1
|
Martyshina AV, Sirotkina AG, Gosteva IV. Temporal multiscale modeling of biochemical regulatory networks: Calcium-regulated hepatocyte lipid and glucose metabolism. Biosystems 2024; 240:105227. [PMID: 38718915 DOI: 10.1016/j.biosystems.2024.105227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/31/2024]
Abstract
Hepatocyte lipid and glucose metabolism is regulated not only by major hormones like insulin and glucagon but also by many other factors, including calcium ions. Recently, mitochondria-associated membrane (MAM) dysfunction combined with incorrect IP3-receptor regulation has been shown to result in abnormal calcium signaling in hepatocytes. This dysfunction could further lead to hepatic metabolism pathology. However, the exact contribution of MAM dysfunction, incorrect IP3-receptor regulation and insulin resistance to the calcium-insulin-glucagon interplay is not understood yet. In this work, we analyze the role of abnormal calcium signaling and insulin dysfunction in hepatocytes by proposing a model of hepatocyte metabolic regulatory network with a detailed focus on the model construction details besides the biological aspect. In this work, we analyze the role of abnormal calcium signaling and insulin dysfunction in hepatocytes by proposing a model of hepatocyte metabolic regulatory network. We focus on the model construction details, model validation, and predictions. We describe the dynamic regulation of signaling processes by sigmoid Hill function. In particular, we study the effect of both the Hill function slope and the distance between Hill function extremes on metabolic processes in hepatocytes as a model of nonspecific insulin dysfunction. We also address the significant time difference between characteristic time of glucose hepatic processing and a typical calcium oscillation period in hepatocytes. Our modeling results show that calcium signaling dysfunction results in an abnormal increase in postprandial glucose levels, an abnormal glucose decrease in fasting, and a decreased amount of stored glycogen. An insulin dysfunction of glucose phosphorylation, glucose dephosphorylation, and glycogen breakdown also cause a noticeable effect. We also get some insight into the so-called hepatic insulin resistance paradox, confirming the hypothesis regarding indirect insulin action on hepatocytes via dysfunctional adipocyte lipolysis.
Collapse
Affiliation(s)
- Arina V Martyshina
- Sarov Physics and Technology Institute, National Research Nuclear University MEPhI, Sarov, Russian Federation
| | - Anna G Sirotkina
- Sarov Physics and Technology Institute, National Research Nuclear University MEPhI, Sarov, Russian Federation
| | - Irina V Gosteva
- Sarov Physics and Technology Institute, National Research Nuclear University MEPhI, Sarov, Russian Federation.
| |
Collapse
|
2
|
Gao ZX, Li TT, Jiang HY, He J. Calcium oscillation on homogeneous and heterogeneous networks of ryanodine receptor. Phys Rev E 2023; 107:024402. [PMID: 36932487 DOI: 10.1103/physreve.107.024402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
Calcium oscillation is an important calcium homeostasis, imbalance of which is the key mechanism of initiation and progression of many major diseases. The formation and maintenance of calcium homeostasis are closely related to the spatial distribution of calcium channels on endoplasmic reticulum, whose complex structure was unveiled by recent observations with superresolution imaging techniques. In the current paper, a theoretical framework is established by abstracting the spatial distribution of the calcium channels as a nonlinear biological complex network with calcium channels as nodes and Ca^{2+} as edges. A dynamical model for a ryanodine receptor (RyR) is adopted to investigate the effect of spatial distribution on calcium oscillation. The mean-field model can be well reproduced from the complete graph and dense Erdös-Rényi network. The synchronization of RyRs is found important to generate a global calcium oscillation. Below a critical density of the Erdös-Rényi or BaraBási-Albert network, the amplitude and interspike interval decrease rapidly with the end of disappearance of oscillation due to the desynchronization. The clique graph with a cluster structure cannot produce a global oscillation due to the failure of synchronization between clusters. A more realistic geometric network is constructed in a two-dimensional plane based on the experimental information about the RyR arrangement of clusters and the frequency distribution of cluster sizes. Different from the clique graph, the global oscillation can be generated with reasonable parameters on the geometric network. The simulation also suggests that existence of small clusters and rogue RyRs plays an important role in the maintenance of global calcium oscillation through keeping synchronization between large clusters. Such results support the heterogeneous distribution of RyRs with different-size clusters, which is helpful to understand recent observations with superresolution nanoscale imaging techniques. The current theoretical framework can also be extent to investigate other phenomena in calcium signal transduction.
