1
|
Oliver J, Alapati R, Lee J, Bur A. Artificial Intelligence in Head and Neck Surgery. Otolaryngol Clin North Am 2024; 57:803-820. [PMID: 38910064 PMCID: PMC11374486 DOI: 10.1016/j.otc.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
This article explores artificial intelligence's (AI's) role in otolaryngology for head and neck cancer diagnosis and management. It highlights AI's potential in pattern recognition for early cancer detection, prognostication, and treatment planning, primarily through image analysis using clinical, endoscopic, and histopathologic images. Radiomics is also discussed at length, as well as the many ways that radiologic image analysis can be utilized, including for diagnosis, lymph node metastasis prediction, and evaluation of treatment response. The study highlights AI's promise and limitations, underlining the need for clinician-data scientist collaboration to enhance head and neck cancer care.
Collapse
Affiliation(s)
- Jamie Oliver
- Department of Otolaryngology-Head and Neck Surgery, University of Kansas School of Medicine, 3901 Rainbow Boulevard M.S. 3010, Kansas City, KS, USA
| | - Rahul Alapati
- Department of Otolaryngology-Head and Neck Surgery, University of Kansas School of Medicine, 3901 Rainbow Boulevard M.S. 3010, Kansas City, KS, USA
| | - Jason Lee
- Department of Otolaryngology-Head and Neck Surgery, University of Kansas School of Medicine, 3901 Rainbow Boulevard M.S. 3010, Kansas City, KS, USA
| | - Andrés Bur
- Department of Otolaryngology-Head and Neck Surgery, University of Kansas School of Medicine, 3901 Rainbow Boulevard M.S. 3010, Kansas City, KS, USA.
| |
Collapse
|
2
|
Alabi RO, Elmusrati M, Leivo I, Almangush A, Mäkitie AA. Artificial Intelligence-Driven Radiomics in Head and Neck Cancer: Current Status and Future Prospects. Int J Med Inform 2024; 188:105464. [PMID: 38728812 DOI: 10.1016/j.ijmedinf.2024.105464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 04/20/2024] [Accepted: 04/22/2024] [Indexed: 05/12/2024]
Abstract
BACKGROUND Radiomics is a rapidly growing field used to leverage medical radiological images by extracting quantitative features. These are supposed to characterize a patient's phenotype, and when combined with artificial intelligence techniques, to improve the accuracy of diagnostic models and clinical outcome prediction. OBJECTIVES This review aims at examining the application areas of artificial intelligence-based radiomics (AI-based radiomics) for the management of head and neck cancer (HNC). It further explores the workflow of AI-based radiomics for personalized and precision oncology in HNC. Finally, it examines the current challenges of AI-based radiomics in daily clinical oncology and offers possible solutions to these challenges. METHODS Comprehensive electronic databases (PubMed, Medline via Ovid, Scopus, Web of Science, CINAHL, and Cochrane Library) were searched following the Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) guidelines. The quality of included studies and their risk of biases were evaluated using the Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis (TRIPOD)and Prediction Model Risk of Bias Assessment Tool (PROBAST). RESULTS Out of the 659 search hits retrieved, 45 fulfilled the inclusion criteria. Our review revealed that the application of AI-based radiomics model as an ancillary tool for improved decision-making in HNC management includes radiomics-based cancer diagnosis and radiomics-based cancer prognosis. The radiomics-based cancer diagnosis includes tumor staging, tumor grading, and classification of malignant and benign tumors. Similarly, radiomics-based cancer prognosis includes prediction for treatment response, recurrence, metastasis, and survival. In addition, the challenges in the implementation of these models for clinical evaluations include data imbalance, feature engineering (extraction and selection), model generalizability, multi-modal fusion, and model interpretability. CONCLUSION Considering the highly subjective and interobserver variability that is peculiar to the interpretation of medical images by expert clinicians, AI-based radiomics seeks to offer potentially useful quantitative information, which is not visible to the human eye or unintentionally often remain ignored during clinical imaging practice. By enabling the extraction of this type of information, AI-based radiomics has the potential to revolutionize HNC oncology, providing a platform for more personalized, higher quality, and cost-effective care for HNC patients.
Collapse
Affiliation(s)
- Rasheed Omobolaji Alabi
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Department of Industrial Digitalization, School of Technology and Innovations, University of Vaasa, Vaasa, Finland.
| | - Mohammed Elmusrati
- Department of Industrial Digitalization, School of Technology and Innovations, University of Vaasa, Vaasa, Finland
| | - Ilmo Leivo
- University of Turku, Institute of Biomedicine, Pathology, Turku, Finland
| | - Alhadi Almangush
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland; University of Turku, Institute of Biomedicine, Pathology, Turku, Finland; Department of Pathology, University of Helsinki, Helsinki, Finland; Faculty of Dentistry, Misurata University, Misurata, Libya
| | - Antti A Mäkitie
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Department of Otorhinolaryngology - Head and Neck Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Division of Ear, Nose and Throat Diseases, Department of Clinical Sciences, Intervention and Technology, Karolinska Institute and Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
3
|
Rogasch JMM, Shi K, Kersting D, Seifert R. Methodological evaluation of original articles on radiomics and machine learning for outcome prediction based on positron emission tomography (PET). Nuklearmedizin 2023; 62:361-369. [PMID: 37995708 PMCID: PMC10667066 DOI: 10.1055/a-2198-0545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 10/25/2023] [Indexed: 11/25/2023]
Abstract
AIM Despite a vast number of articles on radiomics and machine learning in positron emission tomography (PET) imaging, clinical applicability remains limited, partly owing to poor methodological quality. We therefore systematically investigated the methodology described in publications on radiomics and machine learning for PET-based outcome prediction. METHODS A systematic search for original articles was run on PubMed. All articles were rated according to 17 criteria proposed by the authors. Criteria with >2 rating categories were binarized into "adequate" or "inadequate". The association between the number of "adequate" criteria per article and the date of publication was examined. RESULTS One hundred articles were identified (published between 07/2017 and 09/2023). The median proportion of articles per criterion that were rated "adequate" was 65% (range: 23-98%). Nineteen articles (19%) mentioned neither a test cohort nor cross-validation to separate training from testing. The median number of criteria with an "adequate" rating per article was 12.5 out of 17 (range, 4-17), and this did not increase with later dates of publication (Spearman's rho, 0.094; p = 0.35). In 22 articles (22%), less than half of the items were rated "adequate". Only 8% of articles published the source code, and 10% made the dataset openly available. CONCLUSION Among the articles investigated, methodological weaknesses have been identified, and the degree of compliance with recommendations on methodological quality and reporting shows potential for improvement. Better adherence to established guidelines could increase the clinical significance of radiomics and machine learning for PET-based outcome prediction and finally lead to the widespread use in routine clinical practice.
Collapse
Affiliation(s)
- Julian Manuel Michael Rogasch
- Department of Nuclear Medicine, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin
| | - Kuangyu Shi
- Department of Nuclear Medicine, Inselspital University Hospital Bern, Bern, Switzerland
| | - David Kersting
- Department of Nuclear Medicine, University Hospital Essen, Essen, Germany
| | - Robert Seifert
- Department of Nuclear Medicine, University Hospital Essen, Essen, Germany
| |
Collapse
|
4
|
Zhong NN, Wang HQ, Huang XY, Li ZZ, Cao LM, Huo FY, Liu B, Bu LL. Enhancing head and neck tumor management with artificial intelligence: Integration and perspectives. Semin Cancer Biol 2023; 95:52-74. [PMID: 37473825 DOI: 10.1016/j.semcancer.2023.07.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 07/11/2023] [Accepted: 07/15/2023] [Indexed: 07/22/2023]
Abstract
Head and neck tumors (HNTs) constitute a multifaceted ensemble of pathologies that primarily involve regions such as the oral cavity, pharynx, and nasal cavity. The intricate anatomical structure of these regions poses considerable challenges to efficacious treatment strategies. Despite the availability of myriad treatment modalities, the overall therapeutic efficacy for HNTs continues to remain subdued. In recent years, the deployment of artificial intelligence (AI) in healthcare practices has garnered noteworthy attention. AI modalities, inclusive of machine learning (ML), neural networks (NNs), and deep learning (DL), when amalgamated into the holistic management of HNTs, promise to augment the precision, safety, and efficacy of treatment regimens. The integration of AI within HNT management is intricately intertwined with domains such as medical imaging, bioinformatics, and medical robotics. This article intends to scrutinize the cutting-edge advancements and prospective applications of AI in the realm of HNTs, elucidating AI's indispensable role in prevention, diagnosis, treatment, prognostication, research, and inter-sectoral integration. The overarching objective is to stimulate scholarly discourse and invigorate insights among medical practitioners and researchers to propel further exploration, thereby facilitating superior therapeutic alternatives for patients.
Collapse
Affiliation(s)
- Nian-Nian Zhong
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Han-Qi Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Xin-Yue Huang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Zi-Zhan Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Lei-Ming Cao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Fang-Yi Huo
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Bing Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Department of Oral & Maxillofacial - Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
| | - Lin-Lin Bu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Department of Oral & Maxillofacial - Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
| |
Collapse
|
5
|
Philip MM, Welch A, McKiddie F, Nath M. A systematic review and meta-analysis of predictive and prognostic models for outcome prediction using positron emission tomography radiomics in head and neck squamous cell carcinoma patients. Cancer Med 2023; 12:16181-16194. [PMID: 37353996 PMCID: PMC10469753 DOI: 10.1002/cam4.6278] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/07/2023] [Accepted: 06/11/2023] [Indexed: 06/25/2023] Open
Abstract
BACKGROUND Positron emission tomography (PET) images of head and neck squamous cell carcinoma (HNSCC) patients can assess the functional and biochemical processes at cellular levels. Therefore, PET radiomics-based prediction and prognostic models have the potentials to understand tumour heterogeneity and assist clinicians with diagnosis, prognosis and management of the disease. We conducted a systematic review of published modelling information to evaluate the usefulness of PET radiomics in the prediction and prognosis of HNSCC patients. METHODS We searched bibliographic databases (MEDLINE, Embase, Web of Science) from 2010 to 2021 and considered 31 studies with pre-defined inclusion criteria. We followed the CHARMS checklist for data extraction and performed quality assessment using the PROBAST tool. We conducted a meta-analysis to estimate the accuracy of the prediction and prognostic models using the diagnostic odds ratio (DOR) and average C-statistic, respectively. RESULTS Manual segmentation method followed by 40% of the maximum standardised uptake value (SUVmax ) thresholding is a commonly used approach. The area under the receiver operating curves of externally validated prediction models ranged between 0.60-0.87, 0.65-0.86 and 0.62-0.75 for overall survival, distant metastasis and recurrence, respectively. Most studies highlighted an overall high risk of bias (outcome definition, statistical methodologies and external validation of models) and high unclear concern in terms of applicability. The meta-analysis showed the estimated pooled DOR of 6.75 (95% CI: 4.45, 10.23) for prediction models and the C-statistic of 0.71 (95% CI: 0.67, 0.74) for prognostic models. CONCLUSIONS Both prediction and prognostic models using clinical variables and PET radiomics demonstrated reliable accuracy for detecting adverse outcomes in HNSCC, suggesting the prospect of PET radiomics in clinical settings for diagnosis, prognosis and management of HNSCC patients. Future studies of prediction and prognostic models should emphasise the quality of reporting, external model validation, generalisability to real clinical scenarios and enhanced reproducibility of results.
Collapse
Affiliation(s)
| | - Andy Welch
- Institute of Education in Healthcare and Medical Sciences, University of AberdeenAberdeenUK
| | | | - Mintu Nath
- Institute of Applied Health Sciences, University of AberdeenAberdeenUK
| |
Collapse
|
6
|
Garcia DA, Jeans EB, Morris LK, Shiraishi S, Laughlin BS, Rong Y, Rwigema JCM, Foote RL, Herman MG, Qian J. A Radiomics-Based Classifier for the Progression of Oropharyngeal Cancer Treated with Definitive Radiotherapy. Cancers (Basel) 2023; 15:3715. [PMID: 37509376 PMCID: PMC10377821 DOI: 10.3390/cancers15143715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/14/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
In this study, we investigated whether radiomics features from pre-treatment positron emission tomography (PET) images could be used to predict disease progression in patients with HPV-positive oropharyngeal cancer treated with definitive proton or x-ray radiotherapy. Machine learning models were built using a dataset from Mayo Clinic, Rochester, Minnesota (n = 72) and tested on a dataset from Mayo Clinic, Phoenix, Arizona (n = 22). A total of 71 clinical and radiomics features were considered. The Mann-Whitney U test was used to identify the top 2 clinical and top 20 radiomics features that were significantly different between progression and progression-free patients. Two dimensionality reduction methods were used to define two feature sets (manually filtered or machine-driven). A forward feature selection scheme was conducted on each feature set to build models of increased complexity (number of input features from 1 to 6) and evaluate model robustness and overfitting. The machine-driven features had superior performance and were less prone to overfitting compared to the manually filtered features. The four-variable Gaussian Naïve Bayes model using the 'Radiation Type' clinical feature and three machine-driven features achieved a training accuracy of 79% and testing accuracy of 77%. These results demonstrate that radiomics features can provide risk stratification beyond HPV-status to formulate individualized treatment and follow-up strategies.
Collapse
Affiliation(s)
- Darwin A Garcia
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN 55905, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | - Elizabeth B Jeans
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Lindsay K Morris
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Satomi Shiraishi
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Brady S Laughlin
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ 85054, USA
| | - Yi Rong
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ 85054, USA
| | | | - Robert L Foote
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Michael G Herman
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Jing Qian
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
7
|
Cegla P, Hofheinz F, Burchardt E, Czepczyński R, Kubiak A, van den Hoff J, Nikulin P, Bos-Liedke A, Roszak A, Cholewinski W. Asphericity derived from [ 18F]FDG PET as a new prognostic parameter in cervical cancer patients. Sci Rep 2023; 13:8423. [PMID: 37225735 DOI: 10.1038/s41598-023-35191-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 05/14/2023] [Indexed: 05/26/2023] Open
Abstract
The objective of this study was to assess the prognostic value of asphericity (ASP) and standardized uptake ratio (SUR) in cervical cancer patients. Retrospective analysis was performed on a group of 508 (aged 55 ± 12 years) previously untreated cervical cancer patients. All patients underwent a pretreatment [18F]FDG PET/CT study to assess the severity of the disease. The metabolic tumor volume (MTV) of the cervical cancer was delineated with an adaptive threshold method. For the resulting ROIs the maximum standardized uptake value (SUVmax) was measured. In addition, ASP and SUR were determined as previously described. Univariate Cox regression and Kaplan-Meier analysis with respect to event free survival (EFS), overall survival (OS), freedom from distant metastasis (FFDM) and locoregional control (LRC) was performed. Additionally, a multivariate Cox regression including clinically relevant parameters was performed. In the survival analysis, MTV and ASP were shown to be prognostic factors for all investigated endpoints. Tumor metabolism quantified with the SUVmax was not prognostic for any of the endpoints (p > 0.2). The SUR did not reach statistical significance either (p = 0.1, 0.25, 0.066, 0.053, respectively). In the multivariate analysis, the ASP remained a significant factor for EFS and LRC, while MTV was a significant factor for FFDM, indicating their independent prognostic value for the respective endpoints. The alternative parameter ASP has the potential to improve the prognostic value of [18F]FDG PET/CT for event-free survival and locoregional control in radically treated cervical cancer patients.
