1
|
Wang B, Peterchev AV, Gaugain G, Ilmoniemi RJ, Grill WM, Bikson M, Nikolayev D. Quasistatic approximation in neuromodulation. J Neural Eng 2024; 21:10.1088/1741-2552/ad625e. [PMID: 38994790 PMCID: PMC11370654 DOI: 10.1088/1741-2552/ad625e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 06/28/2024] [Indexed: 07/13/2024]
Abstract
We define and explain the quasistatic approximation (QSA) as applied to field modeling for electrical and magnetic stimulation. Neuromodulation analysis pipelines include discrete stages, and QSA is applied specifically when calculating the electric and magnetic fields generated in tissues by a given stimulation dose. QSA simplifies the modeling equations to support tractable analysis, enhanced understanding, and computational efficiency. The application of QSA in neuromodulation is based on four underlying assumptions: (A1) no wave propagation or self-induction in tissue, (A2) linear tissue properties, (A3) purely resistive tissue, and (A4) non-dispersive tissue. As a consequence of these assumptions, each tissue is assigned a fixed conductivity, and the simplified equations (e.g. Laplace's equation) are solved for the spatial distribution of the field, which is separated from the field's temporal waveform. Recognizing that electrical tissue properties may be more complex, we explain how QSA can be embedded in parallel or iterative pipelines to model frequency dependence or nonlinearity of conductivity. We survey the history and validity of QSA across specific applications, such as microstimulation, deep brain stimulation, spinal cord stimulation, transcranial electrical stimulation, and transcranial magnetic stimulation. The precise definition and explanation of QSA in neuromodulation are essential for rigor when using QSA models or testing their limits.
Collapse
Affiliation(s)
- Boshuo Wang
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC 27710, United States of America
| | - Angel V Peterchev
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC 27710, United States of America
- Department of Electrical and Computer Engineering, Duke University, Durham, NC 27708, United States of America
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, United States of America
- Department of Neurosurgery, Duke University, Durham, NC 27710, United States of America
| | - Gabriel Gaugain
- Institut d’Électronique et des Technologies du numéRique (IETR UMR 6164), CNRS / University of Rennes, 35000 Rennes, France
| | - Risto J Ilmoniemi
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland
| | - Warren M Grill
- Department of Electrical and Computer Engineering, Duke University, Durham, NC 27708, United States of America
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, United States of America
- Department of Neurosurgery, Duke University, Durham, NC 27710, United States of America
- Department of Neurobiology, Duke University, Durham, NC 27710, United States of America
| | - Marom Bikson
- The City College of New York, New York, NY 11238, United States of America
| | - Denys Nikolayev
- Institut d’Électronique et des Technologies du numéRique (IETR UMR 6164), CNRS / University of Rennes, 35000 Rennes, France
| |
Collapse
|
2
|
Kish KE, Weiland JD. Optimizing Phosphene Focality with Multi-Electrode Stimuli using Design of Experiments. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2024; 2024:1-6. [PMID: 40039818 DOI: 10.1109/embc53108.2024.10781565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
Despite advancements in the field of artificial vision, retinal prostheses continue to face substantial limitations. The future success of these devices depends on their ability to activate target neurons with improved spatiotemporal resolution, while avoiding off-target stimulation. Manually programming these devices in clinic using a trial-and-error process will place an excessive burden on both clinicians and patients. We applied the Taguchi method for design of experiments to patient-specific field-cable models of retinal prostheses to identify multi-electrode stimuli that focalize retinal activation, thus improving spatial resolution. We improved focality in all eight tested regions with a unique return electrode configuration, supporting the need for individualized current focusing strategies. This work lays the foundation for personalized, automated device programming, which will be essential for future retinal prostheses with thousands of electrodes.
Collapse
|
3
|
Wu Y, Hu K, Liu S. Computational models advance deep brain stimulation for Parkinson's disease. NETWORK (BRISTOL, ENGLAND) 2024:1-32. [PMID: 38923890 DOI: 10.1080/0954898x.2024.2361799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/25/2024] [Indexed: 06/28/2024]
Abstract
Deep brain stimulation(DBS) has become an effective intervention for advanced Parkinson's disease(PD), but the exact mechanism of DBS is still unclear. In this review, we discuss the history of DBS, the anatomy and internal architecture of the basal ganglia (BG), the abnormal pathological changes of the BG in PD, and how computational models can help understand and advance DBS. We also describe two types of models: mathematical theoretical models and clinical predictive models. Mathematical theoretical models simulate neurons or neural networks of BG to shed light on the mechanistic principle underlying DBS, while clinical predictive models focus more on patients' outcomes, helping to adapt treatment plans for each patient and advance novel electrode designs. Finally, we provide insights and an outlook on future technologies.
Collapse
Affiliation(s)
- Yongtong Wu
- School of Mathematics, South China University of Technology, Guangzhou, Guangdong, China
| | - Kejia Hu
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shenquan Liu
- School of Mathematics, South China University of Technology, Guangzhou, Guangdong, China
| |
Collapse
|
4
|
Wang B, Peterchev AV, Gaugain G, Ilmoniemi RJ, Grill WM, Bikson M, Nikolayev D. Quasistatic approximation in neuromodulation. ARXIV 2024:arXiv:2402.00486v5. [PMID: 38351938 PMCID: PMC10862934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/19/2024]
Abstract
We define and explain the quasistatic approximation (QSA) as applied to field modeling for electrical and magnetic stimulation. Neuromodulation analysis pipelines include discrete stages, and QSA is applied specifically when calculating the electric and magnetic fields generated in tissues by a given stimulation dose. QSA simplifies the modeling equations to support tractable analysis, enhanced understanding, and computational efficiency. The application of QSA in neuro-modulation is based on four underlying assumptions: (A1) no wave propagation or self-induction in tissue, (A2) linear tissue properties, (A3) purely resistive tissue, and (A4) non-dispersive tissue. As a consequence of these assumptions, each tissue is assigned a fixed conductivity, and the simplified equations (e.g., Laplace's equation) are solved for the spatial distribution of the field, which is separated from the field's temporal waveform. Recognizing that electrical tissue properties may be more complex, we explain how QSA can be embedded in parallel or iterative pipelines to model frequency dependence or nonlinearity of conductivity. We survey the history and validity of QSA across specific applications, such as microstimulation, deep brain stimulation, spinal cord stimulation, transcranial electrical stimulation, and transcranial magnetic stimulation. The precise definition and explanation of QSA in neuromodulation are essential for rigor when using QSA models or testing their limits.
Collapse
|
5
|
O'Keeffe AB, Merla A, Ashkan K. Deep brain stimulation of the subthalamic nucleus in Parkinson disease 2013-2023: where are we a further 10 years on? Br J Neurosurg 2024:1-9. [PMID: 38323603 DOI: 10.1080/02688697.2024.2311128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 01/23/2024] [Indexed: 02/08/2024]
Abstract
Deep brain stimulation has been in clinical use for 30 years and during that time it has changed markedly from a small-scale treatment employed by only a few highly specialized centers into a widespread keystone approach to the management of disorders such as Parkinson's disease. In the intervening decades, many of the broad principles of deep brain stimulation have remained unchanged, that of electrode insertion into stereotactically targeted brain nuclei, however the underlying technology and understanding around the approach have progressed markedly. Some of the most significant advances have taken place over the last decade with the advent of artificial intelligence, directional electrodes, stimulation/recording implantable pulse generators and the potential for remote programming among many other innovations. New therapeutic targets are being assessed for their potential benefits and a surge in the number of deep brain stimulation implantations has given birth to a flourishing scientific literature surrounding the pathophysiology of brain disorders such as Parkinson's disease. Here we outline the developments of the last decade and look to the future of deep brain stimulation to attempt to discern some of the most promising lines of inquiry in this fast-paced and rapidly evolving field.
Collapse
Affiliation(s)
| | - Anca Merla
- King's College Hospital Department of Neurosurgery, Kings College Hospital, Denmark
| | - Keyoumars Ashkan
- King's College Hospital Department of Neurosurgery, Kings College Hospital, Denmark
| |
Collapse
|
6
|
Fleming JE, Pont Sanchis I, Lemmens O, Denison-Smith A, West TO, Denison T, Cagnan H. From dawn till dusk: Time-adaptive bayesian optimization for neurostimulation. PLoS Comput Biol 2023; 19:e1011674. [PMID: 38091368 PMCID: PMC10718444 DOI: 10.1371/journal.pcbi.1011674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 11/09/2023] [Indexed: 12/18/2023] Open
Abstract
Stimulation optimization has garnered considerable interest in recent years in order to efficiently parametrize neuromodulation-based therapies. To date, efforts focused on automatically identifying settings from parameter spaces that do not change over time. A limitation of these approaches, however, is that they lack consideration for time dependent factors that may influence therapy outcomes. Disease progression and biological rhythmicity are two sources of variation that may influence optimal stimulation settings over time. To account for this, we present a novel time-varying Bayesian optimization (TV-BayesOpt) for tracking the optimum parameter set for neuromodulation therapy. We evaluate the performance of TV-BayesOpt for tracking gradual and periodic slow variations over time. The algorithm was investigated within the context of a computational model of phase-locked deep brain stimulation for treating oscillopathies representative of common movement disorders such as Parkinson's disease and Essential Tremor. When the optimal stimulation settings changed due to gradual and periodic sources, TV-BayesOpt outperformed standard time-invariant techniques and was able to identify the appropriate stimulation setting. Through incorporation of both a gradual "forgetting" and periodic covariance functions, the algorithm maintained robust performance when a priori knowledge differed from observed variations. This algorithm presents a broad framework that can be leveraged for the treatment of a range of neurological and psychiatric conditions and can be used to track variations in optimal stimulation settings such as amplitude, pulse-width, frequency and phase for invasive and non-invasive neuromodulation strategies.
