Med Biol 2021; 66. [PMID: 33853055 DOI: 10.1088/1361-6560/abf811] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 04/14/2021] [Indexed: 11/11/2022]
Abstract
In this work we show the first microdosimetry measurements on a low energy proton beam with therapeutic-equivalent fluence rates by using the second generation of 3D-cylindrical microdetectors. The sensors belong to an improved version of a novel silicon-based 3D-microdetector design with electrodes etched inside silicon, which were manufactured at the National Microelectronics Centre (IMB-CNM, CSIC) in Spain. A new microtechnology has been employed using quasi-toroid electrodes of 25μm diameter and a depth of 20μm within the silicon bulk, resulting in a well-defined cylindrical radiation sensitive volume. These detectors were tested at the 18 MeV proton beamline of the cyclotron at the National Accelerator Centre (CNA, Spain). They were assembled into an in-house low-noise readout electronics to assess their performance at a therapeutic-equivalent fluence rate. Microdosimetry spectra of lineal energy were recorded at several proton energies starting from 18 MeV by adding 50μm thick tungsten foils gradually at the exit-window of the cyclotron external beamline, which corresponds to different depths along the Bragg curve. The experimentalyF¯values in silicon cover from (5.7 ± 0.9) to (8.5 ± 0.4) keV μm-1in the entrance to (27.4 ± 2.3) keV μm-1in the distal edge. Pulse height energy spectra were crosschecked with Monte Carlo simulations and an excellent agreement was obtained. This work demonstrates the capability of the second generation 3D-microdetectors to assess accurate microdosimetric distributions at fluence rates as high as those used in clinical centers in proton therapy.
Collapse
Affiliation(s)
- C Guardiola
- Université Paris-Saclay, CNRS/IN2P3, IJCLab, F-91405 Orsay, France.,Université de Paris, IJCLab, F-91405 Orsay France
| | - D Bachiller-Perea
- Université Paris-Saclay, CNRS/IN2P3, IJCLab, F-91405 Orsay, France.,Université de Paris, IJCLab, F-91405 Orsay France
| | - J Prieto-Pena
- Departamento de Física de Partículas, Universidad de Santiago de Compostela, E-15782, Spain
| | | | - J García López
- Centro Nacional de Aceleradores, E-41092 Sevilla, Spain.,Departamento de Física Atómica, Molecular y Nuclear, University of Sevilla, E-41080, Sevilla, Spain
| | - C Esnault
- Université Paris-Saclay, CNRS/IN2P3, IJCLab, F-91405 Orsay, France.,Université de Paris, IJCLab, F-91405 Orsay France
| | - C Fleta
- Centro Nacional de Microelectrónica (IMB-CNM, CSIC), Bellaterra, E-08193, Spain
| | - D Quirion
- Centro Nacional de Microelectrónica (IMB-CNM, CSIC), Bellaterra, E-08193, Spain
| | - F Gómez
- Departamento de Física de Partículas, Universidad de Santiago de Compostela, E-15782, Spain
| |
Collapse
|
15
|
Poignant F, Monini C, Testa É, Beuve M. Influence of gold nanoparticles embedded in water on nanodosimetry for keV photon irradiation. Med Phys 2021; 48:1874-1883. [PMID: 33150620 DOI: 10.1002/mp.14576] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 10/13/2020] [Accepted: 10/21/2020] [Indexed: 11/06/2022] Open
Abstract
PURPOSE For the past two decades, high-Z nanoparticles have been of high interest to improve the therapeutic outcomes of radiation therapy, especially for low-energy x-rays. Monte Carlo (MC) simulations have been used to evaluate the boost of dose deposition induced by Auger electrons near the nanoparticle surface, by calculating average energy deposition at the nanoscale. In this study, we propose to go beyond average quantities and quantify the stochastic nature of energy deposition at such a scale. We present results of probability density of the specific energy (restricted to ionization, excitation and electron attachment events) in cylindrical nanotargets of height and radius set at 10 nm. This quantity was evaluated for nanotargets located within 200 nm around 5-50 nm gold nanoparticles (GNPs), for 20-90 keV photon irradiation. METHODS This nanodosimetry study was based on the MC simulation MDM that allows tracking of electrons down to thermalization energy. We introduced a new quantity, namely the probability enhancement ratio (PER), by estimating the probability of imparting to nanotargets a restricted specific energy larger than a threshold z 0 (1, 10, and 20 kGy), normalized to the probability for pure water. The PER was calculated as a function of the distance between the nanotarget and the GNP surface. The threshold values were chosen in light of the biophysical model NanOx that predicts cell survival by calculating local lethal events based on the restricted specific energy and an effective local lethal function. z 0 then represents a threshold above which the nanotarget damages induce efficiently cell death. RESULTS Our calculations showed that the PER varied a lot with the GNP radius, the photon energy, z 0 and the distance of the GNP to the nanotarget. The highest PER was 95 when the nanotarget was located at 5 nm from the GNP surface, for a photon energy of 20 keV, a threshold of 20 kGy, and a GNP radius of 50 nm. This enhancement dramatically decreased with increasing GNP-nanotarget distances as it went below 1.5 for distances larger than 200 nm. CONCLUSIONS The PER seems better adapted than the mean dose deposition to describe the formation of biological damages. The significant increase of the PER within 200 nm around the GNP suggests that severe damages could occur for biological nanotargets located near the GNP. These calculations will be used as an input of the biophysical model NanOx to convert PER into estimation of radiation-induced cell death enhanced by GNPs.