Collapse
Affiliation(s)
- Paulina Cegla
- Department of Nuclear Medicine, Greater Poland Cancer Centre, Garbary 15, 61-866, Poznan, Poland.
| | - Frank Hofheinz
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Ewa Burchardt
- Department of Electroradiology, Poznan Univeristy of Medical Science, Poznan, Poland
- Department of Radiotherapy and Gynaecological Oncology, Greater Poland Cancer Centre, Poznan, Poland
| | - Rafał Czepczyński
- Department of Endocrinology, Metabolism and Internal Disease, Poznan University of Medical Science, Poznan, Poland
- Department of Nuclear Medicine, Affidea Poznan, Poland
| | - Anna Kubiak
- Greater Poland Cancer Registry, Greater Poland Cancer Centre, Poznan, Poland
| | - Jörg van den Hoff
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Pavel Nikulin
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | | | - Andrzej Roszak
- Department of Electroradiology, Poznan Univeristy of Medical Science, Poznan, Poland
- Department of Radiotherapy and Gynaecological Oncology, Greater Poland Cancer Centre, Poznan, Poland
| | - Witold Cholewinski
- Department of Nuclear Medicine, Greater Poland Cancer Centre, Garbary 15, 61-866, Poznan, Poland
- Department of Electroradiology, Poznan Univeristy of Medical Science, Poznan, Poland
| |
Collapse
|
8
|
Zhang YP, Zhang XY, Cheng YT, Li B, Teng XZ, Zhang J, Lam S, Zhou T, Ma ZR, Sheng JB, Tam VCW, Lee SWY, Ge H, Cai J. Artificial intelligence-driven radiomics study in cancer: the role of feature engineering and modeling. Mil Med Res 2023; 10:22. [PMID: 37189155 DOI: 10.1186/s40779-023-00458-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 05/04/2023] [Indexed: 05/17/2023] Open
Abstract
Modern medicine is reliant on various medical imaging technologies for non-invasively observing patients' anatomy. However, the interpretation of medical images can be highly subjective and dependent on the expertise of clinicians. Moreover, some potentially useful quantitative information in medical images, especially that which is not visible to the naked eye, is often ignored during clinical practice. In contrast, radiomics performs high-throughput feature extraction from medical images, which enables quantitative analysis of medical images and prediction of various clinical endpoints. Studies have reported that radiomics exhibits promising performance in diagnosis and predicting treatment responses and prognosis, demonstrating its potential to be a non-invasive auxiliary tool for personalized medicine. However, radiomics remains in a developmental phase as numerous technical challenges have yet to be solved, especially in feature engineering and statistical modeling. In this review, we introduce the current utility of radiomics by summarizing research on its application in the diagnosis, prognosis, and prediction of treatment responses in patients with cancer. We focus on machine learning approaches, for feature extraction and selection during feature engineering and for imbalanced datasets and multi-modality fusion during statistical modeling. Furthermore, we introduce the stability, reproducibility, and interpretability of features, and the generalizability and interpretability of models. Finally, we offer possible solutions to current challenges in radiomics research.
Collapse
Affiliation(s)
- Yuan-Peng Zhang
- Department of Medical Informatics, Nantong University, Nantong, 226001, Jiangsu, China
- Department of Health Technology and Informatics, the Hong Kong Polytechnic University, Hong Kong, 999077, China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518000, Guangdong, China
| | - Xin-Yun Zhang
- Department of Medical Informatics, Nantong University, Nantong, 226001, Jiangsu, China
| | - Yu-Ting Cheng
- Department of Medical Informatics, Nantong University, Nantong, 226001, Jiangsu, China
| | - Bing Li
- Department of Radiation Oncology, the Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, 450008, Henan, China
| | - Xin-Zhi Teng
- Department of Health Technology and Informatics, the Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Jiang Zhang
- Department of Health Technology and Informatics, the Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Saikit Lam
- Department of Health Technology and Informatics, the Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Ta Zhou
- Department of Health Technology and Informatics, the Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Zong-Rui Ma
- Department of Health Technology and Informatics, the Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Jia-Bao Sheng
- Department of Health Technology and Informatics, the Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Victor C W Tam
- Department of Health Technology and Informatics, the Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Shara W Y Lee
- Department of Health Technology and Informatics, the Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Hong Ge
- Department of Radiation Oncology, the Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, 450008, Henan, China
| | - Jing Cai
- Department of Health Technology and Informatics, the Hong Kong Polytechnic University, Hong Kong, 999077, China.
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518000, Guangdong, China.
| |
Collapse
|
9
|
Omobolaji Alabi R, Sjöblom A, Carpén T, Elmusrati M, Leivo I, Almangush A, Mäkitie AA. Application of artificial intelligence for overall survival risk stratification in oropharyngeal carcinoma: A validation of ProgTOOL. Int J Med Inform 2023; 175:105064. [PMID: 37094545 DOI: 10.1016/j.ijmedinf.2023.105064] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 04/26/2023]
Abstract
BACKGROUND In recent years, there has been a surge in machine learning-based models for diagnosis and prognostication of outcomes in oncology. However, there are concerns relating to the model's reproducibility and generalizability to a separate patient cohort (i.e., external validation). OBJECTIVES This study primarily provides a validation study for a recently introduced and publicly available machine learning (ML) web-based prognostic tool (ProgTOOL) for overall survival risk stratification of oropharyngeal squamous cell carcinoma (OPSCC). Additionally, we reviewed the published studies that have utilized ML for outcome prognostication in OPSCC to examine how many of these models were externally validated, type of external validation, characteristics of the external dataset, and diagnostic performance characteristics on the internal validation (IV) and external validation (EV) datasets were extracted and compared. METHODS We used a total of 163 OPSCC patients obtained from the Helsinki University Hospital to externally validate the ProgTOOL for generalizability. In addition, PubMed, OvidMedline, Scopus, and Web of Science databases were systematically searched according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. RESULTS The ProgTOOL produced a predictive performance of 86.5% balanced accuracy, Mathew's correlation coefficient of 0.78, Net Benefit (0.7) and Brier score (0.06) for overall survival stratification of OPSCC patients as either low-chance or high-chance. In addition, out of a total of 31 studies found to have used ML for the prognostication of outcomes in OPSCC, only seven (22.6%) reported a form of EV. Three studies (42.9%) each used either temporal EV or geographical EV while only one study (14.2%) used expert as a form of EV. Most of the studies reported a reduction in performance when externally validated. CONCLUSION The performance of the model in this validation study indicates that it may be generalized, therefore, bringing recommendations of the model for clinical evaluation closer to reality. However, the number of externally validated ML-based models for OPSCC is still relatively small. This significantly limits the transfer of these models for clinical evaluation and subsequently reduces the likelihood of the use of these models in daily clinical practice. As a gold standard, we recommend the use of geographical EV and validation studies to reveal biases and overfitting of these models. These recommendations are poised to facilitate the implementation of these models in clinical practice.
Collapse
Affiliation(s)
- Rasheed Omobolaji Alabi
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Department of Industrial Digitalization, School of Technology and Innovations, University of Vaasa, Vaasa, Finland.
| | - Anni Sjöblom
- Department of Pathology, University of Helsinki, Helsinki, Finland
| | - Timo Carpén
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Department of Pathology, University of Helsinki, Helsinki, Finland; Department of Otorhinolaryngology - Head and Neck Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Mohammed Elmusrati
- Department of Industrial Digitalization, School of Technology and Innovations, University of Vaasa, Vaasa, Finland
| | - Ilmo Leivo
- University of Turku, Institute of Biomedicine, Pathology, Turku, Finland
| | - Alhadi Almangush
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Department of Pathology, University of Helsinki, Helsinki, Finland; University of Turku, Institute of Biomedicine, Pathology, Turku, Finland; Faculty of Dentistry, Misurata University, Misurata, Libya
| | - Antti A Mäkitie
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Department of Otorhinolaryngology - Head and Neck Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Division of Ear, Nose and Throat Diseases, Department of Clinical Sciences, Intervention and Technology, Karolinska Institute and Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
10
|
Adeoye J, Hui L, Su YX. Data-centric artificial intelligence in oncology: a systematic review assessing data quality in machine learning models for head and neck cancer. JOURNAL OF BIG DATA 2023; 10:28. [DOI: 10.1186/s40537-023-00703-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 02/23/2023] [Indexed: 01/03/2025]
Abstract
AbstractMachine learning models have been increasingly considered to model head and neck cancer outcomes for improved screening, diagnosis, treatment, and prognostication of the disease. As the concept of data-centric artificial intelligence is still incipient in healthcare systems, little is known about the data quality of the models proposed for clinical utility. This is important as it supports the generalizability of the models and data standardization. Therefore, this study overviews the quality of structured and unstructured data used for machine learning model construction in head and neck cancer. Relevant studies reporting on the use of machine learning models based on structured and unstructured custom datasets between January 2016 and June 2022 were sourced from PubMed, EMBASE, Scopus, and Web of Science electronic databases. Prediction model Risk of Bias Assessment (PROBAST) tool was used to assess the quality of individual studies before comprehensive data quality parameters were assessed according to the type of dataset used for model construction. A total of 159 studies were included in the review; 106 utilized structured datasets while 53 utilized unstructured datasets. Data quality assessments were deliberately performed for 14.2% of structured datasets and 11.3% of unstructured datasets before model construction. Class imbalance and data fairness were the most common limitations in data quality for both types of datasets while outlier detection and lack of representative outcome classes were common in structured and unstructured datasets respectively. Furthermore, this review found that class imbalance reduced the discriminatory performance for models based on structured datasets while higher image resolution and good class overlap resulted in better model performance using unstructured datasets during internal validation. Overall, data quality was infrequently assessed before the construction of ML models in head and neck cancer irrespective of the use of structured or unstructured datasets. To improve model generalizability, the assessments discussed in this study should be introduced during model construction to achieve data-centric intelligent systems for head and neck cancer management.
Collapse
|
11
|
Artificial Intelligence for Outcome Modeling in Radiotherapy. Semin Radiat Oncol 2022; 32:351-364. [DOI: 10.1016/j.semradonc.2022.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
12
|
Dmytriw AA, Ortega C, Anconina R, Metser U, Liu ZA, Liu Z, Li X, Sananmuang T, Yu E, Joshi S, Waldron J, Huang SH, Bratman S, Hope A, Veit-Haibach P. Nasopharyngeal Carcinoma Radiomic Evaluation with Serial PET/CT: Exploring Features Predictive of Survival in Patients with Long-Term Follow-Up. Cancers (Basel) 2022; 14:3105. [PMID: 35804877 PMCID: PMC9264840 DOI: 10.3390/cancers14133105] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/09/2022] [Accepted: 06/21/2022] [Indexed: 02/04/2023] Open
Abstract
PURPOSE We aim determine the value of PET and CT radiomic parameters on survival with serial follow-up PET/CT in patients with nasopharyngeal carcinoma (NPC) for which curative intent therapy is undertaken. METHODS Patients with NPC and available pre-treatment as well as follow up PET/CT were included from 2005 to 2006 and were followed to 2021. Baseline demographic, radiological and outcome data were collected. Univariable Cox proportional hazard models were used to evaluate features from baseline and follow-up time points, and landmark analyses were performed for each time point. RESULTS Sixty patients were enrolled, and two-hundred and seventy-eight (278) PET/CT were at baseline and during follow-up. Thirty-eight percent (38%) were female, and sixty-two patients were male. All patients underwent curative radiation or chemoradiation therapy. The median follow-up was 11.72 years (1.26-14.86). Five-year and ten-year overall survivals (OSs) were 80.0% and 66.2%, and progression-free survival (PFS) was 90.0% and 74.4%. Time-dependent modelling suggested that, among others, PET gray-level zone length matrix (GLZLM) gray-level non-uniformity (GLNU) (HR 2.74 95% CI 1.06, 7.05) was significantly associated with OS. Landmark analyses suggested that CT parameters were most predictive at 15 month, whereas PET parameters were most predictive at time points 3, 6, 9 and 15 month. CONCLUSIONS This study with long-term follow up data on NPC suggests that mainly PET-derived radiomic features are predictive for OS but not PFS in a time-dependent evaluation. Furthermore, CT radiomic measures may predict OS and PFS best at initial and long-term follow-up time points and PET measures may be more predictive in the interval. These modalities are commonly used in NPC surveillance, and prospective validation should be considered.
Collapse
Affiliation(s)
- Adam A. Dmytriw
- Department of Medical Imaging, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON M4N 3M5, Canada; (A.A.D.); (R.A.)
- Joint Department of Medical Imaging, Toronto General Hospital, University Health Network, University of Toronto, Toronto, ON M5G 2C4, Canada; (C.O.); (U.M.); (T.S.); (E.Y.); (S.J.)
| | - Claudia Ortega
- Joint Department of Medical Imaging, Toronto General Hospital, University Health Network, University of Toronto, Toronto, ON M5G 2C4, Canada; (C.O.); (U.M.); (T.S.); (E.Y.); (S.J.)
| | - Reut Anconina
- Department of Medical Imaging, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON M4N 3M5, Canada; (A.A.D.); (R.A.)
| | - Ur Metser
- Joint Department of Medical Imaging, Toronto General Hospital, University Health Network, University of Toronto, Toronto, ON M5G 2C4, Canada; (C.O.); (U.M.); (T.S.); (E.Y.); (S.J.)
| | - Zhihui A. Liu
- Department of Biostatistics, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON M5G 2C1, Canada; (Z.A.L.); (Z.L.); (X.L.)
| | - Zijin Liu
- Department of Biostatistics, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON M5G 2C1, Canada; (Z.A.L.); (Z.L.); (X.L.)
| | - Xuan Li
- Department of Biostatistics, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON M5G 2C1, Canada; (Z.A.L.); (Z.L.); (X.L.)
| | - Thiparom Sananmuang
- Joint Department of Medical Imaging, Toronto General Hospital, University Health Network, University of Toronto, Toronto, ON M5G 2C4, Canada; (C.O.); (U.M.); (T.S.); (E.Y.); (S.J.)
