1
|
Akram MSH, Nishikido F, Levin CS, Takyu S, Obata T, Yamaya T. MRI compatibility study of a prototype radiofrequency penetrable oval PET insert at 3 T. Jpn J Radiol 2024; 42:382-390. [PMID: 38110835 DOI: 10.1007/s11604-023-01514-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 11/10/2023] [Indexed: 12/20/2023]
Abstract
PURPOSE To perform an MRI compatibility study of an RF field-penetrable oval-shaped PET insert that implements an MRI built-in body RF coil both as a transmitter and a receiver. METHODS Twelve electrically floating RF shielded PET detector modules were used to construct the prototype oval PET insert with a major axis of 440 mm, a minor axis of 350 mm, and an axial length of 225 mm. The electric floating of the PET detector modules was accomplished by isolating the cable shield from the detector shield using plastic tape. Studies were conducted on the transmit (B1) RF field, the image signal-to-noise ratio (SNR), and the RF pulse amplitude for a homogeneous cylindrical (diameter: 160 mm and length: 260 mm) phantom (NaCl + NiSO4 solution) in a 3 T clinical MRI system (Verio, Siemens, Erlangen, Germany). RESULTS The B1 maps for the oval insert were similar to the MRI-only field responses. Compared to the MRI-only values, SNR reductions of 51%, 45%, and 59% were seen, respectively, for the spin echo (SE), gradient echo (GE), and echo planar (EPI) images for the case of oval PET insert. Moreover, the required RF pulse amplitudes for the SE, GE, and EPI sequences were, respectively, 1.93, 1.85, and 1.36 times larger. However, a 30% reduction in the average RF reception sensitivity was observed for the oval insert. CONCLUSIONS The prototype floating PET insert was a safety concern for the clinical MRI system, and this compatibility study provided clearance for developing a large body size floating PET insert for the existing MRI system. Because of the RF shield of the insert, relatively large RF powers compared to the MRI-only case were required. Because of this and also due to low RF sensitivity of the body coil, the SNRs reduced largely.
Collapse
Affiliation(s)
- Md Shahadat Hossain Akram
- Department of Advanced Nuclear Medicine Sciences, Institute of Quantum Medical Science, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage, Chiba, 263-8555, Japan.
| | - Fumihiko Nishikido
- Department of Advanced Nuclear Medicine Sciences, Institute of Quantum Medical Science, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage, Chiba, 263-8555, Japan
| | - Craig S Levin
- Department of Radiology, School of Medicine, Stanford University, Stanford, CA, 94305-5128, USA
| | - Sodai Takyu
- Department of Advanced Nuclear Medicine Sciences, Institute of Quantum Medical Science, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage, Chiba, 263-8555, Japan
| | - Takayuki Obata
- Department of Applied MRI Research, Institute of Quantum Medical Science, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage, Chiba, 263-8555, Japan
| | - Taiga Yamaya
- Department of Advanced Nuclear Medicine Sciences, Institute of Quantum Medical Science, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage, Chiba, 263-8555, Japan
| |
Collapse
|
2
|
Evaluation of a Developed MRI-Guided Focused Ultrasound System in 7 T Small Animal MRI and Proof-of-Concept in a Prostate Cancer Xenograft Model to Improve Radiation Therapy. Cells 2023; 12:cells12030481. [PMID: 36766824 PMCID: PMC9914251 DOI: 10.3390/cells12030481] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/17/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
Focused ultrasound (FUS) can be used to physiologically change or destroy tissue in a non-invasive way. A few commercial systems have clinical approval for the thermal ablation of solid tumors for the treatment of neurological diseases and palliative pain management of bone metastases. However, the thermal effects of FUS are known to lead to various biological effects, such as inhibition of repair of DNA damage, reduction in tumor hypoxia, and induction of apoptosis. Here, we studied radiosensitization as a combination therapy of FUS and RT in a xenograft mouse model using newly developed MRI-compatible FUS equipment. Xenograft tumor-bearing mice were produced by subcutaneous injection of the human prostate cancer cell line PC-3. Animals were treated with FUS in 7 T MRI at 4.8 W/cm2 to reach ~45 °C and held for 30 min. The temperature was controlled via fiber optics and proton resonance frequency shift (PRF) MR thermometry in parallel. In the combination group, animals were treated with FUS followed by X-ray at a single dose of 10 Gy. The effects of FUS and RT were assessed via hematoxylin-eosin (H&E) staining. Tumor proliferation was detected by the immunohistochemistry of Ki67 and apoptosis was measured by a TUNEL assay. At 40 days follow-up, the impact of RT on cancer cells was significantly improved by FUS as demonstrated by a reduction in cell nucleoli from 189 to 237 compared to RT alone. Inhibition of tumor growth by 4.6 times was observed in vivo in the FUS + RT group (85.3%) in contrast to the tumor volume of 393% in the untreated control. Our results demonstrated the feasibility of combined MRI-guided FUS and RT for the treatment of prostate cancer in a xenograft mouse model and may provide a chance for less invasive cancer therapy through radiosensitization.