Collapse
Affiliation(s)
- Floriane Poignant
- Univ. Lyon, Univ. Claude Bernard Lyon 1, CNRS/IN2P3, IP2I Lyon, F-69622, Villeurbanne, France
| | - Caterina Monini
- Univ. Lyon, Univ. Claude Bernard Lyon 1, CNRS/IN2P3, IP2I Lyon, F-69622, Villeurbanne, France
| | - Étienne Testa
- Univ. Lyon, Univ. Claude Bernard Lyon 1, CNRS/IN2P3, IP2I Lyon, F-69622, Villeurbanne, France
| | - Michaël Beuve
- Univ. Lyon, Univ. Claude Bernard Lyon 1, CNRS/IN2P3, IP2I Lyon, F-69622, Villeurbanne, France
| |
Collapse
|
16
|
Parisi A, Sato T, Matsuya Y, Kase Y, Magrin G, Verona C, Tran L, Rosenfeld A, Bianchi A, Olko P, Struelens L, Vanhavere F. Development of a new microdosimetric biological weighting function for the RBE 10 assessment in case of the V79 cell line exposed to ions from 1H to 238U. Phys Med Biol 2020; 65:235010. [PMID: 33274727 DOI: 10.1088/1361-6560/abbf96] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
An improved biological weighting function (IBWF) is proposed to phenomenologically relate microdosimetric lineal energy probability density distributions with the relative biological effectiveness (RBE) for the in vitro clonogenic cell survival (surviving fraction = 10%) of the most commonly used mammalian cell line, i.e. the Chinese hamster lung fibroblasts (V79). The IBWF, intended as a simple and robust tool for a fast RBE assessment to compare different exposure conditions in particle therapy beams, was determined through an iterative global-fitting process aimed to minimize the average relative deviation between RBE calculations and literature in vitro data in case of exposure to various types of ions from 1H to 238U. By using a single particle- and energy- independent function, it was possible to establish an univocal correlation between lineal energy and clonogenic cell survival for particles spanning over an unrestricted linear energy transfer range of almost five orders of magnitude (0.2 keV µm-1 to 15 000 keV µm-1 in liquid water). The average deviation between IBWF-derived RBE values and the published in vitro data was ∼14%. The IBWF results were also compared with corresponding calculations (in vitro RBE10 for the V79 cell line) performed using the modified microdosimetric kinetic model (modified MKM). Furthermore, RBE values computed with the reference biological weighting function (BWF) for the in vivo early intestine tolerance in mice were included for comparison and to further explore potential correlations between the BWF results and the in vitro RBE as reported in previous studies. The results suggest that the modified MKM possess limitations in reproducing the experimental in vitro RBE10 for the V79 cell line in case of ions heavier than 20Ne. Furthermore, due to the different modelled endpoint, marked deviations were found between the RBE values assessed using the reference BWF and the IBWF for ions heavier than 2H. Finally, the IBWF was unchangingly applied to calculate RBE values by processing lineal energy density distributions experimentally measured with eight different microdosimeters in 19 1H and 12C beams at ten different facilities (eight clinical and two research ones). Despite the differences between the detectors, irradiation facilities, beam profiles (pristine or spread out Bragg peak), maximum beam energy, beam delivery (passive or active scanning), energy degradation system (water, PMMA, polyamide or low-density polyethylene), the obtained IBWF-based RBE trends were found to be in good agreement with the corresponding ones in case of computer-simulated microdosimetric spectra (average relative deviation equal to 0.8% and 5.7% for 1H and 12C ions respectively).