Collapse
Affiliation(s)
- Zhong-Xue Gao
- School of Physics and Technology, Nanjing Normal University, Nanjing 210097, China
| | - Tian-Tian Li
- School of Physics and Technology, Nanjing Normal University, Nanjing 210097, China
| | - Han-Yu Jiang
- School of Physics and Technology, Nanjing Normal University, Nanjing 210097, China
| | - Jun He
- School of Physics and Technology, Nanjing Normal University, Nanjing 210097, China
| |
Collapse
|
3
|
Dokukina IV, Yamashev MV, Samarina EA, Tilinova OM, Grachev EA. Calcium-dependent insulin resistance in hepatocytes: mathematical model. J Theor Biol 2021; 522:110684. [PMID: 33794287 DOI: 10.1016/j.jtbi.2021.110684] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 03/07/2021] [Accepted: 03/15/2021] [Indexed: 02/07/2023]
Abstract
Hepatocyte insulin resistance is one of the early factors of developing type II diabetes. If insulin resistance is treated early, type II diabetes could be prevented. In recent years, scientists have been conducting extensive research on the underlying issues on a cellular and molecular level. It was found that the modulation of IP3-receptors, the mitochondrial ability to form the mitochondria-associated membranes (MAMs) and the endoplasmic reticulum stress during Ca2+ signaling play a key role in hepatocyte being able to maintain euglycemia and provide metabolic flexibility. However, researchers cannot agree on what factor is the key one in resulting in insulin resistance. In this work, we propose a mathematical model of Ca2+ signaling. We included in the model all the major contributors of a proper Ca2+ signaling during both the fasting and the postprandial state. Our modeling results are in good agreement with available experimental data. The analysis of modeling results suggests that MAMs dysfunction alone cannot result in abnormal Ca2+ signaling and the wrong modulation of IP3-receptors is a more definite reason. However, both the MAMs dysfunction and the IP3 signaling dysregulation combined can lead to a robust Ca2+ signal and improper glucose release. In addition, our model results suggest a strong dependence of Ca2+ oscillations pattern on morphological characteristics of the ER and the mitochondria.
Collapse
Affiliation(s)
- Irina V Dokukina
- Sarov Physical and Technical Institute, National Research Nuclear University MEPhI, Sarov, Russian Federation.