Collapse
|
3
|
Sang Z, Kuang Z, Wang X, Ren N, Wu S, Niu M, Cong L, Liu Z, Hu Z, Sun T, Liang D, Liu X, Zheng H, Li Y, Yang Y. Mutual interferences between SIAT aPET insert and a 3 T uMR 790 MRI scanner. Phys Med Biol 2023; 68. [PMID: 36549011 DOI: 10.1088/1361-6560/acae17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 12/22/2022] [Indexed: 12/24/2022]
Abstract
Objective.Dual-modality small animal PET/MR imaging provides temporally correlated information on two biochemical processes of a living object. An magnetic resonance imaging (MRI)-compatible small animal PET insert named Shenzhen Institutes of Advanced Technology (SIAT) aPET was developed by using dual-ended readout depth encoding detectors to simultaneously achieve a uniform high spatial resolution and high sensitivity at the SIAT. In this work, the mutual interferences between SIAT aPET and the 3 T uMR 790 MRI scanner of United Imaging was quantitatively evaluated.Approach.To minimize the mutual interferences, only the PET detectors and the readout electronics were placed inside the MRI scanner, the major signal processing electronic was placed in the corner of the MRI room and the auxiliary unit was placed in the MRI technical room. A dedicated mouse radio fRequency (RF) coil with a transmitter and receiver was developed for the PET insert. The effects of PET scanner on theB0andB1field of the MRI scanner and the quality of the MRI images were measured. The effects of MRI imaging on the performance of both the PET detectors and scanner were also measured.Main results.The electronic and mechanical components of the PET insert affected the homogeneity of theB0field. The PET insert had no effect on the homogeneity ofB1produced by the dedicated mouse coil but slightly reduced the strength ofB1. The mean and standard deviation of the RF noise map were increased by 2.2% and 11.6%, respectively, while the PET insert was placed in the MRI scanner and powered on. Eddy current was produced while the PET insert was placed in the MRI scanner, and it was further increased while the PET insert was powered on. Despite the above-mentioned interferences from the PET insert, the MR images of a uniform cylindrical water phantom showed that the changes in the signal-to-noise ratio (SNR) and homogeneity as the PET insert was placed in the MRI scanner were acceptable regardless of whether the PET insert was powered off or powered on. The maximum reduction of SNR was less than 11%, and the maximum reduction of homogeneity was less than 2.5% while the PET insert was placed inside the MRI scanner and powered on for five commonly used MRI sequences. MRI using gradient echo (GRE), spin echo (SE) and fast spin echo (FSE) sequences had negligible effects on the flood histograms and energy resolution of the PET detectors, as well as the spatial resolution and sensitivity of the PET scanner.Significance.The mutual interference between the SIAT aPET and the 3 T uMR 790 MRI scanner are acceptable. Simultaneous PET/MRI imaging of small animals can be performed with the two scanners.
Collapse
Affiliation(s)
- Ziru Sang
- Paul C Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
| | - Zhonghua Kuang
- Paul C Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China.,Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
| | - Xiaohui Wang
- Paul C Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
| | - Ning Ren
- Paul C Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
| | - San Wu
- Paul C Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
| | - Ming Niu
- Paul C Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
| | - Longhan Cong
- Paul C Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
| | - Zheng Liu
- Paul C Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
| | - Zhanli Hu
- Paul C Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
| | - Tao Sun
- Paul C Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
| | - Dong Liang
- Paul C Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
| | - Xin Liu
- Paul C Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
| | - Hairong Zheng
- Paul C Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
| | - Ye Li
- Paul C Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
| | - Yongfeng Yang
- Paul C Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
| |
Collapse
|
4
|
Ren W, Ji B, Guan Y, Cao L, Ni R. Recent Technical Advances in Accelerating the Clinical Translation of Small Animal Brain Imaging: Hybrid Imaging, Deep Learning, and Transcriptomics. Front Med (Lausanne) 2022; 9:771982. [PMID: 35402436 PMCID: PMC8987112 DOI: 10.3389/fmed.2022.771982] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 02/16/2022] [Indexed: 12/26/2022] Open
Abstract
Small animal models play a fundamental role in brain research by deepening the understanding of the physiological functions and mechanisms underlying brain disorders and are thus essential in the development of therapeutic and diagnostic imaging tracers targeting the central nervous system. Advances in structural, functional, and molecular imaging using MRI, PET, fluorescence imaging, and optoacoustic imaging have enabled the interrogation of the rodent brain across a large temporal and spatial resolution scale in a non-invasively manner. However, there are still several major gaps in translating from preclinical brain imaging to the clinical setting. The hindering factors include the following: (1) intrinsic differences between biological species regarding brain size, cell type, protein expression level, and metabolism level and (2) imaging technical barriers regarding the interpretation of image contrast and limited spatiotemporal resolution. To mitigate these factors, single-cell transcriptomics and measures to identify the cellular source of PET tracers have been developed. Meanwhile, hybrid imaging techniques that provide highly complementary anatomical and molecular information are emerging. Furthermore, deep learning-based image analysis has been developed to enhance the quantification and optimization of the imaging protocol. In this mini-review, we summarize the recent developments in small animal neuroimaging toward improved translational power, with a focus on technical improvement including hybrid imaging, data processing, transcriptomics, awake animal imaging, and on-chip pharmacokinetics. We also discuss outstanding challenges in standardization and considerations toward increasing translational power and propose future outlooks.