Collapse
|
17
|
|
18
|
Ionizing Radiation and Complex DNA Damage: Quantifying the Radiobiological Damage Using Monte Carlo Simulations. Cancers (Basel) 2020; 12:cancers12040799. [PMID: 32225023 PMCID: PMC7226293 DOI: 10.3390/cancers12040799] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/23/2020] [Accepted: 03/25/2020] [Indexed: 02/07/2023] Open
Abstract
Ionizing radiation is a common tool in medical procedures. Monte Carlo (MC) techniques are widely used when dosimetry is the matter of investigation. The scientific community has invested, over the last 20 years, a lot of effort into improving the knowledge of radiation biology. The present article aims to summarize the understanding of the field of DNA damage response (DDR) to ionizing radiation by providing an overview on MC simulation studies that try to explain several aspects of radiation biology. The need for accurate techniques for the quantification of DNA damage is crucial, as it becomes a clinical need to evaluate the outcome of various applications including both low- and high-energy radiation medical procedures. Understanding DNA repair processes would improve radiation therapy procedures. Monte Carlo simulations are a promising tool in radiobiology studies, as there are clear prospects for more advanced tools that could be used in multidisciplinary studies, in the fields of physics, medicine, biology and chemistry. Still, lot of effort is needed to evolve MC simulation tools and apply them in multiscale studies starting from small DNA segments and reaching a population of cells.
Collapse
|
19
|
Monini C, Cunha M, Chollier L, Testa E, Beuve M. Determination of the Effective Local Lethal Function for the NanOx Model. Radiat Res 2020; 193:331-340. [PMID: 32017667 DOI: 10.1667/rr15463.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
NanOx is a biophysical model recently developed in the context of hadrontherapy to predict the cell survival probability from ionizing radiation. It postulates that this may be factorized into two independent terms describing the cell response to two classes of biological events that occur in the sequence of an irradiation: the local lethal events that occur at nanometric scale and can by themselves induce cell death, and the non-local lethal events that lead to cell death by an effect of accumulation and/or interaction at a larger scale. Here we address how local lethal events are modeled in terms of the inactivation of undifferentiated nanometric targets via an "effective local lethal function F", which characterizes the response of each cell line to the spectra of "restricted specific energy". F is initially determined as a linear combination of basis functions. Then, a parametric expression is used to reproduce the function's main features, a threshold and a saturation, while at the same time reducing the number of free parameters. This strategy was applied to three cell lines in response to ions of different type and energy, which allows for benchmarking of the α(LET) curves predicted with both effective local lethal functions against the experimental data.
Collapse
Affiliation(s)
- Caterina Monini
- University of Lyon, University of Claude Bernard Lyon 1, CNRS/IN2P3, IP2I Lyon, F-69622, Villeurbanne, France
| | - Micaela Cunha
- University of Lyon, University of Claude Bernard Lyon 1, CNRS/IN2P3, IP2I Lyon, F-69622, Villeurbanne, France
| | - Laurie Chollier
- University of Lyon, University of Claude Bernard Lyon 1, CNRS/IN2P3, IP2I Lyon, F-69622, Villeurbanne, France
| | - Etienne Testa
- University of Lyon, University of Claude Bernard Lyon 1, CNRS/IN2P3, IP2I Lyon, F-69622, Villeurbanne, France
| | - Michael Beuve
- University of Lyon, University of Claude Bernard Lyon 1, CNRS/IN2P3, IP2I Lyon, F-69622, Villeurbanne, France
| |
Collapse
|
20
|
|
21
|
Rabus H, Ngcezu SA, Braunroth T, Nettelbeck H. “Broadscale” nanodosimetry: Nanodosimetric track structure quantities increase at distal edge of spread-out proton Bragg peaks. Radiat Phys Chem Oxf Engl 1993 2020. [DOI: 10.1016/j.radphyschem.2019.108515] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
22
|
Monini C, Alphonse G, Rodriguez-Lafrasse C, Testa É, Beuve M. Comparison of biophysical models with experimental data for three cell lines in response to irradiation with monoenergetic ions. PHYSICS & IMAGING IN RADIATION ONCOLOGY 2019; 12:17-21. [PMID: 33458290 PMCID: PMC7807531 DOI: 10.1016/j.phro.2019.10.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 10/31/2019] [Accepted: 10/31/2019] [Indexed: 10/29/2022]
Abstract
The relative biological effectiveness (RBE) in particle therapy is currently estimated using biophysical models. We compared experimental measurements to the α curves as function of linear energy transfer computed by the Local Effect Model (LEM I-IV), the Microdosimetric Kinetic Model (MKM) and the NanOx model for HSG, V79 and CHO-K1 cells in response to monoenergetic irradiations. Although the LEM IV and the MKM predictions accurately reproduced the trend observed in the data, NanOx yielded a better agreement than the other models for more irradiation configurations. Its χ 2 estimator was indeed the lowest for three over seven considered cases.
