1
|
Dong J, Yang P, Kong D, Song Y, Lu J. Formation of nitrated naphthalene in the sulfate radical oxidation process in the presence of nitrite. WATER RESEARCH 2024; 255:121546. [PMID: 38574612 DOI: 10.1016/j.watres.2024.121546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/05/2024] [Accepted: 03/27/2024] [Indexed: 04/06/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) have become a global environmental concern due to their potential hazardous implication for human health. In this study, we found that sulfate radical (SO4•-) could effectively degrade naphthalene (NAP), a representative PAH in groundwaters, generating 1-naphthol. This intermediate underwent further degradation, yielding ring-opening products including phthalic acid and salicylic acid. However, the presence of nitrite (NO2-), a prevalent ion in subsurface environments, was observed to compete with NAP for SO4•-, thus slowing down the NAP degradation. The reaction between NO2- and SO4•- generated a nitrogen dioxide radical (NO2•). Concurrently, in-situ formed 1-naphthol underwent further oxidization to the 1-naphthoxyl radical by SO4•-. The coupling of 1-naphthoxyl radicals with NO2• gave rise to a series of nitrated NAP, namely 2-nitro-1-naphthol, 4-nitro-1-naphthol, and 2,4-dinitro-1-naphthol. In addition, the in-situ formed phthalic acid and salicylic acid also underwent nitration, generating nitrophenolic products, although this pathway appeared less prominent than the nitration of 1-naphthol. When 10 μΜ NAP was subjected to heat activated peroxydisulfate oxidation in the presence of 10 μΜ NO2-, the total yield of nitrated products reached 0.730 μΜ in 120 min. Overall, the presence of NO2- dramatically altered the behavior of NAP degradation by SO4•- oxidation and contributed to the formation of toxic nitrated products. These findings raise awareness of the potential environmental risks associated with the application of SO4•--based oxidation processes for the remediation of PAHs-polluted sites in presence of NO2-.
Collapse
Affiliation(s)
- Jiayue Dong
- Department of Environmental Science and Engineering, Nanjing Agricultural University, Nanjing, 210095, China
| | - Peizeng Yang
- Department of Environmental Science and Engineering, Nanjing Agricultural University, Nanjing, 210095, China
| | - Deyang Kong
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of China, Nanjing, 210042, China
| | - Yiqiang Song
- Center for Soil Pollution Control of Shandong, Jinan, 250101, China
| | - Junhe Lu
- Department of Environmental Science and Engineering, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
2
|
Gao X, Yan J, Wang C, Yang P, Lu J, Ji Y. Formation of brominated and nitrated byproducts during unactivated peroxymonosulfate oxidation of phenol. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134265. [PMID: 38608590 DOI: 10.1016/j.jhazmat.2024.134265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/19/2024] [Accepted: 04/08/2024] [Indexed: 04/14/2024]
Abstract
Brominated and nitrated byproducts generated from bromide (Br-) and nitrite (NO2-), respectively, by sulfate radical (SO4•-) oxidation have raised increasing concern. However, little is known about the concurrent generation of brominated and nitrated byproducts in the unactivated peroxymonosulfate (PMS) oxidation process. This study revealed that Br- can facilitate the transformation of NO2- to nitrated byproducts during unactivated PMS oxidation of phenol. In the co-existence of 0.1 mM Br- and 0.5 mM NO2-, the total yield of identified nitrated byproducts reached 2.316 μM in 20 min, while none was found with NO2- alone. Nitryl bromide (BrNO2) as the primary nitrating agent was formed via the reaction of NO2- with free bromine in situ generated through the oxidation of Br- by PMS. BrNO2 rapidly reacted with phenol or bromophenols, generating highly toxic nitrophenols or nitrated bromophenols, respectively. Increasing NO2- concentration led to more nitrated byproducts but less brominated byproducts. This study advances our understanding of the transformation of Br- and NO2- in the unactivated PMS oxidation process. It also provides important insights into the potentially underestimated environmental risks when PMS is applied to degrade organic contaminants under realistic environments, particularly when Br- and NO2- co-exist.
Collapse
Affiliation(s)
- Xu Gao
- School of Biological and Environmental Engineering, Chaohu University, Chaohu Regional Collaborative Technology Service Center for Rural Revitalization, Hefei 238000, China; Department of Environmental Science and Engineering, Nanjing Agricultural University, Nanjing 210095, China
| | - Juan Yan
- School of Biological and Environmental Engineering, Chaohu University, Chaohu Regional Collaborative Technology Service Center for Rural Revitalization, Hefei 238000, China
| | - Chunyu Wang
- School of Biological and Environmental Engineering, Chaohu University, Chaohu Regional Collaborative Technology Service Center for Rural Revitalization, Hefei 238000, China
| | - Peizeng Yang
- Department of Environmental Science and Engineering, Nanjing Agricultural University, Nanjing 210095, China.
| | - Junhe Lu
- Department of Environmental Science and Engineering, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuefei Ji
- Department of Environmental Science and Engineering, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
3
|
Lu Y, Wang S. The mechanism of photodegradation reaction of different dissociation forms of tetrabromobisphenol S in water with free radicals and the ecotoxicity evaluation of related products. CHEMOSPHERE 2024; 350:141136. [PMID: 38184076 DOI: 10.1016/j.chemosphere.2024.141136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 01/08/2024]
Abstract
Tetrabromobisphenol S (TBBPS) is a widely used brominated flame retardant that has attracted environmental concern due to its abundant presence in water. The objective of this study is to systematically analyze the direct photolysis and degradation mechanisms of TBBPS in two different dissociation forms in water, as well as to evaluate their toxicological effects induced by •OH, 1O2, and •NO2 radicals. The degradation mechanism of TBBPS is investigated with density functional theory (DFT) and time-dependent density functional theory (TDDFT) methods, and the toxicity of the degradation products is assessed through toxicological studies. The results of the study indicate that the OH-addition and H-abstraction reactions are favorable pathways for •OH-induced TBBPS degradation. The H-abstraction reaction of TBBPS0 with •OH was more favorable than the •OH addition reaction. However, in the degradation of TBBPS-, the •OH addition reaction was favored over the H-abstraction reaction. Additionally, the indirect photolysis of TBBPS by 1O2 and •NO2 in water was found to be easier for TBBPS- compared to TBBPS0, with degradation mechanisms involving Br-substitution and NO2-addition reactions. The higher Ea values calculated indicate that the degradation of TBBPS by 1O2 and •NO2 in water has been a secondary reaction. The direct photolysis reaction pathway of TBBPS in water has involved the cleavage of the S1-C7 and S1-C16 bonds. For TBBPS0 in the S1/T1 states, the primary reaction pathway is the cleavage of the S1-C16 bond, while for TBBPS-, the primary reaction pathway is the cleavage of the S1-C7 bond. Furthermore, the computational toxicology results indicate a slight increase in the toxicity levels of most products, highlighting the significance of investigating the degradation byproducts of TBBPS in greater detail.