Collapse
Affiliation(s)
- Wuwei Ren
- School of Information Science and Technology, ShanghaiTech University, Shanghai, China
- Shanghai Engineering Research Center of Energy Efficient and Custom AI IC, Shanghai, China
| | - Bin Ji
- Department of Radiopharmacy and Molecular Imaging, School of Pharmacy, Fudan University, Shanghai, China
| | - Yihui Guan
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Lei Cao
- Shanghai Changes Tech, Ltd., Shanghai, China
| | - Ruiqing Ni
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
- Institute for Biomedical Engineering, ETH Zürich and University of Zurich, Zurich, Switzerland
| |
Collapse
|
5
|
Bebié P, Becker R, Commichau V, Debus J, Dissertori G, Djambazov L, Eleftheriou A, Fischer J, Fischer P, Ito M, Khateri P, Lustermann W, Ritzer C, Ritzert M, Röser U, Tsoumpas C, Warnock G, Weber B, Wyss MT, Zagozdzinska-Bochenek A. SAFIR-I: Design and Performance of a High-Rate Preclinical PET Insert for MRI. SENSORS (BASEL, SWITZERLAND) 2021; 21:7037. [PMID: 34770344 PMCID: PMC8588038 DOI: 10.3390/s21217037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/15/2021] [Accepted: 10/19/2021] [Indexed: 11/16/2022]
Abstract
(1) Background: Small Animal Fast Insert for MRI detector I (SAFIR-I) is a preclinical Positron Emission Tomography (PET) insert for the Bruker BioSpec 70/30 Ultra Shield Refrigerated (USR) preclinical 7T Magnetic Resonance Imaging (MRI) system. It is designed explicitly for high-rate kinetic studies in mice and rats with injected activities reaching 500MBq, enabling truly simultaneous quantitative PET and Magnetic Resonance (MR) imaging with time frames of a few seconds in length. (2) Methods: SAFIR-I has an axial field of view of 54.2mm and an inner diameter of 114mm. It employs Lutetium Yttrium OxyorthoSilicate (LYSO) crystals and Multi Pixel Photon Counter (MPPC) arrays. The Position-Energy-Timing Application Specific Integrated Circuit, version 6, Single Ended (PETA6SE) digitizes the MPPC signals and provides time stamps and energy information. (3) Results: SAFIR-I is MR-compatible. The system's Coincidence Resolving Time (CRT) and energy resolution are between separate-uncertainty 209.0(3)ps and separate-uncertainty 12.41(02) Full Width at Half Maximum (FWHM) at low activity and separate-uncertainty 326.89(12)ps and separate-uncertainty 20.630(011) FWHM at 550MBq, respectively. The peak sensitivity is ∼1.6. The excellent performance facilitated the successful execution of first in vivo rat studies beyond 300MBq. Based on features visible in the acquired images, we estimate the spatial resolution to be ∼2mm in the center of the Field Of View (FOV). (4) Conclusion: The SAFIR-I PET insert provides excellent performance, permitting simultaneous in vivo small animal PET/MR image acquisitions with time frames of a few seconds in length at activities of up to 500MBq.
Collapse
Affiliation(s)
- Pascal Bebié
- Institute for Particle Physics and Astrophysics, ETH Zürich, 8093 Zürich, Switzerland; (R.B.); (V.C.); (J.D.); (G.D.); (L.D.); (J.F.); (M.I.); (P.K.); (W.L.); (C.R.); (U.R.); (A.Z.-B.)
| | - Robert Becker
- Institute for Particle Physics and Astrophysics, ETH Zürich, 8093 Zürich, Switzerland; (R.B.); (V.C.); (J.D.); (G.D.); (L.D.); (J.F.); (M.I.); (P.K.); (W.L.); (C.R.); (U.R.); (A.Z.-B.)
| | - Volker Commichau
- Institute for Particle Physics and Astrophysics, ETH Zürich, 8093 Zürich, Switzerland; (R.B.); (V.C.); (J.D.); (G.D.); (L.D.); (J.F.); (M.I.); (P.K.); (W.L.); (C.R.); (U.R.); (A.Z.-B.)
| | - Jan Debus
- Institute for Particle Physics and Astrophysics, ETH Zürich, 8093 Zürich, Switzerland; (R.B.); (V.C.); (J.D.); (G.D.); (L.D.); (J.F.); (M.I.); (P.K.); (W.L.); (C.R.); (U.R.); (A.Z.-B.)
| | - Günther Dissertori
- Institute for Particle Physics and Astrophysics, ETH Zürich, 8093 Zürich, Switzerland; (R.B.); (V.C.); (J.D.); (G.D.); (L.D.); (J.F.); (M.I.); (P.K.); (W.L.); (C.R.); (U.R.); (A.Z.-B.)
| | - Lubomir Djambazov
- Institute for Particle Physics and Astrophysics, ETH Zürich, 8093 Zürich, Switzerland; (R.B.); (V.C.); (J.D.); (G.D.); (L.D.); (J.F.); (M.I.); (P.K.); (W.L.); (C.R.); (U.R.); (A.Z.-B.)
| | - Afroditi Eleftheriou
- Institute of Pharmacology and Toxicology, University of Zürich, 8057 Zürich, Switzerland; (A.E.); (G.W.); (B.W.); (M.T.W.)
| | - Jannis Fischer
- Institute for Particle Physics and Astrophysics, ETH Zürich, 8093 Zürich, Switzerland; (R.B.); (V.C.); (J.D.); (G.D.); (L.D.); (J.F.); (M.I.); (P.K.); (W.L.); (C.R.); (U.R.); (A.Z.-B.)
