1
|
Summerfield N, Morris E, Banerjee S, He Q, Ghanem AI, Zhu S, Zhao J, Dong M, Glide-Hurst C. Enhancing Precision in Cardiac Segmentation for Magnetic Resonance-Guided Radiation Therapy Through Deep Learning. Int J Radiat Oncol Biol Phys 2024; 120:904-914. [PMID: 38797498 PMCID: PMC11427143 DOI: 10.1016/j.ijrobp.2024.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/25/2024] [Accepted: 05/17/2024] [Indexed: 05/29/2024]
Abstract
PURPOSE Cardiac substructure dose metrics are more strongly linked to late cardiac morbidities than to whole-heart metrics. Magnetic resonance (MR)-guided radiation therapy (MRgRT) enables substructure visualization during daily localization, allowing potential for enhanced cardiac sparing. We extend a publicly available state-of-the-art deep learning framework, "No New" U-Net, to incorporate self-distillation (nnU-Net.wSD) for substructure segmentation for MRgRT. METHODS AND MATERIALS Eighteen (institute A) patients who underwent thoracic or abdominal radiation therapy on a 0.35 T MR-guided linear accelerator were retrospectively evaluated. On each image, 1 of 2 radiation oncologists delineated reference contours of 12 cardiac substructures (chambers, great vessels, and coronary arteries) used to train (n = 10), validate (n = 3), and test (n = 5) nnU-Net.wSD by leveraging a teacher-student network and comparing it to standard 3-dimensional U-Net. The impact of using simulation data or including 3 to 4 daily images for augmentation during training was evaluated for nnU-Net.wSD. Geometric metrics (Dice similarity coefficient, mean distance to agreement, and 95% Hausdorff distance), visual inspection, and clinical dose-volume histograms were evaluated. To determine generalizability, institute A's model was tested on an unlabeled data set from institute B (n = 22) and evaluated via consensus scoring and volume comparisons. RESULTS nnU-Net.wSD yielded a Dice similarity coefficient (reported mean ± SD) of 0.65 ± 0.25 across the 12 substructures (chambers, 0.85 ± 0.05; great vessels, 0.67 ± 0.19; and coronary arteries, 0.33 ± 0.16; mean distance to agreement, <3 mm; mean 95% Hausdorff distance, <9 mm) while outperforming the 3-dimensional U-Net (0.583 ± 0.28; P <.01). Leveraging fractionated data for augmentation improved over a single MR simulation time point (0.579 ± 0.29; P <.01). Predicted contours yielded dose-volume histograms that closely matched those of the clinical treatment plans where mean and maximum (ie, dose to 0.03 cc) doses deviated by 0.32 ± 0.5 Gy and 1.42 ± 2.6 Gy, respectively. There were no statistically significant differences between institute A and B volumes (P >.05) for 11 of 12 substructures, with larger volumes requiring minor changes and coronary arteries exhibiting more variability. CONCLUSIONS This work is a critical step toward rapid and reliable cardiac substructure segmentation to improve cardiac sparing in low-field MRgRT.