- Department of Diagnostic and Therapeutic Radiology, Faculty of Medicine Ramathibodi Hospital, Mahidol University,270 Rama VI Road, Ratchathewi, Bangkok 10400, Thailand
| | - Eugene Yu
- Joint Department of Medical Imaging, Toronto General Hospital, University Health Network, University of Toronto, Toronto, ON M5G 2C4, Canada; (C.O.); (U.M.); (T.S.); (E.Y.); (S.J.)
| | - Sayali Joshi
- Joint Department of Medical Imaging, Toronto General Hospital, University Health Network, University of Toronto, Toronto, ON M5G 2C4, Canada; (C.O.); (U.M.); (T.S.); (E.Y.); (S.J.)
| | - John Waldron
- Department of Radiation Oncology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON M5G 2C1, Canada; (J.W.); (S.H.H.); (S.B.); (A.H.)
| | - Shao Hui Huang
- Department of Radiation Oncology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON M5G 2C1, Canada; (J.W.); (S.H.H.); (S.B.); (A.H.)
| | - Scott Bratman
- Department of Radiation Oncology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON M5G 2C1, Canada; (J.W.); (S.H.H.); (S.B.); (A.H.)
| | - Andrew Hope
- Department of Radiation Oncology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON M5G 2C1, Canada; (J.W.); (S.H.H.); (S.B.); (A.H.)
| | - Patrick Veit-Haibach
- Joint Department of Medical Imaging, Toronto General Hospital, University Health Network, University of Toronto, Toronto, ON M5G 2C4, Canada; (C.O.); (U.M.); (T.S.); (E.Y.); (S.J.)
| |
Collapse
|
13
|
Morland D, Triumbari EKA, Boldrini L, Gatta R, Pizzuto D, Annunziata S. Radiomics in Oncological PET Imaging: A Systematic Review-Part 1, Supradiaphragmatic Cancers. Diagnostics (Basel) 2022; 12:1329. [PMID: 35741138 PMCID: PMC9221970 DOI: 10.3390/diagnostics12061329] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 12/10/2022] Open
Abstract
Radiomics is an upcoming field in nuclear oncology, both promising and technically challenging. To summarize the already undertaken work on supradiaphragmatic neoplasia and assess its quality, we performed a literature search in the PubMed database up to 18 February 2022. Inclusion criteria were: studies based on human data; at least one specified tumor type; supradiaphragmatic malignancy; performing radiomics on PET imaging. Exclusion criteria were: studies only based on phantom or animal data; technical articles without a clinically oriented question; fewer than 30 patients in the training cohort. A review database containing PMID, year of publication, cancer type, and quality criteria (number of patients, retrospective or prospective nature, independent validation cohort) was constructed. A total of 220 studies met the inclusion criteria. Among them, 119 (54.1%) studies included more than 100 patients, 21 studies (9.5%) were based on prospectively acquired data, and 91 (41.4%) used an independent validation set. Most studies focused on prognostic and treatment response objectives. Because the textural parameters and methods employed are very different from one article to another, it is complicated to aggregate and compare articles. New contributions and radiomics guidelines tend to help improving quality of the reported studies over the years.
Collapse
Affiliation(s)
- David Morland
- Nuclear Medicine Unit, TracerGLab, Department of Radiology, Radiotherapy and Hematology, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy; (E.K.A.T.); (D.P.); (S.A.)
- Service de Médecine Nucléaire, Institut Godinot, 51100 Reims, France
- Laboratoire de Biophysique, UFR de Médecine, Université de Reims Champagne-Ardenne, 51100 Reims, France
- CReSTIC (Centre de Recherche en Sciences et Technologies de l’Information et de la Communication), EA 3804, Université de Reims Champagne-Ardenne, 51100 Reims, France
| | - Elizabeth Katherine Anna Triumbari
- Nuclear Medicine Unit, TracerGLab, Department of Radiology, Radiotherapy and Hematology, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy; (E.K.A.T.); (D.P.); (S.A.)
| | - Luca Boldrini
- Radiotherapy Unit, Radiomics, Department of Radiology, Radiotherapy and Hematology, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy; (L.B.); (R.G.)
| | - Roberto Gatta
- Radiotherapy Unit, Radiomics, Department of Radiology, Radiotherapy and Hematology, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy; (L.B.); (R.G.)
- Department of Clinical and Experimental Sciences, University of Brescia, 25121 Brescia, Italy
- Department of Oncology, Lausanne University Hospital, 1011 Lausanne, Switzerland
| | - Daniele Pizzuto
- Nuclear Medicine Unit, TracerGLab, Department of Radiology, Radiotherapy and Hematology, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy; (E.K.A.T.); (D.P.); (S.A.)
| | - Salvatore Annunziata
- Nuclear Medicine Unit, TracerGLab, Department of Radiology, Radiotherapy and Hematology, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy; (E.K.A.T.); (D.P.); (S.A.)
| |
Collapse
|
14
|
Bouron C, Mathie C, Seegers V, Morel O, Jézéquel P, Lasla H, Guillerminet C, Girault S, Lacombe M, Sher A, Lacoeuille F, Patsouris A, Testard A. Prognostic Value of Metabolic, Volumetric and Textural Parameters of Baseline [ 18F]FDG PET/CT in Early Triple-Negative Breast Cancer. Cancers (Basel) 2022; 14:cancers14030637. [PMID: 35158904 PMCID: PMC8833829 DOI: 10.3390/cancers14030637] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 01/22/2022] [Accepted: 01/23/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary The aim of this study was to evaluate PET/CT parameters to determine different prognostic groups in TNBC, in order to select patients with a high risk of relapse, for whom therapeutic escalation can be considered. We have demonstrated that the MTV, TLG and entropy of the primary breast lesion could be of interest to predict the prognostic outcome of TNBC patients. Abstract (1) Background: triple-negative breast cancer (TNBC) remains a clinical and therapeutic challenge primarily affecting young women with poor prognosis. TNBC is currently treated as a single entity but presents a very diverse profile in terms of prognosis and response to treatment. Positron emission tomography/computed tomography (PET/CT) with 18F-fluorodeoxyglucose ([18F]FDG) is gaining importance for the staging of breast cancers. TNBCs often show high [18F]FDG uptake and some studies have suggested a prognostic value for metabolic and volumetric parameters, but no study to our knowledge has examined textural features in TNBC. The objective of this study was to evaluate the association between metabolic, volumetric and textural parameters measured at the initial [18F]FDG PET/CT and disease-free survival (DFS) and overall survival (OS) in patients with nonmetastatic TBNC. (2) Methods: all consecutive nonmetastatic TNBC patients who underwent a [18F]FDG PET/CT examination upon diagnosis between 2012 and 2018 were retrospectively included. The metabolic and volumetric parameters (SUVmax, SUVmean, SUVpeak, MTV, and TLG) and the textural features (entropy, homogeneity, SRE, LRE, LGZE, and HGZE) of the primary tumor were collected. (3) Results: 111 patients were enrolled (median follow-up: 53.6 months). In the univariate analysis, high TLG, MTV and entropy values of the primary tumor were associated with lower DFS (p = 0.008, p = 0.006 and p = 0.025, respectively) and lower OS (p = 0.002, p = 0.001 and p = 0.046, respectively). The discriminating thresholds for two-year DFS were calculated as 7.5 for MTV, 55.8 for TLG and 2.6 for entropy. The discriminating thresholds for two-year OS were calculated as 9.3 for MTV, 57.4 for TLG and 2.67 for entropy. In the multivariate analysis, lymph node involvement in PET/CT was associated with lower DFS (p = 0.036), and the high MTV of the primary tumor was correlated with lower OS (p = 0.014). (4) Conclusions: textural features associated with metabolic and volumetric parameters of baseline [18F]FDG PET/CT have a prognostic value for identifying high-relapse-risk groups in early TNBC patients.
Collapse
Affiliation(s)
- Clément Bouron
- Department of Nuclear Medicine, ICO Pays de la Loire, 15 rue André Boquel, 49055 Angers, France; (O.M.); (C.G.); (S.G.); (M.L.); (A.S.); (A.T.)
- Department of Nuclear Medicine, University Hospital of Angers, 4 rue Larrey, 49100 Angers, France;
- Correspondence:
| | - Clara Mathie
- Department of Medical Oncology, ICO Pays de la Loire, 15 rue André Boquel, 49055 Angers, France; (C.M.); (A.P.)
| | - Valérie Seegers
- Research and Statistics Department, ICO Pays de la Loire, 15 rue André Boquel, 49055 Angers, France;
| | - Olivier Morel
- Department of Nuclear Medicine, ICO Pays de la Loire, 15 rue André Boquel, 49055 Angers, France; (O.M.); (C.G.); (S.G.); (M.L.); (A.S.); (A.T.)
| | - Pascal Jézéquel
- Omics Data Science Unit, ICO Pays de la Loire, Bd Jacques Monod, CEDEX, 44805 Saint-Herblain, France; (P.J.); (H.L.)
- CRCINA, UMR 1232 INSERM, Université de Nantes, Université d’Angers, Institut de Recherche en Santé, 8 Quai Moncousu—BP 70721, CEDEX 1, 44007 Nantes, France
| | - Hamza Lasla
- Omics Data Science Unit, ICO Pays de la Loire, Bd Jacques Monod, CEDEX, 44805 Saint-Herblain, France; (P.J.); (H.L.)
| | - Camille Guillerminet
- Department of Nuclear Medicine, ICO Pays de la Loire, 15 rue André Boquel, 49055 Angers, France; (O.M.); (C.G.); (S.G.); (M.L.); (A.S.); (A.T.)
- Department of Medical Physics, ICO Pays de la Loire, 15 rue André Boquel, 49055 Angers, France
| | - Sylvie Girault
- Department of Nuclear Medicine, ICO Pays de la Loire, 15 rue André Boquel, 49055 Angers, France; (O.M.); (C.G.); (S.G.); (M.L.); (A.S.); (A.T.)
| | - Marie Lacombe
- Department of Nuclear Medicine, ICO Pays de la Loire, 15 rue André Boquel, 49055 Angers, France; (O.M.); (C.G.); (S.G.); (M.L.); (A.S.); (A.T.)
| | - Avigaelle Sher
- Department of Nuclear Medicine, ICO Pays de la Loire, 15 rue André Boquel, 49055 Angers, France; (O.M.); (C.G.); (S.G.); (M.L.); (A.S.); (A.T.)
| | - Franck Lacoeuille
- Department of Nuclear Medicine, University Hospital of Angers, 4 rue Larrey, 49100 Angers, France;
- CRCINA, University of Nantes and Angers, INSERM UMR1232 équipe 17, 49055 Angers, France
| | - Anne Patsouris
- Department of Medical Oncology, ICO Pays de la Loire, 15 rue André Boquel, 49055 Angers, France; (C.M.); (A.P.)
- INSERM UMR1232 équipe 12, 49055 Angers, France
| | - Aude Testard
- Department of Nuclear Medicine, ICO Pays de la Loire, 15 rue André Boquel, 49055 Angers, France; (O.M.); (C.G.); (S.G.); (M.L.); (A.S.); (A.T.)
| |
Collapse
|
15
|
Caruso D, Polici M, Lauri C, Laghi A. Radiomics and artificial intelligence. Nucl Med Mol Imaging 2022. [DOI: 10.1016/b978-0-12-822960-6.00072-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
16
|
Brodin NP, Velten C, Lubin J, Eichler J, Zhu S, Saha S, Guha C, Kalnicki S, Tomé WA, Garg MK, Kabarriti R. A positron emission tomography radiomic signature for distant metastases risk in oropharyngeal cancer patients treated with definitive chemoradiotherapy. Phys Imaging Radiat Oncol 2022; 21:72-77. [PMID: 35243035 PMCID: PMC8867118 DOI: 10.1016/j.phro.2022.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 02/07/2022] [Accepted: 02/11/2022] [Indexed: 11/07/2022] Open
Abstract
The wavelet_LHL_GLDZM_LILDE feature was found to be associated with progression-free survival. A binary radiomics risk score was strongly associated with distant metastases for patients with HPV p16-negtive disease. Improved risk stratification could identify high-risk patients as potential candidates for adjuvant immunotherapy.
Background and purpose Disease recurrence and distant metastases (DM) are major concerns for oropharyngeal cancer (OPC) patients receiving definitive chemo-radiotherapy. Here, we investigated whether pre-treatment primary tumor positron emission tomography (PET) features could predict progression-free survival (PFS) or DM. Methods and materials Primary tumors were delineated on pre-treatment PET scans for patients treated between 2005 and 2018 using gradient-based segmentation. Radiomic image features were extracted, along with SUV metrics. Features with zero variance and strong correlation to tumor volume, stage, p16 status, age or smoking were excluded. A random forest model was used to identify features associated with PFS. Kaplan-Meier methods, Cox regression and logistic regression with receiver operating characteristics (ROC) and 5-fold cross-validated areas-under-the-curve (CV-AUCs) were used. Results A total of 114 patients were included. With median follow-up 40 months (range: 3–138 months), 14 patients had local recurrence, 21 had DM and 38 died. Two-year actuarial local control, distant control, PFS and overall survival was 89%, 84%, 70% and 84%, respectively. The wavelet_LHL_GLDZM_LILDE feature slightly improved PFS prediction compared to clinical features alone (CV-AUC 0.73 vs. 0.71). Age > 65 years (HR = 2.64 (95%CI: 1.36–5.2), p = 0.004) and p16-negative disease (HR = 3.38 (95%CI: 1.72–6.66), p < 0.001) were associated with poor PFS. A binary radiomic classifier strongly predicted DM with multivariable HR = 3.27 (95%CI: 1.15–9.31), p = 0.027, specifically for patients with p16-negative disease with 2-year DM-free survival 83% for low-risk vs. 38% for high-risk patients (p = 0.004). Conclusions A radiomics signature strongly associated with DM risk could provide a tool for improved risk stratification, potentially adding adjuvant immunotherapy for high-risk patients.