| | | | - Ekaterina A Samarina
- Sarov Physical and Technical Institute, National Research Nuclear University MEPhI, Sarov, Russian Federation
| | - Oksana M Tilinova
- Sarov Physical and Technical Institute, National Research Nuclear University MEPhI, Sarov, Russian Federation
| | | |
Collapse
|
4
|
Kaimachnikov NP, Kotova PD, Kochkina EN, Rogachevskaja OA, Khokhlov AA, Bystrova MF, Kolesnikov SS. Modeling of Ca2+ transients initiated by GPCR agonists in mesenchymal stromal cells. BBA ADVANCES 2021; 1:100012. [PMID: 37082025 PMCID: PMC10074909 DOI: 10.1016/j.bbadva.2021.100012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 04/05/2021] [Accepted: 04/11/2021] [Indexed: 10/21/2022] Open
Abstract
The integrative study that included experimentation and mathematical modeling was carried out to analyze dynamic aspects of transient Ca2+ signaling induced by brief pulses of GPCR agonists in mesenchymal stromal cells from the human adipose tissue (AD-MSCs). The experimental findings argued for IP3/Ca2+-regulated Ca2+ release via IP3 receptors (IP3Rs) as a key mechanism mediating agonist-dependent Ca2+ transients. The consistent signaling circuit was proposed to formalize coupling of agonist binding to Ca2+ mobilization for mathematical modeling. The model properly simulated the basic phenomenology of agonist transduction in AD-MSCs, which mostly produced single Ca2+ spikes upon brief stimulation. The spike-like responses were almost invariantly shaped at different agonist doses above a threshold, while response lag markedly decreased with stimulus strength. In AD-MSCs, agonists and IP3 uncaging elicited similar Ca2+ transients but IP3 pulses released Ca2+ without pronounced delay. This suggested that IP3 production was rate-limiting in agonist transduction. In a subpopulation of AD-MSCs, brief agonist pulses elicited Ca2+ bursts crowned by damped oscillations. With properly adjusted parameters of IP3R inhibition by cytosolic Ca2+, the model reproduced such oscillatory Ca2+ responses as well. GEM-GECO1 and R-CEPIA1er, the genetically encoded sensors of cytosolic and reticular Ca2+, respectively, were co-expressed in HEK-293 cells that also responded to agonists in an "all-or-nothing" manner. The experimentally observed Ca2+ signals triggered by ACh in both compartments were properly simulated with the suggested signaling circuit. Thus, the performed modeling of the transduction process provides sufficient theoretical basis for deeper interpretation of experimental findings on agonist-induced Ca2+ signaling in AD-MSCs.
Collapse
|
5
|
Modeling the role of endoplasmic reticulum-mitochondria microdomains in calcium dynamics. Sci Rep 2019; 9:17072. [PMID: 31745211 PMCID: PMC6864103 DOI: 10.1038/s41598-019-53440-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 10/31/2019] [Indexed: 12/12/2022] Open
Abstract
Upon inositol trisphosphate (IP3) stimulation of non-excitable cells, including vascular endothelial cells, calcium (Ca2+) shuttling between the endoplasmic reticulum (ER) and mitochondria, facilitated by complexes called Mitochondria-Associated ER Membranes (MAMs), is known to play an important role in the occurrence of cytosolic Ca2+ concentration ([Ca2+]Cyt) oscillations. A mathematical compartmental closed-cell model of Ca2+ dynamics was developed that accounts for ER-mitochondria Ca2+ microdomains as the µd compartment (besides the cytosol, ER and mitochondria), Ca2+ influx to/efflux from each compartment and Ca2+ buffering. Varying the distribution of functional receptors in MAMs vs. the rest of ER/mitochondrial membranes, a parameter called the channel connectivity coefficient (to the µd), allowed for generation of [Ca2+]Cytoscillations driven by distinct mechanisms at various levels of IP3 stimulation. Oscillations could be initiated by the transient opening of IP3 receptors facing either the cytosol or the µd, and subsequent refilling of the respective compartment by Ca2+ efflux from the ER and/or the mitochondria. Only under conditions where the µd became the oscillation-driving compartment, silencing the Mitochondrial Ca2+ Uniporter led to oscillation inhibition. Thus, the model predicts that alternative mechanisms can yield [Ca2+]Cyt oscillations in non-excitable cells, and, under certain conditions, the ER-mitochondria µd can play a regulatory role.