Collapse
Affiliation(s)
- Nicholas Summerfield
- Department of Medical Physics, University of Wisconsin – Madison
- Department of Human Oncology, University of Wisconsin – Madison
| | - Eric Morris
- Department of Radiation Oncology, Washington University of Medicine in St. Louis
| | | | - Qisheng He
- Department of Computer Science, Wayne State University
| | - Ahmed I Ghanem
- Department of Radiation Oncology, Henry Ford Cancer Institute
- Alexandria Department of Clinical Oncology, Faculty of Medicine, Alexandria University, Egypt
| | - Simeng Zhu
- Department of Radiation Oncology, The Ohio State University
| | - Jiwei Zhao
- Department of Biostatistics and Medical Informatics, University of Wisconsin – Madison
| | - Ming Dong
- Department of Computer Science, Wayne State University
| | - Carri Glide-Hurst
- Department of Medical Physics, University of Wisconsin – Madison
- Department of Human Oncology, University of Wisconsin – Madison
| |
Collapse
|
2
|
Alzahrani NM, Henry AM, Clark AK, Al‐Qaisieh BM, Murray LJ, Nix MG. Dosimetric impact of contour editing on CT and MRI deep-learning autosegmentation for brain OARs. J Appl Clin Med Phys 2024; 25:e14345. [PMID: 38664894 PMCID: PMC11087158 DOI: 10.1002/acm2.14345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/12/2024] [Accepted: 03/05/2024] [Indexed: 05/12/2024] Open
Abstract
PURPOSE To establish the clinical applicability of deep-learning organ-at-risk autocontouring models (DL-AC) for brain radiotherapy. The dosimetric impact of contour editing, prior to model training, on performance was evaluated for both CT and MRI-based models. The correlation between geometric and dosimetric measures was also investigated to establish whether dosimetric assessment is required for clinical validation. METHOD CT and MRI-based deep learning autosegmentation models were trained using edited and unedited clinical contours. Autosegmentations were dosimetrically compared to gold standard contours for a test cohort. D1%, D5%, D50%, and maximum dose were used as clinically relevant dosimetric measures. The statistical significance of dosimetric differences between the gold standard and autocontours was established using paired Student's t-tests. Clinically significant cases were identified via dosimetric headroom to the OAR tolerance. Pearson's Correlations were used to investigate the relationship between geometric measures and absolute percentage dose changes for each autosegmentation model. RESULTS Except for the right orbit, when delineated using MRI models, the dosimetric statistical analysis revealed no superior model in terms of the dosimetric accuracy between the CT DL-AC models or between the MRI DL-AC for any investigated brain OARs. The number of patients where the clinical significance threshold was exceeded was higher for the optic chiasm D1% than other OARs, for all autosegmentation models. A weak correlation was consistently observed between the outcomes of dosimetric and geometric evaluations. CONCLUSIONS Editing contours before training the DL-AC model had no significant impact on dosimetry. The geometric test metrics were inadequate to estimate the impact of contour inaccuracies on dose. Accordingly, dosimetric analysis is needed to evaluate the clinical applicability of DL-AC models in the brain.
Collapse
Affiliation(s)
- Nouf M. Alzahrani
- Department of Diagnostic RadiologyKing Abdulaziz UniversityJeddahSaudi Arabia
- School of MedicineUniversity of LeedsLeedsUK
- Department of Medical Physics and EngineeringSt James's University HospitalLeedsUK
| | - Ann M. Henry
- School of MedicineUniversity of LeedsLeedsUK
- Department of Clinical OncologySt James's University HospitalLeedsUK
| | - Anna K. Clark
- Department of Medical Physics and EngineeringSt James's University HospitalLeedsUK
| | - Bashar M. Al‐Qaisieh
- Department of Medical Physics and EngineeringSt James's University HospitalLeedsUK
| | - Louise J. Murray
- School of MedicineUniversity of LeedsLeedsUK
- Department of Clinical OncologySt James's University HospitalLeedsUK
| | - Michael G. Nix
- Department of Medical Physics and EngineeringSt James's University HospitalLeedsUK
| |
Collapse
|
3
|
Chang CW, Peng J, Safari M, Salari E, Pan S, Roper J, Qiu RLJ, Gao Y, Shu HK, Mao H, Yang X. High-resolution MRI synthesis using a data-driven framework with denoising diffusion probabilistic modeling. Phys Med Biol 2024; 69:045001. [PMID: 38241726 PMCID: PMC10839468 DOI: 10.1088/1361-6560/ad209c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/08/2024] [Accepted: 01/19/2024] [Indexed: 01/21/2024]
Abstract