Collapse
|
17
|
Morgan HE, Wang K, Dohopolski M, Liang X, Folkert MR, Sher DJ, Wang J. Exploratory ensemble interpretable model for predicting local failure in head and neck cancer: the additive benefit of CT and intra-treatment cone-beam computed tomography features. Quant Imaging Med Surg 2021; 11:4781-4796. [PMID: 34888189 PMCID: PMC8611459 DOI: 10.21037/qims-21-274] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 06/28/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND Local failure (LF) following chemoradiation (CRT) for head and neck cancer is associated with poor overall survival. If machine learning techniques could stratify patients at risk of treatment failure based on baseline and intra-treatment imaging, such a model could facilitate response-adapted approaches to escalate, de-escalate, or switch therapy. METHODS A 1:2 retrospective case control cohort of patients treated at a single institution with definitive radiotherapy for head and neck cancer who failed locally, in-field at a primary or nodal structure were included. Radiomic features were extracted from baseline CT and CBCT scans at fractions 1 and 21 (delta) of radiotherapy with PyRadiomics and were selected for by: reproducibility (intra-class correlation coefficients ≥0.95), redundancy [maximum relevance and minimum redundancy (mRMR)], and informativeness [recursive feature elimination (RFE)]. Separate models predicting LF of primaries or nodes were created using the explainable boosting machine (EBM) classifier with 5-fold cross-validation for (I) clinical only, (II) radiomic only (CT1 and delta features), and (III) fused models (clinical + radiomic). Twenty-five iterations were performed, and predicted scores were averaged with a parallel ensemble design. Receiver operating characteristic curves were compared between models with paired-samples t-tests. RESULTS The fused ensemble model for primaries (using clinical, CT1, and delta features) achieved an AUC of 0.871 with a sensitivity of 78.3% and specificity of 90.9% at the maximum Youden J statistic. The fused ensemble model trended towards improvement when compared to the clinical only ensemble model (AUC =0.788, P=0.134) but reached significance when compared to the radiomic ensemble model (AUC =0.770, P=0.017). The fused ensemble model for nodes achieved an AUC of 0.910 with a sensitivity of 100.0% and specificity of 68.0%, which also trended towards improvement when compared to the clinical model (AUC =0.865, P=0.080). CONCLUSIONS The fused ensemble EBM model achieved high discriminatory ability at predicting LF for head and neck cancer in independent primary and nodal structures. Although an additive benefit of delta radiomics over clinical factors could not be proven, the results trended towards improvement with the fused ensemble model, which are promising and worthy of prospective investigation in a larger cohort.
Collapse
Affiliation(s)
- Howard E. Morgan
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Medical Artificial Intelligence and Automation Laboratory, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kai Wang
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Medical Artificial Intelligence and Automation Laboratory, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Michael Dohopolski
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Medical Artificial Intelligence and Automation Laboratory, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Xiao Liang
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Medical Artificial Intelligence and Automation Laboratory, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Michael R. Folkert
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - David J. Sher
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jing Wang
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Medical Artificial Intelligence and Automation Laboratory, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
18
|
Gharavi SMH, Faghihimehr A. Clinical Application of Artificial Intelligence in PET Imaging of Head and Neck Cancer. PET Clin 2021; 17:65-76. [PMID: 34809871 DOI: 10.1016/j.cpet.2021.09.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Applications of "artificial intelligence" (AI) have been exponentially expanding in health care. Readily accessible archives of enormous digital data in medical imaging have made radiology a leader in exploring and taking advantage of this technology. AI-assisted radiology has paved the way toward another level of precision in medicine. In this article, the authors aim to review current AI applications in PET imaging of head and neck cancers, beginning with radiomics and followed by deep learning in each section.
Collapse
Affiliation(s)
- Seyed Mohammad H Gharavi
- Virginia Commonwealth University, VCU School of Medicine, Department of Radiology, West Hospital, 1200 East Broad Street, North Wing, Room 2-013, Box 980470, Richmond, VA 23298-0470, USA.
| | - Armaghan Faghihimehr
- Virginia Commonwealth University, VCU School of Medicine, Department of Radiology, West Hospital, 1200 East Broad Street, North Wing, Room 2-013, Box 980470, Richmond, VA 23298-0470, USA
| |
Collapse
|
19
|
Marcu LG, Marcu DC. Current Omics Trends in Personalised Head and Neck Cancer Chemoradiotherapy. J Pers Med 2021; 11:jpm11111094. [PMID: 34834445 PMCID: PMC8625829 DOI: 10.3390/jpm11111094] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/22/2021] [Accepted: 10/25/2021] [Indexed: 12/12/2022] Open
Abstract
Chemoradiotherapy remains the most common management of locally advanced head and neck cancer. While both treatment components have greatly developed over the years, the quality of life and long-term survival of patients undergoing treatment for head and neck malignancies are still poor. Research in head and neck oncology is equally focused on the improvement of tumour response to treatment and on the limitation of normal tissue toxicity. In this regard, personalised therapy through a multi-omics approach targeting patient management from diagnosis to treatment shows promising results. The aim of this paper is to discuss the latest results regarding the personalised approach to chemoradiotherapy of head and neck cancer by gathering the findings of the newest omics, involving radiotherapy (dosiomics), chemotherapy (pharmacomics), and medical imaging for treatment monitoring (radiomics). The incorporation of these omics into head and neck cancer management offers multiple viewpoints to treatment that represent the foundation of personalised therapy.
Collapse
Affiliation(s)
- Loredana G. Marcu
- Faculty of Informatics & Science, University of Oradea, 410087 Oradea, Romania
- Cancer Research Institute, University of South Australia, Adelaide, SA 5001, Australia
- Correspondence:
| | - David C. Marcu
- Faculty of Electrical Engineering & Information Technology, University of Oradea, 410087 Oradea, Romania;
| |
Collapse
|
20
|
Fujima N, Andreu-Arasa VC, Meibom SK, Mercier GA, Truong MT, Hirata K, Yasuda K, Kano S, Homma A, Kudo K, Sakai O. Prediction of the local treatment outcome in patients with oropharyngeal squamous cell carcinoma using deep learning analysis of pretreatment FDG-PET images. BMC Cancer 2021; 21:900. [PMID: 34362317 PMCID: PMC8344209 DOI: 10.1186/s12885-021-08599-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 07/09/2021] [Indexed: 11/21/2022] Open
Abstract
Background This study aimed to assess the utility of deep learning analysis using pretreatment FDG-PET images to predict local treatment outcome in oropharyngeal squamous cell carcinoma (OPSCC) patients. Methods One hundred fifty-four OPSCC patients who received pretreatment FDG-PET were included and divided into training (n = 102) and test (n = 52) sets. The diagnosis of local failure and local progression-free survival (PFS) rates were obtained from patient medical records. In deep learning analyses, axial and coronal images were assessed by three different architectures (AlexNet, GoogLeNET, and ResNet). In the training set, FDG-PET images were analyzed after the data augmentation process for the diagnostic model creation. A multivariate clinical model was also created using a binomial logistic regression model from a patient’s clinical characteristics. The test data set was subsequently analyzed for confirmation of diagnostic accuracy. Assessment of local PFS rates was also performed. Results Training sessions were successfully performed with an accuracy of 74–89%. ROC curve analyses revealed an AUC of 0.61–0.85 by the deep learning model in the test set, whereas it was 0.62 by T-stage, 0.59 by clinical stage, and 0.74 by a multivariate clinical model. The highest AUC (0.85) was obtained with deep learning analysis of ResNet architecture. Cox proportional hazards regression analysis revealed deep learning-based classification by a multivariate clinical model (P < .05), and ResNet (P < .001) was a significant predictor of the treatment outcome. In the Kaplan-Meier analysis, the deep learning-based classification divided the patient’s local PFS rate better than the T-stage, clinical stage, and a multivariate clinical model. Conclusions Deep learning-based diagnostic model with FDG-PET images indicated its possibility to predict local treatment outcomes in OPSCCs. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08599-6.
Collapse
Affiliation(s)
- Noriyuki Fujima
- Departments of Radiology, Boston University School of Medicine, One Boston Medical Center Place, 3rd Floor, 820 Harrison Avenue, Boston, MA, 02118, USA.,Research Center for Cooperative Projects, Hokkaido University Graduate School of Medicine, kita 15, nishi 7, kita-ku, Sapporo, Hokkaido, 060-8638, Japan
| | - V Carlota Andreu-Arasa
- Departments of Radiology, Boston University School of Medicine, One Boston Medical Center Place, 3rd Floor, 820 Harrison Avenue, Boston, MA, 02118, USA
| | - Sara K Meibom
- Departments of Radiology, Boston University School of Medicine, One Boston Medical Center Place, 3rd Floor, 820 Harrison Avenue, Boston, MA, 02118, USA
| | - Gustavo A Mercier
- Departments of Radiology, Boston University School of Medicine, One Boston Medical Center Place, 3rd Floor, 820 Harrison Avenue, Boston, MA, 02118, USA
| | - Minh Tam Truong
- Departments of Radiation Oncology, Boston Medical Center, Boston University School of Medicine, One Boston Medical Center Place, Boston, MA, 02118, USA
| | - Kenji Hirata
- Departments of Diagnostic Imaging, Hokkaido University Graduate School of Medicine, kita 15, nishi 7, kita-ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Koichi Yasuda
- Departments of Radiation Medicine, Hokkaido University Graduate School of Medicine, kita 15, nishi 7, kita-ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Satoshi Kano
- Otolaryngology-Head and Neck Surgery, Hokkaido University Graduate School of Medicine, kita 15, nishi 7, kita-ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Akihiro Homma
- Otolaryngology-Head and Neck Surgery, Hokkaido University Graduate School of Medicine, kita 15, nishi 7, kita-ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Kohsuke Kudo
- Departments of Diagnostic Imaging, Hokkaido University Graduate School of Medicine, kita 15, nishi 7, kita-ku, Sapporo, Hokkaido, 060-8638, Japan.,The Global Station for Quantum Medical Science and Engineering, Global Institution for collaborative research and education, Sapporo, Hokkaido, 060-0808, Japan
| | - Osamu Sakai
- Departments of Radiology, Boston University School of Medicine, One Boston Medical Center Place, 3rd Floor, 820 Harrison Avenue, Boston, MA, 02118, USA. .,Departments of Radiation Oncology, Boston Medical Center, Boston University School of Medicine, One Boston Medical Center Place, Boston, MA, 02118, USA.
| |
Collapse
|
21
|
Lafata KJ, Chang Y, Wang C, Mowery YM, Vergalasova I, Niedzwiecki D, Yoo DS, Liu JG, Brizel DM, Yin FF. Intrinsic radiomic expression patterns after 20 Gy demonstrate early metabolic response of oropharyngeal cancers. Med Phys 2021; 48:3767-3777. [PMID: 33959972 DOI: 10.1002/mp.14926] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/26/2021] [Accepted: 04/25/2021] [Indexed: 01/01/2023] Open
Abstract
PURPOSE This study investigated the prognostic potential of intra-treatment PET radiomics data in patients undergoing definitive (chemo) radiation therapy for oropharyngeal cancer (OPC) on a prospective clinical trial. We hypothesized that the radiomic expression of OPC tumors after 20 Gy is associated with recurrence-free survival (RFS). MATERIALS AND METHODS Sixty-four patients undergoing definitive (chemo)radiation for OPC were prospectively enrolled on an IRB-approved study. Investigational 18 F-FDG-PET/CT images were acquired prior to treatment and 2 weeks (20 Gy) into a seven-week course of therapy. Fifty-five quantitative radiomic features were extracted from the primary tumor as potential biomarkers of early metabolic response. An unsupervised data clustering algorithm was used to partition patients into clusters based only on their radiomic expression. Clustering results were naïvely compared to residual disease and/or subsequent recurrence and used to derive Kaplan-Meier estimators of RFS. To test whether radiomic expression provides prognostic value beyond conventional clinical features associated with head and neck cancer, multivariable Cox proportional hazards modeling was used to adjust radiomic clusters for T and N stage, HPV status, and change in tumor volume. RESULTS While pre-treatment radiomics were not prognostic, intra-treatment radiomic expression was intrinsically associated with both residual/recurrent disease (P = 0.0256, χ 2 test) and RFS (HR = 7.53, 95% CI = 2.54-22.3; P = 0.0201). On univariate Cox analysis, radiomic cluster was associated with RFS (unadjusted HR = 2.70; 95% CI = 1.26-5.76; P = 0.0104) and maintained significance after adjustment for T, N staging, HPV status, and change in tumor volume after 20 Gy (adjusted HR = 2.69; 95% CI = 1.03-7.04; P = 0.0442). The particular radiomic characteristics associated with outcomes suggest that metabolic spatial heterogeneity after 20 Gy portends complete and durable therapeutic response. This finding is independent of baseline metabolic imaging characteristics and clinical features of head and neck cancer, thus providing prognostic advantages over existing approaches. CONCLUSIONS Our data illustrate the prognostic value of intra-treatment metabolic image interrogation, which may potentially guide adaptive therapy strategies for OPC patients and serve as a blueprint for other disease sites. The quality of our study was strengthened by its prospective image acquisition protocol, homogenous patient cohort, relatively long patient follow-up times, and unsupervised clustering formalism that is less prone to hyper-parameter tuning and over-fitting compared to supervised learning.