| | - Peter Fischer
- Institute of Computer Engineering, Heidelberg University, 69120 Heidelberg, Germany; (P.F.); (M.R.)
| | - Mikiko Ito
- Institute for Particle Physics and Astrophysics, ETH Zürich, 8093 Zürich, Switzerland; (R.B.); (V.C.); (J.D.); (G.D.); (L.D.); (J.F.); (M.I.); (P.K.); (W.L.); (C.R.); (U.R.); (A.Z.-B.)
| | - Parisa Khateri
- Institute for Particle Physics and Astrophysics, ETH Zürich, 8093 Zürich, Switzerland; (R.B.); (V.C.); (J.D.); (G.D.); (L.D.); (J.F.); (M.I.); (P.K.); (W.L.); (C.R.); (U.R.); (A.Z.-B.)
| | - Werner Lustermann
- Institute for Particle Physics and Astrophysics, ETH Zürich, 8093 Zürich, Switzerland; (R.B.); (V.C.); (J.D.); (G.D.); (L.D.); (J.F.); (M.I.); (P.K.); (W.L.); (C.R.); (U.R.); (A.Z.-B.)
| | - Christian Ritzer
- Institute for Particle Physics and Astrophysics, ETH Zürich, 8093 Zürich, Switzerland; (R.B.); (V.C.); (J.D.); (G.D.); (L.D.); (J.F.); (M.I.); (P.K.); (W.L.); (C.R.); (U.R.); (A.Z.-B.)
| | - Michael Ritzert
- Institute of Computer Engineering, Heidelberg University, 69120 Heidelberg, Germany; (P.F.); (M.R.)
| | - Ulf Röser
- Institute for Particle Physics and Astrophysics, ETH Zürich, 8093 Zürich, Switzerland; (R.B.); (V.C.); (J.D.); (G.D.); (L.D.); (J.F.); (M.I.); (P.K.); (W.L.); (C.R.); (U.R.); (A.Z.-B.)
| | - Charalampos Tsoumpas
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds LS2 9JT, UK;
| | - Geoffrey Warnock
- Institute of Pharmacology and Toxicology, University of Zürich, 8057 Zürich, Switzerland; (A.E.); (G.W.); (B.W.); (M.T.W.)
| | - Bruno Weber
- Institute of Pharmacology and Toxicology, University of Zürich, 8057 Zürich, Switzerland; (A.E.); (G.W.); (B.W.); (M.T.W.)
| | - Matthias T. Wyss
- Institute of Pharmacology and Toxicology, University of Zürich, 8057 Zürich, Switzerland; (A.E.); (G.W.); (B.W.); (M.T.W.)
| | - Agnieszka Zagozdzinska-Bochenek
- Institute for Particle Physics and Astrophysics, ETH Zürich, 8093 Zürich, Switzerland; (R.B.); (V.C.); (J.D.); (G.D.); (L.D.); (J.F.); (M.I.); (P.K.); (W.L.); (C.R.); (U.R.); (A.Z.-B.)
| |
Collapse
|
6
|
Celik AA, Choi CH, Tellmann L, Rick C, Shah NJ, Felder J. Design and Construction of a PET-Compatible Double-Tuned 1H/ 31P MR Head Coil. IEEE TRANSACTIONS ON MEDICAL IMAGING 2021; 40:2015-2022. [PMID: 33798075 DOI: 10.1109/tmi.2021.3070626] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Simultaneous MR-PET is an increasingly popular multimodal imaging technique that is able to combine metabolic information obtained from PET with anatomical/functional information from MRI. One of the key technological challenges of the technique is the integration of a PET-transparent MR coil system, a solution to which is demonstrated here for a double-tuned 1H/31P head coil at 3 T. Two single-resonant birdcage coils tuned to the 1H and 31P resonances were arranged in an interleaved fashion and electrically decoupled with the use of trap circuits. All high 511 keV quanta absorbing components were arranged outside the PET field-of-view in order to minimize count rate reduction. The materials inside the PET field-of-view were carefully evaluated and chosen for minimum impact on the PET image quality. As far as possible, the coil case was geometrically optimized to avoid sharp transitions in attenuation, which may potentially result in streaking artefacts during PET image reconstruction. The coil caused a count rate loss of just above 5% when inserted into the PET detector ring. Except for the anterior region, which was designed to maintain free openings for increased patient comfort, an almost uniform distribution of 511 keV attenuation was maintained around the circumference of the coil. MR-related performance for both nuclei was similar or slightly better than that of a commercial double-tuned coil, despite the MR-PET coil having a close-fitting RF screen to shield the PET and MR electronics from possible electromagnetic interferences.