Collapse
Affiliation(s)
- Ying Lu
- School of Environmental Science and Engineering, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Se Wang
- School of Environmental Science and Engineering, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing University of Information Science and Technology, Nanjing 210044, China.
| |
Collapse
|
4
|
Yang P, Liu J, Korshin GV, Ji Y, Lu J. New Insights into the Role of Nitrite in the Degradation of Tetrabromobisphenol S by Sulfate Radical Oxidation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:17743-17752. [PMID: 36456897 DOI: 10.1021/acs.est.2c06821] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Tetrabromobisphenol S (TBBPS) is a brominated flame retardant and a contaminant of emerging concern. Several studies found that sulfate radical (SO4•-) oxidation is effective to degrade TBBPS. Here, we demonstrate that the presence of nitrite (NO2-) at environmentally relevant levels causes dramatic changes in the kinetics and pathways of TBBPS degradation by SO4•-. Initially, NO2- suppresses the reaction by competing with TBBPS for SO4•-. At the same time, SO4•- oxidizes NO2- to form nitrogen dioxide radicals (NO2•), which actively react with some key TBBPS degradation intermediates, thus greatly altering the transformation pathway. As a result, 2,6-dibromo-4-nitrophenol (DBNP) becomes the primary TBBPS product. As TBBPS undergoes degradation, the released bromide (Br-) is oxidized by SO4•- to form bromine radicals and free bromine. These reactive bromine species immediately combine with NO2• or NO2- to form nitryl bromide (BrNO2) that in turn attacks the parent TBBPS, resulting in its accelerated degradation and increased formation of toxic nitrophenolic byproducts. These results show that nitryl halides (e.g., BrNO2 or ClNO2) are likely formed yet inadequately recognized when SO4•- is applied to remediate halogenated pollutants in the subsurface environment where NO2- is ubiquitously found. These insights further underscore the potential risks of the application of SO4•- oxidation for the remediation of halogenated compounds in realistic environmental conditions.
Collapse
Affiliation(s)
- Peizeng Yang
- Department of Environmental Science and Engineering, Nanjing Agricultural University, Nanjing210095, China
| | - Jiating Liu
- Department of Environmental Science and Engineering, Nanjing Agricultural University, Nanjing210095, China
| | - Gregory V Korshin
- Department of Civil and Environmental Engineering, University of Washington, Seattle, Washington98195, United States
| | - Yuefei Ji
- Department of Environmental Science and Engineering, Nanjing Agricultural University, Nanjing210095, China
| | - Junhe Lu
- Department of Environmental Science and Engineering, Nanjing Agricultural University, Nanjing210095, China
| |
Collapse
|
5
|
Gao X, Yang P, Zhang Q, Kong D, Chen J, Ji Y, Lu J. Effects of nitrite on the degradation of carbamazepine by sulfate radical oxidation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
6
|
Burducea M, Lobiuc A, Dirvariu L, Oprea E, Olaru SM, Teliban GC, Stoleru V, Poghirc VA, Cara IG, Filip M, Rusu M, Zheljazkov VD, Barbacariu CA. Assessment of the Fertilization Capacity of the Aquaculture Sediment for Wheat Grass as Sustainable Alternative Use. PLANTS (BASEL, SWITZERLAND) 2022; 11:634. [PMID: 35270105 PMCID: PMC8912413 DOI: 10.3390/plants11050634] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 02/24/2022] [Accepted: 02/24/2022] [Indexed: 05/14/2023]
Abstract
Periodic removal of sediment from aquaculture ponds is practiced to maintain their productivity and animal welfare. The recovery of sediment as a plant fertilizer could alleviate the costs of sediment removal. The objective of this study was to test the effects of a dried sediment, extracted from an aquaculture pond used for common carp cultivation, on the growth and physiology of potted wheat grass and the quality of the juice obtained from wheat grass. The results showed that sediment application did not produce significant morphological changes, although the values for plant height (16.94-19.22 cm), leaf area (19.67-139.21 mm2), and biomass (3.39-4.26 g/plant) were higher in sediment-grown plants. However, at a physiological level, the effect was negative, decreasing photosynthesis (0.82-1.66 μmol CO2 m2s-1), fluorescence ΦPSII (0.737-0.782), and chlorophyll content (1.40-1.83 CCI). The juice yield was reduced in the sediment treatments (46-58 g/100 g), while the quality was improved by increasing the content of phenols (2.55-3.39 µg/mL gallic acid equivalent), flavonoids (1.41-1.85 µg/mL quercetin equivalent), and antioxidant activity (47.99-62.7% inhibition of; 2,2-diphenyl-1-picrylhydrazyl). The positive results obtained in this study can be attributed to the moderate nutrient content of the sediment and a negligible concentration of heavy metals.
Collapse
Affiliation(s)
- Marian Burducea
- Research and Development Station for Aquaculture and Aquatic Ecology, “Alexandru Ioan Cuza” University, Carol I, 20A, 700505 Iasi, Romania; (L.D.); (E.O.); (C.-A.B.)
| | - Andrei Lobiuc
- Human Health and Development Department, “Stefan Cel Mare” University, Strada Universitatii, 720229 Suceava, Romania;
| | - Lenuta Dirvariu
- Research and Development Station for Aquaculture and Aquatic Ecology, “Alexandru Ioan Cuza” University, Carol I, 20A, 700505 Iasi, Romania; (L.D.); (E.O.); (C.-A.B.)
| | - Eugen Oprea
- Research and Development Station for Aquaculture and Aquatic Ecology, “Alexandru Ioan Cuza” University, Carol I, 20A, 700505 Iasi, Romania; (L.D.); (E.O.); (C.-A.B.)
| | - Stefan Mihaita Olaru
- Faculty of Biology, “Alexandru Ioan Cuza” University, Carol I, 20A, 700505 Iasi, Romania;
| | - Gabriel-Ciprian Teliban
- Faculty of Horticulture, “Ion Ionescu de la Brad” Iasi University of Life Sciences, Aleea Mihail Sadoveanu 3, 700490 Iasi, Romania; (G.-C.T.); (V.S.)
| | - Vasile Stoleru
- Faculty of Horticulture, “Ion Ionescu de la Brad” Iasi University of Life Sciences, Aleea Mihail Sadoveanu 3, 700490 Iasi, Romania; (G.-C.T.); (V.S.)
| | - Vlad Andrei Poghirc
- Research Institute for Agriculture and Environment, “Ion Ionescu de la Brad” Iasi University of Life Sciences, 9 Mihail Sadoveanu Alley, 700789 Iasi, Romania; (V.A.P.); (I.G.C.); (M.F.); (M.R.)
| | - Irina Gabriela Cara
- Research Institute for Agriculture and Environment, “Ion Ionescu de la Brad” Iasi University of Life Sciences, 9 Mihail Sadoveanu Alley, 700789 Iasi, Romania; (V.A.P.); (I.G.C.); (M.F.); (M.R.)
| | - Manuela Filip
- Research Institute for Agriculture and Environment, “Ion Ionescu de la Brad” Iasi University of Life Sciences, 9 Mihail Sadoveanu Alley, 700789 Iasi, Romania; (V.A.P.); (I.G.C.); (M.F.); (M.R.)
| | - Mariana Rusu
- Research Institute for Agriculture and Environment, “Ion Ionescu de la Brad” Iasi University of Life Sciences, 9 Mihail Sadoveanu Alley, 700789 Iasi, Romania; (V.A.P.); (I.G.C.); (M.F.); (M.R.)
| | - Valtcho D. Zheljazkov
- Crop and Soil Science Department, Oregon State University, 109 Crop Science Building, 3050 SW Campus Way, Corvallis, OR 97331, USA;
| | - Cristian-Alin Barbacariu
- Research and Development Station for Aquaculture and Aquatic Ecology, “Alexandru Ioan Cuza” University, Carol I, 20A, 700505 Iasi, Romania; (L.D.); (E.O.); (C.-A.B.)