Collapse
|
6
|
A mathematical model of calcium dynamics: Obesity and mitochondria-associated ER membranes. PLoS Comput Biol 2019; 15:e1006661. [PMID: 31437152 PMCID: PMC6726250 DOI: 10.1371/journal.pcbi.1006661] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 09/04/2019] [Accepted: 08/03/2019] [Indexed: 12/27/2022] Open
Abstract
Multiple cellular organelles tightly orchestrate intracellular calcium (Ca2+) dynamics to regulate cellular activities and maintain homeostasis. The interplay between the endoplasmic reticulum (ER), a major store of intracellular Ca2+, and mitochondria, an important source of adenosine triphosphate (ATP), has been the subject of much research, as their dysfunction has been linked with metabolic diseases. Interestingly, throughout the cell’s cytosolic domain, these two organelles share common microdomains called mitochondria-associated ER membranes (MAMs), where their membranes are in close apposition. The role of MAMs is critical for intracellular Ca2+ dynamics as they provide hubs for direct Ca2+ exchange between the organelles. A recent experimental study reported correlation between obesity and MAM formation in mouse liver cells, and obesity-related cellular changes that are closely associated with the regulation of Ca2+ dynamics. We constructed a mathematical model to study the effects of MAM Ca2+ dynamics on global Ca2+ activities. Through a series of model simulations, we investigated cellular mechanisms underlying the altered Ca2+ dynamics in the cells under obesity. We predict that, as the dosage of stimulus gradually increases, liver cells from obese mice will reach the state of saturated cytosolic Ca2+ concentration at a lower stimulus concentration, compared to cells from healthy mice. It is well known that intracellular Ca2+ oscillations carry encoded signals in their amplitude and frequency to regulate various cellular processes, and accumulating evidence supports the importance of the interplay between the ER and mitochondria in cellular Ca2+ homeostasis. Miscommunications between the organelles may be involved in the development of metabolic diseases. Based on a recent experimental study that spotlighted a correlation between obesity and physical interactions of the ER and mitochondria in mouse hepatic cells, we constructed a mathematical model as a tool to probe the effects of the cellular changes linked with obesity on global cellular Ca2+ dynamics. Our model successfully reproduced the experimental study that observed a positive correlation between an increase in ER-mitochondrial junctions and the magnitude of mitochondrial Ca2+ responses. We postulate that hepatic cells from lean animals exhibit Ca2+ oscillations that are more robust under higher concentrations of stimulus, compared to cells from obese animals.
Collapse
|
7
|
Wang L, Liu Y, Lu R, Dong G, Chen X, Yun W, Zhou X. The role of S-nitrosylation of kainate-type of ionotropic glutamate receptor 2 in epilepsy induced by kainic acid. J Neurochem 2018; 144:255-270. [PMID: 29193067 DOI: 10.1111/jnc.14266] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 11/21/2017] [Accepted: 11/22/2017] [Indexed: 11/29/2022]
Abstract
Epilepsy is a chronic brain disease affecting millions of individuals. Kainate receptors, especially kainate-type of ionotropic glutamate receptor 2 (GluK2), play an important role in epileptogenesis. Recent data showed that GluK2 could undergo post-translational modifications in terms of S-nitrosylation (SNO), and affect the signaling pathway of cell death in cerebral ischemia-reperfusion. However, it is unclear whether S-nitrosylation of GluK2 (SNO-GluK2) contributes to cell death induced by epilepsy. Here, we report that kainic acid-induced SNO-GluK2 is mediated by GluK2 itself, regulated by neuronal nitric oxide synthase (nNOS) and the level of cytoplasmic calcium in vivo and in vitro hippocampus neurons. The whole-cell patch clamp recordings showed the influence of SNO-GluK2 on ion channel characterization of GluK2-Kainate receptors. Moreover, immunohistochemistry staining results showed that inhibition of SNO-GluK2 by blocking nNOS or GluK2 or by reducing the level of cytoplasmic calcium-protected hippocampal neurons from kainic acid-induced injury. Finally, immunoprecipitation and western blotting data revealed the involvement of assembly of a GluK2-PSD95-nNOS signaling complex in epilepsy. Taken together, our results showed that the SNO-GluK2 plays an important role in neuronal injury of epileptic rats by forming GluK2-PSD95-nNOS signaling module in a cytoplasmic calcium-dependent way, suggesting a potential therapeutic target site for epilepsy.