Objective. High-resolution magnetic resonance imaging (MRI) can enhance lesion diagnosis, prognosis, and delineation. However, gradient power and hardware limitations prohibit recording thin slices or sub-1 mm resolution. Furthermore, long scan time is not clinically acceptable. Conventional high-resolution images generated using statistical or analytical methods include the limitation of capturing complex, high-dimensional image data with intricate patterns and structures. This study aims to harness cutting-edge diffusion probabilistic deep learning techniques to create a framework for generating high-resolution MRI from low-resolution counterparts, improving the uncertainty of denoising diffusion probabilistic models (DDPM).Approach. DDPM includes two processes. The forward process employs a Markov chain to systematically introduce Gaussian noise to low-resolution MRI images. In the reverse process, a U-Net model is trained to denoise the forward process images and produce high-resolution images conditioned on the features of their low-resolution counterparts. The proposed framework was demonstrated using T2-weighted MRI images from institutional prostate patients and brain patients collected in the Brain Tumor Segmentation Challenge 2020 (BraTS2020).Main results. For the prostate dataset, the bicubic interpolation model (Bicubic), conditional generative-adversarial network (CGAN), and our proposed DDPM framework improved the noise quality measure from low-resolution images by 4.4%, 5.7%, and 12.8%, respectively. Our method enhanced the signal-to-noise ratios by 11.7%, surpassing Bicubic (9.8%) and CGAN (8.1%). In the BraTS2020 dataset, the proposed framework and Bicubic enhanced peak signal-to-noise ratio from resolution-degraded images by 9.1% and 5.8%. The multi-scale structural similarity indexes were 0.970 ± 0.019, 0.968 ± 0.022, and 0.967 ± 0.023 for the proposed method, CGAN, and Bicubic, respectively.Significance. This study explores a deep learning-based diffusion probabilistic framework for improving MR image resolution. Such a framework can be used to improve clinical workflow by obtaining high-resolution images without penalty of the long scan time. Future investigation will likely focus on prospectively testing the efficacy of this framework with different clinical indications.
Collapse
Affiliation(s)
- Chih-Wei Chang
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30308, United States of America
| | - Junbo Peng
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30308, United States of America
| | - Mojtaba Safari
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30308, United States of America
| | - Elahheh Salari
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30308, United States of America
| | - Shaoyan Pan
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30308, United States of America
- Department of Biomedical Informatics, Emory University, Atlanta, GA 30308, United States of America
| | - Justin Roper
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30308, United States of America
| | - Richard L J Qiu
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30308, United States of America
| | - Yuan Gao
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30308, United States of America
| | - Hui-Kuo Shu
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30308, United States of America
| | - Hui Mao
- Department of Radiology and Imaging Sciences and Winship Cancer Institute, Emory University, Atlanta, GA 30308, United States of America
| | - Xiaofeng Yang
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30308, United States of America
- Department of Biomedical Informatics, Emory University, Atlanta, GA 30308, United States of America
| |
Collapse
|
4
|
Osman YBM, Li C, Huang W, Wang S. Sparse annotation learning for dense volumetric MR image segmentation with uncertainty estimation. Phys Med Biol 2023; 69:015009. [PMID: 38035374 DOI: 10.1088/1361-6560/ad111b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/30/2023] [Indexed: 12/02/2023]
Abstract
Objective.Training neural networks for pixel-wise or voxel-wise image segmentation is a challenging task that requires a considerable amount of training samples with highly accurate and densely delineated ground truth maps. This challenge becomes especially prominent in the medical imaging domain, where obtaining reliable annotations for training samples is a difficult, time-consuming, and expert-dependent process. Therefore, developing models that can perform well under the conditions of limited annotated training data is desirable.Approach.In this study, we propose an innovative framework called the extremely sparse annotation neural network (ESA-Net) that learns with only the single central slice label for 3D volumetric segmentation which explores both intra-slice pixel dependencies and inter-slice image correlations with uncertainty estimation. Specifically, ESA-Net consists of four specially designed distinct components: (1) an intra-slice pixel dependency-guided pseudo-label generation module that exploits uncertainty in network predictions while generating pseudo-labels for unlabeled slices with temporal ensembling; (2) an inter-slice image correlation-constrained pseudo-label propagation module which propagates labels from the labeled central slice to unlabeled slices by self-supervised registration with rotation ensembling; (3) a pseudo-label fusion module that fuses the two sets of generated pseudo-labels with voxel-wise uncertainty guidance; and (4) a final segmentation network optimization module to make final predictions with scoring-based label quantification.Main results.Extensive experimental validations have been performed on two popular yet challenging magnetic resonance image segmentation tasks and compared to five state-of-the-art methods.Significance.Results demonstrate that our proposed ESA-Net can consistently achieve better segmentation performances even under the extremely sparse annotation setting, highlighting its effectiveness in exploiting information from unlabeled data.