Collapse
Affiliation(s)
- John E. Fleming
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Mansfield Road, Oxford, United Kingdom
| | - Ines Pont Sanchis
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Old Road Campus Research Building, Oxford, United Kingdom
| | - Oscar Lemmens
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Old Road Campus Research Building, Oxford, United Kingdom
| | - Angus Denison-Smith
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Old Road Campus Research Building, Oxford, United Kingdom
| | - Timothy O. West
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Mansfield Road, Oxford, United Kingdom
- Department of Bioengineering, Imperial College London, White City Campus, London, United Kingdom
| | - Timothy Denison
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Mansfield Road, Oxford, United Kingdom
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Old Road Campus Research Building, Oxford, United Kingdom
| | - Hayriye Cagnan
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Mansfield Road, Oxford, United Kingdom
- Department of Bioengineering, Imperial College London, White City Campus, London, United Kingdom
| |
Collapse
|
7
|
Mirzakhalili E, Rogers ER, Lempka SF. An optimization framework for targeted spinal cord stimulation. J Neural Eng 2023; 20:056026. [PMID: 37647885 PMCID: PMC10535048 DOI: 10.1088/1741-2552/acf522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/14/2023] [Accepted: 08/30/2023] [Indexed: 09/01/2023]
Abstract
Objective. Spinal cord stimulation (SCS) is a common neurostimulation therapy to manage chronic pain. Technological advances have produced new neurostimulation systems with expanded capabilities in an attempt to improve the clinical outcomes associated with SCS. However, these expanded capabilities have dramatically increased the number of possible stimulation parameters and made it intractable to efficiently explore this large parameter space within the context of standard clinical programming procedures. Therefore, in this study, we developed an optimization approach to define the optimal current amplitudes or fractions across individual contacts in an SCS electrode array(s).Approach. We developed an analytic method using the Lagrange multiplier method along with smoothing approximations. To test our optimization framework, we used a hybrid computational modeling approach that consisted of a finite element method model and multi-compartment models of axons and cells within the spinal cord. Moreover, we extended our approach to multi-objective optimization to explore the trade-off between activating regions of interest (ROIs) and regions of avoidance (ROAs).Main results. For simple ROIs, our framework suggested optimized configurations that resembled simple bipolar configurations. However, when we considered multi-objective optimization, our framework suggested nontrivial stimulation configurations that could be selected from Pareto fronts to target multiple ROIs or avoid ROAs.Significance. We developed an optimization framework for targeted SCS. Our method is analytic, which allows for the fast calculation of optimal solutions. For the first time, we provided a multi-objective approach for selective SCS. Through this approach, we were able to show that novel configurations can provide neural recruitment profiles that are not possible with conventional stimulation configurations (e.g. bipolar stimulation). Most importantly, once integrated with computational models that account for sources of interpatient variability (e.g. anatomy, electrode placement), our optimization framework can be utilized to provide stimulation settings tailored to the needs of individual patients.
Collapse
Affiliation(s)
- Ehsan Mirzakhalili
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States of America
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, United States of America
| | - Evan R Rogers
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States of America
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, United States of America
| | - Scott F Lempka
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States of America
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, United States of America
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI, United States of America
| |
Collapse
|
8
|
Bonizzato M, Guay Hottin R, Côté SL, Massai E, Choinière L, Macar U, Laferrière S, Sirpal P, Quessy S, Lajoie G, Martinez M, Dancause N. Autonomous optimization of neuroprosthetic stimulation parameters that drive the motor cortex and spinal cord outputs in rats and monkeys. Cell Rep Med 2023; 4:101008. [PMID: 37044093 PMCID: PMC10140617 DOI: 10.1016/j.xcrm.2023.101008] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 02/16/2023] [Accepted: 03/20/2023] [Indexed: 04/14/2023]
Abstract
Neural stimulation can alleviate paralysis and sensory deficits. Novel high-density neural interfaces can enable refined and multipronged neurostimulation interventions. To achieve this, it is essential to develop algorithmic frameworks capable of handling optimization in large parameter spaces. Here, we leveraged an algorithmic class, Gaussian-process (GP)-based Bayesian optimization (BO), to solve this problem. We show that GP-BO efficiently explores the neurostimulation space, outperforming other search strategies after testing only a fraction of the possible combinations. Through a series of real-time multi-dimensional neurostimulation experiments, we demonstrate optimization across diverse biological targets (brain, spinal cord), animal models (rats, non-human primates), in healthy subjects, and in neuroprosthetic intervention after injury, for both immediate and continual learning over multiple sessions. GP-BO can embed and improve "prior" expert/clinical knowledge to dramatically enhance its performance. These results advocate for broader establishment of learning agents as structural elements of neuroprosthetic design, enabling personalization and maximization of therapeutic effectiveness.
Collapse
Affiliation(s)
- Marco Bonizzato
- Department of Neurosciences and Centre interdisciplinaire de recherche sur le cerveau et l'apprentissage (CIRCA), Université de Montréal, Montreal, QC H3T 1J4, Canada; Department of Electrical Engineering and Institute of Biomedical Engineering, Polytechnique Montréal, Montreal, QC H3T 1J4, Canada; CIUSSS du Nord-de-l'Île-de-Montréal, Montreal, QC H4J 1C5, Canada; Mila - Québec AI Institute, Montreal, QC H2S 3H1, Canada.
| | - Rose Guay Hottin
- Department of Neurosciences and Centre interdisciplinaire de recherche sur le cerveau et l'apprentissage (CIRCA), Université de Montréal, Montreal, QC H3T 1J4, Canada; Department of Electrical Engineering and Institute of Biomedical Engineering, Polytechnique Montréal, Montreal, QC H3T 1J4, Canada; Mila - Québec AI Institute, Montreal, QC H2S 3H1, Canada
| | - Sandrine L Côté
- Department of Neurosciences and Centre interdisciplinaire de recherche sur le cerveau et l'apprentissage (CIRCA), Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Elena Massai
- Department of Neurosciences and Centre interdisciplinaire de recherche sur le cerveau et l'apprentissage (CIRCA), Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Léo Choinière
- Department of Neurosciences and Centre interdisciplinaire de recherche sur le cerveau et l'apprentissage (CIRCA), Université de Montréal, Montreal, QC H3T 1J4, Canada; Mila - Québec AI Institute, Montreal, QC H2S 3H1, Canada
| | - Uzay Macar
- Department of Neurosciences and Centre interdisciplinaire de recherche sur le cerveau et l'apprentissage (CIRCA), Université de Montréal, Montreal, QC H3T 1J4, Canada; Mila - Québec AI Institute, Montreal, QC H2S 3H1, Canada
| | - Samuel Laferrière
- Mila - Québec AI Institute, Montreal, QC H2S 3H1, Canada; Computer Science Department, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Parikshat Sirpal
- Department of Neurosciences and Centre interdisciplinaire de recherche sur le cerveau et l'apprentissage (CIRCA), Université de Montréal, Montreal, QC H3T 1J4, Canada; Mila - Québec AI Institute, Montreal, QC H2S 3H1, Canada
| | - Stephan Quessy
- Department of Neurosciences and Centre interdisciplinaire de recherche sur le cerveau et l'apprentissage (CIRCA), Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Guillaume Lajoie
- Mila - Québec AI Institute, Montreal, QC H2S 3H1, Canada; Mathematics and Statistics Department, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Marina Martinez
- Department of Neurosciences and Centre interdisciplinaire de recherche sur le cerveau et l'apprentissage (CIRCA), Université de Montréal, Montreal, QC H3T 1J4, Canada; CIUSSS du Nord-de-l'Île-de-Montréal, Montreal, QC H4J 1C5, Canada
| | - Numa Dancause
- Department of Neurosciences and Centre interdisciplinaire de recherche sur le cerveau et l'apprentissage (CIRCA), Université de Montréal, Montreal, QC H3T 1J4, Canada.
| |
Collapse
|
9
|
Kish KE, Lempka SF, Weiland JD. Modeling extracellular stimulation of retinal ganglion cells: theoretical and practical aspects. J Neural Eng 2023; 20:026011. [PMID: 36848677 PMCID: PMC10010067 DOI: 10.1088/1741-2552/acbf79] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 02/15/2023] [Accepted: 02/27/2023] [Indexed: 03/01/2023]
Abstract
Objective.Retinal prostheses use electric current to activate inner retinal neurons, providing artificial vision for blind people. Epiretinal stimulation primarily targets retinal ganglion cells (RGCs), which can be modeled with cable equations. Computational models provide a tool to investigate the mechanisms of retinal activation, and improve stimulation paradigms. However, documentation of RGC model structure and parameters is limited, and model implementation can influence model predictions.Approach.We created a functional guide for building a mammalian RGC multi-compartment cable model and applying extracellular stimuli. Next, we investigated how the neuron's three-dimensional shape will influence model predictions. Finally, we tested several strategies to maximize computational efficiency.Main results.We conducted sensitivity analyses to examine how dendrite representation, axon trajectory, and axon diameter influence membrane dynamics and corresponding activation thresholds. We optimized the spatial and temporal discretization of our multi-compartment cable model. We also implemented several simplified threshold prediction theories based on activating function, but these did not match the prediction accuracy achieved by the cable equations.Significance.Through this work, we provide practical guidance for modeling the extracellular stimulation of RGCs to produce reliable and meaningful predictions. Robust computational models lay the groundwork for improving the performance of retinal prostheses.