Collapse
Affiliation(s)
- Linxiao Wang
- Laboratory of Neurological Diseases, The affiliated Changzhou No.2 People's Hospital with Nanjing Medical University, Changzhou, Jiangsu Province, China
| | - Yanyan Liu
- Department of Neurology, The affiliated Changzhou No.2 People's Hospital with Nanjing Medical University, Changzhou, Jiangsu Province, China
| | - Rulan Lu
- Laboratory of Neurological Diseases, The affiliated Changzhou No.2 People's Hospital with Nanjing Medical University, Changzhou, Jiangsu Province, China
| | - Guoying Dong
- Laboratory of Neurological Diseases, The affiliated Changzhou No.2 People's Hospital with Nanjing Medical University, Changzhou, Jiangsu Province, China
| | - Xia Chen
- Laboratory of Neurological Diseases, The affiliated Changzhou No.2 People's Hospital with Nanjing Medical University, Changzhou, Jiangsu Province, China
| | - Wenwei Yun
- Department of Neurology, The affiliated Changzhou No.2 People's Hospital with Nanjing Medical University, Changzhou, Jiangsu Province, China
| | - Xianju Zhou
- Laboratory of Neurological Diseases, The affiliated Changzhou No.2 People's Hospital with Nanjing Medical University, Changzhou, Jiangsu Province, China
- Department of Neurology, The affiliated Changzhou No.2 People's Hospital with Nanjing Medical University, Changzhou, Jiangsu Province, China
| |
Collapse
|
8
|
Li X, Zhang S, Liu X, Wang X, Zhou A, Liu P. Dynamic analysis on the calcium oscillation model considering the influences of mitochondria. Biosystems 2017; 163:36-46. [PMID: 29229425 DOI: 10.1016/j.biosystems.2017.12.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 10/08/2017] [Accepted: 12/05/2017] [Indexed: 11/26/2022]
Abstract
Based on the model considering the influences of mitochondria, a further theoretical study on the dynamic behaviors of calcium signals is made. First of all, the reason for the generation and disappearance of calcium oscillations is verified in theory. Second, an analysis on the model considering the influences of mitochondria and the model neglecting the influences of mitochondria is carried out. Third, β (representing calcium leak) is introduced and it can be found that with the increase of β, the Hopf bifurcation points of system move towards the decreasing direction of μ (representing stimulus intensity) and calcium oscillations region gradually decreases. Forth, the study on τh (representing relaxation time) indicates that with the increase of τh, the second Hopf bifurcation point of system moves towards the increasing direction of μ and calcium oscillations region gradually increases. Under certain stimulus intensity, when relaxation time increases, calcium oscillation peak rises rapidly and the period increases obviously. Fifth, two-parameter bifurcation diagram of Vm1 (representing mitochondria activity) and μ contains three regions: stable region, oscillation region and unstable region. When the parameters fall in the unstable region Ca2+ gather towards mitochondria and further lead to cell apoptosis. With the increase of Vm1, calcium oscillations region shrinks gradually. Vm1 and μ both play a key role in regulating cell apoptosis. Only when Vm1 and μ are high enough can cells enter into programmed cell death and the higher Vm1 is, the lower the stimulus intensity required by cell apoptosis is.
Collapse
Affiliation(s)
- Xiang Li
- Department of Mechanics, School of Mechanical Engineering, Tianjin University, Tianjin 300354, PR China; Tianjin Key Laboratory of Nonlinear Dynamics and Chaos Control, Tianjin 300354, PR China.
| | - Suxia Zhang
- Department of Mechanics, School of Mechanical Engineering, Tianjin University, Tianjin 300354, PR China; Tianjin Key Laboratory of Nonlinear Dynamics and Chaos Control, Tianjin 300354, PR China.