Collapse
|
7
|
Yang Q, Wang X, Kuang Z, Zhang C, Yang Y, Du J. Evaluation of Two SiPM Arrays for Depth-Encoding PET Detectors Based on Dual-Ended Readout. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2021. [DOI: 10.1109/trpms.2020.3008710] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
8
|
Nadig V, Schug D, Weissler B, Schulz V. Evaluation of the PETsys TOFPET2 ASIC in multi-channel coincidence experiments. EJNMMI Phys 2021; 8:30. [PMID: 33761038 PMCID: PMC7991069 DOI: 10.1186/s40658-021-00370-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 02/23/2021] [Indexed: 04/05/2023] Open
Abstract
BACKGROUND Aiming to measure the difference in arrival times of two coincident γ-photons with an accuracy in the order of 200ps, time-of-flight positron emission tomography systems commonly employ silicon photomultipliers (SiPMs) and high-resolution digitization electronics, application specific integrated circuits (ASICs). This work evaluates the performance of the TOFPET2 ASIC, released by PETsys Electronics S.A. in 2017, dependent on its configuration parameters in multi-channel coincidence measurements. METHODS SiPM arrays fabricated by different vendors (KETEK, SensL, Hamamatsu, Broadcom) were tested in combination with the ASIC. Scintillator arrays featuring different reflector designs and different configurations of the TOFPET2 ASIC software parameters were evaluated. The benchtop setup used is provided with the TOFPET2 ASIC evaluation kit by PETsys Electronics S.A. RESULTS Compared to existing studies featuring the TOFPET2 ASIC, multi-channel performance results dependent on a larger set of ASIC configuration parameters were obtained that have not been reported to this extend so far. The ASIC shows promising CRTs down to 219.9 ps in combination with two Hamamatsu S14161-3050-HS-08 SiPM arrays (128 channels read out, energy resolution 13.08%) and 216.1 ps in combination with two Broadcom AFBR-S4N44P643S SiPM arrays (32 channels read out, energy resolution 9.46%). The length of the trigger delay of the dark count suppression scheme has an impact on the ASIC performance and can be configured to further improve the coincidence resolution time. The integrator gain configuration has been investigated and allows an absolute improvement of the energy resolution by up to 1% at the cost of the linearity of the energy spectrum. CONCLUSION Measuring up to the time-of-flight performance of state-of-the-art positron emission tomography (ToF-PET) systems while providing a uniform and stable readout for multiple channels at the same time, the TOFPET2 ASIC is treated as promising candidate for the integration in future ToF-PET systems.
Collapse
Affiliation(s)
- Vanessa Nadig
- Department of Physics of Molecular Imaging Systems, Experimental Molecular Imaging, RWTH Aachen University, Pauwelsstrasse 17, Aachen, 52074 Germany
| | - David Schug
- Department of Physics of Molecular Imaging Systems, Experimental Molecular Imaging, RWTH Aachen University, Pauwelsstrasse 17, Aachen, 52074 Germany
- Hyperion Hybrid Imaging Systems GmbH, Pauwelsstrasse 19, Aachen, 52074 Germany
| | - Bjoern Weissler
- Department of Physics of Molecular Imaging Systems, Experimental Molecular Imaging, RWTH Aachen University, Pauwelsstrasse 17, Aachen, 52074 Germany
- Hyperion Hybrid Imaging Systems GmbH, Pauwelsstrasse 19, Aachen, 52074 Germany
| | - Volkmar Schulz
- Department of Physics of Molecular Imaging Systems, Experimental Molecular Imaging, RWTH Aachen University, Pauwelsstrasse 17, Aachen, 52074 Germany
- Hyperion Hybrid Imaging Systems GmbH, Pauwelsstrasse 19, Aachen, 52074 Germany
- III. Physikalisches Institut B, RWTH Aachen University, Otto-Blumenthal-Straße, Aachen, 52074 Germany
- Fraunhofer Institute for Digital Medicine MEVIS, Forckenbeckstrasse 55, Aachen, 52074 Germany
| |
Collapse
|
9
|
Kim H, Kao CM, Hua Y, Xie Q, Chen CT. Multiplexing Readout for Time-of-Flight (TOF) PET Detectors Using Striplines. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2021; 5:662-670. [PMID: 34541433 PMCID: PMC8445371 DOI: 10.1109/trpms.2021.3051364] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A recent trend in PET instrumentation is the use of silicon photomultipliers (SiPMs) for high-resolution and time-of-flight (TOF) detection. Due to its small size, a PET system can use a large number of SiPMs and hence effective and scalable multiplexing readout methods become important. Unfortunately, multiplexing readout generally degrades the fast timing properties necessary for TOF, especially at high channel reduction. Previously, we developed a stripline (SL) based readout method for PET that uses a time-based multiplexing mechanism. This method maintains fast timing by design and has been successfully used for TOF PET detectors. In this paper, we present a more systematic study in which we examine how two important design parameters of the readout - the number of inputs on an SL (n SL) and the pathlength between adjacent input positions (Δℓ) - affect its detection performance properties for PET. Our result shows that, up to n SL = 32 the readout can achieve accurate pixel discrimination and causes little degradation in the energy resolution. The TOF resolution is compromised mildly and a coincidence resolving time on the order of 300 ps FWHM can be achieved for LYSO- and SiPM-based detectors. We also discuss strategies in using the readout to further reduce the number of electronic channels that a PET system would otherwise need.