Collapse
Affiliation(s)
- Kathleen E Kish
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States of America
- BioInterfaces Institute, University of Michigan, Ann Arbor, MI, United States of America
| | - Scott F Lempka
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States of America
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI, United States of America
- BioInterfaces Institute, University of Michigan, Ann Arbor, MI, United States of America
| | - James D Weiland
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States of America
- Department of Ophthalmology and Visual Science, University of Michigan, Ann Arbor, MI, United States of America
- BioInterfaces Institute, University of Michigan, Ann Arbor, MI, United States of America
| |
Collapse
|
10
|
Yu H, Meng Z, Li H, Liu C, Wang J. Intensity-Varied Closed-Loop Noise Stimulation for Oscillation Suppression in the Parkinsonian State. IEEE TRANSACTIONS ON CYBERNETICS 2022; 52:9861-9870. [PMID: 34398769 DOI: 10.1109/tcyb.2021.3079100] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
This work explores the effectiveness of the intensity-varied closed-loop noise stimulation on the oscillation suppression in the Parkinsonian state. Deep brain stimulation (DBS) is the standard therapy for Parkinson's disease (PD), but its effects need to be improved. The noise stimulation has compelling results in alleviating the PD state. However, in the open-loop control scheme, the noise stimulation parameters cannot be self-adjusted to adapt to the amplitude of the synchronized neuronal activities in real time. Thus, based on the delayed-feedback control algorithm, an intensity-varied closed-loop noise stimulation strategy is proposed. Based on a computational model of the basal ganglia (BG) that can present the intrinsic properties of the BG neurons and their interactions with the thalamic neurons, the proposed stimulation strategy is tested. Simulation results show that the noise stimulation suppresses the pathological beta (12-35 Hz) oscillations without any new rhythms in other bands compared with traditional high-frequency DBS. The intensity-varied closed-loop noise stimulation has a more profound role in removing the pathological beta oscillations and improving the thalamic reliability than open-loop noise stimulation, especially for different PD states. And the closed-loop noise stimulation enlarges the parameter space of the delayed-feedback control algorithm due to the randomness of noise signals. We also provide a theoretical analysis of the effective parameter domain of the delayed-feedback control algorithm by simplifying the BG model to an oscillator model. This exploration may guide a new approach to treating PD by optimizing the noise-induced improvement of the BG dysfunction.
Collapse
|
11
|
Malekmohammadi M, Mustakos R, Sheth S, Pouratian N, McIntyre CC, Bijanki KR, Tsolaki E, Chiu K, Robinson ME, Adkinson JA, Oswalt D, Carcieri S. Automated optimization of deep brain stimulation parameters for modulating neuroimaging-based targets. J Neural Eng 2022; 19:10.1088/1741-2552/ac7e6c. [PMID: 35790135 PMCID: PMC11090244 DOI: 10.1088/1741-2552/ac7e6c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 07/05/2022] [Indexed: 11/12/2022]
Abstract
Objective.Therapeutic efficacy of deep brain stimulation (DBS) in both established and emerging indications, is highly dependent on accurate lead placement and optimized clinical programming. The latter relies on clinicians' experience to search among available sets of stimulation parameters and can be limited by the time constraints of clinical practice. Recent innovations in device technology have expanded the number of possible electrode configurations and parameter sets available to clinicians, amplifying the challenge of time constraints. We hypothesize that patient specific neuroimaging data can effectively assist the clinical programming using automated algorithms.Approach.This paper introduces the DBS Illumina 3D algorithm as a tool which uses patient-specific imaging to find stimulation settings that optimizes activating a target area while minimizing the stimulation of areas outside the target that could result in unknown or undesired side effects. This approach utilizes preoperative neuroimaging data paired with the postoperative reconstruction of the lead trajectory to search the available stimulation space and identify optimized stimulation parameters. We describe the application of this algorithm in three patients with treatment-resistant depression who underwent bilateral implantation of DBS in subcallosal cingulate cortex and ventral capsule/ventral striatum using tractography optimized targeting with an imaging defined target previously described.Main results.Compared to the stimulation settings selected by the clinicians (informed by anatomy), stimulation settings produced by the algorithm that achieved similar or greater target coverage, produced a significantly smaller stimulation area that spilled outside the target (P= 0.002).Significance. The DBS Illumina 3D algorithm is seamlessly integrated with the clinician programmer software and effectively and rapidly assists clinicians with the analysis of image based anatomy, and provides a starting point to search the highly complex stimulation parameter space and arrive at the stimulation settings that optimize activating a target area.
Collapse
Affiliation(s)
- Mahsa Malekmohammadi
- Boston Scientific Neuromodulation, 25155 Rye Canyon Loop, Valencia, CA 91355, USA
| | - Richard Mustakos
- Boston Scientific Neuromodulation, 25155 Rye Canyon Loop, Valencia, CA 91355, USA
| | - Sameer Sheth
- Department of Neurosurgery, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Nader Pouratian
- Department of Neurological Surgery, University of Texas Southwestern Medical Center, 8353 Harry Hines Blvd MC8855, Dallas, TX 75239, USA
| | - Cameron C. McIntyre
- Departments of Biomedical Engineering and Neurosurgery, Duke University, 100 Science Drive, Durham, NC 27708, USA
| | - Kelly R. Bijanki
- Department of Neurosurgery, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Evangelia Tsolaki
- Department of Neurosurgery, David Geffen School of Medicine at UCLA, 300 Stein Plaza Suite 562, Los Angeles, CA 90095, USA
| | - Kevin Chiu
- Brainlab, Inc., 5 Westbrook Corporate Center, Suite 1000, Westchester IL 60154, USA
| | - Meghan E. Robinson
- Department of Neurosurgery, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Joshua A. Adkinson
- Department of Neurosurgery, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Denise Oswalt
- Department of Neurosurgery, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Stephen Carcieri
- Boston Scientific Neuromodulation, 25155 Rye Canyon Loop, Valencia, CA 91355, USA
| |
Collapse
|
12
|
Frey J, Cagle J, Johnson KA, Wong JK, Hilliard JD, Butson CR, Okun MS, de Hemptinne C. Past, Present, and Future of Deep Brain Stimulation: Hardware, Software, Imaging, Physiology and Novel Approaches. Front Neurol 2022; 13:825178. [PMID: 35356461 PMCID: PMC8959612 DOI: 10.3389/fneur.2022.825178] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/04/2022] [Indexed: 11/13/2022] Open
Abstract
Deep brain stimulation (DBS) has advanced treatment options for a variety of neurologic and neuropsychiatric conditions. As the technology for DBS continues to progress, treatment efficacy will continue to improve and disease indications will expand. Hardware advances such as longer-lasting batteries will reduce the frequency of battery replacement and segmented leads will facilitate improvements in the effectiveness of stimulation and have the potential to minimize stimulation side effects. Targeting advances such as specialized imaging sequences and "connectomics" will facilitate improved accuracy for lead positioning and trajectory planning. Software advances such as closed-loop stimulation and remote programming will enable DBS to be a more personalized and accessible technology. The future of DBS continues to be promising and holds the potential to further improve quality of life. In this review we will address the past, present and future of DBS.
Collapse
Affiliation(s)
- Jessica Frey
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| | - Jackson Cagle
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| | - Kara A. Johnson
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| | - Joshua K. Wong
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| | - Justin D. Hilliard
- Department of Neurosurgery, University of Florida, Gainesville, FL, United States
| | - Christopher R. Butson
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
- Department of Neurosurgery, University of Florida, Gainesville, FL, United States
| | - Michael S. Okun
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| | - Coralie de Hemptinne
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| |
Collapse
|
13
|
Haji Ghaffari D, Akwaboah AD, Mirzakhalili E, Weiland JD. Real-Time Optimization of Retinal Ganglion Cell Spatial Activity in Response to Epiretinal Stimulation. IEEE Trans Neural Syst Rehabil Eng 2021; 29:2733-2741. [PMID: 34941514 PMCID: PMC8851408 DOI: 10.1109/tnsre.2021.3138297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Retinal prostheses aim to improve visual perception in patients blinded by photoreceptor degeneration. However, shape and letter perception with these devices is currently limited due to low spatial resolution. Previous research has shown the retinal ganglion cell (RGC) spatial activity and phosphene shapes can vary due to the complexity of retina structure and electrode-retina interactions. Visual percepts elicited by single electrodes differ in size and shapes for different electrodes within the same subject, resulting in interference between phosphenes and an unclear image. Prior work has shown that better patient outcomes correlate with spatially separate phosphenes. In this study we use calcium imaging, in vitro retina, neural networks (NN), and an optimization algorithm to demonstrate a method to iteratively search for optimal stimulation parameters that create focal RGC activation. Our findings indicate that we can converge to stimulation parameters that result in focal RGC activation by sampling less than 1/3 of the parameter space. A similar process implemented clinically can reduce time required for optimizing implant operation and enable personalized fitting of retinal prostheses.
Collapse
|
14
|
Liu C, Zhou C, Wang J, Fietkiewicz C, Loparo KA. Delayed Feedback-Based Suppression of Pathological Oscillations in a Neural Mass Model. IEEE TRANSACTIONS ON CYBERNETICS 2021; 51:5046-5056. [PMID: 31295136 DOI: 10.1109/tcyb.2019.2923317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Suppression of excessively synchronous beta frequency (12-35 Hz) oscillatory activity in the basal ganglia is believed to correlate with the alleviation of hypokinetic motor symptoms of the Parkinson's disease. Delayed feedback is an effective strategy to interrupt the synchronization and has been used in the design of closed-loop neuromodulation methods computationally. Although tremendous efforts in this are being made by optimizing delayed feedback algorithm and stimulation waveforms, there are still remaining problems in the selection of effective parameters in the delayed feedback control schemes. In most delayed feedback neuromodulation strategies, the stimulation signal is obtained from the local field potential (LFP) of the excitatory subthalamic nucleus (STN) neurons and then is administered back to STN itself only. The inhibitory external globus pallidus (GPe) nucleus in the excitatory-inhibitory STN-GPe reciprocal network has not been involved in the design of the delayed feedback control strategies. Thus, considering the role of GPe, this paper proposes three schemes involving GPe in the design of the delayed feedback strategies and compared their effectiveness to the traditional paradigm using STN only. Based on a neural mass model of STN-GPe network having capability of simulating the LFP directly, the proposed stimulation strategies are tested and compared. Our simulation results show that the four types of delayed feedback control schemes are all effective, even if with a simple linear delayed feedback algorithm. But the three new control strategies we propose here further improve the control performance by enlarging the oscillatory suppression space and reducing the energy expenditure, suggesting that they may be more effective in applications. This paper may guide a new approach to optimize the closed-loop deep brain stimulation treatment to alleviate the Parkinsonian state by retargeting the measurement and stimulation nucleus.