Collapse
Affiliation(s)
- Kyle J Lafata
- Department of Radiation Oncology, Duke University School of Medicine, Durham, NC, USA.,Department of Radiology, Duke University School of Medicine, Durham, NC, USA.,Department of Electrical & Computer Engineering, Duke University Pratt School of Engineering, Durham, NC, USA.,Medical Physics Graduate Program, Duke University, Durham, NC, USA
| | - Yushi Chang
- Department of Radiation Oncology, Duke University School of Medicine, Durham, NC, USA.,Medical Physics Graduate Program, Duke University, Durham, NC, USA
| | - Chunhao Wang
- Department of Radiation Oncology, Duke University School of Medicine, Durham, NC, USA.,Medical Physics Graduate Program, Duke University, Durham, NC, USA
| | - Yvonne M Mowery
- Department of Radiation Oncology, Duke University School of Medicine, Durham, NC, USA.,Department of Head and Neck Surgery & Communication Sciences, Duke University School of Medicine, Durham, NC, USA
| | - Irina Vergalasova
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Donna Niedzwiecki
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC, USA
| | - David S Yoo
- Department of Radiation Oncology, Duke University School of Medicine, Durham, NC, USA
| | - Jian-Guo Liu
- Department of Mathematics, Duke University, Durham, NC, USA.,Department of Physics, Duke University, Durham, NC, USA
| | - David M Brizel
- Department of Radiation Oncology, Duke University School of Medicine, Durham, NC, USA.,Department of Head and Neck Surgery & Communication Sciences, Duke University School of Medicine, Durham, NC, USA
| | - Fang-Fang Yin
- Department of Radiation Oncology, Duke University School of Medicine, Durham, NC, USA.,Medical Physics Graduate Program, Duke University, Durham, NC, USA
| |
Collapse
|
22
|
Oh JH, Apte AP, Katsoulakis E, Riaz N, Hatzoglou V, Yu Y, Mahmood U, Veeraraghavan H, Pouryahya M, Iyer A, Shukla-Dave A, Tannenbaum A, Lee NY, Deasy JO. Reproducibility of radiomic features using network analysis and its application in Wasserstein k-means clustering. J Med Imaging (Bellingham) 2021; 8:031904. [PMID: 33954225 PMCID: PMC8085581 DOI: 10.1117/1.jmi.8.3.031904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 04/02/2021] [Indexed: 12/24/2022] Open
Abstract
Purpose: The goal of this study is to develop innovative methods for identifying radiomic features that are reproducible over varying image acquisition settings. Approach: We propose a regularized partial correlation network to identify reliable and reproducible radiomic features. This approach was tested on two radiomic feature sets generated using two different reconstruction methods on computed tomography (CT) scans from a cohort of 47 lung cancer patients. The largest common network component between the two networks was tested on phantom data consisting of five cancer samples. To further investigate whether radiomic features found can identify phenotypes, we propose a k -means clustering algorithm coupled with the optimal mass transport theory. This approach following the regularized partial correlation network analysis was tested on CT scans from 77 head and neck squamous cell carcinoma (HNSCC) patients in the Cancer Imaging Archive (TCIA) and validated using an independent dataset. Results: A set of common radiomic features was found in relatively large network components between the resultant two partial correlation networks resulting from a cohort of lung cancer patients. The reliability and reproducibility of those radiomic features were further validated on phantom data using the Wasserstein distance. Further analysis using the network-based Wasserstein k -means algorithm on the TCIA HNSCC data showed that the resulting clusters separate tumor subsites as well as HPV status, and this was validated on an independent dataset. Conclusion: We showed that a network-based analysis enables identifying reproducible radiomic features and use of the selected set of features can enhance clustering results.
Collapse
Affiliation(s)
- Jung Hun Oh
- Memorial Sloan Kettering Cancer Center, Department of Medical Physics, New York, United States
| | - Aditya P Apte
- Memorial Sloan Kettering Cancer Center, Department of Medical Physics, New York, United States
| | - Evangelia Katsoulakis
- Veterans Affairs, James A Haley, Department of Radiation Oncology, Tampa, Florida, United States
| | - Nadeem Riaz
- Memorial Sloan Kettering Cancer Center, Department of Radiation Oncology, New York, United States
| | - Vaios Hatzoglou
- Memorial Sloan Kettering Cancer Center, Department of Radiology, New York, United States
| | - Yao Yu
- Memorial Sloan Kettering Cancer Center, Department of Radiation Oncology, New York, United States
| | - Usman Mahmood
- Memorial Sloan Kettering Cancer Center, Department of Medical Physics, New York, United States
| | - Harini Veeraraghavan
- Memorial Sloan Kettering Cancer Center, Department of Medical Physics, New York, United States
| | - Maryam Pouryahya
- Memorial Sloan Kettering Cancer Center, Department of Medical Physics, New York, United States
| | - Aditi Iyer
- Memorial Sloan Kettering Cancer Center, Department of Medical Physics, New York, United States
| | - Amita Shukla-Dave
- Memorial Sloan Kettering Cancer Center, Department of Medical Physics, New York, United States
| | - Allen Tannenbaum
- Stony Brook University, Department of Computer Science, Stony Brook, New York, United States.,Stony Brook University, Department of Applied Mathematics and Statistics, Stony Brook, New York, United States
| | - Nancy Y Lee
- Memorial Sloan Kettering Cancer Center, Department of Radiation Oncology, New York, United States
| | - Joseph O Deasy
- Memorial Sloan Kettering Cancer Center, Department of Medical Physics, New York, United States
| |
Collapse
|
23
|
A Systematic Review of PET Textural Analysis and Radiomics in Cancer. Diagnostics (Basel) 2021; 11:diagnostics11020380. [PMID: 33672285 PMCID: PMC7926413 DOI: 10.3390/diagnostics11020380] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/10/2021] [Accepted: 02/19/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Although many works have supported the utility of PET radiomics, several authors have raised concerns over the robustness and replicability of the results. This study aimed to perform a systematic review on the topic of PET radiomics and the used methodologies. Methods: PubMed was searched up to 15 October 2020. Original research articles based on human data specifying at least one tumor type and PET image were included, excluding those that apply only first-order statistics and those including fewer than 20 patients. Each publication, cancer type, objective and several methodological parameters (number of patients and features, validation approach, among other things) were extracted. Results: A total of 290 studies were included. Lung (28%) and head and neck (24%) were the most studied cancers. The most common objective was prognosis/treatment response (46%), followed by diagnosis/staging (21%), tumor characterization (18%) and technical evaluations (15%). The average number of patients included was 114 (median = 71; range 20–1419), and the average number of high-order features calculated per study was 31 (median = 26, range 1–286). Conclusions: PET radiomics is a promising field, but the number of patients in most publications is insufficient, and very few papers perform in-depth validations. The role of standardization initiatives will be crucial in the upcoming years.
Collapse
|
24
|
Peng Z, Wang Y, Wang Y, Jiang S, Fan R, Zhang H, Jiang W. Application of radiomics and machine learning in head and neck cancers. Int J Biol Sci 2021; 17:475-486. [PMID: 33613106 PMCID: PMC7893590 DOI: 10.7150/ijbs.55716] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 12/10/2020] [Indexed: 02/07/2023] Open
Abstract
With the continuous development of medical image informatics technology, more and more high-throughput quantitative data could be extracted from digital medical images, which has resulted in a new kind of omics-Radiomics. In recent years, in addition to genomics, proteomics and metabolomics, radiomic has attracted the interest of more and more researchers. Compared to other omics, radiomics can be perfectly integrated with clinical data, even with the pathology and molecular biomarker, so that the study can be closer to the clinical reality and more revealing of the tumor development. Mass data will also be generated in this process. Machine learning, due to its own characteristics, has a unique advantage in processing massive radiomic data. By analyzing mass amounts of data with strong clinical relevance, people can construct models that more accurately reflect tumor development and progression, thereby providing the possibility of personalized and sequential treatment of patients. As one of the cancer types whose treatment and diagnosis rely on imaging examination, radiomics has a very broad application prospect in head and neck cancers (HNC). Until now, there have been some notable results in HNC. In this review, we will introduce the concepts and workflow of radiomics and machine learning and their current applications in head and neck cancers, as well as the directions and applications of artificial intelligence in the treatment and diagnosis of HNC.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Weihong Jiang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha 410078, Hunan, China
| |
Collapse
|
25
|
Haider SP, Sharaf K, Zeevi T, Baumeister P, Reichel C, Forghani R, Kann BH, Petukhova A, Judson BL, Prasad ML, Liu C, Burtness B, Mahajan A, Payabvash S. Prediction of post-radiotherapy locoregional progression in HPV-associated oropharyngeal squamous cell carcinoma using machine-learning analysis of baseline PET/CT radiomics. Transl Oncol 2020; 14:100906. [PMID: 33075658 PMCID: PMC7568193 DOI: 10.1016/j.tranon.2020.100906] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/27/2020] [Accepted: 09/28/2020] [Indexed: 12/15/2022] Open
Abstract
Radiomics quantitatively captures visually inappreciable imaging features. PET/CT radiomics provides wholistic metabolic and structural tumor characterization. Machine-learning algorithms can generate radiomics-based biomarkers for OPSCC. PET/CT radiomics can predict post-radiotherapy locoregional progression in HPV-associated OPSCC. Such biomarkers may improve patient selection for treatment de-intensification trials.
Locoregional failure remains a therapeutic challenge in oropharyngeal squamous cell carcinoma (OPSCC). We aimed to devise novel objective imaging biomarkers for prediction of locoregional progression in HPV-associated OPSCC. Following manual lesion delineation, 1037 PET and 1037 CT radiomic features were extracted from each primary tumor and metastatic cervical lymph node on baseline PET/CT scans. Applying random forest machine-learning algorithms, we generated radiomic models for censoring-aware locoregional progression prognostication (evaluated by Harrell's C-index) and risk stratification (evaluated in Kaplan-Meier analysis). A total of 190 patients were included; an optimized model yielded a median (interquartile range) C-index of 0.76 (0.66-0.81; p = 0.01) in prognostication of locoregional progression, using combined PET/CT radiomic features from primary tumors. Radiomics-based risk stratification reliably identified patients at risk for locoregional progression within 2-, 3-, 4-, and 5-year follow-up intervals, with log-rank p-values of p = 0.003, p = 0.001, p = 0.02, p = 0.006 in Kaplan-Meier analysis, respectively. Our results suggest PET/CT radiomic biomarkers can predict post-radiotherapy locoregional progression in HPV-associated OPSCC. Pending validation in large, independent cohorts, such objective biomarkers may improve patient selection for treatment de-intensification trials in this prognostically favorable OPSCC entity, and eventually facilitate personalized therapy.
Collapse
Affiliation(s)
- Stefan P Haider
- Section of Neuroradiology, Department of Radiology and Biomedical Imaging, Yale School of Medicine, 789 Howard Ave, PO Box 208042, New Haven, CT 06519, United States; Department of Otorhinolaryngology, University Hospital of Ludwig Maximilians Universität München, Marchioninistrasse 15, 81377 Munich, Germany
| | - Kariem Sharaf
- Department of Otorhinolaryngology, University Hospital of Ludwig Maximilians Universität München, Marchioninistrasse 15, 81377 Munich, Germany
| | - Tal Zeevi
- Center for Translational Imaging Analysis and Machine Learning, Department of Radiology and Biomedical Imaging, Yale School of Medicine, 333 Cedar Street, New Haven, CT 06510, United States
| | - Philipp Baumeister
- Department of Otorhinolaryngology, University Hospital of Ludwig Maximilians Universität München, Marchioninistrasse 15, 81377 Munich, Germany
| | - Christoph Reichel
- Department of Otorhinolaryngology, University Hospital of Ludwig Maximilians Universität München, Marchioninistrasse 15, 81377 Munich, Germany
| | - Reza Forghani
- Department of Diagnostic Radiology and Augmented Intelligence & Precision Health Laboratory (AIPHL), McGill University Health Centre & Research Institute, 1650 Cedar Avenue, Montreal, Quebec QC H3G 1A4, Canada
| | - Benjamin H Kann
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Avenue, Boston, MA 02215, United States
| | - Alexandra Petukhova
- Section of Neuroradiology, Department of Radiology and Biomedical Imaging, Yale School of Medicine, 789 Howard Ave, PO Box 208042, New Haven, CT 06519, United States
| | - Benjamin L Judson
- Division of Otolaryngology, Department of Surgery, Yale School of Medicine, 330 Cedar Street, New Haven, CT 06520, United States
| | - Manju L Prasad
- Department of Pathology, Yale School of Medicine, 310 Cedar Street, New Haven, CT 06520, United States
| | - Chi Liu
- Division of Bioimaging Sciences, Department of Radiology and Biomedical Imaging, Yale School of Medicine, 333 Cedar Street, New Haven, CT 06510, United States
| | - Barbara Burtness
- Section of Medical Oncology, Department of Internal Medicine, Yale School of Medicine and Yale Cancer Center, 25 York Street, New Haven, CT 06520, United States
| | - Amit Mahajan
- Section of Neuroradiology, Department of Radiology and Biomedical Imaging, Yale School of Medicine, 789 Howard Ave, PO Box 208042, New Haven, CT 06519, United States
| | - Seyedmehdi Payabvash
- Section of Neuroradiology, Department of Radiology and Biomedical Imaging, Yale School of Medicine, 789 Howard Ave, PO Box 208042, New Haven, CT 06519, United States.
| |
Collapse
|
26
|
Zschaeck S, Li Y, Lin Q, Beck M, Amthauer H, Bauersachs L, Hajiyianni M, Rogasch J, Ehrhardt VH, Kalinauskaite G, Weingärtner J, Hartmann V, van den Hoff J, Budach V, Stromberger C, Hofheinz F. Prognostic value of baseline [18F]-fluorodeoxyglucose positron emission tomography parameters MTV, TLG and asphericity in an international multicenter cohort of nasopharyngeal carcinoma patients. PLoS One 2020; 15:e0236841. [PMID: 32730364 PMCID: PMC7392321 DOI: 10.1371/journal.pone.0236841] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/14/2020] [Indexed: 01/02/2023] Open
Abstract
Purpose [18F]-fluorodeoxyglucose (FDG) positron emission tomography (PET) parameters have shown prognostic value in nasopharyngeal carcinomas (NPC), mostly in monocenter studies. The aim of this study was to assess the prognostic impact of standard and novel PET parameters in a multicenter cohort of patients. Methods The established PET parameters metabolic tumor volume (MTV), total lesion glycolysis (TLG) and maximal standardized uptake value (SUVmax) as well as the novel parameter tumor asphericity (ASP) were evaluated in a retrospective multicenter cohort of 114 NPC patients with FDG-PET staging, treated with (chemo)radiation at 8 international institutions. Uni- and multivariable Cox regression and Kaplan-Meier analysis with respect to overall survival (OS), event-free survival (EFS), distant metastases-free survival (FFDM), and locoregional control (LRC) was performed for clinical and PET parameters. Results When analyzing metric PET parameters, ASP showed a significant association with EFS (p = 0.035) and a trend for OS (p = 0.058). MTV was significantly associated with EFS (p = 0.026), OS (p = 0.008) and LRC (p = 0.012) and TLG with LRC (p = 0.019). TLG and MTV showed a very high correlation (Spearman’s rho = 0.95), therefore TLG was subesequently not further analysed. Optimal cutoff values for defining high and low risk groups were determined by maximization of the p-value in univariate Cox regression considering all possible cutoff values. Generation of stable cutoff values was feasible for MTV (p<0.001), ASP (p = 0.023) and combination of both (MTV+ASP = occurrence of one or both risk factors, p<0.001) for OS and for MTV regarding the endpoints OS (p<0.001) and LRC (p<0.001). In multivariable Cox (age >55 years + one binarized PET parameter), MTV >11.1ml (hazard ratio (HR): 3.57, p<0.001) and ASP > 14.4% (HR: 3.2, p = 0.031) remained prognostic for OS. MTV additionally remained prognostic for LRC (HR: 4.86 p<0.001) and EFS (HR: 2.51 p = 0.004). Bootstrapping analyses showed that a combination of high MTV and ASP improved prognostic value for OS compared to each single variable significantly (p = 0.005 and p = 0.04, respectively). When using the cohort from China (n = 57 patients) for establishment of prognostic parameters and all other patients for validation (n = 57 patients), MTV could be successfully validated as prognostic parameter regarding OS, EFS and LRC (all p-values <0.05 for both cohorts). Conclusions In this analysis, PET parameters were associated with outcome of NPC patients. MTV showed a robust association with OS, EFS and LRC. Our data suggest that combination of MTV and ASP may potentially further improve the risk stratification of NPC patients.