Collapse
Affiliation(s)
- Heejong Kim
- Department of Radiology, University of Chicago, Chicago, IL 60637 USA
| | - Chien-Min Kao
- Department of Radiology, University of Chicago, Chicago, IL 60637 USA
| | - Yuexuan Hua
- Raycan Technology Co., Ltd., Suzhou, Jiangsu 215163, China
| | - Qingguo Xie
- Biomedical Engineering Department, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chin-Tu Chen
- Department of Radiology, University of Chicago, Chicago, IL 60637 USA
| |
Collapse
|
10
|
Courteau A, McGrath J, Walker PM, Pegg R, Martin G, Garipov R, Doughty P, Cochet A, Brunotte F, Vrigneaud JM. Performance Evaluation and Compatibility Studies of a Compact Preclinical Scanner for Simultaneous PET/MR Imaging at 7 Tesla. IEEE TRANSACTIONS ON MEDICAL IMAGING 2021; 40:205-217. [PMID: 32956042 DOI: 10.1109/tmi.2020.3024722] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We present the design and performance of a new compact preclinical system combining positron emission tomography (PET) and magnetic resonance imaging (MRI) for simultaneous scans. The PET contains sixteen SiPM-based detector heads arranged in two octagons and covers an axial field of view (FOV) of 102.5 mm. Depth of interaction effects and detector's temperature variations are compensated by the system. The PET is integrated in a dry magnet operating at 7 T. PET and MRI characteristics were assessed complying with international standards and interferences between both subsystems during simultaneous scans were addressed. For the rat size phantom, the peak noise equivalent count rates (NECR) were 96.4 kcps at 30.2 MBq and 132.3 kcps at 28.4 MBq respectively with and without RF coil. For mouse, the peak NECR was 300.0 kcps at 34.5 MBq and 426.9 kcps at 34.3 MBq respectively with and without coil. At the axial centre of the FOV, spatial resolutions expressed as full width at half maximum / full width at tenth maximum (FWHM/FWTM) ranged from 1.69/3.19 mm to 2.39/4.87 mm. The peak absolute sensitivity obtained with a 250-750 keV energy window was 7.5% with coil and 7.9% without coil. Spill over ratios of the NEMA NU4-2008 image quality (NEMA-IQ) phantom ranged from 0.25 to 0.96 and the percentage of non-uniformity was 5.7%. The image count versus activity was linear up to 40 MBq. The principal magnetic field variation was 0.03 ppm/mm over 40 mm. The qualitative and quantitative aspects of data were preserved during simultaneous scans.
Collapse
|
11
|
Branderhorst W, Steensma BR, Beijst C, Huijing ER, Alborahal C, Versteeg E, Weissler B, Schug D, Gebhardt P, Gross-Weege N, Mueller F, Krueger K, Dey T, Radermacher H, Lips O, Lagendijk J, Schulz V, de Jong HWAM, Klomp DWJ. Evaluation of the radiofrequency performance of a wide-bore 1.5 T positron emission tomography/magnetic resonance imaging body coil for radiotherapy planning. PHYSICS & IMAGING IN RADIATION ONCOLOGY 2020; 17:13-19. [PMID: 33898772 PMCID: PMC8057958 DOI: 10.1016/j.phro.2020.12.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 11/17/2020] [Accepted: 12/09/2020] [Indexed: 11/13/2022]
Abstract
Background and purpose The restricted bore diameter of current simultaneous positron emission tomography/magnetic resonance imaging (PET/MRI) systems can be an impediment to achieving similar patient positioning during PET/MRI planning and radiotherapy. Our goal was to evaluate the B1 transmit (B1+) uniformity, B1+ efficiency, and specific absorption rate (SAR) of a novel radiofrequency (RF) body coil design, in which RF shielded PET detectors were integrated with the specific aim of enabling a wide-bore PET/MRI system. Materials and methods We designed and constructed a wide-bore PET/MRI RF body coil to be integrated with a clinical MRI system. To increase its inner bore diameter, the PET detectors were positioned between the conductors and the RF shield of the RF body coil. Simulations and experiments with phantoms and human volunteers were performed to compare the B1+ uniformity, B1+ efficiency, and SAR between our design and the clinical body coil. Results In the simulations, our design achieved nearly the same B1+ field uniformity as the clinical body coil and an almost identical SAR distribution. The uniformity findings were confirmed by the physical experiments. The B1+ efficiency was 38% lower compared to the clinical body coil. Conclusions To achieve wide-bore PET/MRI, it is possible to integrate shielding for PET detectors between the body coil conductors and the RF shield without compromising MRI performance. Reduced B1+ efficiency may be compensated by adding a second RF amplifier. This finding may facilitate the application of simultaneous whole-body PET/MRI in radiotherapy planning.