Collapse
|
15
|
Kremer NI, Pauwels RWJ, Pozzi NG, Lange F, Roothans J, Volkmann J, Reich MM. Deep Brain Stimulation for Tremor: Update on Long-Term Outcomes, Target Considerations and Future Directions. J Clin Med 2021; 10:3468. [PMID: 34441763 PMCID: PMC8397098 DOI: 10.3390/jcm10163468] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 07/29/2021] [Accepted: 08/03/2021] [Indexed: 01/11/2023] Open
Abstract
Deep brain stimulation (DBS) of the thalamic ventral intermediate nucleus is one of the main advanced neurosurgical treatments for drug-resistant tremor. However, not every patient may be eligible for this procedure. Nowadays, various other functional neurosurgical procedures are available. In particular cases, radiofrequency thalamotomy, focused ultrasound and radiosurgery are proven alternatives to DBS. Besides, other DBS targets, such as the posterior subthalamic area (PSA) or the dentato-rubro-thalamic tract (DRT), may be appraised as well. In this review, the clinical characteristics and pathophysiology of tremor syndromes, as well as long-term outcomes of DBS in different targets, will be summarized. The effectiveness and safety of lesioning procedures will be discussed, and an evidence-based clinical treatment approach for patients with drug-resistant tremor will be presented. Lastly, the future directions in the treatment of severe tremor syndromes will be elaborated.
Collapse
Affiliation(s)
- Naomi I. Kremer
- Department of Neurosurgery, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (N.I.K.); (R.W.J.P.)
- Department of Neurology, University Hospital and Julius-Maximilian-University, 97080 Wuerzburg, Germany; (N.G.P.); (F.L.); (J.R.); (J.V.)
| | - Rik W. J. Pauwels
- Department of Neurosurgery, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (N.I.K.); (R.W.J.P.)
| | - Nicolò G. Pozzi
- Department of Neurology, University Hospital and Julius-Maximilian-University, 97080 Wuerzburg, Germany; (N.G.P.); (F.L.); (J.R.); (J.V.)
| | - Florian Lange
- Department of Neurology, University Hospital and Julius-Maximilian-University, 97080 Wuerzburg, Germany; (N.G.P.); (F.L.); (J.R.); (J.V.)
| | - Jonas Roothans
- Department of Neurology, University Hospital and Julius-Maximilian-University, 97080 Wuerzburg, Germany; (N.G.P.); (F.L.); (J.R.); (J.V.)
| | - Jens Volkmann
- Department of Neurology, University Hospital and Julius-Maximilian-University, 97080 Wuerzburg, Germany; (N.G.P.); (F.L.); (J.R.); (J.V.)
| | - Martin M. Reich
- Department of Neurology, University Hospital and Julius-Maximilian-University, 97080 Wuerzburg, Germany; (N.G.P.); (F.L.); (J.R.); (J.V.)
| |
Collapse
|
16
|
Louie KH, Petrucci MN, Grado LL, Lu C, Tuite PJ, Lamperski AG, MacKinnon CD, Cooper SE, Netoff TI. Semi-automated approaches to optimize deep brain stimulation parameters in Parkinson's disease. J Neuroeng Rehabil 2021; 18:83. [PMID: 34020662 PMCID: PMC8147513 DOI: 10.1186/s12984-021-00873-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 04/27/2021] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Deep brain stimulation (DBS) is a treatment option for Parkinson's disease patients when medication does not sufficiently manage their symptoms. DBS can be a highly effect therapy, but only after a time-consuming trial-and-error stimulation parameter adjustment process that is susceptible to clinician bias. This trial-and-error process will be further prolonged with the introduction of segmented electrodes that are now commercially available. New approaches to optimizing a patient's stimulation parameters, that can also handle the increasing complexity of new electrode and stimulator designs, is needed. METHODS To improve DBS parameter programming, we explored two semi-automated optimization approaches: a Bayesian optimization (BayesOpt) algorithm to efficiently determine a patient's optimal stimulation parameter for minimizing rigidity, and a probit Gaussian process (pGP) to assess patient's preference. Quantified rigidity measurements were obtained using a robotic manipulandum in two participants over two visits. Rigidity was measured, in 5Hz increments, between 10-185Hz (total 30-36 frequencies) on the first visit and at eight BayesOpt algorithm-selected frequencies on the second visit. The participant was also asked their preference between the current and previous stimulation frequency. First, we compared the optimal frequency between visits with the participant's preferred frequency. Next, we evaluated the efficiency of the BayesOpt algorithm, comparing it to random and equal interval selection of frequency. RESULTS The BayesOpt algorithm estimated the optimal frequency to be the highest tolerable frequency, matching the optimal frequency found during the first visit. However, the participants' pGP models indicate a preference at frequencies between 70-110 Hz. Here the stimulation frequency is lowest that achieves nearly maximal suppression of rigidity. BayesOpt was efficient, estimating the rigidity response curve to stimulation that was almost indistinguishable when compared to the longer brute force method. CONCLUSIONS These results provide preliminary evidence of the feasibility to use BayesOpt for determining the optimal frequency, while pGP patient's preferences include more difficult to measure outcomes. Both novel approaches can shorten DBS programming and can be expanded to include multiple symptoms and parameters.
Collapse
Affiliation(s)
- Kenneth H. Louie
- Department of Biomedical Engineering, University of Minnesota, 312 Church St. SE, Minneapolis, MN 55455 US
| | - Matthew N. Petrucci
- Department of Neurology, University of Minnesota, 516 Delaware St. SE, 55455 Minneapoli, MN US
| | - Logan L. Grado
- Department of Biomedical Engineering, University of Minnesota, 312 Church St. SE, Minneapolis, MN 55455 US
| | - Chiahao Lu
- Department of Neurology, University of Minnesota, 516 Delaware St. SE, 55455 Minneapoli, MN US
| | - Paul J. Tuite
- Department of Neurology, University of Minnesota, 516 Delaware St. SE, 55455 Minneapoli, MN US
| | - Andrew G. Lamperski
- Department of Electrical and Computer Engineering, University of Minnesota, 200 Union St. SE, Minneapolis, MN 55455 US
| | - Colum D. MacKinnon
- Department of Neurology, University of Minnesota, 516 Delaware St. SE, 55455 Minneapoli, MN US
| | - Scott E. Cooper
- Department of Neurology, University of Minnesota, 516 Delaware St. SE, 55455 Minneapoli, MN US
| | - Theoden I. Netoff
- Department of Biomedical Engineering, University of Minnesota, 312 Church St. SE, Minneapolis, MN 55455 US
| |
Collapse
|
17
|
Vedam-Mai V, Deisseroth K, Giordano J, Lazaro-Munoz G, Chiong W, Suthana N, Langevin JP, Gill J, Goodman W, Provenza NR, Halpern CH, Shivacharan RS, Cunningham TN, Sheth SA, Pouratian N, Scangos KW, Mayberg HS, Horn A, Johnson KA, Butson CR, Gilron R, de Hemptinne C, Wilt R, Yaroshinsky M, Little S, Starr P, Worrell G, Shirvalkar P, Chang E, Volkmann J, Muthuraman M, Groppa S, Kühn AA, Li L, Johnson M, Otto KJ, Raike R, Goetz S, Wu C, Silburn P, Cheeran B, Pathak YJ, Malekmohammadi M, Gunduz A, Wong JK, Cernera S, Wagle Shukla A, Ramirez-Zamora A, Deeb W, Patterson A, Foote KD, Okun MS. Proceedings of the Eighth Annual Deep Brain Stimulation Think Tank: Advances in Optogenetics, Ethical Issues Affecting DBS Research, Neuromodulatory Approaches for Depression, Adaptive Neurostimulation, and Emerging DBS Technologies. Front Hum Neurosci 2021; 15:644593. [PMID: 33953663 PMCID: PMC8092047 DOI: 10.3389/fnhum.2021.644593] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 03/10/2021] [Indexed: 12/20/2022] Open
Abstract
We estimate that 208,000 deep brain stimulation (DBS) devices have been implanted to address neurological and neuropsychiatric disorders worldwide. DBS Think Tank presenters pooled data and determined that DBS expanded in its scope and has been applied to multiple brain disorders in an effort to modulate neural circuitry. The DBS Think Tank was founded in 2012 providing a space where clinicians, engineers, researchers from industry and academia discuss current and emerging DBS technologies and logistical and ethical issues facing the field. The emphasis is on cutting edge research and collaboration aimed to advance the DBS field. The Eighth Annual DBS Think Tank was held virtually on September 1 and 2, 2020 (Zoom Video Communications) due to restrictions related to the COVID-19 pandemic. The meeting focused on advances in: (1) optogenetics as a tool for comprehending neurobiology of diseases and on optogenetically-inspired DBS, (2) cutting edge of emerging DBS technologies, (3) ethical issues affecting DBS research and access to care, (4) neuromodulatory approaches for depression, (5) advancing novel hardware, software and imaging methodologies, (6) use of neurophysiological signals in adaptive neurostimulation, and (7) use of more advanced technologies to improve DBS clinical outcomes. There were 178 attendees who participated in a DBS Think Tank survey, which revealed the expansion of DBS into several indications such as obesity, post-traumatic stress disorder, addiction and Alzheimer’s disease. This proceedings summarizes the advances discussed at the Eighth Annual DBS Think Tank.