| |
Collapse
|
7
|
Chowdhury S, Al‐Mamun A, Zulfiqar M, Alam MM, Rahman MM. Statistical Optimization and Modeling Approach for Fenton‐like Discoloration of Methyl Orange using Green Zero‐valent Iron Nanoparticle Catalysts. ChemistrySelect 2022. [DOI: 10.1002/slct.202103896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Sujan Chowdhury
- Chemical Engineering Department Jashore University of Science and Technology 1 Churamonkathi – Chaugachha Road 7408 Jashore Bangladesh
| | - Abdullah Al‐Mamun
- Chemical Engineering Department Jashore University of Science and Technology 1 Churamonkathi – Chaugachha Road 7408 Jashore Bangladesh
| | - Muhammad Zulfiqar
- Chemical Engineering Department Universiti Teknologi PETRONAS 32610 Bandar Seri Iskandar Perak Malaysia
| | - M. M. Alam
- Center of Excellent for Advanced Materials Research (CEAMR) King Abdulaziz University Jeddah 21589, P.O. Box 80203 Saudi Arabia
| | - Mohammed M. Rahman
- Center of Excellent for Advanced Materials Research (CEAMR) King Abdulaziz University Jeddah 21589, P.O. Box 80203 Saudi Arabia
| |
Collapse
|
8
|
Anang E, Liu H, Fan X, Zhao D, Gong X. Compositional evolution of nanoscale zero valent iron and 2,4-dichlorophenol during dechlorination by attapulgite supported Fe/Ni nanoparticles. JOURNAL OF HAZARDOUS MATERIALS 2021; 412:125246. [PMID: 33548776 DOI: 10.1016/j.jhazmat.2021.125246] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 12/20/2020] [Accepted: 01/23/2021] [Indexed: 06/12/2023]
Abstract
Transformation of chloro-organic compounds by nFe(0) has been studied extensively, but limited study exists on the transformation and fate of nFe(0) during the dechlorination of chloro-organics even though such knowledge is important in predicting its surface chemistry, particularly, toxicity in the environment. In this study, the nFe(0) core became hollowed, collapsed and gradually corroded into poorly crystallized ferrihydrite (Fe5O3(OH)9) at the pristine reaction time, which later gave rise to lath-like lepidocrocite (γ-FeOOH), acicular goethite (α-FeOOH) and cubic magnetite (Fe3O4) by the end of the reaction time (120 min). Also, dechlorination of 2,4-DCP into 2-CP, 4-CP and phenol was achieved within 120 min. The rapid dechlorination of 2,4-DCP and transformation of nFe(0) could not be achieved significantly without doping Ni on nFe(0) and supporting on attapulgite. The schematic representation of the transformation and compositional evolution of nFe(0) in A-nFe/Ni was proposed. These findings are critical in understanding the compositional evolution and the fate of nFe(0) upon reaction with chloro-organics and can provide guidance for more efficient uses of the nFe(0) reactivity towards the target contaminants in groundwater remediation.
Collapse
Affiliation(s)
- Emmanuella Anang
- College of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan 430081, China; Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources, Wuhan University of Science and Technology, Wuhan 430081, China.
| | - Hong Liu
- College of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan 430081, China; Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources, Wuhan University of Science and Technology, Wuhan 430081, China.
| | - Xianyuan Fan
- College of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan 430081, China; Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Dongye Zhao
- Environmental Engineering Program, Department of Civil Engineering, Auburn University, Auburn, AL 36849, USA
| | - Xuan Gong
- Patent Examination Cooperation Hubei Center of the Patent Office, CNIPA, Wuhan 430081, China
| |
Collapse
|
9
|
Yang X, Cao X, Zhang L, Wu Y, Zhou L, Xiu G, Ferronato C, Chovelon JM. Sulfate radical-based oxidation of the aminopyralid and picloram herbicides: The role of amino group on pyridine ring. JOURNAL OF HAZARDOUS MATERIALS 2021; 405:124181. [PMID: 33268199 DOI: 10.1016/j.jhazmat.2020.124181] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/09/2020] [Accepted: 10/02/2020] [Indexed: 06/12/2023]
Abstract
The widespread utilization of pesticides has attracted increasing attention to their environmental impacts and effective removal strategies. In the present study, the degradation of herbicides picloram (PCLO) and aminopyralid (AMP) with similar structures were investigated systematically by thermo activated persulfate. Overweight SO4•- was determined to be the predominant oxidizing species by quenching experiment. Obtained by laser-flash photolysis (LFP), reaction rate constants of SO4•- towards AMP and PCLO were determined at 1.56 × 109 M-1s-1 and 1.21 × 109 M-1s-1, respectively. Product analysis revealed that both substances underwent similar oxidation paths, namely, successive oxidation on pyridine ring and formation of coupling-products as well as further hydroxylation and decarboxylation. Amino group on the pyridine ring was identified as the main reactive site, which was further confirmed by DFT calculation. It was susceptible attacked by SO4•- to form deamination, nitration, and self-coupling products. These couples could be further oxidatively dehydrated to form azo and a series of azo derivatives. EOCSAR program predicted significant hazards on aquatic species during the formation of these couplings and azo derivatives. Our work emphasized the potential ability and toxicity of contaminates to produce azo substances in the presence of amino groups on the pyridine ring.
Collapse
Affiliation(s)
- Xuerui Yang
- Shanghai Environmental Protection Key Laboratory for Environmental Standard and Risk Management of Chemical Pollutants, School of Resources & Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5256, IRCELYON, F-69626, 2 Avenue Albert Einstein, Villeurbanne, France
| | - Xue Cao
- Shanghai Environmental Protection Key Laboratory for Environmental Standard and Risk Management of Chemical Pollutants, School of Resources & Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Li Zhang
- Shanghai Environmental Protection Key Laboratory for Environmental Standard and Risk Management of Chemical Pollutants, School of Resources & Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yanlin Wu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Lei Zhou
- Shanghai Environmental Protection Key Laboratory for Environmental Standard and Risk Management of Chemical Pollutants, School of Resources & Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Guangli Xiu
- Shanghai Environmental Protection Key Laboratory for Environmental Standard and Risk Management of Chemical Pollutants, School of Resources & Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Corinne Ferronato
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5256, IRCELYON, F-69626, 2 Avenue Albert Einstein, Villeurbanne, France
| | - Jean-Marc Chovelon
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5256, IRCELYON, F-69626, 2 Avenue Albert Einstein, Villeurbanne, France
| |
Collapse
|
10
|
Sablas MM, de Luna MDG, Garcia-Segura S, Chen CW, Chen CF, Dong CD. Percarbonate mediated advanced oxidation completely degrades recalcitrant pesticide imidacloprid: Role of reactive oxygen species and transformation products. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117269] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
11
|
Zhao X, Zhang T, Lu J, Zhou L, Chovelon JM, Ji Y. Formation of chloronitrophenols upon sulfate radical-based oxidation of 2-chlorophenol in the presence of nitrite. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 261:114242. [PMID: 32220756 DOI: 10.1016/j.envpol.2020.114242] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 02/16/2020] [Accepted: 02/19/2020] [Indexed: 06/10/2023]
Abstract
Sulfate radical (SO4-)-based advanced oxidation processes (SR-AOPs) are promising in-situ chemical oxidation technologies widely applied for soil/groundwater remediation. The presence of non-target water constituents may interfere the abatement of contaminants by SR-AOPs as well as result in the formation of unintended byproducts. Herein, we reported the formation of toxic chloronitrophenols during thermally activated persulfate oxidation of 2-chlorophenol (2CP) in the presence of nitrite (NO2-). 2-Chloro-4-nitrophenol (2C4NP) and 2-chloro-6-nitrophenol (2C6NP) were identified as nitrated byproducts of 2CP with total yield up to 90%. The formation of nitrated byproducts is a result of coupling reaction between 2CP phenoxyl radical (ClPhO) and nitrogen dioxide radical (NO2). As a critical step, the formation of ClPhO was supported by density functional theory (DFT) computation. Both 2C4NP and 2C6NP could convert to 2-chloro-4,6-dinitrophenol (2C46DNP) upon further treatment via a denitration-renitration process. The formation rate of 2C4NP and 2C6NP was closely dependent on the concentration of NO2-, solution pH, and natural water constituents. ECOSAR calculation suggests that chloronitrophenols are generally more hydrophobic and ecotoxic than 2CP. Our result therefore reveals the potential risks in the abatement of chlorophenols by SR-AOP, particularly when high level of NO2- is present in water matrix.