Collapse
Affiliation(s)
- Sebastian Zschaeck
- Charité –Universitätsmedizin Berlin, Berlin, Germany
- Freie Universität Berlin, Berlin, Germany
- Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Radiation Oncology, Berlin Institute of Health, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Yimin Li
- Department of Radiation Oncology, Xiamen Cancer Center, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Qin Lin
- Department of Radiation Oncology, Xiamen Cancer Center, The First Affiliated Hospital of Xiamen University, Xiamen, China
- * E-mail:
| | - Marcus Beck
- Charité –Universitätsmedizin Berlin, Berlin, Germany
- Freie Universität Berlin, Berlin, Germany
- Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Radiation Oncology, Berlin Institute of Health, Berlin, Germany
| | - Holger Amthauer
- Department of Nuclear Medicine, Charité—Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Laura Bauersachs
- Charité –Universitätsmedizin Berlin, Berlin, Germany
- Freie Universität Berlin, Berlin, Germany
- Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Radiation Oncology, Berlin Institute of Health, Berlin, Germany
| | - Marina Hajiyianni
- Charité –Universitätsmedizin Berlin, Berlin, Germany
- Freie Universität Berlin, Berlin, Germany
- Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Radiation Oncology, Berlin Institute of Health, Berlin, Germany
| | - Julian Rogasch
- Department of Nuclear Medicine, Charité—Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Vincent H. Ehrhardt
- Charité –Universitätsmedizin Berlin, Berlin, Germany
- Freie Universität Berlin, Berlin, Germany
- Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Radiation Oncology, Berlin Institute of Health, Berlin, Germany
| | - Goda Kalinauskaite
- Charité –Universitätsmedizin Berlin, Berlin, Germany
- Freie Universität Berlin, Berlin, Germany
- Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Radiation Oncology, Berlin Institute of Health, Berlin, Germany
| | - Julian Weingärtner
- Charité –Universitätsmedizin Berlin, Berlin, Germany
- Freie Universität Berlin, Berlin, Germany
- Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Radiation Oncology, Berlin Institute of Health, Berlin, Germany
| | - Vivian Hartmann
- Charité –Universitätsmedizin Berlin, Berlin, Germany
- Freie Universität Berlin, Berlin, Germany
- Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Radiation Oncology, Berlin Institute of Health, Berlin, Germany
| | - Jörg van den Hoff
- Department of Positron Emission Tomography, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Volker Budach
- Charité –Universitätsmedizin Berlin, Berlin, Germany
- Freie Universität Berlin, Berlin, Germany
- Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Radiation Oncology, Berlin Institute of Health, Berlin, Germany
| | - Carmen Stromberger
- Charité –Universitätsmedizin Berlin, Berlin, Germany
- Freie Universität Berlin, Berlin, Germany
- Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Radiation Oncology, Berlin Institute of Health, Berlin, Germany
| | - Frank Hofheinz
- Department of Positron Emission Tomography, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| |
Collapse
|
27
|
Haider SP, Zeevi T, Baumeister P, Reichel C, Sharaf K, Forghani R, Kann BH, Judson BL, Prasad ML, Burtness B, Mahajan A, Payabvash S. Potential Added Value of PET/CT Radiomics for Survival Prognostication beyond AJCC 8th Edition Staging in Oropharyngeal Squamous Cell Carcinoma. Cancers (Basel) 2020; 12:cancers12071778. [PMID: 32635216 PMCID: PMC7407414 DOI: 10.3390/cancers12071778] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 06/29/2020] [Accepted: 06/30/2020] [Indexed: 12/18/2022] Open
Abstract
Accurate risk-stratification can facilitate precision therapy in oropharyngeal squamous cell carcinoma (OPSCC). We explored the potential added value of baseline positron emission tomography (PET)/computed tomography (CT) radiomic features for prognostication and risk stratification of OPSCC beyond the American Joint Committee on Cancer (AJCC) 8th edition staging scheme. Using institutional and publicly available datasets, we included OPSCC patients with known human papillomavirus (HPV) status, without baseline distant metastasis and treated with curative intent. We extracted 1037 PET and 1037 CT radiomic features quantifying lesion shape, imaging intensity, and texture patterns from primary tumors and metastatic cervical lymph nodes. Utilizing random forest algorithms, we devised novel machine-learning models for OPSCC progression-free survival (PFS) and overall survival (OS) using “radiomics” features, “AJCC” variables, and the “combined” set as input. We designed both single- (PET or CT) and combined-modality (PET/CT) models. Harrell’s C-index quantified survival model performance; risk stratification was evaluated in Kaplan–Meier analysis. A total of 311 patients were included. In HPV-associated OPSCC, the best “radiomics” model achieved an average C-index ± standard deviation of 0.62 ± 0.05 (p = 0.02) for PFS prediction, compared to 0.54 ± 0.06 (p = 0.32) utilizing “AJCC” variables. Radiomics-based risk-stratification of HPV-associated OPSCC was significant for PFS and OS. Similar trends were observed in HPV-negative OPSCC. In conclusion, radiomics imaging features extracted from pre-treatment PET/CT may provide complimentary information to the current AJCC staging scheme for survival prognostication and risk-stratification of HPV-associated OPSCC.
Collapse
Affiliation(s)
- Stefan P. Haider
- Section of Neuroradiology, Department of Radiology and Biomedical Imaging, Yale School of Medicine, 789 Howard Ave, New Haven, CT 06519, USA; (S.P.H.); (A.M.)
- Department of Otorhinolaryngology, University Hospital of Ludwig Maximilians Universität München, Marchioninistrasse 15, 81377 Munich, Germany; (P.B.); (C.R.); (K.S.)
| | - Tal Zeevi
- Center for Translational Imaging Analysis and Machine Learning, Department of Radiology and Biomedical Imaging, Yale School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA;
| | - Philipp Baumeister
- Department of Otorhinolaryngology, University Hospital of Ludwig Maximilians Universität München, Marchioninistrasse 15, 81377 Munich, Germany; (P.B.); (C.R.); (K.S.)
| | - Christoph Reichel
- Department of Otorhinolaryngology, University Hospital of Ludwig Maximilians Universität München, Marchioninistrasse 15, 81377 Munich, Germany; (P.B.); (C.R.); (K.S.)
| | - Kariem Sharaf
- Department of Otorhinolaryngology, University Hospital of Ludwig Maximilians Universität München, Marchioninistrasse 15, 81377 Munich, Germany; (P.B.); (C.R.); (K.S.)
| | - Reza Forghani
- Department of Diagnostic Radiology and Augmented Intelligence & Precision Health Laboratory, McGill University Health Centre & Research Institute, 1650 Cedar Avenue, Montreal, QC H3G 1A4, Canada;
| | - Benjamin H. Kann
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Avenue, Boston, MA 02215, USA;
| | - Benjamin L. Judson
- Division of Otolaryngology, Department of Surgery, Yale School of Medicine, 330 Cedar Street, New Haven, CT 06520, USA;
| | - Manju L. Prasad
- Department of Pathology, Yale School of Medicine, 310 Cedar Street, New Haven, CT 06520, USA;
| | - Barbara Burtness
- Section of Medical Oncology, Department of Internal Medicine, Yale School of Medicine, 25 York Street, New Haven, CT 06520, USA;
| | - Amit Mahajan
- Section of Neuroradiology, Department of Radiology and Biomedical Imaging, Yale School of Medicine, 789 Howard Ave, New Haven, CT 06519, USA; (S.P.H.); (A.M.)
| | - Seyedmehdi Payabvash
- Section of Neuroradiology, Department of Radiology and Biomedical Imaging, Yale School of Medicine, 789 Howard Ave, New Haven, CT 06519, USA; (S.P.H.); (A.M.)
- Correspondence: ; Tel.: +1-(203)-214-4650
| |
Collapse
|
28
|
Haider SP, Burtness B, Yarbrough WG, Payabvash S. Applications of radiomics in precision diagnosis, prognostication and treatment planning of head and neck squamous cell carcinomas. CANCERS OF THE HEAD & NECK 2020; 5:6. [PMID: 32391171 PMCID: PMC7197186 DOI: 10.1186/s41199-020-00053-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 03/09/2020] [Indexed: 12/15/2022]
Abstract
Recent advancements in computational power, machine learning, and artificial intelligence technology have enabled automated evaluation of medical images to generate quantitative diagnostic and prognostic biomarkers. Such objective biomarkers are readily available and have the potential to improve personalized treatment, precision medicine, and patient selection for clinical trials. In this article, we explore the merits of the most recent addition to the “-omics” concept for the broader field of head and neck cancer – “Radiomics”. This review discusses radiomics studies focused on (molecular) characterization, classification, prognostication and treatment guidance for head and neck squamous cell carcinomas (HNSCC). We review the underlying hypothesis, general concept and typical workflow of radiomic analysis, and elaborate on current and future challenges to be addressed before routine clinical application.
Collapse
Affiliation(s)
- Stefan P Haider
- 1Department of Radiology and Biomedical Imaging, Division of Neuroradiology, Yale School of Medicine, New Haven, CT USA.,2Department of Otorhinolaryngology, University Hospital of Ludwig Maximilians University of Munich, Munich, Germany
| | - Barbara Burtness
- 3Department of Internal Medicine, Division of Medical Oncology, Yale School of Medicine, New Haven, CT USA
| | - Wendell G Yarbrough
- 4Department of Otolaryngology/Head and Neck Surgery, University of North Carolina School of Medicine, Chapel Hill, NC USA
| | - Seyedmehdi Payabvash
- 1Department of Radiology and Biomedical Imaging, Division of Neuroradiology, Yale School of Medicine, New Haven, CT USA
| |
Collapse
|
29
|
Oh JH, Pouryahya M, Iyer A, Apte AP, Deasy JO, Tannenbaum A. A novel kernel Wasserstein distance on Gaussian measures: An application of identifying dental artifacts in head and neck computed tomography. Comput Biol Med 2020; 120:103731. [PMID: 32217284 PMCID: PMC7237301 DOI: 10.1016/j.compbiomed.2020.103731] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/18/2020] [Accepted: 03/22/2020] [Indexed: 01/30/2023]
Abstract
The Wasserstein distance is a powerful metric based on the theory of optimal mass transport. It gives a natural measure of the distance between two distributions with a wide range of applications. In contrast to a number of the common divergences on distributions such as Kullback-Leibler or Jensen-Shannon, it is (weakly) continuous, and thus ideal for analyzing corrupted and noisy data. Until recently, however, no kernel methods for dealing with nonlinear data have been proposed via the Wasserstein distance. In this work, we develop a novel method to compute the L2-Wasserstein distance in reproducing kernel Hilbert spaces (RKHS) called kernel L2-Wasserstein distance, which is implemented using the kernel trick. The latter is a general method in machine learning employed to handle data in a nonlinear manner. We evaluate the proposed approach in identifying computed tomography (CT) slices with dental artifacts in head and neck cancer, performing unsupervised hierarchical clustering on the resulting Wasserstein distance matrix that is computed on imaging texture features extracted from each CT slice. We further compare the performance of kernel Wasserstein distance with alternatives including kernel Kullback-Leibler divergence we previously developed. Our experiments show that the kernel approach outperforms classical non-kernel approaches in identifying CT slices with artifacts.
Collapse
Affiliation(s)
- Jung Hun Oh
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, USA.
| | - Maryam Pouryahya
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, USA
| | - Aditi Iyer
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, USA
| | - Aditya P Apte
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, USA
| | - Joseph O Deasy
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, USA
| | - Allen Tannenbaum
- Departments of Computer Science and Applied Mathematics & Statistics, Stony Brook University, USA
| |
Collapse
|
30
|
Palazón-Bru A, Mares-García E, López-Bru D, Mares-Arambul E, Folgado-de la Rosa DM, Carbonell-Torregrosa MDLÁ, Gil-Guillén VF. A critical appraisal of the clinical applicability and risk of bias of the predictive models for mortality and recurrence in patients with oropharyngeal cancer: Systematic review. Head Neck 2020; 42:763-773. [PMID: 31762119 DOI: 10.1002/hed.26025] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 11/11/2019] [Indexed: 12/24/2022] Open
Abstract
The use of predictive models is becoming widespread. However, these models should be developed appropriately (CHecklist for critical Appraisal and data extraction for systematic Reviews of prediction Modeling Studies [CHARMS] and Prediction model Risk Of Bias ASsessment Tool [PROBAST] statements). Concerning mortality/recurrence in oropharyngeal cancer, we are not aware of any systematic reviews of the predictive models. We carried out a systematic review of the MEDLINE/EMBASE databases of those predictive models. In these models, we analyzed the 11 domains of the CHARMS statement and the risk of bias and applicability, using the PROBAST tool. Six papers were finally included in the systematic review and all of them presented high risk of bias and several limitations in the statistical analysis. The applicability was satisfactory in five out of six studies. None of the models could be considered ready for use in clinical practice.