Collapse
Affiliation(s)
- Woutjan Branderhorst
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Bart R Steensma
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Casper Beijst
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Erik R Huijing
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Cezar Alborahal
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Edwin Versteeg
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Bjoern Weissler
- Department of Physics of Molecular Imaging Systems, RWTH Aachen University, Aachen, Germany
| | - David Schug
- Department of Physics of Molecular Imaging Systems, RWTH Aachen University, Aachen, Germany
| | - Pierre Gebhardt
- Department of Physics of Molecular Imaging Systems, RWTH Aachen University, Aachen, Germany
| | - Nicolas Gross-Weege
- Department of Physics of Molecular Imaging Systems, RWTH Aachen University, Aachen, Germany
| | - Florian Mueller
- Department of Physics of Molecular Imaging Systems, RWTH Aachen University, Aachen, Germany
| | - Karl Krueger
- Department of Physics of Molecular Imaging Systems, RWTH Aachen University, Aachen, Germany
| | - Thomas Dey
- Department of Physics of Molecular Imaging Systems, RWTH Aachen University, Aachen, Germany
| | - Harald Radermacher
- Department of Physics of Molecular Imaging Systems, RWTH Aachen University, Aachen, Germany
| | | | - Jan Lagendijk
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Volkmar Schulz
- Department of Physics of Molecular Imaging Systems, RWTH Aachen University, Aachen, Germany
| | - Hugo W A M de Jong
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Dennis W J Klomp
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
12
|
Gsell W, Molinos C, Correcher C, Belderbos S, Wouters J, Junge S, Heidenreich M, Velde GV, Rezaei A, Nuyts J, Cawthorne C, Cleeren F, Nannan L, Deroose CM, Himmelreich U, Gonzalez AJ. Characterization of a preclinical PET insert in a 7 tesla MRI scanner: beyond NEMA testing. Phys Med Biol 2020; 65:245016. [PMID: 32590380 DOI: 10.1088/1361-6560/aba08c] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
This study evaluates the performance of the Bruker positron emission tomograph (PET) insert combined with a BioSpec 70/30 USR magnetic resonance imaging (MRI) scanner using the manufacturer acceptance protocol and the NEMA NU 4-2008 for small animal PET. The PET insert is made of 3 rings of 8 monolithic LYSO crystals (50 × 50 × 10 mm3) coupled to silicon photomultipliers (SiPM) arrays, conferring an axial and transaxial FOV of 15 cm and 8 cm. The MRI performance was evaluated with and without the insert for the following radiofrequency noise, magnetic field homogeneity and image quality. For the PET performance, we extended the NEMA protocol featuring system sensitivity, count rates, spatial resolution and image quality to homogeneity and accuracy for quantification using several MRI sequences (RARE, FLASH, EPI and UTE). The PET insert does not show any adverse effect on the MRI performances. The MR field homogeneity is well preserved (Diameter Spherical Volume, for 20 mm of 1.98 ± 4.78 without and -0.96 ± 5.16 Hz with the PET insert). The PET insert has no major effect on the radiofrequency field. The signal-to-noise ratio measurements also do not show major differences. Image ghosting is well within the manufacturer specifications (<2.5%) and no RF noise is visible. Maximum sensitivity of the PET insert is 11.0% at the center of the FOV even with simultaneous acquisition of EPI and RARE. PET MLEM resolution is 0.87 mm (FWHM) at 5 mm off-center of the FOV and 0.97 mm at 25 mm radial offset. The peaks for true/noise equivalent count rates are 410/240 and 628/486 kcps for the rat and mouse phantoms, and are reached at 30.34/22.85 and 27.94/22.58 MBq. PET image quality is minimally altered by the different MRI sequences. The Bruker PET insert shows no adverse effect on the MRI performance and demonstrated a high sensitivity, sub-millimeter resolution and good image quality even during simultaneous MRI acquisition.
Collapse
Affiliation(s)
- Willy Gsell
- Biomedical MRI, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Miyaoka RS, Lehnert A. Small animal PET: a review of what we have done and where we are going. Phys Med Biol 2020; 65. [PMID: 32357344 DOI: 10.1088/1361-6560/ab8f71] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 05/01/2020] [Indexed: 02/07/2023]
Abstract
Small animal research is an essential tool in studying both pharmaceutical biodistributions and disease progression over time. Furthermore, through the rapid development of in vivo imaging technology over the last few decades, small animal imaging (also referred to as preclinical imaging) has become a mainstay for all fields of biologic research and a center point for most preclinical cancer research. Preclinical imaging modalities include optical, MRI and MRS, microCT, small animal PET, ultrasound, and photoacoustic, each with their individual strengths. The strong points of small animal PET are its translatability to the clinic; its quantitative imaging capabilities; its whole-body imaging ability to dynamically trace functional/biochemical processes; its ability to provide useful images with only nano- to pico‑ molar concentrations of administered compounds; and its ability to study animals serially over time. This review paper gives an overview of the development and evolution of small animal PET imaging. It provides an overview of detector designs; system configurations; multimodality PET imaging systems; image reconstruction and analysis tools; and an overview of research and commercially available small animal PET systems. It concludes with a look toward developing technologies/methodologies that will further enhance the impact of small animal PET imaging on medical research in the future.
Collapse
Affiliation(s)
- Robert S Miyaoka
- Radiology, University of Washington, Seattle, Washington, UNITED STATES
| | - Adrienne Lehnert
- Radiology, University of Washington, Seattle, Washington, UNITED STATES
| |
Collapse
|
14
|
Moghadam N, Arpin L, Espagnet R, Bouchard J, Viscogliosi N, Lecomte R, Fontaine R. Performance investigation of LabPET II detector technology in an MRI-like environment. Phys Med Biol 2020; 65:035001. [PMID: 31726447 DOI: 10.1088/1361-6560/ab57e0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The EMI-compatibility of the LabPET II detection module (DM) to develop a high-resolution simultaneous PET/MRI system is investigated. The experimental set-up evaluates the performance of two LabPET II DMs in close proximity to RF coils excited at three different frequencies mimicking the electromagnetic environments of 3 T, 7 T, and 9.4 T MRI scanners. A gradient coil, with switching frequency from 10 kHz to 100 kHz, also surrounds one of the DMs to investigate the effects of the gradient field on the individual detector performance, such as the baseline of the DC-voltage and noise level along with both the energy and coincidence time resolutions. Measurements demonstrate a position shift of the energy photopeaks (⩽9%) and a slight deterioration of the energy and coincidence time resolutions in the presence of electromagnetic interferences from the gradient and RF coils. The electromagnetic interferences cause an average degradation of up to ~50% of the energy resolution (in time-over-threshold spectra) and up to 18% of the timing resolution. Based on these results, a modified version of the DM, including a composite shielding as well as an improved heat pipe-based cooling mechanism, capable of stabilizing the temperature of the DM at ~40 °C, is proposed and investigated. This shielded version shows no evidence of performance degradation inside an MRI-like environment. The experimental results demonstrate that a properly shielded version of the LabPET II DM is a viable candidate for an MR-compatible PET scanner.