Collapse
Affiliation(s)
- Caterina Monini
- Univ. Lyon, Univ. Claude Bernard Lyon 1, CNRS/IN2P3, IP2I Lyon, F-69622 Villeurbanne, France
| | - Gersende Alphonse
- Univ. Lyon, Univ. Claude Bernard Lyon 1, CNRS/IN2P3, IP2I Lyon, F-69622 Villeurbanne, France.,Laboratoire de Radiobiologie Cellulaire et Moléculaire, Faculté de Médecine Lyon-Sud, 69921 Oullins Cedex, France.,Hospices Civils de Lyon, Service de Biochimie, Centre Hospitalier Lyon-Sud, 69495 Pierre-Bénite, France
| | - Claire Rodriguez-Lafrasse
- Univ. Lyon, Univ. Claude Bernard Lyon 1, CNRS/IN2P3, IP2I Lyon, F-69622 Villeurbanne, France.,Laboratoire de Radiobiologie Cellulaire et Moléculaire, Faculté de Médecine Lyon-Sud, 69921 Oullins Cedex, France.,Hospices Civils de Lyon, Service de Biochimie, Centre Hospitalier Lyon-Sud, 69495 Pierre-Bénite, France
| | - Étienne Testa
- Univ. Lyon, Univ. Claude Bernard Lyon 1, CNRS/IN2P3, IP2I Lyon, F-69622 Villeurbanne, France
| | - Michaël Beuve
- Univ. Lyon, Univ. Claude Bernard Lyon 1, CNRS/IN2P3, IP2I Lyon, F-69622 Villeurbanne, France
| |
Collapse
|
23
|
Konobeev IA, Kurachenko YA, Sheino IN. Impact of secondary particles on microdistribution of deposited dose in biological tissue in the presence of gold and gadolinium nanoparticles under photon beam irradiation. NUCLEAR ENERGY AND TECHNOLOGY 2019. [DOI: 10.3897/nucet.5.35798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
It is experimentally proven that nanoparticles of high-Z materials can be used as radiosensitizers for photon beam therapy. In the authors’ opinion, data available as of today on the impact of secondary particles (electrons, photons and positrons generated in biological tissue by penetrating beam of primary photons) on the distribution of deposited dose during photon beam therapy in the presence of nanoparticles, are insufficient. Investigation of this impact constituted the main goal of this work.
Two-stage simulation was performed using Geant4 platform. During the first stage a layer of biological tissue (water) was irradiated by monoenergetic photon sources with energies ranging from 10 keV to 6 MeV. As the result of this modeling spectra of electrons, photons and positrons were obtained at the depth of 5 cm. During the second stage the obtained photon spectra were used to irradiate gold, gadolinium and water nanoparticles. Radial distributions of energy deposited around nanoparticles were obtained as the result of this modeling.
Radial DEF (Dose Enhancement Factor) values around nanoparticles of gold and gadolinium positioned in water at the depth of 5 cm were obtained after processing the collected data. Contributions from primary photons and secondary particles (electrons, photons and positrons generated in the layer of water with 5-cm thickness by the penetrating beam of primary photons) in the additional dose deposited around the nanoparticles were calculated as well.