Collapse
Affiliation(s)
- Xulei Zhao
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Teng Zhang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Junhe Lu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lei Zhou
- State Environmental Protection Key Lab of Environmental Risk Assessment and Control on Chemical Processes, School of Resources & Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Jean-Marc Chovelon
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, F-69626, Villeurbanne, France
| | - Yuefei Ji
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
12
|
Stability and Dynamic Aggregation of Bare and Stabilized Zero-Valent Iron Nanoparticles under Variable Solution Chemistry. NANOMATERIALS 2020; 10:nano10020192. [PMID: 31978987 PMCID: PMC7074836 DOI: 10.3390/nano10020192] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 01/19/2020] [Accepted: 01/20/2020] [Indexed: 01/25/2023]
Abstract
Surface modification of nanoscale zero-valent iron (nZVI) using polymer stabilizers (e.g., sodium carboxymethyl cellulose, CMC) is usually used to minimize aggregation, increase stability, and enhance transport of nZVI. We investigated the stability and dynamic aggregation of bare and CMC-nZVI as affected by variations in pH, ionic strength (IS), and nZVI particle concentration. CMC coating of nZVI resulted in smaller hydrodynamic size and larger zeta potential. The largest hydrodynamic size of nZVI was associated with bare nZVI at high IS (100 mM), pH close to the point of zero charge (PZC, 7.3-7.6), and larger particle concentration (1.0 g L-1). The increase in the zeta potential of CMC-nZVI reached one- to four-fold of that for bare nZVI, and was greater at pH values close to PZC, high IS, and larger particle concentration. The stability of CMC-nZVI was increased by 61.8, 93.1, and 57.5% as compared to that of bare nZVI at IS of 1, 50 and 100 mM, respectively. Calculations of Derjaguin, Landau, Verwey and Overbeek (DLVO) interaction energy were in agreement with stability results, and showed the formation of substantial energy barriers at low IS indicating greater nZVI stability. Our results suggest that at IS above 50 mM and nZVI particle concentration larger than 0.1 g L-1, the likelihood of nZVI aggregation is high. Nevertheless, CMC polymer stabilizer would enhance the stability and transport of nZVI even under these unfavorable solution chemistry conditions.
Collapse
|
13
|
Mahanty S, Bakshi M, Ghosh S, Chatterjee S, Bhattacharyya S, Das P, Das S, Chaudhuri P. Green Synthesis of Iron Oxide Nanoparticles Mediated by Filamentous Fungi Isolated from Sundarban Mangrove Ecosystem, India. BIONANOSCIENCE 2019. [DOI: 10.1007/s12668-019-00644-w] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
14
|
Wu J, Zeng RJ, Zhang F, Yuan Z. Application of iron-crosslinked sodium alginate for efficient sulfide control and reduction of oilfield produced water. WATER RESEARCH 2019; 154:12-20. [PMID: 30763871 DOI: 10.1016/j.watres.2019.01.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 01/21/2019] [Accepted: 01/27/2019] [Indexed: 06/09/2023]
Abstract
Sulfide production and oilfield produced water are considered as environmental challenges in the oil industry. Iron-crosslinked sodium alginate (SA-Fe) was used to address these problems simultaneously. A pair of columns containing one coarse-sand column and one fine-sand column was designed to simulate heterogeneous rock layers and evaluate the plugging effect of SA-Fe. Generation of FeS precipitates led to decreases of sulfide in the gas phase by 45 ± 3.2% and in the aqueous solution by 75 ± 4.7%. The generated FeS nanoparticles and sulfate-reducing bacteria attached on the surface of the sand in the coarse-sand column to plug the pores that caused the water flow to switch from the coarse-sand column to the fine-sand column. Analysis of FeS distribution indicated that the column inlet was effectively plugged by FeS. The theoretical amount of FeS (1.19 mmol) that was determined based on sulfur balance was nearly equal to the actual amount of FeS precipitation (1.11 mmol). Additionally, water viscosity increased from 0.9 mPa s to 342 mPa s, induced by the collapse of SA-Fe gels, which reduced the difference in viscosity between oil and water to avoid viscous fingering. As a consequence, the oil recovery improved from 46 ± 2.6% to 85 ± 3.0% in the sand column oil-saturated recovery experiment, which contributed to the decrease of oil-normalized produced water from 70.1 ± 4.0 to 37.5 ± 1.3 mL water/mL oil. Therefore, this study shows that SA-Fe exhibits potential for application in controlling sulfide as well as reducing produced water.
Collapse
Affiliation(s)
- Jun Wu
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, PR China; CAS Key Laboratory for Urban Pollutant Conversion, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, PR China
| | - Raymond Jianxiong Zeng
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, PR China; CAS Key Laboratory for Urban Pollutant Conversion, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, PR China.
| | - Fang Zhang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, PR China.
| | - Zhiguo Yuan
- Advanced Water Management Centre, The University of Queensland, St Lucia, Brisbane, Queensland, 4072, Australia
| |
Collapse
|
15
|
Bae S, Collins RN, Waite TD, Hanna K. Advances in Surface Passivation of Nanoscale Zerovalent Iron: A Critical Review. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:12010-12025. [PMID: 30277777 DOI: 10.1021/acs.est.8b01734] [Citation(s) in RCA: 144] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Nanoscale zerovalent iron (NZVI) is one of the most extensively studied nanomaterials in the fields of wastewater treatment and remediation of soil and groundwater. However, rapid oxidative transformations of NZVI can result in reduced NZVI reactivity. Indeed, the surface passivation of NZVI is considered one of the most challenging aspects in successfully applying NZVI to contaminant degradation. The oxidation of NZVI can lead to the formation of FeII-bearing phases (e.g., FeIIO, FeII(OH)2, FeIIFeIII2O4) on the NZVI surface or complete oxidation to ferric (oxyhydr)oxides (e.g., FeIIIOOH). This corrosion phenomenon is dependent upon various factors including the composition of NZVI itself, the type and concentration of aqueous species, reaction time and oxic/anoxic environments. As such, the coexistence of different Fe oxidation states on NZVI surfaces may also, in some instances, provide a unique reactive microenvironment to promote the adsorption of contaminants and their subsequent transformation via redox reactions. Thus, an understanding of passivation chemistry, and its related mechanisms, is essential not only for effective NZVI application but also for accurately assessing the positive and negative effects of NZVI surface passivation. The aim of this review is to discuss the nature of the passivation processes that occur and the passivation byproducts that form in various environments. In particular, the review presents: (i) the strengths and limitations of state-of-the-art techniques (e.g., electron microscopies and X-ray-based spectroscopies) to identify passivation byproducts; (ii) the passivation mechanisms proposed to occur in anoxic and oxic environments; and (iii) the effects arising from synthesis procedures and the presence of inorganics/organics on the nature of the passivation byproducts that form. In addition, several depassivation strategies that may assist in increasing and/or maintaining the reactivity of NZVI are considered, thereby enhancing the effectiveness of NZVI in contaminant degradation.