Collapse
Affiliation(s)
- Antonio Palazón-Bru
- Department of Clinical Medicine, Miguel Hernández University, San Juan de Alicante, Alicante, Spain
| | - Emma Mares-García
- Department of Clinical Medicine, Miguel Hernández University, San Juan de Alicante, Alicante, Spain
| | - David López-Bru
- Department of Otolaryngology, General University Hospital of Elche, Elche, Alicante, Spain
| | - Enrique Mares-Arambul
- Department of Otolaryngology, General University Hospital of Elda, Elda, Alicante, Spain
| | | | - María de Los Ángeles Carbonell-Torregrosa
- Department of Clinical Medicine, Miguel Hernández University, San Juan de Alicante, Alicante, Spain
- Emergency Service, General University Hospital of Elda, Elda, Alicante, Spain
| | - Vicente F Gil-Guillén
- Department of Clinical Medicine, Miguel Hernández University, San Juan de Alicante, Alicante, Spain
| |
Collapse
|
31
|
Choi J, Gim JA, Oh C, Ha S, Lee H, Choi H, Im HJ. Association of metabolic and genetic heterogeneity in head and neck squamous cell carcinoma with prognostic implications: integration of FDG PET and genomic analysis. EJNMMI Res 2019; 9:97. [PMID: 31754877 PMCID: PMC6872695 DOI: 10.1186/s13550-019-0563-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 09/24/2019] [Indexed: 02/07/2023] Open
Abstract
Purpose The linkage between the genetic and phenotypic heterogeneity of the tumor has not been thoroughly evaluated. Herein, we investigated how the genetic and metabolic heterogeneity features of the tumor are associated with each other in head and neck squamous cell carcinoma (HNSC). We further assessed the prognostic significance of those features. Methods The mutant-allele tumor heterogeneity (MATH) score (n = 508), a genetic heterogeneity feature, and tumor glycolysis feature (GlycoS) (n = 503) were obtained from the HNSC dataset in the cancer genome atlas (TCGA). We identified matching patients (n = 33) who underwent 18F-fluorodeoxyglucose positron emission tomography (FDG PET) from the cancer imaging archive (TCIA) and obtained the following information from the primary tumor: metabolic, metabolic-volumetric, and metabolic heterogeneity features. The association between the genetic and metabolic features and their prognostic values were assessed. Results Tumor metabolic heterogeneity and metabolic-volumetric features showed a mild degree of association with MATH (n = 25, ρ = 0.4~0.5, P < 0.05 for all features). The patients with higher FDG PET features and MATH died sooner. Combination of MATH and tumor metabolic heterogeneity features showed a better stratification of prognosis than MATH. Also, higher MATH and GlycoS were associated with significantly worse overall survival (n = 499, P = 0.002 and 0.0001 for MATH and GlycoS, respectively). Furthermore, both MATH and GlycoS independently predicted overall survival after adjusting for clinicopathologic features and the other (P = 0.015 and 0.006, respectively). Conclusion Both tumor metabolic heterogeneity and metabolic-volumetric features assessed by FDG PET showed a mild degree of association with genetic heterogeneity in HNSC. Both metabolic and genetic heterogeneity features were predictive of survival and there was an additive prognostic value when the metabolic and genetic heterogeneity features were combined. Also, MATH and GlycoS were independent prognostic factors in HNSC; they can be used for precise prognostication once validated.
Collapse
Affiliation(s)
- Jinyeong Choi
- Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea
| | - Jeong-An Gim
- Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea
| | - Chiwoo Oh
- Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea
| | - Seunggyun Ha
- Radiation Medicine Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Nuclear Medicine, Seoul ST. Mary's Hospital, Seoul, Republic of Korea
| | - Howard Lee
- Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea.,Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Republic of Korea
| | - Hongyoon Choi
- Department of Nuclear Medicine, Seoul National University Hospital, Seoul, Republic of Korea.
| | - Hyung-Jun Im
- Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
32
|
Bogowicz M, Tanadini-Lang S, Veit-Haibach P, Pruschy M, Bender S, Sharma A, Hüllner M, Studer G, Stieb S, Hemmatazad H, Glatz S, Guckenberger M, Riesterer O. Perfusion CT radiomics as potential prognostic biomarker in head and neck squamous cell carcinoma. Acta Oncol 2019; 58:1514-1518. [PMID: 31304860 DOI: 10.1080/0284186x.2019.1629013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- M. Bogowicz
- Department of Radiation Oncology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - S. Tanadini-Lang
- Department of Radiation Oncology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - P. Veit-Haibach
- Department of Nuclear Medicine, University Hospital Zurich and University of Zurich, Zurich, Switzerland
- Department of Diagnostic and Interventional Radiology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - M. Pruschy
- Department of Radiation Oncology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - S. Bender
- Department of Radiation Oncology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - A. Sharma
- Department of Radiation Oncology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - M. Hüllner
- Department of Nuclear Medicine, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - G. Studer
- Department of Radiation Oncology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
- Institute for Radiation Oncology, Cantonal Hospital Lucerne, Lucerne, Switzerland
| | - S. Stieb
- Department of Radiation Oncology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - H. Hemmatazad
- Department of Radiation Oncology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - S. Glatz
- Department of Radiation Oncology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - M. Guckenberger
- Department of Radiation Oncology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - O. Riesterer
- Department of Radiation Oncology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
- Center for Radiation Oncology, KSA-KSB, Cantonal Hospital Aarau, Aarau, Switzerland
| |
Collapse
|
33
|
Ger RB, Zhou S, Elgohari B, Elhalawani H, Mackin DM, Meier JG, Nguyen CM, Anderson BM, Gay C, Ning J, Fuller CD, Li H, Howell RM, Layman RR, Mawlawi O, Stafford RJ, Aerts H, Court LE. Radiomics features of the primary tumor fail to improve prediction of overall survival in large cohorts of CT- and PET-imaged head and neck cancer patients. PLoS One 2019; 14:e0222509. [PMID: 31536526 PMCID: PMC6752873 DOI: 10.1371/journal.pone.0222509] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 08/31/2019] [Indexed: 12/22/2022] Open
Abstract
Radiomics studies require many patients in order to power them, thus patients are often combined from different institutions and using different imaging protocols. Various studies have shown that imaging protocols affect radiomics feature values. We examined whether using data from cohorts with controlled imaging protocols improved patient outcome models. We retrospectively reviewed 726 CT and 686 PET images from head and neck cancer patients, who were divided into training or independent testing cohorts. For each patient, radiomics features with different preprocessing were calculated and two clinical variables-HPV status and tumor volume-were also included. A Cox proportional hazards model was built on the training data by using bootstrapped Lasso regression to predict overall survival. The effect of controlled imaging protocols on model performance was evaluated by subsetting the original training and independent testing cohorts to include only patients whose images were obtained using the same imaging protocol and vendor. Tumor volume, HPV status, and two radiomics covariates were selected for the CT model, resulting in an AUC of 0.72. However, volume alone produced a higher AUC, whereas adding radiomics features reduced the AUC. HPV status and one radiomics feature were selected as covariates for the PET model, resulting in an AUC of 0.59, but neither covariate was significantly associated with survival. Limiting the training and independent testing to patients with the same imaging protocol reduced the AUC for CT patients to 0.55, and no covariates were selected for PET patients. Radiomics features were not consistently associated with survival in CT or PET images of head and neck patients, even within patients with the same imaging protocol.
Collapse
Affiliation(s)
- Rachel B. Ger
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- MD Anderson Cancer Center UTHealth Science Center at Houston Graduate School of Biomedical Sciences, Houston, Texas, United States of America
| | - Shouhao Zhou
- MD Anderson Cancer Center UTHealth Science Center at Houston Graduate School of Biomedical Sciences, Houston, Texas, United States of America
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Baher Elgohari
- Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Hesham Elhalawani
- Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Dennis M. Mackin
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- MD Anderson Cancer Center UTHealth Science Center at Houston Graduate School of Biomedical Sciences, Houston, Texas, United States of America
| | - Joseph G. Meier
- MD Anderson Cancer Center UTHealth Science Center at Houston Graduate School of Biomedical Sciences, Houston, Texas, United States of America
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Callistus M. Nguyen
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Brian M. Anderson
- MD Anderson Cancer Center UTHealth Science Center at Houston Graduate School of Biomedical Sciences, Houston, Texas, United States of America
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Casey Gay
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Jing Ning
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Clifton D. Fuller
- MD Anderson Cancer Center UTHealth Science Center at Houston Graduate School of Biomedical Sciences, Houston, Texas, United States of America
- Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Heng Li
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- MD Anderson Cancer Center UTHealth Science Center at Houston Graduate School of Biomedical Sciences, Houston, Texas, United States of America
| | - Rebecca M. Howell
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- MD Anderson Cancer Center UTHealth Science Center at Houston Graduate School of Biomedical Sciences, Houston, Texas, United States of America
| | - Rick R. Layman
- MD Anderson Cancer Center UTHealth Science Center at Houston Graduate School of Biomedical Sciences, Houston, Texas, United States of America
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Osama Mawlawi
- MD Anderson Cancer Center UTHealth Science Center at Houston Graduate School of Biomedical Sciences, Houston, Texas, United States of America
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - R. Jason Stafford
- MD Anderson Cancer Center UTHealth Science Center at Houston Graduate School of Biomedical Sciences, Houston, Texas, United States of America
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Hugo Aerts
- Department of Radiation Oncology, Dana Farber Cancer Institute, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Laurence E. Court
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- MD Anderson Cancer Center UTHealth Science Center at Houston Graduate School of Biomedical Sciences, Houston, Texas, United States of America
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| |
Collapse
|
34
|
Bogowicz M, Vuong D, Huellner MW, Pavic M, Andratschke N, Gabrys HS, Guckenberger M, Tanadini-Lang S. CT radiomics and PET radiomics: ready for clinical implementation? THE QUARTERLY JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING : OFFICIAL PUBLICATION OF THE ITALIAN ASSOCIATION OF NUCLEAR MEDICINE (AIMN) [AND] THE INTERNATIONAL ASSOCIATION OF RADIOPHARMACOLOGY (IAR), [AND] SECTION OF THE SOCIETY OF RADIOPHARMACEUTICAL CHEMISTRY AND BIOLOGY 2019; 63:355-370. [PMID: 31527578 DOI: 10.23736/s1824-4785.19.03192-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Today, rapid technical and clinical developments result in an increasing number of treatment options for oncological diseases. Thus, decision support systems are needed to offer the right treatment to the right patient. Imaging biomarkers hold great promise in patient-individual treatment guidance. Routinely performed for diagnosis and staging, imaging datasets are expected to hold more information than used in the clinical practice. Radiomics describes the extraction of a large number of meaningful quantitative features from medical images, such as computed tomography (CT) and positron emission tomography (PET). Due to the non-invasive nature and ability to capture 3D image-based heterogeneity, radiomic features are potential surrogate markers of the cancer phenotype. Several radiomic studies are published per day, owing to encouraging results of many radiomics-based patient outcome models. Despite this comparably large number of studies, radiomics is mainly studied in proof of principle concept. Hence, a translation of radiomics from a hot topic research field into an essential clinical decision-making tool is lacking, but of high clinical interest. EVIDENCE ACQUISITION Herein, we present a literature review addressing the clinical evidence of CT and PET radiomics. An extensive literature review was conducted in PubMed, including papers on robustness and clinical applications. EVIDENCE SYNTHESIS We summarize image-modality related influences on the robustness of radiomic features and provide an overview of clinical evidence reported in the literature. Today, more evidence has been provided for CT imaging, however, PET imaging offers the promise of direct imaging of biological processes and functions. We provide a summary of future research directions, which needs to be addressed in order to successfully introduce radiomics into clinical medicine. In comparison to CT, more focus should be directed towards harmonization of PET acquisition and reconstruction protocols, which is important for transferable modelling. CONCLUSIONS Both CT and PET radiomics are promising pre-treatment and intra-treatment biomarkers for outcome prediction. Most studies are performed in retrospective setting, however their validation in prospective data collections is ongoing.
Collapse
Affiliation(s)
- Marta Bogowicz
- Department of Radiation Oncology, University Hospital Zurich and University of Zurich, Zurich, Switzerland -
| | - Diem Vuong
- Department of Radiation Oncology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Martin W Huellner
- Department of Nuclear Medicine, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Matea Pavic
- Department of Radiation Oncology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Nicolaus Andratschke
- Department of Radiation Oncology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Hubert S Gabrys
- Department of Radiation Oncology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Matthias Guckenberger
- Department of Radiation Oncology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Stephanie Tanadini-Lang
- Department of Radiation Oncology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| |
Collapse
|
35
|
Wu WJ, Li ZY, Dong S, Liu SM, Zheng L, Huang MW, Zhang JG. Texture analysis of pretreatment [ 18F]FDG PET/CT for the prognostic prediction of locally advanced salivary gland carcinoma treated with interstitial brachytherapy. EJNMMI Res 2019; 9:89. [PMID: 31511990 PMCID: PMC6738371 DOI: 10.1186/s13550-019-0555-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 08/22/2019] [Indexed: 12/24/2022] Open
Abstract
Background The aim of this study was to evaluate the prognostic value of positron emission tomography (PET) parameters and the PET texture features of fluorine 18-fluorodeoxyglucose ([18F]FDG) uptake on pretreatment PET/computed tomography (CT) in patients with locally advanced salivary gland carcinoma treated with interstitial brachytherapy. Methods Forty-three patients with locally advanced salivary gland carcinoma of the head and neck were treated with 125I interstitial brachytherapy as the sole modality and underwent [18F]FDG PET/CT scanning before treatment. Tumor segmentation and texture analysis were performed using the 3D slicer software. In total, 54 features were extracted and categorized as first-order statistics, morphology and shape, gray-level co-occurrence matrix, and gray-level run length matrix. Up to November 2018, the follow-up time ranged from 6 to 120 months (median 18 months). Cumulative survival was calculated by the Kaplan-Meier method. Factors between groups were compared by the log-rank test. Multivariate Cox regression analysis with a backward conditional method was used to predict progression-free survival (PFS). Results The 3- and 5-year locoregional control (LC) rates were 55.4% and 37.0%, respectively. The 3- and 5-year PFS rates were 51.2% and 34.1%, respectively. The 3- and 5-year overall survival (OS) rates were 77.0% and 77.0%, respectively. Univariate analysis revealed that minimum intensity, mean intensity, median intensity, root mean square, and long run emphasis (LRE) were significant predictors of PFS, whereas clinicopathological factors, conventional PET parameters, and PET texture features failed to show significance. Multivariate Cox regression analysis showed that minimum intensity and LRE were significant predictors of PFS. Conclusions The texture analysis of pretreatment [18F]FDG PET/CT provided more information than conventional PET parameters for predicting patient prognosis of locally advanced salivary gland carcinoma treated with interstitial brachytherapy. The minimum intensity was a risk factor for PFS, and LRE was a favorable factor in prognostic prediction according to the primary results.