Collapse
Affiliation(s)
- Vinata Vedam-Mai
- Norman Fixel Institute for Neurological Diseases and the Program for Movement Disorders and Neurorestoration, Department of Neurology, University of Florida, Gainesville, FL, United States
| | - Karl Deisseroth
- Department of Bioengineering, Stanford University, Stanford, CA, United States.,Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, United States
| | - James Giordano
- Department of Neurology and Neuroethics Studies Program, Georgetown University Medical Center, Washington, DC, United States
| | - Gabriel Lazaro-Munoz
- Center for Medical Ethics and Health Policy, Baylor College of Medicine, Houston, TX, United States
| | - Winston Chiong
- Weill Institute for Neurosciences, Memory and Aging Center, University of California, San Francisco, San Francisco, CA, United States
| | - Nanthia Suthana
- Department of Neurosurgery, David Geffen School of Medicine and Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, United States.,Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, United States.,Department of Psychology, University of California, Los Angeles, Los Angeles, CA, United States.,Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, United States
| | - Jean-Philippe Langevin
- Department of Neurosurgery, David Geffen School of Medicine and Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, United States.,Neurosurgery Service, Department of Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, United States
| | - Jay Gill
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, United States
| | - Wayne Goodman
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, United States
| | - Nicole R Provenza
- School of Engineering, Brown University, Providence, RI, United States
| | - Casey H Halpern
- Department of Neurosurgery, Stanford University Medical Center, Stanford, CA, United States
| | - Rajat S Shivacharan
- Department of Neurosurgery, Stanford University Medical Center, Stanford, CA, United States
| | - Tricia N Cunningham
- Department of Neurosurgery, Stanford University Medical Center, Stanford, CA, United States
| | - Sameer A Sheth
- Department of Neurological Surgery, Baylor College of Medicine, Houston, TX, United States
| | - Nader Pouratian
- Department of Neurosurgery, David Geffen School of Medicine and Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, United States
| | - Katherine W Scangos
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA, United States
| | - Helen S Mayberg
- Department of Neurology and Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Andreas Horn
- Movement Disorders & Neuromodulation Unit, Department for Neurology, Charité - University Medicine Berlin, Berlin, Germany
| | - Kara A Johnson
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, United States.,Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT, United States
| | - Christopher R Butson
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, United States.,Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT, United States
| | - Ro'ee Gilron
- Department of Neurological Surgery, Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA, United States
| | - Coralie de Hemptinne
- Norman Fixel Institute for Neurological Diseases and the Program for Movement Disorders and Neurorestoration, Department of Neurology, University of Florida, Gainesville, FL, United States.,Department of Neurological Surgery, Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA, United States
| | - Robert Wilt
- Department of Neurological Surgery, Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA, United States
| | - Maria Yaroshinsky
- Department of Neurological Surgery, Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA, United States
| | - Simon Little
- Department of Neurological Surgery, Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA, United States
| | - Philip Starr
- Department of Neurological Surgery, Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA, United States
| | - Greg Worrell
- Department of Neurology, Mayo Clinic, Rochester, MN, United States
| | - Prasad Shirvalkar
- Department of Neurological Surgery, Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA, United States.,Department of Anesthesiology (Pain Management) and Neurology, University of California, San Francisco, San Francisco, CA, United States
| | - Edward Chang
- Department of Neurological Surgery, Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA, United States
| | - Jens Volkmann
- Neurologischen Klinik Universitätsklinikum Würzburg, Würzburg, Germany
| | - Muthuraman Muthuraman
- Section of Movement Disorders and Neurostimulation, Biomedical Statistics and Multimodal Signal Processing Unit, Department of Neurology, Focus Program Translational Neuroscience, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Sergiu Groppa
- Section of Movement Disorders and Neurostimulation, Biomedical Statistics and Multimodal Signal Processing Unit, Department of Neurology, Focus Program Translational Neuroscience, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Andrea A Kühn
- Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Luming Li
- National Engineering Laboratory for Neuromodulation, School of Aerospace Engineering, Tsinghua University, Beijing, China
| | - Matthew Johnson
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Kevin J Otto
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
| | - Robert Raike
- Restorative Therapies Group Implantables, Research and Core Technology, Medtronic, Minneapolis, MN, United States
| | - Steve Goetz
- Restorative Therapies Group Implantables, Research and Core Technology, Medtronic, Minneapolis, MN, United States
| | - Chengyuan Wu
- Department of Neurological Surgery, Thomas Jefferson University Hospitals, Philadelphia, PA, United States
| | - Peter Silburn
- Asia Pacific Centre for Neuromodulation, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Binith Cheeran
- Neuromodulation Division, Abbott, Plano, TX, United States
| | - Yagna J Pathak
- Neuromodulation Division, Abbott, Plano, TX, United States
| | | | - Aysegul Gunduz
- Norman Fixel Institute for Neurological Diseases and the Program for Movement Disorders and Neurorestoration, Department of Neurology, University of Florida, Gainesville, FL, United States.,J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
| | - Joshua K Wong
- Norman Fixel Institute for Neurological Diseases and the Program for Movement Disorders and Neurorestoration, Department of Neurology, University of Florida, Gainesville, FL, United States
| | - Stephanie Cernera
- Norman Fixel Institute for Neurological Diseases and the Program for Movement Disorders and Neurorestoration, Department of Neurology, University of Florida, Gainesville, FL, United States.,J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
| | - Aparna Wagle Shukla
- Norman Fixel Institute for Neurological Diseases and the Program for Movement Disorders and Neurorestoration, Department of Neurology, University of Florida, Gainesville, FL, United States
| | - Adolfo Ramirez-Zamora
- Norman Fixel Institute for Neurological Diseases and the Program for Movement Disorders and Neurorestoration, Department of Neurology, University of Florida, Gainesville, FL, United States
| | - Wissam Deeb
- Department of Neurology, University of Massachusetts, Worchester, MA, United States
| | - Addie Patterson
- Norman Fixel Institute for Neurological Diseases and the Program for Movement Disorders and Neurorestoration, Department of Neurology, University of Florida, Gainesville, FL, United States
| | - Kelly D Foote
- Norman Fixel Institute for Neurological Diseases and the Program for Movement Disorders and Neurorestoration, Department of Neurology, University of Florida, Gainesville, FL, United States
| | - Michael S Okun
- Norman Fixel Institute for Neurological Diseases and the Program for Movement Disorders and Neurorestoration, Department of Neurology, University of Florida, Gainesville, FL, United States
| |
Collapse
|
18
|
Johnson KA, Duffley G, Anderson DN, Ostrem JL, Welter ML, Baldermann JC, Kuhn J, Huys D, Visser-Vandewalle V, Foltynie T, Zrinzo L, Hariz M, Leentjens AFG, Mogilner AY, Pourfar MH, Almeida L, Gunduz A, Foote KD, Okun MS, Butson CR. Structural connectivity predicts clinical outcomes of deep brain stimulation for Tourette syndrome. Brain 2020; 143:2607-2623. [PMID: 32653920 DOI: 10.1093/brain/awaa188] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 03/12/2020] [Accepted: 04/20/2020] [Indexed: 12/11/2022] Open
Abstract
Deep brain stimulation may be an effective therapy for select cases of severe, treatment-refractory Tourette syndrome; however, patient responses are variable, and there are no reliable methods to predict clinical outcomes. The objectives of this retrospective study were to identify the stimulation-dependent structural networks associated with improvements in tics and comorbid obsessive-compulsive behaviour, compare the networks across surgical targets, and determine if connectivity could be used to predict clinical outcomes. Volumes of tissue activated for a large multisite cohort of patients (n = 66) implanted bilaterally in globus pallidus internus (n = 34) or centromedial thalamus (n = 32) were used to generate probabilistic tractography to form a normative structural connectome. The tractography maps were used to identify networks that were correlated with improvement in tics or comorbid obsessive-compulsive behaviour and to predict clinical outcomes across the cohort. The correlated networks were then used to generate 'reverse' tractography to parcellate the total volume of stimulation across all patients to identify local regions to target or avoid. The results showed that for globus pallidus internus, connectivity to limbic networks, associative networks, caudate, thalamus, and cerebellum was positively correlated with improvement in tics; the model predicted clinical improvement scores (P = 0.003) and was robust to cross-validation. Regions near the anteromedial pallidum exhibited higher connectivity to the positively correlated networks than posteroventral pallidum, and volume of tissue activated overlap with this map was significantly correlated with tic improvement (P < 0.017). For centromedial thalamus, connectivity to sensorimotor networks, parietal-temporal-occipital networks, putamen, and cerebellum was positively correlated with tic improvement; the model predicted clinical improvement scores (P = 0.012) and was robust to cross-validation. Regions in the anterior/lateral centromedial thalamus exhibited higher connectivity to the positively correlated networks, but volume of tissue activated overlap with this map did not predict improvement (P > 0.23). For obsessive-compulsive behaviour, both targets showed that connectivity to the prefrontal cortex, orbitofrontal cortex, and cingulate cortex was positively correlated with improvement; however, only the centromedial thalamus maps predicted clinical outcomes across the cohort (P = 0.034), but the model was not robust to cross-validation. Collectively, the results demonstrate that the structural connectivity of the site of stimulation are likely important for mediating symptom improvement, and the networks involved in tic improvement may differ across surgical targets. These networks provide important insight on potential mechanisms and could be used to guide lead placement and stimulation parameter selection, as well as refine targets for neuromodulation therapies for Tourette syndrome.