Collapse
Affiliation(s)
- Sungjun Bae
- Department of Civil and Environmental Engineering , Konkuk University , 120 Neungdong-ro, Gwangjin-gu , Seoul 05029 , Republic of Korea
| | - Richard N Collins
- School of Civil and Environmental Engineering , University of New South Wales , Sydney , New South Wales 2052 , Australia
| | - T David Waite
- School of Civil and Environmental Engineering , University of New South Wales , Sydney , New South Wales 2052 , Australia
| | - Khalil Hanna
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes , CNRS, ISCR-UMR6226, F-35000 Rennes , France
| |
Collapse
|
16
|
Zhang X, Yang YS, Lu Y, Wen YJ, Li PP, Zhang G. Bioaugmented soil aquifer treatment for P-nitrophenol removal in wastewater unique for cold regions. WATER RESEARCH 2018; 144:616-627. [PMID: 30096688 DOI: 10.1016/j.watres.2018.08.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 07/30/2018] [Accepted: 08/03/2018] [Indexed: 06/08/2023]
Abstract
P-nitrophenol (PNP) is a toxic and recalcitrant organic pollutant and a usual intermediate in the production of fine chemicals, which has posed a significant threat to subsurface environment safety. Soil aquifer treatment (SAT) is a promising method to remove and remediate contamination in vadose zone with low cost and high efficiency. However, there are still research gaps for the treatment of recalcitrant contaminants by SAT in cold regions, such as un-robust indigenous microbes and low temperature constraint in vadose zone. The bioaugmentation technology was first introduced into SAT in order to enhance the removal ability of PNP by SAT operated in cold regions in this study. A high-efficiency PNP-degrading bacterium was successfully isolated, which can efficiently degrade PNP below 200 mg L-1 with a degradation rate above 99% at 15 °C close to the real subsurface temperature in cold regions, and added into SAT for bioaugmentation. The feasibility of bioaugmented SAT and associated PNP removal process were investigated by laboratory sand columns, along with effects of the SAT operative parameters (namely PNP loading concentration, flow rate and soil saturation level of SAT). Within the range of PNP loading stresses tested (1-200 mg L-1), PNP removal efficiency was optimal at constant flow rate of 219 mL d-1 in unsaturated operating condition of SAT under 15 °C among all the investigated experimental conditions. Longer hydraulic residence time increased the PNP removal rate, although the accumulated mass removed reduced and the removal efficiencies remained constant in unsaturated operating condition of SAT. It is found from the comparison between the PNP removals via both unsaturated and saturated columns that slight difference only in the removal rate of PNP was observed and the highly efficient bioaugmented SAT can completely degrade PNP of 10 mg L-1 within 5 wetting/drying cycles under both scenarios.
Collapse
Affiliation(s)
- Xi Zhang
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Changchun, 130021, PR China
| | - Y S Yang
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Changchun, 130021, PR China; Key Laboratory of Eco-restoration of Region Polluted Environment (Shenyang University), Ministry of Education, Shenyang, 110044, PR China
| | - Ying Lu
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Changchun, 130021, PR China.
| | - Y J Wen
- Key Laboratory of Eco-restoration of Region Polluted Environment (Shenyang University), Ministry of Education, Shenyang, 110044, PR China
| | - P P Li
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Changchun, 130021, PR China
| | - Ge Zhang
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Changchun, 130021, PR China
| |
Collapse
|
17
|
|
18
|
Uniform and Pitting Corrosion of Carbon Steel by Shewanella oneidensis MR-1 under Nitrate-Reducing Conditions. Appl Environ Microbiol 2018; 84:AEM.00790-18. [PMID: 29654179 DOI: 10.1128/aem.00790-18] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 04/06/2018] [Indexed: 11/20/2022] Open
Abstract
Despite observations of steel corrosion in nitrate-reducing environments, processes of nitrate-dependent microbially influenced corrosion (MIC) remain poorly understood and difficult to identify. We evaluated carbon steel corrosion by Shewanella oneidensis MR-1 under nitrate-reducing conditions using a split-chamber/zero-resistance ammetry (ZRA) technique. This approach entails the deployment of two metal (carbon steel 1018 in this case) electrodes into separate chambers of an electrochemical split-chamber unit, where the microbiology or chemistry of the chambers can be manipulated. This approach mimics the conditions of heterogeneous metal coverage that can lead to uniform and pitting corrosion. The current between working electrode 1 (WE1) and WE2 can be used to determine rates, mechanisms, and, we now show, extents of corrosion. When S. oneidensis was incubated in the WE1 chamber with lactate under nitrate-reducing conditions, nitrite transiently accumulated, and electron transfer from WE2 to WE1 occurred as long as nitrite was present. Nitrite in the WE1 chamber (without S. oneidensis) induced electron transfer in the same direction, indicating that nitrite cathodically protected WE1 and accelerated the corrosion of WE2. When S. oneidensis was incubated in the WE1 chamber without an electron donor, nitrate reduction proceeded, and electron transfer from WE2 to WE1 also occurred, indicating that the microorganism could use the carbon steel electrode as an electron donor for nitrate reduction. Our results indicate that under nitrate-reducing conditions, uniform and pitting carbon steel corrosion can occur due to nitrite accumulation and the use of steel-Fe(0) as an electron donor, but conditions of sustained nitrite accumulation can lead to more-aggressive corrosive conditions.IMPORTANCE Microbially influenced corrosion (MIC) causes damage to metals and metal alloys that is estimated to cost over $100 million/year in the United States for prevention, mitigation, and repair. While MIC occurs in a variety of settings and by a variety of organisms, the mechanisms by which microorganisms cause this damage remain unclear. Steel pipe and equipment may be exposed to nitrate, especially in oil and gas production, where this compound is used for corrosion and "souring" control. In this paper, we show uniform and pitting MIC under nitrate-reducing conditions and that a major mechanism by which it occurs is via the heterogeneous cathodic protection of metal surfaces by nitrite as well as by the microbial oxidation of steel-Fe(0).
Collapse
|
19
|
Huyen NTT, Nhung NH, Thanh L, Khanh PD, Lam TD, Son HA. Preparation and characterization of zerovalent iron nanoparticles. VIETNAM JOURNAL OF CHEMISTRY 2018. [DOI: 10.1002/vjch.201800018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | - Nguyen Hong Nhung
- Institute of Materials Science, Vietnam Academy of Science and Technology (VAST)
| | - Le Thanh
- Hanoi University of Science and Technology
| | - Pham Duy Khanh
- Institute of Materials Science, Vietnam Academy of Science and Technology (VAST)
| | - Tran Dai Lam
- Graduate University of Science and Technology, VAST
| | - Hoang Anh Son
- Institute of Materials Science, Vietnam Academy of Science and Technology (VAST)
| |
Collapse
|
20
|
Ji Y, Wang L, Jiang M, Lu J, Ferronato C, Chovelon JM. The role of nitrite in sulfate radical-based degradation of phenolic compounds: An unexpected nitration process relevant to groundwater remediation by in-situ chemical oxidation (ISCO). WATER RESEARCH 2017; 123:249-257. [PMID: 28672209 DOI: 10.1016/j.watres.2017.06.081] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 06/24/2017] [Accepted: 06/27/2017] [Indexed: 06/07/2023]
Abstract
As promising in-situ chemical oxidation (ISCO) technologies, sulfate radical-based advanced oxidation processes (SR-AOPs) are applied in wastewater treatment and groundwater remediation in recent years. In this contribution, we report for the first time that, thermally activated persulfate oxidation of phenol in the presence of nitrite (NO2-), an anion widely present in natural waters, could lead to the formation of nitrated by-products including 2-nitrophenol (2-NP), 4-nitrophenol (4-NP), 2,4-dinitrophenol (2,4-DNP), and 2,6-dinitrophenol (2,6-DNP). Nitrogen dioxide radical (NO2•), arising from SO4•- scavenging by NO2-, was proposed to be involved in the formation of nitrophenols as a nitrating agent. It was observed that nitrophenols accounted for approximately 70% of the phenol transformed under reaction conditions of [NO2-] = 200 μM, [PS] = 2 mM and temperature of 50 °C. Increasing the concentration of NO2- remarkably enhanced the formation of nitrophenols but did not affect the transformation rate of phenol significantly. The degradation of phenol and the formation of nitrophenols were significantly influenced by persulfate dosage, solution pH and natural organic matter (NOM). Further studies on the degradation of other phenolic compounds, including 4-chlorophenol (4-CP), 4-hydroxybenzoic acid (4-HBA), and acetaminophen (ATP), verified the formation of their corresponding nitrated by-products as well. Therefore, formation of nitrated by-products is probably a common but overlooked phenomenon during SO4•--based oxidation of phenolic compounds in the presence of NO2-. Nitroaromatic compounds are well known for their carcinogenicity, mutagenicity and genotoxicity, and are potentially persistent in the environment. The formation of nitrated organic by-products in SR-AOPs should be carefully scrutinized, and risk assessment should be carried out to assess possible health and ecological impacts.