Collapse
Affiliation(s)
- Wen-Jie Wu
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, 22# Zhongguancun South Avenue, Beijing, 100081, China
| | - Zhen-Yu Li
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, 22# Zhongguancun South Avenue, Beijing, 100081, China
| | - Shuang Dong
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, 22# Zhongguancun South Avenue, Beijing, 100081, China
| | - Shu-Ming Liu
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, 22# Zhongguancun South Avenue, Beijing, 100081, China
| | - Lei Zheng
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, 22# Zhongguancun South Avenue, Beijing, 100081, China
| | - Ming-Wei Huang
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, 22# Zhongguancun South Avenue, Beijing, 100081, China.
| | - Jian-Guo Zhang
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, 22# Zhongguancun South Avenue, Beijing, 100081, China
| |
Collapse
|
36
|
Feeding the Data Monster: Data Science in Head and Neck Cancer for Personalized Therapy. J Am Coll Radiol 2019; 16:1695-1701. [PMID: 31238024 DOI: 10.1016/j.jacr.2019.05.045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 05/18/2019] [Accepted: 05/28/2019] [Indexed: 01/14/2023]
Abstract
OBJECTIVE Head and neck carcinomas are clinically challenging malignancies because of tumor heterogeneities and resilient tumor subvolumes that require individualized treatment planning and delivery for an improved outcome. Although current approaches to diagnosis and therapy have boosted locoregional control, the long-term survival in this patient group remains unchanged over the last decades. A new approach to head and neck cancer management is therefore needed to better identify patient subgroups that are responsive to specific therapies. The aim of this article is to review the current status of knowledge and practice utilizing big data toward personalized therapy in head and neck cancers based on CT and PET imaging modalities. METHODS Literature published in English since 2000 was searched using Medline. Additional articles were retrieved via pearling of identified literature. Publications were reviewed and summarized in tabulated format. RESULTS Studies based on big data in head and neck cancer are limited; however, the field of radiomics is under continuous development and provides valuable input for personalized treatment. Using PET/PET CT biomarkers for patient treatment individualization and response prediction seems promising, especially in regard to detection of hypoxia and clonogenic cancer stem cells. Literature shows that macroscopic changes in medical images (whether structural or functional) are correlated with biologic and biochemical changes within a tumor. CONCLUSION Current trends in data science suggest that the ideal model for decision support in head and neck cancers should be based on human-machine collaboration, namely, on (1) software-based algorithms, (2) physician innovation collaboratives, and (3) clinician mix optimization.
Collapse
|
37
|
Ha S, Choi H, Paeng JC, Cheon GJ. Radiomics in Oncological PET/CT: a Methodological Overview. Nucl Med Mol Imaging 2019; 53:14-29. [PMID: 30828395 DOI: 10.1007/s13139-019-00571-4] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 11/27/2018] [Accepted: 01/02/2019] [Indexed: 02/07/2023] Open
Abstract
Radiomics is a medical imaging analysis approach based on computer-vision. Metabolic radiomics in particular analyses the spatial distribution patterns of molecular metabolism on PET images. Measuring intratumoral heterogeneity via image is one of the main targets of radiomics research, and it aims to build a image-based model for better patient management. The workflow of radiomics using texture analysis follows these steps: 1) imaging (image acquisition and reconstruction); 2) preprocessing (segmentation & quantization); 3) quantification (texture matrix design & texture feature extraction); and 4) analysis (statistics and/or machine learning). The parameters or conditions at each of these steps are effect on the results. In statistical testing or modeling, problems such as multiple comparisons, dependence on other variables, and high dimensionality of small sample size data should be considered. Standardization of methodology and harmonization of image quality are one of the most important challenges with radiomics methodology. Even though there are current issues in radiomics methodology, it is expected that radiomics will be clinically useful in personalized medicine for oncology.
Collapse
Affiliation(s)
- Seunggyun Ha
- 1Radiation Medicine Research Institute, Seoul National University College of Medicine, Seoul, South Korea
- 2Department of Nuclear Medicine, Seoul National University Hospital, Seoul, South Korea
| | - Hongyoon Choi
- 2Department of Nuclear Medicine, Seoul National University Hospital, Seoul, South Korea
| | - Jin Chul Paeng
- 2Department of Nuclear Medicine, Seoul National University Hospital, Seoul, South Korea
| | - Gi Jeong Cheon
- 1Radiation Medicine Research Institute, Seoul National University College of Medicine, Seoul, South Korea
- 2Department of Nuclear Medicine, Seoul National University Hospital, Seoul, South Korea
- 3Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| |
Collapse
|
38
|
Janssen DMC, van Kuijk SMJ, d’Aumerie B, Willems P. A prediction model of surgical site infection after instrumented thoracolumbar spine surgery in adults. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2019; 28:775-782. [DOI: 10.1007/s00586-018-05877-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 12/31/2018] [Indexed: 12/19/2022]
|
39
|
Keek SA, Leijenaar RTH, Jochems A, Woodruff HC. A review on radiomics and the future of theranostics for patient selection in precision medicine. Br J Radiol 2018; 91:20170926. [PMID: 29947266 PMCID: PMC6475933 DOI: 10.1259/bjr.20170926] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 05/17/2018] [Accepted: 06/20/2018] [Indexed: 02/07/2023] Open
Abstract
The growing complexity and volume of clinical data and the associated decision-making processes in oncology promote the advent of precision medicine. Precision (or personalised) medicine describes preventive and/or treatment procedures that take individual patient variability into account when proscribing treatment, and has been hindered in the past by the strict requirements of accurate, robust, repeatable and preferably non-invasive biomarkers to stratify both the patient and the disease. In oncology, tumour subtypes are traditionally measured through repeated invasive biopsies, which are taxing for the patient and are cost and labour intensive. Quantitative analysis of routine clinical imaging provides an opportunity to capture tumour heterogeneity non-invasively, cost-effectively and on large scale. In current clinical practice radiological images are qualitatively analysed by expert radiologists whose interpretation is known to suffer from inter- and intra-operator variability. Radiomics, the high-throughput mining of image features from medical images, provides a quantitative and robust method to assess tumour heterogeneity, and radiomics-based signatures provide a powerful tool for precision medicine in cancer treatment. This study aims to provide an overview of the current state of radiomics as a precision medicine decision support tool. We first provide an overview of the requirements and challenges radiomics currently faces in being incorporated as a tool for precision medicine, followed by an outline of radiomics' current applications in the treatment of various types of cancer. We finish with a discussion of possible future advances that can further develop radiomics as a precision medicine tool.
Collapse
Affiliation(s)
- Simon A Keek
- The D-Lab: Decision Support for Precision Medicine GROW - School for Oncology and Developmental Biology & MCCC , Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Ralph TH Leijenaar
- The D-Lab: Decision Support for Precision Medicine GROW - School for Oncology and Developmental Biology & MCCC , Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Arthur Jochems
- The D-Lab: Decision Support for Precision Medicine GROW - School for Oncology and Developmental Biology & MCCC , Maastricht University Medical Centre+, Maastricht, The Netherlands
| | | |
Collapse
|
40
|
Resteghini C, Trama A, Borgonovi E, Hosni H, Corrao G, Orlandi E, Calareso G, De Cecco L, Piazza C, Mainardi L, Licitra L. Big Data in Head and Neck Cancer. Curr Treat Options Oncol 2018; 19:62. [DOI: 10.1007/s11864-018-0585-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
41
|
Heterogeneity analysis of 18F-FDG PET imaging in oncology: clinical indications and perspectives. Clin Transl Imaging 2018. [DOI: 10.1007/s40336-018-0299-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
42
|
Floberg JM, DeWees TA, Chin RI, Garsa AA, Dehdashti F, Nussenbaum B, Oppelt PJ, Adkins DR, Gay HA, Thorstad WL. Pretreatment metabolic tumor volume as a prognostic factor in HPV-associated oropharyngeal cancer in the context of AJCC 8th edition staging. Head Neck 2018; 40:2280-2287. [DOI: 10.1002/hed.25337] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 01/30/2018] [Accepted: 05/03/2018] [Indexed: 12/31/2022] Open
Affiliation(s)
- John M. Floberg
- Washington University School of Medicine, Department of Radiation Oncology; St Louis MO
| | - Todd A. DeWees
- Mayo Clinic, Department of Biomedical Statistics and Informatics Scottsdale; AZ
| | - Re-I Chin
- St Louis University School of Medicine; St Louis MO
| | - Adam A. Garsa
- Keck School of Medicine of University of Southern California, Department of Radiation Oncology; Los Angeles CA
| | - Farrokh Dehdashti
- Washington University School of Medicine, Mallinckrodt Institute of Radiology Division of Nuclear Medicine; St Louis MO
| | | | - Peter J. Oppelt
- Washington University School of Medicine, Department of Internal Medicine, Division of Oncology; St Louis MO
| | - Douglas R. Adkins
- Washington University School of Medicine, Department of Internal Medicine, Division of Oncology; St Louis MO
| | - Hiram A. Gay
- Washington University School of Medicine, Department of Radiation Oncology; St Louis MO
| | - Wade L. Thorstad
- Washington University School of Medicine, Department of Radiation Oncology; St Louis MO
| |
Collapse
|
43
|
Lovinfosse P, Visvikis D, Hustinx R, Hatt M. FDG PET radiomics: a review of the methodological aspects. Clin Transl Imaging 2018. [DOI: 10.1007/s40336-018-0292-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
44
|
Abstract
Precision medicine is increasingly pushed forward, also with respect to upcoming new targeted therapies. Individual characterization of diseases on the basis of biomarkers is a prerequisite for this development. So far, biomarkers are characterized clinically, histologically or on a molecular level. The implementation of broad screening methods (“Omics”) and the analysis of big data – in addition to single markers – allow to define biomarker signatures. Next to “Genomics”, “Proteomics”, and “Metabolicis”, “Radiomics” gained increasing interest during the last years. Based on radiologic imaging, multiple radiomic markers are extracted with the help of specific algorithms. These are correlated with clinical, (immuno-) histopathological, or genomic data. Underlying structural differences are based on the imaging metadata and are often not visible and therefore not detectable without specific software. Radiomics are depicted numerically or by graphs. The fact that radiomic information can be extracted from routinely performed imaging adds a specific appeal to this method. Radiomics could potentially replace biopsies and additional investigations. Alternatively, radiomics could complement other biomarkers and thus lead to a more precise, multimodal prediction. Until now, radiomics are primarily used to investigate solid tumors. Some promising studies in head and neck cancer have already been published.
Collapse
|
45
|
Lee JW, Lee SM. Radiomics in Oncological PET/CT: Clinical Applications. Nucl Med Mol Imaging 2018; 52:170-189. [PMID: 29942396 PMCID: PMC5995782 DOI: 10.1007/s13139-017-0500-y] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 09/22/2017] [Accepted: 09/29/2017] [Indexed: 12/11/2022] Open
Abstract
18F-fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) is widely used for staging, evaluating treatment response, and predicting prognosis in malignant diseases. FDG uptake and volumetric PET parameters such as metabolic tumor volume have been used and are still used as conventional PET parameters to assess biological characteristics of tumors. However, in recent years, additional features derived from PET images by computational processing have been found to reflect intratumoral heterogeneity, which is related to biological tumor features, and to provide additional predictive and prognostic information, which leads to the concept of radiomics. In this review, we focus on recent clinical studies of malignant diseases that investigated intratumoral heterogeneity on PET/CT, and we discuss its clinical role in various cancers.
Collapse
Affiliation(s)
- Jeong Won Lee
- Department of Nuclear Medicine, International St. Mary’s Hospital, Catholic Kwandong University College of Medicine, 25, Simgok-ro 100 Gil 25, Seo-gu, Incheon, 22711 South Korea
- Institute for Integrative Medicine, International St. Mary’s Hospital, Catholic Kwandong University College of Medicine, Incheon, South Korea
| | - Sang Mi Lee
- Department of Nuclear Medicine, Soonchunhyang University Cheonan Hospital, Cheonan, South Korea
| |
Collapse
|
46
|
Cheng NM, Fang YHD, Tsan DL, Lee LY, Chang JTC, Wang HM, Ng SH, Liao CT, Yang LY, Yen TC. Heterogeneity and irregularity of pretreatment 18F-fluorodeoxyglucose positron emission tomography improved prognostic stratification of p16-negative high-risk squamous cell carcinoma of the oropharynx. Oral Oncol 2018; 78:156-162. [PMID: 29496044 DOI: 10.1016/j.oraloncology.2018.01.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 12/27/2017] [Accepted: 01/30/2018] [Indexed: 12/18/2022]
Abstract
OBJECTIVES Human papillomavirus-negative oropharyngeal squamous cell carcinoma (OPSCC) has unfavorable survival outcomes. Two outcomes have been identified based on smoking history and tumor stage. We investigate the prognostic role of pre-treatment positron emission tomography (PET) in high-risk OPSCC. MATERIALS AND METHODS We enrolled 147 M0 OPSCC patients with p16-negative staining and a history of heavy smoking (>10 pack-years) or T4 disease. All patients completed primary chemoradiotherapy, and 42% maximum standard uptake values (SUVmax) were used as the threshold for primary tumor. Patients were classified into training and validation cohorts with a ratio of 1:1.5 according to the PET date. Heterogeneity and irregularity indices were obtained. PET parameters with significant impact on progression-free survival (PFS) in receiver operating characteristic curves and univariate Cox models were identified and included in recursive partitioning analysis (RPA) for constructing a prognostic model. The RPA-based prognostic model was further tested in the validation cohort using multivariate Cox models. RESULTS Fifty-eight and 89 patients were in the training and validation groups, respectively. Heterogeneity parameter, SUV-entropy (derived from histogram analysis), and irregularity index, and asphericity were significantly associated with PFS. The RPA model revealed that patients with both high SUV-entropy and high asphericity experienced the worst PFS. Results were confirmed in the validation group. The overall concordance index for PFS of the model was 0.75, which was higher than the clinical stages, performance status, SUVmax, and metabolic tumor volume of PET. CONCLUSIONS PET prognostic model provided useful prediction of PFS for patients with high-risk OPSCC.
Collapse
Affiliation(s)
- Nai-Ming Cheng
- Nuclear Medicine and Molecular Imaging Centre, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan City, Taiwan; Nuclear Medicine, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Yu-Hua Dean Fang
- Biomedical Engineering, National Cheng Kung University, Tainan City, Taiwan
| | - Din-Li Tsan
- Radiation Oncology, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Li-Yu Lee
- Pathology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan City, Taiwan
| | - Joseph Tung-Chieh Chang
- Radiation Oncology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan City, Taiwan
| | - Hung-Ming Wang
- Hematology/Oncology, Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan City, Taiwan
| | - Shu-Hang Ng
- Diagnostic Radiology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan City, Taiwan
| | - Chun-Ta Liao
- Otolaryngology, Head & Neck Surgery, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan City, Taiwan
| | - Lan-Yan Yang
- Biostatistics Unit, Clinical Trial Centre, Chang Gung Memorial Hospital, Taoyuan City, Taiwan
| | - Tzu-Chen Yen
- Nuclear Medicine and Molecular Imaging Centre, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan City, Taiwan.
| |
Collapse
|