Collapse
Affiliation(s)
- Yousuf Babiker M Osman
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Cheng Li
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangzhou 510080, People's Republic of China
| | - Weijian Huang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- Peng Cheng Laboratory, Shenzhen 518066, People's Republic of China
| | - Shanshan Wang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangzhou 510080, People's Republic of China
- Peng Cheng Laboratory, Shenzhen 518066, People's Republic of China
| |
Collapse
|
5
|
Vaassen F, Zegers CML, Hofstede D, Wubbels M, Beurskens H, Verheesen L, Canters R, Looney P, Battye M, Gooding MJ, Compter I, Eekers DBP, van Elmpt W. Geometric and dosimetric analysis of CT- and MR-based automatic contouring for the EPTN contouring atlas in neuro-oncology. Phys Med 2023; 114:103156. [PMID: 37813050 DOI: 10.1016/j.ejmp.2023.103156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 09/21/2023] [Accepted: 09/26/2023] [Indexed: 10/11/2023] Open
Abstract
PURPOSE Atlas-based and deep-learning contouring (DLC) are methods for automatic segmentation of organs-at-risk (OARs). The European Particle Therapy Network (EPTN) published a consensus-based atlas for delineation of OARs in neuro-oncology. In this study, geometric and dosimetric evaluation of automatically-segmented neuro-oncological OARs was performed using CT- and MR-models following the EPTN-contouring atlas. METHODS Image and contouring data from 76 neuro-oncological patients were included. Two atlas-based models (CT-atlas and MR-atlas) and one DLC-model (MR-DLC) were created. Manual contours on registered CT-MR-images were used as ground-truth. Results were analyzed in terms of geometrical (volumetric Dice similarity coefficient (vDSC), surface DSC (sDSC), added path length (APL), and mean slice-wise Hausdorff distance (MSHD)) and dosimetrical accuracy. Distance-to-tumor analysis was performed to analyze to which extent the location of the OAR relative to planning target volume (PTV) has dosimetric impact, using Wilcoxon rank-sum tests. RESULTS CT-atlas outperformed MR-atlas for 22/26 OARs. MR-DLC outperformed MR-atlas for all OARs. Highest median (95 %CI) vDSC and sDSC were found for the brainstem in MR-DLC: 0.92 (0.88-0.95) and 0.84 (0.77-0.89) respectively, as well as lowest MSHD: 0.27 (0.22-0.39)cm. Median dose differences (ΔD) were within ± 1 Gy for 24/26(92 %) OARs for all three models. Distance-to-tumor showed a significant correlation for ΔDmax,0.03cc-parameters when splitting the data in ≤ 4 cm and > 4 cm OAR-distance (p < 0.001). CONCLUSION MR-based DLC and CT-based atlas-contouring enable high-quality segmentation. It was shown that a combination of both CT- and MR-autocontouring models results in the best quality.
Collapse
Affiliation(s)
- Femke Vaassen
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre(+), Maastricht, the Netherlands.
| | - Catharina M L Zegers
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre(+), Maastricht, the Netherlands
| | - David Hofstede
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre(+), Maastricht, the Netherlands
| | - Mart Wubbels
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre(+), Maastricht, the Netherlands
| | - Hilde Beurskens
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre(+), Maastricht, the Netherlands
| | - Lindsey Verheesen
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre(+), Maastricht, the Netherlands
| | - Richard Canters
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre(+), Maastricht, the Netherlands
| | | | | | | | - Inge Compter
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre(+), Maastricht, the Netherlands
| | - Daniëlle B P Eekers
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre(+), Maastricht, the Netherlands
| | - Wouter van Elmpt
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre(+), Maastricht, the Netherlands
| |
Collapse
|