Collapse
Affiliation(s)
- Yuefei Ji
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Lu Wang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Mengdi Jiang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Junhe Lu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Corinne Ferronato
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, F-69626, Villeurbanne, France
| | - Jean-Marc Chovelon
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, F-69626, Villeurbanne, France
| |
Collapse
|
21
|
Kryachko Y, Hemmingsen SM. The Role of Localized Acidity Generation in Microbially Influenced Corrosion. Curr Microbiol 2017; 74:870-876. [PMID: 28444419 DOI: 10.1007/s00284-017-1254-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 04/13/2017] [Indexed: 10/19/2022]
Abstract
Microbially influenced corrosion is of great industrial concern. Microbial coupling of metal oxidation to sulfate-, nitrate-, nitrite-, or CO2-reduction is proton-mediated, and some sulfate-reducing prokaryotes are capable of regulating extracellular pH. The analysis of the corrosive processes catalyzed by nitrate reducing bacteria and methanogenic archaea indicates that these microorganisms may be capable of regulating extracellular pH as well. It is proposed that nutrient limitation at metal-biofilm interfaces may induce activation of enzymatic proton-producing/proton-secreting functions in respiratory and methanogenic microorganisms to make them capable of using Fe0 as the electron donor. This can be further verified through experiments involving measurements of ion and gas concentrations at metal-biofilm interfaces, microscopy, and transcriptomics analyses.
Collapse
Affiliation(s)
- Yuriy Kryachko
- National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK, S7N 0W9, Canada.
| | - Sean M Hemmingsen
- National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK, S7N 0W9, Canada
| |
Collapse
|
22
|
Saif S, Tahir A, Chen Y. Green Synthesis of Iron Nanoparticles and Their Environmental Applications and Implications. NANOMATERIALS (BASEL, SWITZERLAND) 2016; 6:E209. [PMID: 28335338 PMCID: PMC5245755 DOI: 10.3390/nano6110209] [Citation(s) in RCA: 177] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 10/17/2016] [Accepted: 11/07/2016] [Indexed: 12/18/2022]
Abstract
Recent advances in nanoscience and nanotechnology have also led to the development of novel nanomaterials, which ultimately increase potential health and environmental hazards. Interest in developing environmentally benign procedures for the synthesis of metallic nanoparticles has been increased. The purpose is to minimize the negative impacts of synthetic procedures, their accompanying chemicals and derivative compounds. The exploitation of different biomaterials for the synthesis of nanoparticles is considered a valuable approach in green nanotechnology. Biological resources such as bacteria, algae fungi and plants have been used for the production of low-cost, energy-efficient, and nontoxic environmental friendly metallic nanoparticles. This review provides an overview of various reports of green synthesised zero valent metallic iron (ZVMI) and iron oxide (Fe₂O₃/Fe₃O₄) nanoparticles (NPs) and highlights their substantial applications in environmental pollution control. This review also summarizes the ecotoxicological impacts of green synthesised iron nanoparticles opposed to non-green synthesised iron nanoparticles.
Collapse
Affiliation(s)
- Sadia Saif
- Department of Environmental Science, Lahore College for Women University, Lahore 54000, Pakistan.
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| | - Arifa Tahir
- Department of Environmental Science, Lahore College for Women University, Lahore 54000, Pakistan.
| | - Yongsheng Chen
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| |
Collapse
|
23
|
Samiee S, Goharshadi EK, Nancarrow P. Successful degradation of Reactive Black 5 by engineered Fe/Pd nanoparticles: Mechanism and kinetics aspects. J Taiwan Inst Chem Eng 2016. [DOI: 10.1016/j.jtice.2016.07.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
24
|
Kato S. Microbial extracellular electron transfer and its relevance to iron corrosion. Microb Biotechnol 2016; 9:141-8. [PMID: 26863985 PMCID: PMC4767289 DOI: 10.1111/1751-7915.12340] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 11/18/2015] [Accepted: 11/19/2015] [Indexed: 01/01/2023] Open
Abstract
Extracellular electron transfer (EET) is a microbial metabolism that enables efficient electron transfer between microbial cells and extracellular solid materials. Microorganisms harbouring EET abilities have received considerable attention for their various biotechnological applications, including bioleaching and bioelectrochemical systems. On the other hand, recent research revealed that microbial EET potentially induces corrosion of iron structures. It has been well known that corrosion of iron occurring under anoxic conditions is mostly caused by microbial activities, which is termed as microbiologically influenced corrosion (MIC). Among diverse MIC mechanisms, microbial EET activity that enhances corrosion via direct uptake of electrons from metallic iron, specifically termed as electrical MIC (EMIC), has been regarded as one of the major causative factors. The EMIC-inducing microorganisms initially identified were certain sulfate-reducing bacteria and methanogenic archaea isolated from marine environments. Subsequently, abilities to induce EMIC were also demonstrated in diverse anaerobic microorganisms in freshwater environments and oil fields, including acetogenic bacteria and nitrate-reducing bacteria. Abilities of EET and EMIC are now regarded as microbial traits more widespread among diverse microbial clades than was thought previously. In this review, basic understandings of microbial EET and recent progresses in the EMIC research are introduced.
Collapse
Affiliation(s)
- Souichiro Kato
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira-ku, Sapporo, Hokkaido, 062-8517, Japan.,Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan.,Division of Applied Bioscience, Graduate School of Agriculture, Hokkaido University, Kita-9 Nishi-9, Kita-ku, Sapporo, Hokkaido, 060-8589, Japan
| |
Collapse
|
25
|
Chekli L, Bayatsarmadi B, Sekine R, Sarkar B, Shen AM, Scheckel KG, Skinner W, Naidu R, Shon HK, Lombi E, Donner E. Analytical characterisation of nanoscale zero-valent iron: A methodological review. Anal Chim Acta 2015; 903:13-35. [PMID: 26709296 DOI: 10.1016/j.aca.2015.10.040] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 10/27/2015] [Accepted: 10/29/2015] [Indexed: 12/01/2022]
Abstract
Zero-valent iron nanoparticles (nZVI) have been widely tested as they are showing significant promise for environmental remediation. However, many recent studies have demonstrated that their mobility and reactivity in subsurface environments are significantly affected by their tendency to aggregate. Both the mobility and reactivity of nZVI mainly depends on properties such as particle size, surface chemistry and bulk composition. In order to ensure efficient remediation, it is crucial to accurately assess and understand the implications of these properties before deploying these materials into contaminated environments. Many analytical techniques are now available to determine these parameters and this paper provides a critical review of their usefulness and limitations for nZVI characterisation. These analytical techniques include microscopy and light scattering techniques for the determination of particle size, size distribution and aggregation state, and X-ray techniques for the characterisation of surface chemistry and bulk composition. Example characterisation data derived from commercial nZVI materials is used to further illustrate method strengths and limitations. Finally, some important challenges with respect to the characterisation of nZVI in groundwater samples are discussed.