Collapse
Affiliation(s)
- Narjes Moghadam
- Groupe de Recherche en Appareillage Médical de Sherbrooke (GRAMS), Department of Electrical and Computer Engineering, Interdisciplinary Institute for Technological Innovation (3IT), Université de Sherbrooke, Sherbrooke, Québec, Canada.,Author to whom any correspondence should be addressed
| | - Louis Arpin
- Imaging, Research and Technology (IR&T), Sherbrooke, Québec, Canada
| | - Romain Espagnet
- Groupe de Recherche en Appareillage Médical de Sherbrooke (GRAMS), Department of Electrical and Computer Engineering, Interdisciplinary Institute for Technological Innovation (3IT), Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Jonathan Bouchard
- Groupe de Recherche en Appareillage Médical de Sherbrooke (GRAMS), Department of Electrical and Computer Engineering, Interdisciplinary Institute for Technological Innovation (3IT), Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Nicolas Viscogliosi
- Groupe de Recherche en Appareillage Médical de Sherbrooke (GRAMS), Department of Electrical and Computer Engineering, Interdisciplinary Institute for Technological Innovation (3IT), Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Roger Lecomte
- Department of Nuclear Medicine and Radiobiology, Sherbrooke Molecular Imaging Center (CIMS), Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Réjean Fontaine
- Groupe de Recherche en Appareillage Médical de Sherbrooke (GRAMS), Department of Electrical and Computer Engineering, Interdisciplinary Institute for Technological Innovation (3IT), Université de Sherbrooke, Sherbrooke, Québec, Canada
| |
Collapse
|
15
|
Abstract
SPECT and PET are nuclear tomographic imaging modalities that visualize functional information based on the accumulation of radioactive tracer molecules. However, SPECT and PET lack anatomical information, which has motivated their combination with an anatomical imaging modality such as CT or MRI. This chapter begins with an overview over the fundamental physics of SPECT and PET followed by a presentation of the respective detector technologies, including detection requirements, principles and different detector concepts. The reader is subsequently provided with an introduction into hybrid imaging concepts, before a dedicated section presents the challenges that arise when hybridizing SPECT or PET with MRI, namely, mutual distortions of the different electromagnetic fields in MRI on the nuclear imaging system and vice versa. The chapter closes with an overview about current hybrid imaging systems of both clinical and preclinical kind. Finally, future developments in hybrid SPECT and PET technology are discussed.
Collapse
Affiliation(s)
- Teresa Nolte
- Physics of Molecular Imaging Systems, Experimental Molecular Imaging, RWTH Aachen University, Aachen, Germany
| | - Nicolas Gross-Weege
- Physics of Molecular Imaging Systems, Experimental Molecular Imaging, RWTH Aachen University, Aachen, Germany
| | - Volkmar Schulz
- Physics of Molecular Imaging Systems, Experimental Molecular Imaging, RWTH Aachen University, Aachen, Germany.
- Hyperion Hybrid Imaging Systems GmbH, Aachen, Germany.
- Fraunhofer Institute for Digital Medicine MEVIS, Bremen, Germany.
| |
Collapse
|
16
|
Cheng X, Hu K, Shao Y. Dual-Polarity SiPM Readout Electronics Based on 1-bit Sigma-Delta Modulatiom Circuit for PET Detector Applications. IEEE TRANSACTIONS ON NUCLEAR SCIENCE 2019; 66:2107-2113. [PMID: 33746246 PMCID: PMC7978155 DOI: 10.1109/tns.2019.2932270] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We investigated a simple and effective method to extend 1-bit sigma-delta modulation (SDM) circuit based charge-to-digital converter (QDC) to read dual-polarity silicon photomultiplier (SiPM) output signals. With the same QDC circuit but different voltage biases to the circuit components, the new circuit can read and process both positive and negative polarity signals. We conducted experimental studies to validate its ability to read and process dual-polarity signals and evaluated its performance for Positron Emission Tomography (PET) detector applications. The results, based on energy, coincidence timing and crystal identification measurements, show that the circuit provides equal electronics capability for readout of both polarity signals and good performance for SiPM array-based PET imaging detector applications. Overall, the dual-polarity QDC readout electronics can be easily implemented to extend the range of signal polarity and to provide effective and flexible detector front-end electronics for reading single- or dual-polarity SiPM output signals.
Collapse
Affiliation(s)
- Xinyi Cheng
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75391, USA
| | - Kun Hu
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75391, USA
| | - Yiping Shao
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75391, USA
| |
Collapse
|
17
|
Gross-Weege N, Nolte T, Schulz V. MR image corrections for PET-induced gradient distortions. ACTA ACUST UNITED AC 2019; 64:02NT03. [DOI: 10.1088/1361-6560/aaf97a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|