Collapse
Affiliation(s)
- Kara A Johnson
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, Utah, USA.,Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, USA
| | - Gordon Duffley
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, Utah, USA.,Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, USA
| | - Daria Nesterovich Anderson
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, Utah, USA.,Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, USA.,Department of Neurosurgery, University of Utah, Salt Lake City, Utah, USA
| | - Jill L Ostrem
- Department of Neurology, University of California San Francisco, San Francisco, California, USA
| | - Marie-Laure Welter
- Institut du Cerveau et de la Moelle Epiniere, Sorbonne Universités, University of Pierre and Marie Curie University of Paris, the French National Institute of Health and Medical Research U 1127, the National Center for Scientific Research 7225, Paris, France
| | - Juan Carlos Baldermann
- Department of Psychiatry and Psychotherapy, University of Cologne, Cologne, Germany.,Department of Neurology, University of Cologne, Cologne, Germany
| | - Jens Kuhn
- Department of Psychiatry and Psychotherapy, University of Cologne, Cologne, Germany.,Department of Psychiatry, Psychotherapy, and Psychosomatic Medicine, Johanniter Hospital Oberhausen, EVKLN, Oberhausen, Germany
| | - Daniel Huys
- Department of Psychiatry and Psychotherapy, University of Cologne, Cologne, Germany
| | - Veerle Visser-Vandewalle
- Department of Stereotaxy and Functional Neurosurgery, University Hospital Cologne, Cologne, Germany
| | - Thomas Foltynie
- Functional Neurosurgery Unit, Department of Clinical and Movement Neurosciences, University College London, Queen Square Institute of Neurology, London, UK
| | - Ludvic Zrinzo
- Functional Neurosurgery Unit, Department of Clinical and Movement Neurosciences, University College London, Queen Square Institute of Neurology, London, UK
| | - Marwan Hariz
- Functional Neurosurgery Unit, Department of Clinical and Movement Neurosciences, University College London, Queen Square Institute of Neurology, London, UK.,Department of Clinical Neuroscience, Umea University, Umea, Sweden
| | - Albert F G Leentjens
- Department of Psychiatry and Neuropsychology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Alon Y Mogilner
- Center for Neuromodulation, New York University Langone Medical Center, New York, New York, USA
| | - Michael H Pourfar
- Center for Neuromodulation, New York University Langone Medical Center, New York, New York, USA
| | - Leonardo Almeida
- Norman Fixel Institute for Neurological Diseases , Program for Movement Disorders and Neurorestoration, Departments of Neurology and Neurosurgery, University of Florida, Gainesville, Florida, USA
| | - Aysegul Gunduz
- Norman Fixel Institute for Neurological Diseases , Program for Movement Disorders and Neurorestoration, Departments of Neurology and Neurosurgery, University of Florida, Gainesville, Florida, USA.,J Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida, USA
| | - Kelly D Foote
- Norman Fixel Institute for Neurological Diseases , Program for Movement Disorders and Neurorestoration, Departments of Neurology and Neurosurgery, University of Florida, Gainesville, Florida, USA
| | - Michael S Okun
- Norman Fixel Institute for Neurological Diseases , Program for Movement Disorders and Neurorestoration, Departments of Neurology and Neurosurgery, University of Florida, Gainesville, Florida, USA
| | - Christopher R Butson
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, Utah, USA.,Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, USA.,Department of Neurosurgery, University of Utah, Salt Lake City, Utah, USA.,Departments of Neurology and Psychiatry, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
19
|
Slopsema JP, Canna A, Uchenik M, Lehto LJ, Krieg J, Wilmerding L, Koski DM, Kobayashi N, Dao J, Blumenfeld M, Filip P, Min HK, Mangia S, Johnson MD, Michaeli S. Orientation-selective and directional deep brain stimulation in swine assessed by functional MRI at 3T. Neuroimage 2020; 224:117357. [PMID: 32916285 PMCID: PMC7783780 DOI: 10.1016/j.neuroimage.2020.117357] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 08/27/2020] [Accepted: 09/04/2020] [Indexed: 12/16/2022] Open
Abstract
Functional MRI (fMRI) has become an important tool for probing network-level effects of deep brain stimulation (DBS). Previous DBS-fMRI studies have shown that electrical stimulation of the ventrolateral (VL) thalamus can modulate sensorimotor cortices in a frequency and amplitude dependent manner. Here, we investigated, using a swine animal model, how the direction and orientation of the electric field, induced by VL-thalamus DBS, affects activity in the sensorimotor cortex. Adult swine underwent implantation of a novel 16-electrode (4 rows × 4 columns) directional DBS lead in the VL thalamus. A within-subject design was used to compare fMRI responses for (1) directional stimulation consisting of monopolar stimulation in four radial directions around the DBS lead, and (2) orientation-selective stimulation where an electric field dipole was rotated 0°−360° around a quadrangle of electrodes. Functional responses were quantified in the premotor, primary motor, and somatosensory cortices. High frequency electrical stimulation through leads implanted in the VL thalamus induced directional tuning in cortical response patterns to varying degrees depending on DBS lead position. Orientation-selective stimulation showed maximal functional response when the electric field was oriented approximately parallel to the DBS lead, which is consistent with known axonal orientations of the cortico-thalamocortical pathway. These results demonstrate that directional and orientation-selective stimulation paradigms in the VL thalamus can tune network-level modulation patterns in the sensorimotor cortex, which may have translational utility in improving functional outcomes of DBS therapy.
Collapse
Affiliation(s)
| | - Antonietta Canna
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota
| | | | - Lauri J Lehto
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota
| | - Jordan Krieg
- Department of Biomedical Engineering, University of Minnesota
| | | | - Dee M Koski
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota
| | - Naoharu Kobayashi
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota
| | - Joan Dao
- Department of Biomedical Engineering, University of Minnesota
| | | | - Pavel Filip
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota; Department of Neurology, Charles University, First Faculty of Medicine and General University Hospital, Prague, Czech Republic
| | | | - Silvia Mangia
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota
| | - Matthew D Johnson
- Department of Biomedical Engineering, University of Minnesota; Institute for Translational Neuroscience, University of Minnesota
| | - Shalom Michaeli
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota.
| |
Collapse
|
20
|
Vorwerk J, McCann D, Krüger J, Butson CR. Interactive computation and visualization of deep brain stimulation effects using Duality. COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING-IMAGING AND VISUALIZATION 2020; 8:3-14. [PMID: 32742820 DOI: 10.1080/21681163.2018.1484817] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Deep brain stimulation (DBS) is an established treatment for movement disorders such as Parkinson's disease or essential tremor. Currently, the selection of optimal stimulation settings is performed by iteratively adjusting the stimulation parameters and is a time consuming procedure that requires multiple clinic visits of several hours. Recently, computational models to predict and visualize the effect of DBS have been developed with the goal to simplify and accelerate this procedure by providing visual guidance and such models have been made available also on mobile devices. However, currently available visualization software still either lacks mobility, i.e., it is running on desktop computers and not easily available in clinical praxis, or flexibility, as the simulations that are visualized on mobile devices have to be precomputed. The goal of the pipeline presented in this paper is to close this gap: Using Duality, a newly developed software for the interactive visualization of simulation results, we implemented a pipeline that allows to compute DBS simulations in near-real time and instantaneously visualize the result on a tablet computer. Therefore, a client-server setup is used, so that the visualization and user interaction occur on the tablet computer, while the computations are carried out on a remote server. We present two examples for the use of Duality, one for postoperative programming and one for the planning of DBS surgery in a pre- or intraoperative setting. We carry out a performance analysis and present the results of a case study in which the pipeline for postoperative programming was applied.
Collapse
Affiliation(s)
- J Vorwerk
- Scientific Computing & Imaging (SCI) Institute, Department of Bioengineering, University of Utah, Salt Lake City, UT-8f112, USA
| | - D McCann
- Scientific Computing & Imaging (SCI) Institute, Department of Bioengineering, University of Utah, Salt Lake City, UT-8f112, USA
| | - J Krüger
- Center of Visual Data Analysis and Computer Graphics (COVIDAG) & HPC Group, University of Duisburg-Essen, 47057 Duisburg, Germany.,Scientific Computing & Imaging (SCI) Institute, Department of Bioengineering, University of Utah, Salt Lake City, UT-8f112, USA
| | - C R Butson
- Scientific Computing & Imaging (SCI) Institute, Department of Bioengineering, University of Utah, Salt Lake City, UT-8f112, USA
| |
Collapse
|
21
|
Kilohertz waveforms optimized to produce closed-state Na+ channel inactivation eliminate onset response in nerve conduction block. PLoS Comput Biol 2020; 16:e1007766. [PMID: 32542050 PMCID: PMC7316353 DOI: 10.1371/journal.pcbi.1007766] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 06/25/2020] [Accepted: 03/02/2020] [Indexed: 02/01/2023] Open
Abstract
The delivery of kilohertz frequency alternating current (KHFAC) generates rapid, controlled, and reversible conduction block in motor, sensory, and autonomic nerves, but causes transient activation of action potentials at the onset of the blocking current. We implemented a novel engineering optimization approach to design blocking waveforms that eliminated the onset response by moving voltage-gated Na+ channels (VGSCs) to closed-state inactivation (CSI) without first opening. We used computational models and particle swarm optimization (PSO) to design a charge-balanced 10 kHz biphasic current waveform that produced conduction block without onset firing in peripheral axons at specific locations and with specific diameters. The results indicate that it is possible to achieve onset-free KHFAC nerve block by causing CSI of VGSCs. Our novel approach for designing blocking waveforms and the resulting waveform may have utility in clinical applications of conduction block of peripheral nerve hyperactivity, for example in pain and spasticity. Many neurological disorders, including pain and spasticity, are characterized by undesirable increases in sensory, motor, or autonomic nerve activity. Local application of kilohertz frequency alternating currents (KHFAC) can effectively and completely block the conduction of undesired hyperactivity through peripheral nerves and could be a therapeutic approach for alleviating disease symptoms. However, KHFAC nerve block produces an undesirable initial burst of action potentials prior to achieving block. This onset firing may result in muscle contraction and pain and is a significant impediment to potential clinical applications of KHFAC nerve block. We present a novel engineering optimization approach for designing a blocking waveform that completely eliminated the onset firing in peripheral axons by moving voltage-gated Na+ channels to closed-state inactivation. Our results suggest that the resulting KHFAC waveform can generate electric nerve block without an onset response. Our approach for optimizing blocking waveforms represents a novel engineering design methodology with myriad potential applications and has relevance for the conduction block of peripheral nerve hyperactivity.