It was demonstrated that layer of biological tissue placed between the source of photons and nanoparticles considerably changes the initial spectrum of photons and this change is significant in the analysis of mechanism of radiosensitization of biological tissues by nanoparticles for all energies of photon sources (up to 6 MeV).
It was established that interaction of electrons and positrons with nanoparticles does not lead to significant increase of additional dose in the vicinity of their surfaces and can be most likely excluded from consideration in the analysis of radiosensitization mechanism of nanoparticles.
Collapse
|
24
|
Baek WY, Dangendorf V, Giesen U, Hilgers G, Nettelbeck H, Rabus H. PROSPECTS FOR METROLOGY RELATED TO BIOLOGICAL RADIATION EFFECTS OF ION BEAMS. RADIATION PROTECTION DOSIMETRY 2019; 183:131-135. [PMID: 30561691 DOI: 10.1093/rpd/ncy273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 11/21/2018] [Indexed: 06/09/2023]
Abstract
In recent years, several approaches have been proposed to provide an understanding of the enhanced relative biological effectiveness of ion beams based on multi-scale models of their radiation effects. Among these, the BioQuaRT project was the only one which focused on developing metrology for a multi-scale characterization of particle track structure. The progress made within the BioQuaRT project has motivated the formation of a department 'Radiation Effects' at PTB dedicated to metrological research on ionizing radiation effects. This paper gives an overview of the department's present research directions and shortly discusses ideas for the future development of metrology related to biological effects of ion beams that are based on a stakeholder consultation.
Collapse
Affiliation(s)
- Woon Yong Baek
- Department of Radiation Effects, Physikalisch-Technische Bundesanstalt (PTB), Bundesallee 100, Braunschweig, Germany
| | - Volker Dangendorf
- Department of Radiation Effects, Physikalisch-Technische Bundesanstalt (PTB), Bundesallee 100, Braunschweig, Germany
| | - Ulrich Giesen
- Department of Radiation Effects, Physikalisch-Technische Bundesanstalt (PTB), Bundesallee 100, Braunschweig, Germany
| | - Gerhard Hilgers
- Department of Radiation Effects, Physikalisch-Technische Bundesanstalt (PTB), Bundesallee 100, Braunschweig, Germany
| | - Heidi Nettelbeck
- Department of Radiation Effects, Physikalisch-Technische Bundesanstalt (PTB), Bundesallee 100, Braunschweig, Germany
| | - Hans Rabus
- Department of Radiation Effects, Physikalisch-Technische Bundesanstalt (PTB), Bundesallee 100, Braunschweig, Germany
| |
Collapse
|
25
|
Villegas F, Tilly N, Ahnesjö A. Target Size Variation in Microdosimetric Distributions and its Impact on the Linear-Quadratic Parameterization of Cell Survival. Radiat Res 2018; 190:504-512. [PMID: 30106343 DOI: 10.1667/rr15089.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The linear-quadratic (LQ) parameterization of survival fraction [SF( D)] inherently assumes that all cells in a population receive the same dose ( D), albeit the distribution of specific energy z over the individual cells f( z, D) can be very wide. From these microdosimetric distributions, which are target size dependent, we estimate the size of the cellular sensitive volume by analyzing its influence on the LQ parameterization of cell survival. A Monte Carlo track structure code was used to simulate detailed tracks from a 60Co source as well as proton and carbon ions of various energies. From these tracks, f( z, D) distributions were calculated for spherical targets with diameters ranging from 10 nm to 12 μm. A cell survival function based on f( z, D) was fitted to experimental LQ α values, revealing an intrinsic limitation that target size imposes on the usage of f( z, D) to describe the linear term of the LQ parameterization. The results indicate that such threshold volume arises naturally from the relationship between the particle's probability of no-hit and the probability of cell survival. Further analysis led to the proposal of a radiobiological property [Formula: see text], defined as the mean lineal energy corresponding to the target size that allows equivalence between the mean inactivation dose (MID) and the mean specific energy [Formula: see text]. The fact that [Formula: see text] is an increasing continuous function of target size within the range of biological targets of interest in radiobiology, ensures the uniqueness of [Formula: see text] for any radiation quality, thus, its potential usefulness in modeling. In conclusion, an accurate estimation of such threshold volumes may be useful for improving modeling of cell survival curves.