Collapse
Affiliation(s)
- L Chekli
- School of Civil and Environmental Engineering, University of Technology, Sydney, Post Box 129, Broadway, NSW 2007, Australia; CRC CARE, PO Box 486, Salisbury, SA 5106, Australia
| | - B Bayatsarmadi
- School of Chemical Engineering, The University of Adelaide, Engineering North Building, Adelaide, SA 5005, Australia
| | - R Sekine
- Centre for Environmental Risk Assessment and Remediation, University of South Australia, Building X, Mawson Lakes Campus, SA 5095, Australia
| | - B Sarkar
- CRC CARE, PO Box 486, Salisbury, SA 5106, Australia; Centre for Environmental Risk Assessment and Remediation, University of South Australia, Building X, Mawson Lakes Campus, SA 5095, Australia
| | - A Maoz Shen
- Centre for Environmental Risk Assessment and Remediation, University of South Australia, Building X, Mawson Lakes Campus, SA 5095, Australia
| | - K G Scheckel
- U.S. Environmental Protection Agency, National Risk Management Research Laboratory, Land Remediation and Pollution Control Division, 5995 Center Hill Avenue, Cincinnati, OH, USA
| | - W Skinner
- Ian Wark Research Institute, University of South Australia, Building IW, Mawson Lakes Campus, SA 5095, Australia
| | - R Naidu
- CRC CARE, PO Box 486, Salisbury, SA 5106, Australia; Centre for Environmental Risk Assessment and Remediation, University of South Australia, Building X, Mawson Lakes Campus, SA 5095, Australia
| | - H K Shon
- School of Civil and Environmental Engineering, University of Technology, Sydney, Post Box 129, Broadway, NSW 2007, Australia; CRC CARE, PO Box 486, Salisbury, SA 5106, Australia
| | - E Lombi
- Centre for Environmental Risk Assessment and Remediation, University of South Australia, Building X, Mawson Lakes Campus, SA 5095, Australia.
| | - E Donner
- CRC CARE, PO Box 486, Salisbury, SA 5106, Australia; Centre for Environmental Risk Assessment and Remediation, University of South Australia, Building X, Mawson Lakes Campus, SA 5095, Australia
| |
Collapse
|
26
|
Reza Sohrabi M, Mansouriieh N, Khosravi M, Zolghadr M. Removal of diazo dye Direct Red 23 from aqueous solution using zero-valent iron nanoparticles immobilized on multi-walled carbon nanotubes. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2015; 71:1367-1374. [PMID: 25945854 DOI: 10.2166/wst.2015.106] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The present study immobilized nanoscale zero-valent iron (nZVI) on multi-walled carbon nanotubes (MWCNTs) to enhance the reactivity of nZVI and prevent its aggregation. This novel composite (nZVI/MWCNT) was characterized by scanning electron microscopy and X-ray diffraction. The results showed that nZVI particles dispersed on the surface of the MWCNTs. The composite was used to remove the diazo dye Direct Red 23 from aqueous solution. The effects of nZVI to MWCNT mass ratio, nanocomposite content, solution pH, initial dye concentration and temperature were studied. The optimum nZVI/MWCNT mass ratio was 1:3. Batch experiments suggest that degradation efficiency decreased as the initial dye concentration increased and increased as the nanocomposite content increased, decreasing the pH from 8 to 4. The reaction followed a pseudo-first-order model under the operational conditions investigated in this study.
Collapse
Affiliation(s)
- Mahmoud Reza Sohrabi
- Department of Chemistry, Islamic Azad University, North Tehran Branch, P.O. Box 1913674711, Tehran, I.R. Iran E-mail:
| | - Nafiseh Mansouriieh
- Department of Chemistry, Islamic Azad University, North Tehran Branch, P.O. Box 1913674711, Tehran, I.R. Iran E-mail:
| | - Morteza Khosravi
- Department of Chemistry, Islamic Azad University, North Tehran Branch, P.O. Box 1913674711, Tehran, I.R. Iran E-mail:
| | - Mohsen Zolghadr
- Department of Chemistry, Islamic Azad University, North Tehran Branch, P.O. Box 1913674711, Tehran, I.R. Iran E-mail:
| |
Collapse
|
27
|
Iron corrosion induced by nonhydrogenotrophic nitrate-reducing Prolixibacter sp. strain MIC1-1. Appl Environ Microbiol 2014; 81:1839-46. [PMID: 25548048 DOI: 10.1128/aem.03741-14] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Microbiologically influenced corrosion (MIC) of metallic materials imposes a heavy economic burden. The mechanism of MIC of metallic iron (Fe(0)) under anaerobic conditions is usually explained as the consumption of cathodic hydrogen by hydrogenotrophic microorganisms that accelerates anodic Fe(0) oxidation. In this study, we describe Fe(0) corrosion induced by a nonhydrogenotrophic nitrate-reducing bacterium called MIC1-1, which was isolated from a crude-oil sample collected at an oil well in Akita, Japan. This strain requires specific electron donor-acceptor combinations and an organic carbon source to grow. For example, the strain grew anaerobically on nitrate as a sole electron acceptor with pyruvate as a carbon source and Fe(0) as the sole electron donor. In addition, ferrous ion and l-cysteine served as electron donors, whereas molecular hydrogen did not. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain MIC1-1 was a member of the genus Prolixibacter in the order Bacteroidales. Thus, Prolixibacter sp. strain MIC1-1 is the first Fe(0)-corroding representative belonging to the phylum Bacteroidetes. Under anaerobic conditions, Prolixibacter sp. MIC1-1 corroded Fe(0) concomitantly with nitrate reduction, and the amount of iron dissolved by the strain was six times higher than that in an aseptic control. Scanning electron microscopy analyses revealed that microscopic crystals of FePO4 developed on the surface of the Fe(0) foils, and a layer of FeCO3 covered the FePO4 crystals. We propose that cells of Prolixibacter sp. MIC1-1 accept electrons directly from Fe(0) to reduce nitrate.
Collapse
|
28
|
Jang MH, Lim M, Hwang YS. Potential environmental implications of nanoscale zero-valent iron particles for environmental remediation. ENVIRONMENTAL HEALTH AND TOXICOLOGY 2014; 29:e2014022. [PMID: 25518840 PMCID: PMC4313931 DOI: 10.5620/eht.e2014022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 11/18/2014] [Indexed: 05/17/2023]
Abstract
OBJECTIVES Nanoscale zero-valent iron (nZVI) particles are widely used in the field of various environmental contaminant remediation. Although the potential benefits of nZVI are considerable, there is a distinct need to identify any potential risks after environmental exposure. In this respect, we review recent studies on the environmental applications and implications of nZVI, highlighting research gaps and suggesting future research directions. METHODS Environmental application of nZVI is briefly summarized, focusing on its unique properties. Ecotoxicity of nZVI is reviewed according to type of organism, including bacteria, terrestrial organisms, and aquatic organisms. The environmental fate and transport of nZVI are also summarized with regards to exposure scenarios. Finally, the current limitations of risk determination are thoroughly provided. RESULTS The ecotoxicity of nZVI depends on the composition, concentration, size and surface properties of the nanoparticles and the experimental method used, including the species investigated. In addition, the environmental fate and transport of nZVI appear to be complex and depend on the exposure duration and the exposure conditions. To date, field-scale data are limited and only short-term studies using simple exposure methods have been conducted. CONCLUSIONS In this regard, the primary focus of future study should be on 1) the development of an appropriate and valid testing method of the environmental fate and ecotoxicity of reactive nanoparticles used in environmental applications and 2) assessing their potential environmental risks using in situ field scale applications.