| | - Xijun Liu
- Department of Mechanics, School of Mechanical Engineering, Tianjin University, Tianjin 300354, PR China; Tianjin Key Laboratory of Nonlinear Dynamics and Chaos Control, Tianjin 300354, PR China
| | - Xiaojing Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300354, PR China
| | - Anqi Zhou
- Department of Mechanics, School of Mechanical Engineering, Tianjin University, Tianjin 300354, PR China; Tianjin Key Laboratory of Nonlinear Dynamics and Chaos Control, Tianjin 300354, PR China
| | - Peng Liu
- Department of Mechanics, School of Mechanical Engineering, Tianjin University, Tianjin 300354, PR China; Tianjin Key Laboratory of Nonlinear Dynamics and Chaos Control, Tianjin 300354, PR China
| |
Collapse
|
9
|
Anwar H. Capturing intracellular Ca 2+ dynamics in computational models of neurodegenerative diseases. ACTA ACUST UNITED AC 2017; 19:37-42. [PMID: 28983320 DOI: 10.1016/j.ddmod.2017.02.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Many signaling pathways crucial for homeostatic regulation, synaptic plasticity, apoptosis and immune response depend on Ca2+. Ca2+ dysregulation disrupts normal function of neurons and neuronal networks. This causes severe motor and cognitive disabilities. Understanding how Ca2+ dysregulation triggers disease onset and progression, and affects downstream processes, can help identify targets for treatments. Because of intermingling of molecular pathways, dissecting the role of individual mechanisms and establishing causality is very challenging. Computational models provide a way to decipher these processes. I review some computational models with Ca2+ dynamics to illustrate their predictive power, and note where extending those models to capture multiscale interaction of Ca2+ dependent molecular pathways can be useful for therapeutic and drug discovery purposes.
Collapse
Affiliation(s)
- Haroon Anwar
- Department of Biological Sciences, New Jersey Institute of Technology, 100 Summit St, University Heights, Newark, NJ 07102, United States
| |
Collapse
|
10
|
Naia L, Ferreira IL, Ferreiro E, Rego AC. Mitochondrial Ca 2+ handling in Huntington's and Alzheimer's diseases - Role of ER-mitochondria crosstalk. Biochem Biophys Res Commun 2016; 483:1069-1077. [PMID: 27485547 DOI: 10.1016/j.bbrc.2016.07.122] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 07/26/2016] [Accepted: 07/29/2016] [Indexed: 10/21/2022]
Abstract
Mitochondria play a relevant role in Ca2+ buffering, governing energy metabolism and neuronal function. Huntington's disease (HD) and Alzheimer's disease (AD) are two neurodegenerative disorders that, although clinically distinct, share pathological features linked to selective brain damage. These include mitochondrial dysfunction, intracellular Ca2+ deregulation and mitochondrial Ca2+ handling deficits. Both diseases are associated with misfolding and aggregation of specific proteins that physically interact with mitochondria and interfere with endoplasmic reticulum (ER)/mitochondria-contact sites. Cumulating evidences indicate that impairment of mitochondrial Ca2+ homeostasis underlies the susceptibility to selective neuronal death observed in HD and AD; however data obtained with different models and experimental approaches are not always consistent. In this review, we explore the recent literature on deregulation of mitochondrial Ca2+ handling underlying the interplay between mitochondria and ER in HD and AD-associated neurodegeneration.