Collapse
Affiliation(s)
- Fernanda Villegas
- a Medical Radiation Physics, Department of Immunology, Genetics and Pathology, Uppsala University, Akademiska Sjukhuset, Uppsala SE-75185, Sweden
| | - Nina Tilly
- a Medical Radiation Physics, Department of Immunology, Genetics and Pathology, Uppsala University, Akademiska Sjukhuset, Uppsala SE-75185, Sweden.,b Elekta Instrument AB, Stockholm SE-10393, Sweden
| | - Anders Ahnesjö
- a Medical Radiation Physics, Department of Immunology, Genetics and Pathology, Uppsala University, Akademiska Sjukhuset, Uppsala SE-75185, Sweden
| |
Collapse
|
26
|
Manganaro L, Russo G, Bourhaleb F, Fausti F, Giordanengo S, Monaco V, Sacchi R, Vignati A, Cirio R, Attili A. 'Survival': a simulation toolkit introducing a modular approach for radiobiological evaluations in ion beam therapy. Phys Med Biol 2018. [PMID: 29537391 DOI: 10.1088/1361-6560/aab697] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
One major rationale for the application of heavy ion beams in tumour therapy is their increased relative biological effectiveness (RBE). The complex dependencies of the RBE on dose, biological endpoint, position in the field etc require the use of biophysical models in treatment planning and clinical analysis. This study aims to introduce a new software, named 'Survival', to facilitate the radiobiological computations needed in ion therapy. The simulation toolkit was written in C++ and it was developed with a modular architecture in order to easily incorporate different radiobiological models. The following models were successfully implemented: the local effect model (LEM, version I, II and III) and variants of the microdosimetric-kinetic model (MKM). Different numerical evaluation approaches were also implemented: Monte Carlo (MC) numerical methods and a set of faster analytical approximations. Among the possible applications, the toolkit was used to reproduce the RBE versus LET for different ions (proton, He, C, O, Ne) and different cell lines (CHO, HSG). Intercomparison between different models (LEM and MKM) and computational approaches (MC and fast approximations) were performed. The developed software could represent an important tool for the evaluation of the biological effectiveness of charged particles in ion beam therapy, in particular when coupled with treatment simulations. Its modular architecture facilitates benchmarking and inter-comparison between different models and evaluation approaches. The code is open source (GPL2 license) and available at https://github.com/batuff/Survival.
Collapse
Affiliation(s)
- L Manganaro
- Physics Department, Università degli studi di Torino (UniTO), Torino, Italy. Istituto Nazionale di Fisica Nucleare (INFN) Sezione di Torino, Torino, Italy. Author to whom any correspondence should be addressed
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Boscolo D, Krämer M, Durante M, Fuss M, Scifoni E. TRAX-CHEM: A pre-chemical and chemical stage extension of the particle track structure code TRAX in water targets. Chem Phys Lett 2018. [DOI: 10.1016/j.cplett.2018.02.051] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
28
|
Study of the Influence of NanOx Parameters. Cancers (Basel) 2018; 10:cancers10040087. [PMID: 29561819 PMCID: PMC5923342 DOI: 10.3390/cancers10040087] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 03/07/2018] [Accepted: 03/16/2018] [Indexed: 11/17/2022] Open
Abstract
NanOx is a new biophysical model that aims at predicting the biological effect of ions in the context of hadron therapy. It integrates the fully-stochastic nature of ionizing radiation both at micrometric and nanometric scales and also takes into account the production and diffusion of reactive chemical species. In order to further characterize the new framework, we discuss the meaning and relevance of most of the NanOx parameters by evaluating their influence on the linear-quadratic coefficient α and on the dose deposited to achieve 10% or 1% of cell survival, D10% or D1%, as a function of LET. We perform a theoretical study in which variations in the input parameters are propagated into the model predictions for HSG, V79 and CHO-K1 cells irradiated by monoenergetic protons and carbon ions. We conclude that, in the current version of NanOx, the modeling of a specific cell line relies on five parameters, which have to be adjusted to several experimental measurements: the average cellular nuclear radius, the linear-quadratic coefficients describing photon irradiations and the α values associated with two carbon ions of intermediate and high-LET values. This may have interesting implications toward a clinical application of the new biophysical model.