Collapse
|
22
|
Large-Scale Complex Network Community Detection Combined with Local Search and Genetic Algorithm. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10093126] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
With the development of network technology and the continuous advancement of society, the combination of various industries and the Internet has produced many large-scale complex networks. A common feature of complex networks is the community structure, which divides the network into clusters with tight internal connections and loose external connections. The community structure reveals the important structure and topological characteristics of the network. The detection of the community structure plays an important role in social network analysis and information recommendation. Therefore, based on the relevant theory of complex networks, this paper introduces several common community detection algorithms, analyzes the principles of particle swarm optimization (PSO) and genetic algorithm and proposes a particle swarm-genetic algorithm based on the hybrid algorithm strategy. According to the test function, the single and the proposed algorithm are tested, respectively. The results show that the algorithm can maintain the good local search performance of the particle swarm optimization algorithm and also utilizes the good global search ability of the genetic algorithm (GA) and has good algorithm performance. Experiments on each community detection algorithm on real network and artificially generated network data sets show that the particle swarm-genetic algorithm has better efficiency in large-scale complex real networks or artificially generated networks.
Collapse
|
23
|
Lu CW, Malaga KA, Chou KL, Chestek CA, Patil PG. High density microelectrode recording predicts span of therapeutic tissue activation volumes in subthalamic deep brain stimulation for Parkinson disease. Brain Stimul 2020; 13:412-419. [DOI: 10.1016/j.brs.2019.11.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 11/26/2019] [Accepted: 11/27/2019] [Indexed: 01/16/2023] Open
|
24
|
Vorwerk J, Brock AA, Anderson DN, Rolston JD, Butson CR. A retrospective evaluation of automated optimization of deep brain stimulation parameters. J Neural Eng 2019; 16:064002. [PMID: 31344689 PMCID: PMC7759010 DOI: 10.1088/1741-2552/ab35b1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
OBJECTIVE We performed a retrospective analysis of an optimization algorithm for the computation of patient-specific multipolar stimulation configurations employing multiple independent current/voltage sources. We evaluated whether the obtained stimulation configurations align with clinical data and whether the optimized stimulation configurations have the potential to lead to an equal or better stimulation of the target region as manual programming, while reducing the time required for programming sessions. APPROACH For three patients (five electrodes) diagnosed with essential tremor, we derived optimized multipolar stimulation configurations using an approach that is suitable for the application in clinical practice. To evaluate the automatically derived stimulation settings, we compared them to the results of the monopolar review. MAIN RESULTS We observe a good agreement between the findings of the monopolar review and the optimized stimulation configurations, with the algorithm assigning the maximal voltage in the optimized multipolar pattern to the contact that was found to lead to the best therapeutic effect in the clinical monopolar review in all cases. Additionally, our simulation results predict that the optimized stimulation settings lead to the activation of an equal or larger volume fraction of the target compared to the manually determined settings in all cases. SIGNIFICANCE Our results demonstrate the feasibility of an automatic determination of optimal DBS configurations and motivate a further evaluation of the applied optimization algorithm.
Collapse
Affiliation(s)
- Johannes Vorwerk
- Scientific Computing & Imaging (SCI) Institute, University of Utah, Salt Lake City, Utah, USA,Institute of Electrical and Biomedical Engineering, UMIT - Private University for Health Sciences, Medical Informatics and Technology, Hall in Tirol, Austria
| | - Andrea A. Brock
- Scientific Computing & Imaging (SCI) Institute, University of Utah, Salt Lake City, Utah, USA,Department of Neurosurgery, University of Utah, Salt Lake City, Utah, USA
| | - Daria N. Anderson
- Scientific Computing & Imaging (SCI) Institute, University of Utah, Salt Lake City, Utah, USA,Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, USA
| | - John D. Rolston
- Department of Neurosurgery, University of Utah, Salt Lake City, Utah, USA,Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, USA
| | - Christopher R. Butson
- Scientific Computing & Imaging (SCI) Institute, University of Utah, Salt Lake City, Utah, USA,Department of Neurosurgery, University of Utah, Salt Lake City, Utah, USA,Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, USA,Departments of Psychiatry and Neurology, University of Utah, Salt Lake City, Utah, USA,Correspondig Author.
| |
Collapse
|
25
|
Zhang S, Silburn P, Pouratian N, Cheeran B, Venkatesan L, Kent A, Schnitzler A. Comparing Current Steering Technologies for Directional Deep Brain Stimulation Using a Computational Model That Incorporates Heterogeneous Tissue Properties. Neuromodulation 2019; 23:469-477. [PMID: 31423642 PMCID: PMC7318189 DOI: 10.1111/ner.13031] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 06/27/2019] [Accepted: 07/17/2019] [Indexed: 12/03/2022]
Abstract
Objective A computational model that accounts for heterogeneous tissue properties was used to compare multiple independent current control (MICC), multi‐stim set (MSS), and concurrent activation (co‐activation) current steering technologies utilized in deep brain stimulation (DBS) on volume of tissue activated (VTA) and power consumption. Methods A computational model was implemented in Sim4Life v4.0 with the multimodal image‐based detailed anatomical (MIDA) model, which accounts for heterogeneous tissue properties. A segmented DBS lead placed in the subthalamic nucleus (STN). Three milliamperes of current (with a 90 μs pseudo‐biphasic waveform) was distributed between two electrodes with various current splits. The laterality, directional accuracy, volume, and shape of the VTAs using MICC, MSS and co‐activation, and their power consumption were computed and compared. Results MICC, MSS, and coactivation resulted in less laterality of steering than single‐segment activation. Both MICC and MSS show directional inaccuracy (more pronounced with MSS) during radial current steering. Co‐activation showed greater directional accuracy than MICC and MSS at centerline between the two activated electrodes. MSS VTA volume was smaller and more compact with less current spread outside the active electrode plane than MICC VTA. There was no consistent pattern of power drain between MSS and MICC, but electrode co‐activation always used less power than either fractionating paradigm. Conclusion While current fractionalization technologies can achieve current steering between two segmented electrodes, this study shows that there are important limitations in accuracy and focus of tissue activation when tissue heterogeneity is accounted for.
Collapse
Affiliation(s)
- Simeng Zhang
- Neuromodulation Division, Abbott, Plano, TX, USA
| | - Peter Silburn
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Nader Pouratian
- Department of Neurosurgery, University of California Los Angeles, Los Angeles, CA, USA
| | | | | | | | - Alfons Schnitzler
- Institute of Clinical Neuroscience and Medical Psychology and Department of Neurology, Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
26
|
Analysis of patient-specific stimulation with segmented leads in the subthalamic nucleus. PLoS One 2019; 14:e0217985. [PMID: 31216311 PMCID: PMC6584006 DOI: 10.1371/journal.pone.0217985] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 05/22/2019] [Indexed: 11/19/2022] Open
Abstract
Objective Segmented deep brain stimulation leads in the subthalamic nucleus have shown to increase therapeutic window using directional stimulation. However, it is not fully understood how these segmented leads with reduced electrode size modify the volume of tissue activated (VTA) and how this in turn relates with clinically observed therapeutic and side effect currents. Here, we investigated the differences between directional and omnidirectional stimulation and associated VTAs with patient-specific therapeutic and side effect currents for the two stimulation modes. Approach Nine patients with Parkinson’s disease underwent DBS implantation in the subthalamic nucleus. Therapeutic and side effect currents were identified intraoperatively with a segmented lead using directional and omnidirectional stimulation (these current thresholds were assessed in a blinded fashion). The electric field around the lead was simulated with a finite-element model for a range of stimulation currents for both stimulation modes. VTAs were estimated from the electric field by numerical differentiation and thresholding. Then for each patient, the VTAs for given therapeutic and side effect currents were projected onto the patient-specific subthalamic nucleus and lead position. Results Stimulation with segmented leads with reduced electrode size was associated with a significant reduction of VTA and a significant increase of radial distance in the best direction of stimulation. While beneficial effects were associated with activation volumes confined within the anatomical boundaries of the subthalamic nucleus at therapeutic currents, side effects were associated with activation volumes spreading beyond the nucleus’ boundaries. Significance The clinical benefits of segmented leads are likely to be obtained by a VTA confined within the subthalamic nucleus and a larger radial distance in the best stimulation direction, while steering the VTA away from unwanted fiber tracts outside the nucleus. Applying the same concepts at a larger scale and in chronically implanted patients may help to predict the best stimulation area.
Collapse
|
27
|
Howell B, Gunalan K, McIntyre CC. A Driving-Force Predictor for Estimating Pathway Activation in Patient-Specific Models of Deep Brain Stimulation. Neuromodulation 2019; 22:403-415. [PMID: 30775834 PMCID: PMC6579680 DOI: 10.1111/ner.12929] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 11/30/2018] [Accepted: 12/20/2018] [Indexed: 01/03/2023]
Abstract
OBJECTIVE Detailed biophysical modeling of deep brain stimulation (DBS) provides a theoretical approach to quantify the cellular response to the applied electric field. However, the most accurate models for performing such analyses, patient-specific field-cable (FC) pathway-activation models (PAMs), are so technically demanding to implement that their use in clinical research is greatly limited. Predictive algorithms can simplify PAM calculations, but they generally fail to reproduce the output of FC models when evaluated over a wide range of clinically relevant stimulation parameters. Therefore, we set out to develop a novel driving-force (DF) predictive algorithm (DF-Howell), customized to the study of DBS, which can better match FC results. METHODS We developed the DF-Howell algorithm and compared its predictions to FC PAM results, as well as to the DF-Peterson algorithm, which is currently the most accurate and generalizable DF-based method. Comparison of the various methods was quantified within the context of subthalamic DBS using activation thresholds of axons representing the internal capsule, hyperdirect pathway, and cerebellothalamic tract for various combinations of fiber diameters, stimulus pulse widths, and electrode configurations. RESULTS The DF-Howell predictor estimated activation of the three axonal pathways with less than a 6.2% mean error with respect to the FC PAM for all 21 cases tested. In 15 of the 21 cases, DF-Howell outperformed DF-Peterson in estimating pathway activation, reducing mean-errors up to 22.5%. CONCLUSIONS DF-Howell represents an accurate predictor for estimating axonal pathway activation in patient-specific DBS models, but errors still exist relative to FC PAM calculations. Nonetheless, the tractability of DF algorithms helps to reduce the technical barriers for performing accurate biophysical modeling in clinical DBS research studies.