Collapse
Affiliation(s)
- Luana Naia
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; FMUC-Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Ildete Luísa Ferreira
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; IIIUC-Institute for Interdisciplinary Research, University of Coimbra (IIIUC), Polo II, Coimbra, Portugal
| | - Elisabete Ferreiro
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; IIIUC-Institute for Interdisciplinary Research, University of Coimbra (IIIUC), Polo II, Coimbra, Portugal
| | - A Cristina Rego
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; FMUC-Faculty of Medicine, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
11
|
Liu X, Li X. Systematical bifurcation analysis of an intracellular calcium oscillation model. Biosystems 2016; 145:33-40. [DOI: 10.1016/j.biosystems.2016.04.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 04/05/2016] [Accepted: 04/28/2016] [Indexed: 11/16/2022]
|
12
|
Toglia P, Cheung KH, Mak DOD, Ullah G. Impaired mitochondrial function due to familial Alzheimer's disease-causing presenilins mutants via Ca(2+) disruptions. Cell Calcium 2016; 59:240-50. [PMID: 26971122 DOI: 10.1016/j.ceca.2016.02.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 02/20/2016] [Accepted: 02/22/2016] [Indexed: 01/21/2023]
Abstract
Mutants in presenilins (PS1 or PS2) is the major cause of familial Alzheimer's disease (FAD). FAD causing PS mutants affect intracellular Ca(2+) homeostasis by enhancing the gating of inositol trisphosphate (IP3) receptor (IP3R) Ca(2+) release channel on the endoplasmic reticulum, leading to exaggerated Ca(2+) release into the cytoplasm. Using experimental IP3R-mediated Ca(2+) release data, in conjunction with a computational model of cell bioenergetics, we explore how the differences in mitochondrial Ca(2+) uptake in control cells and cells expressing FAD-causing PS mutants affect key variables such as ATP, reactive oxygen species (ROS), NADH, and mitochondrial Ca(2+). We find that as a result of exaggerated cytosolic Ca(2+) in FAD-causing mutant PS-expressing cells, the rate of oxygen consumption increases dramatically and overcomes the Ca(2+) dependent enzymes that stimulate NADH production. This leads to decreased rates in proton pumping due to diminished membrane potential along with less ATP and enhanced ROS production. These results show that through Ca(2+) signaling disruption, mutant PS leads to mitochondrial dysfunction and potentially to cell death.
Collapse
Affiliation(s)
- Patrick Toglia
- Department of Physics, University of South Florida, Tampa, FL 33620, United States
| | - King-Ho Cheung
- School of Biomedical Sciences, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Don-On Daniel Mak
- Department of Physiology, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Ghanim Ullah
- Department of Physics, University of South Florida, Tampa, FL 33620, United States.
| |
Collapse
|
13
|
陈 圆. Modeling of Ca<sup>2+</sup> Channels and Ca<sup>2+</sup> Signal Oscillations. Biophysics (Nagoya-shi) 2016. [DOI: 10.12677/biphy.2016.41001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
14
|
Optimal microdomain crosstalk between endoplasmic reticulum and mitochondria for Ca2+ oscillations. Sci Rep 2015; 5:7984. [PMID: 25614067 PMCID: PMC4303883 DOI: 10.1038/srep07984] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 12/24/2014] [Indexed: 12/11/2022] Open
Abstract
A Ca2+ signaling model is proposed to consider the crosstalk of Ca2+ ions between endoplasmic reticulum (ER) and mitochondria within microdomains around inositol 1, 4, 5-trisphosphate receptors (IP3R) and the mitochondrial Ca2+ uniporter (MCU). Our model predicts that there is a critical IP3R-MCU distance at which 50% of the ER-released Ca2+ is taken up by mitochondria and that mitochondria modulate Ca2+ signals differently when outside of this critical distance. This study highlights the importance of the IP3R-MCU distance on Ca2+ signaling dynamics. The model predicts that when MCU are too closely associated with IP3Rs, the enhanced mitochondrial Ca2+ uptake will produce an increase of cytosolic Ca2+ spike amplitude. Notably, the model demonstrates the existence of an optimal IP3R-MCU distance (30–85 nm) for effective Ca2+ transfer and the successful generation of Ca2+ signals in healthy cells. We suggest that the space between the inner and outer mitochondria membranes provides a defense mechanism against occurrences of high [Ca2+]Cyt. Our results also hint at a possible pathological mechanism in which abnormally high [Ca2+]Cyt arises when the IP3R-MCU distance is in excess of the optimal range.
Collapse
|
15
|
Nemenman I, Gnanakaran S, Munsky B, Wall ME, Jiang Y, Hlavacek WS, Faeder JR. Special section dedicated to The Sixth q-bio Conference: meeting report and preface. Phys Biol 2013; 10:030301. [DOI: 10.1088/1478-3975/10/3/030301] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|