Collapse
Affiliation(s)
| | | | - Yu Sik Hwang
- Correspondence: Yu Sik Hwang, PhD 17 Jegok-gil, Munsan-eup, Jinju 660-844, Korea Tel: +82-55-750-3834 Fax: +82-55-750-3799 E-mail:
| |
Collapse
|
29
|
Babuponnusami A, Muthukumar K. Treatment of phenol-containing wastewater by photoelectro-Fenton method using supported nanoscale zero-valent iron. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2013; 20:1596-1605. [PMID: 22711016 DOI: 10.1007/s11356-012-0990-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 05/16/2012] [Indexed: 06/01/2023]
Abstract
This study presents the degradation of phenol by the photoelectro-Fenton method using nano zero-valent iron (nZVI) immobilized in polyvinyl alcohol-alginate beads. The effect of nZVI loading, H(2)O(2) concentration, pH, and initial phenol concentration on phenol degradation and chemical oxygen demand reduction was studied. The scanning electron microscope images of the nZVI beads were used to analyze their morphology, and their diameters were in the range of 500-600 μm. The concentration of nZVI in the beads was varied from 0.1 to 0.6 g/L. Fe(2+) leakage of 1 and 3 % was observed with 0.5 and 0.6 g/L of nZVI, respectively, and the observed beads' fracture frequency was 2 %, which confirmed the stability of the beads. The optimum operating conditions that arrived for better degradation were 0.5 g/L of nZVI, pH 6.2, and 400 mg H(2)O(2)/L. The treatment of effluent by this method increased the biodegradability index of the effluent, and the degradation data were found to follow pseudo first-order kinetics.
Collapse
Affiliation(s)
- Arjunan Babuponnusami
- Department of Chemical Engineering, Adhiparasakthi Engineering College, Melmaruvathur, 603 319, India
| | | |
Collapse
|
30
|
Albelda MT, Frías JC, García-España E, Schneider HJ. Supramolecular complexation for environmental control. Chem Soc Rev 2012; 41:3859-77. [PMID: 22441360 DOI: 10.1039/c2cs35008d] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Supramolecular complexes offer a new and efficient way for the monitoring and removal of many substances emanating from technical processes, fertilization, plant and animal protection, or e.g. chemotherapy. Such pollutants range from toxic or radioactive metal ions and anions to chemical side products, herbicides, pesticides to drugs including steroids, and include degradation products from natural sources. The applications involve usually fast and reversible complex formation, due to prevailing non-covalent interactions. This is of importance for sensing as well as for separation techniques, where the often expensive host compounds can then be reused almost indefinitely. Immobilization of host compounds, e.g. on exchange resins or on membranes, and their implementation in smart new materials hold particular promise. The review illustrates how the design of suitable host compounds in combination with modern sensing and separation methods can contribute to solve some of the biggest problems facing chemistry, which arise from the everyday increasing pollution of the environment.
Collapse
Affiliation(s)
- M Teresa Albelda
- Departament de Química Inorgánica, ICMol, Universitat de València, C/Catedrático José Beltrán, 2. Paterna, Spain
| | | | | | | |
Collapse
|
31
|
Grieger KD, Fjordbøge A, Hartmann NB, Eriksson E, Bjerg PL, Baun A. Environmental benefits and risks of zero-valent iron nanoparticles (nZVI) for in situ remediation: risk mitigation or trade-off? JOURNAL OF CONTAMINANT HYDROLOGY 2010; 118:165-83. [PMID: 20813426 DOI: 10.1016/j.jconhyd.2010.07.011] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Revised: 07/20/2010] [Accepted: 07/28/2010] [Indexed: 05/11/2023]
Abstract
The use of nanoscaled zero-valent iron particles (nZVI) to remediate contaminated soil and groundwater has received increasing amounts of attention within the last decade, primarily due to its potential for broader application, higher reactivity, and cost-effectiveness compared to conventional zero-valent iron applications and other in situ methods. However, the potential environmental risks of nZVI in in situ field scale applications are largely unknown at the present and traditional environmental risk assessment approaches are not yet able to be completed. Therefore, it may not yet be fully clear how to consider the environmental benefits and risks of nZVI for in situ applications. This analysis therefore addresses the challenges of comprehensively considering and weighing the expected environmental benefits and potential risks of this emerging environmentally-beneficial nanotechnology, particularly relevant for environmental engineers, scientists, and decision makers. We find that most of the benefits of using nZVI are based on near-term considerations, and large data gaps currently exist within almost all aspects of environmental exposure and effect assessments. We also find that while a wide range of decision support tools and frameworks alternative to risk assessment are currently available, a thorough evaluation of these should be undertaken in the near future to assess their full relevancy for nZVI at specific sites. Due to the absence of data in environmental risk evaluations, we apply a 'best' and 'worst' case scenario evaluation as a first step to qualitatively evaluate the current state-of-knowledge regarding the potential environmental risks of nZVI. The result of this preliminary qualitative evaluation indicates that at present, there are no significant grounds on which to form the basis that nZVI currently poses a significant, apparent risk to the environment, although the majority of the most serious criteria (i.e. potential for persistency, bioaccumulation, toxicity) are generally unknown. We recommend that in cases where nZVI may be chosen as the 'best' treatment option, short and long-term environmental monitoring is actively employed at these sites. We furthermore recommend the continued development of responsible nZVI innovation and better facilitated information exchange between nZVI developers, nano-risk researchers, remediation industry, and decision makers.
Collapse
Affiliation(s)
- Khara D Grieger
- Department of Environmental Engineering, Building 115, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
| | | | | | | | | | | |
Collapse
|
32
|
Deb MK, Verma D. Fourier transform infrared spectroscopic determination of ammonium at sub-microgram level in waters and biological fluids following removal of nitrate from sample matrix by zerovalent iron nanoparticles. Mikrochim Acta 2010. [DOI: 10.1007/s00604-010-0308-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
33
|
Iakoubovskii K, Mitsuishi K. Elastic scattering of 200 keV electrons in elemental solids: experimental observation of atomic-number-dependent oscillatory behavior. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2009; 21:155402. [PMID: 21825363 DOI: 10.1088/0953-8984/21/15/155402] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Mean free path of elastic electron scattering λ(el) has been measured with a 200 keV transmission electron microscope for a wide range of stable elemental solids. An oscillating behavior versus atomic number Z has been revealed, such that, within one row of the periodic table, λ(el) exhibits minimum (maximum) for elements with completed (empty) outer d shells. These λ(el)(Z) oscillations are attributed to Z dependence of the atomic density, and their importance for the interpretation of electron microscope images is demonstrated.
Collapse
Affiliation(s)
- Konstantin Iakoubovskii
- Quantum Dot Research Center, National Institute for Materials Science, 3-13 Sakura, Tsukuba 305-0005, Japan
| | | |
Collapse
|