Collapse
|
29
|
Poignant F, Gervais B, Ipatov A, Monini C, Cunha M, Lartaud P, Bacle T, Testa E, Beuve M. Abstract ID: 182 Biophysical modelisation of gold nanoparticles radiosensitizing effects. Phys Med 2017. [DOI: 10.1016/j.ejmp.2017.09.094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
30
|
Wozny AS, Aloy MT, Alphonse G, Magné N, Janier M, Tillement O, Lux F, Beuve M, Rodriguez-Lafrasse C. Gadolinium-based nanoparticles as sensitizing agents to carbon ions in head and neck tumor cells. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2017; 13:2655-2660. [PMID: 28779947 DOI: 10.1016/j.nano.2017.07.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 06/13/2017] [Accepted: 07/24/2017] [Indexed: 12/31/2022]
Abstract
Hadrontherapy presents the major advantage of improving tumor sterilization while sparing surrounding healthy tissues because of the particular ballistic (Bragg peak) of carbon ions. However, its efficacy is still limited in the most resistant cancers, such as grade III-IV head and neck squamous cell carcinoma (HNSCC), in which the association of carbon ions with gadolinium-based nanoparticles (AGuIX®) could be used as a Trojan horse. We report for the first time the radioenhancing effect of AGuIX® when combined with carbon ion irradiation in human tumor cells. An increase in relative biological effectiveness (1.7) in three HNSCC cell lines (SQ20B, FaDu, and Cal33) was associated with a significant reduction in the radiation dose needed for killing cells. Radiosensitization goes through a higher number of unrepaired DNA double-strand breaks. These results underline the strong potential of AGuIX® in sensitizing aggressive tumors to hadrontherapy and, therefore, improving local control while lowering acute/late toxicity.
Collapse
Affiliation(s)
- Anne-Sophie Wozny
- Univ Lyon, Université Lyon 1, UMR CNRS5822/IN2P3, IPNL, PRISME, Radiobiologie Cellulaire et Moléculaire, Faculté de Médecine Lyon-Sud, Oullins cedex, France; Hospices Civils de Lyon, Centre Hospitalier Lyon-Sud, Pierre Bénite, France
| | - Marie-Thérèse Aloy
- Univ Lyon, Université Lyon 1, UMR CNRS5822/IN2P3, IPNL, PRISME, Radiobiologie Cellulaire et Moléculaire, Faculté de Médecine Lyon-Sud, Oullins cedex, France
| | - Gersende Alphonse
- Univ Lyon, Université Lyon 1, UMR CNRS5822/IN2P3, IPNL, PRISME, Radiobiologie Cellulaire et Moléculaire, Faculté de Médecine Lyon-Sud, Oullins cedex, France; Hospices Civils de Lyon, Centre Hospitalier Lyon-Sud, Pierre Bénite, France
| | - Nicolas Magné
- Univ Lyon, Université Lyon 1, UMR CNRS5822/IN2P3, IPNL, PRISME, Radiobiologie Cellulaire et Moléculaire, Faculté de Médecine Lyon-Sud, Oullins cedex, France; Département de Radiothérapie, Institut de Cancérologie de la Loire Lucien Neuwirth, St Priest en Jarez, France
| | - Marc Janier
- Univ Lyon, Université Lyon1, CNRS, LAGEP UMR 5007, IMTHERNAT, Hôpital Edouard Herriot, Lyon, France
| | - Olivier Tillement
- Univ Lyon, Université Lyon 1, Institut Lumière Matière, UMR 5306 CNRS, Villeurbanne cedex, France
| | - François Lux
- Univ Lyon, Université Lyon 1, Institut Lumière Matière, UMR 5306 CNRS, Villeurbanne cedex, France
| | - Michael Beuve
- Univ Lyon, Université Lyon 1, UMR CNRS5822/IN2P3, IPNL, PRISME, PHABIO, Villeurbanne, France
| | - Claire Rodriguez-Lafrasse
- Univ Lyon, Université Lyon 1, UMR CNRS5822/IN2P3, IPNL, PRISME, Radiobiologie Cellulaire et Moléculaire, Faculté de Médecine Lyon-Sud, Oullins cedex, France; Hospices Civils de Lyon, Centre Hospitalier Lyon-Sud, Pierre Bénite, France.
| |
Collapse
|