Collapse
Affiliation(s)
- Bryan Howell
- Case Western Reserve University, Department of Biomedical Engineering, Cleveland, OH, USA
- Emory University, Department of Psychiatry and Behavioral Science, Atlanta, GA, USA
| | - Kabilar Gunalan
- Case Western Reserve University, Department of Biomedical Engineering, Cleveland, OH, USA
| | - Cameron C. McIntyre
- Case Western Reserve University, Department of Biomedical Engineering, Cleveland, OH, USA
| |
Collapse
|
28
|
Peña E, Zhang S, Patriat R, Aman JE, Vitek JL, Harel N, Johnson MD. Multi-objective particle swarm optimization for postoperative deep brain stimulation targeting of subthalamic nucleus pathways. J Neural Eng 2018; 15:066020. [PMID: 30211697 PMCID: PMC6424118 DOI: 10.1088/1741-2552/aae12f] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVE The effectiveness of deep brain stimulation (DBS) therapy strongly depends on precise surgical targeting of intracranial leads and on clinical optimization of stimulation settings. Recent advances in surgical targeting, multi-electrode designs, and multi-channel independent current-controlled stimulation are poised to enable finer control in modulating pathways within the brain. However, the large stimulation parameter space enabled by these technologies also poses significant challenges for efficiently identifying the most therapeutic DBS setting for a given patient. Here, we present a computational approach for programming directional DBS leads that is based on a non-convex optimization framework for neural pathway targeting. APPROACH The algorithm integrates patient-specific pre-operative 7 T MR imaging, post-operative CT scans, and multi-objective particle swarm optimization (MOPSO) methods using dominance based-criteria and incorporating multiple neural pathways simultaneously. The algorithm was evaluated on eight patient-specific models of subthalamic nucleus (STN) DBS to identify electrode configurations and stimulation amplitudes to optimally activate or avoid six clinically relevant pathways: motor territory of STN, non-motor territory of STN, internal capsule, superior cerebellar peduncle, thalamic fasciculus, and hyperdirect pathway. MAIN RESULTS Across the patient-specific models, single-electrode stimulation showed significant correlations across modeled pathways, particularly for motor and non-motor STN efferents. The MOPSO approach was able to identify multi-electrode configurations that achieved improved targeting of motor STN efferents and hyperdirect pathway afferents than that achieved by any single-electrode monopolar setting at equivalent power levels. SIGNIFICANCE These results suggest that pathway targeting with patient-specific model-based optimization algorithms can efficiently identify non-trivial electrode configurations for enhancing activation of clinically relevant pathways. However, the results also indicate that inter-pathway correlations can limit selectivity for certain pathways even with directional DBS leads.
Collapse
Affiliation(s)
- Edgar Peña
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, United States
| | - Simeng Zhang
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, United States
| | - Remi Patriat
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN 55455, United States
| | - Joshua E. Aman
- Department of Neurology, University of Minnesota, Minneapolis, MN 55455, United States
| | - Jerrold L. Vitek
- Department of Neurology, University of Minnesota, Minneapolis, MN 55455, United States
| | - Noam Harel
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN 55455, United States
| | - Matthew D. Johnson
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, United States
| |
Collapse
|
29
|
Hellerbach A, Dembek T, Hoevels M, Holz J, Gierich A, Luyken K, Barbe M, Wirths J, Visser-Vandewalle V, Treuer H. DiODe: Directional Orientation Detection of Segmented Deep Brain Stimulation Leads: A Sequential Algorithm Based on CT Imaging. Stereotact Funct Neurosurg 2018; 96:335-341. [DOI: 10.1159/000494738] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 10/07/2018] [Indexed: 11/19/2022]
|
30
|
Patriat R, Cooper SE, Duchin Y, Niederer J, Lenglet C, Aman J, Park MC, Vitek JL, Harel N. Individualized tractography-based parcellation of the globus pallidus pars interna using 7T MRI in movement disorder patients prior to DBS surgery. Neuroimage 2018; 178:198-209. [PMID: 29787868 PMCID: PMC6046264 DOI: 10.1016/j.neuroimage.2018.05.048] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 04/26/2018] [Accepted: 05/19/2018] [Indexed: 11/19/2022] Open
Abstract
The success of deep brain stimulation (DBS) surgeries for the treatment of movement disorders relies on the accurate placement of an electrode within the motor portion of subcortical brain targets. However, the high number of electrodes requiring relocation indicates that today's methods do not ensure sufficient accuracy for all patients. Here, with the goal of aiding DBS targeting, we use 7 Tesla (T) MRI data to identify the functional territories and parcellate the globus pallidus pars interna (GPi) into motor, associative and limbic regions in individual subjects. 7 T MRI scans were performed in seventeen patients (prior to DBS surgery) and one healthy control. Tractography-based parcellation of each patient's GPi was performed. The cortex was divided into four masks representing motor, limbic, associative and "other" regions. Given that no direct connections between the GPi and the cortex have been shown to exist, the parcellation was carried out in two steps: 1) The thalamus was parcellated based on the cortical targets, 2) The GPi was parcellated using the thalamus parcels derived from step 1. Reproducibility, via repeated scans of a healthy subject, and validity of the findings, using different anatomical pathways for parcellation, were assessed. Lastly, post-operative imaging data was used to validate and determine the clinical relevance of the parcellation. The organization of the functional territories of the GPi observed in our individual patient population agrees with that previously reported in the literature: the motor territory was located posterolaterally, followed anteriorly by the associative region, and further antero-ventrally by the limbic territory. While this organizational pattern was observed across patients, there was considerable variability among patients. The organization of the functional territories of the GPi was remarkably reproducible in intra-subject scans. Furthermore, the organizational pattern was observed consistently by performing the parcellation of the GPi via the thalamus and via a different pathway, going through the striatum. Finally, the active therapeutic contact of the DBS electrode, identified with a combination of post-operative imaging and post-surgery DBS programming, overlapped with the high-probability "motor" region of the GPi as defined by imaging-based methods. The consistency, validity, and clinical relevance of our findings have the potential for improving DBS targeting, by increasing patient-specific knowledge of subregions of the GPi to be targeted or avoided, at the stage of surgical planning, and later, at the stage when stimulation is adjusted.
Collapse
Affiliation(s)
- Rémi Patriat
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, United States.
| | - Scott E Cooper
- Department of Neurology, University of Minnesota, Minneapolis, MN, United States
| | - Yuval Duchin
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, United States
| | - Jacob Niederer
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, United States
| | - Christophe Lenglet
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, United States
| | - Joshua Aman
- Department of Neurology, University of Minnesota, Minneapolis, MN, United States
| | - Michael C Park
- Department of Neurology, University of Minnesota, Minneapolis, MN, United States; Department of Neurosurgery, University of Minnesota, Minneapolis, MN, United States
| | - Jerrold L Vitek
- Department of Neurology, University of Minnesota, Minneapolis, MN, United States
| | - Noam Harel
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, United States; Department of Neurosurgery, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
31
|
Santaniello S, Gale JT, Sarma SV. Systems approaches to optimizing deep brain stimulation therapies in Parkinson's disease. WILEY INTERDISCIPLINARY REVIEWS. SYSTEMS BIOLOGY AND MEDICINE 2018; 10:e1421. [PMID: 29558564 PMCID: PMC6148418 DOI: 10.1002/wsbm.1421] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 01/29/2018] [Accepted: 02/01/2018] [Indexed: 01/17/2023]
Abstract
Over the last 30 years, deep brain stimulation (DBS) has been used to treat chronic neurological diseases like dystonia, obsessive-compulsive disorders, essential tremor, Parkinson's disease, and more recently, dementias, depression, cognitive disorders, and epilepsy. Despite its wide use, DBS presents numerous challenges for both clinicians and engineers. One challenge is the design of novel, more efficient DBS therapies, which are hampered by the lack of complete understanding about the cellular mechanisms of therapeutic DBS. Another challenge is the existence of redundancy in clinical outcomes, that is, different DBS programs can result in similar clinical benefits but very little information (e.g., predictive models, longitudinal data, metrics, etc.) is available to select one program over another. Finally, there is high variability in patients' responses to DBS, which forces clinicians to carefully adjust the stimulation settings to each patient via lengthy programming sessions. Researchers in neural engineering and systems biology have been tackling these challenges over the past few years with the specific goal of developing novel DBS therapies, design methodologies, and computational tools that optimize the therapeutic effects of DBS in each patient. Furthermore, efforts are being made to automatically adapt the DBS treatment to the fluctuations of disease symptoms. A review of the quantitative approaches currently available for the treatment of Parkinson's disease is presented here with an emphasis on the contributions that systems theoretical approaches have provided to understand the global dynamics of complex neuronal circuits in the brain under DBS. This article is categorized under: Translational, Genomic, and Systems Medicine > Therapeutic Methods Analytical and Computational Methods > Computational Methods Analytical and Computational Methods > Dynamical Methods Physiology > Mammalian Physiology in Health and Disease.
Collapse
Affiliation(s)
- Sabato Santaniello
- Biomedical Engineering Department and CT Institute for the Brain and Cognitive Sciences, University of Connecticut; ORCID-ID: 0000-0002-2133-9471
| | - John T. Gale
- Department of Neurosurgery, Emory University School of Medicine
| | - Sridevi V. Sarma
- Department of Biomedical Engineering and Institute for Computational Medicine, Johns Hopkins University
| |
Collapse
|
32
|
Cassar IR, Titus ND, Grill WM. An improved genetic algorithm for designing optimal temporal patterns of neural stimulation. J Neural Eng 2018; 14:066013. [PMID: 28747582 DOI: 10.1088/1741-2552/aa8270] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
OBJECTIVE Electrical neuromodulation therapies typically apply constant frequency stimulation, but non-regular temporal patterns of stimulation may be more effective and more efficient. However, the design space for temporal patterns is exceedingly large, and model-based optimization is required for pattern design. We designed and implemented a modified genetic algorithm (GA) intended for design optimal temporal patterns of electrical neuromodulation. APPROACH We tested and modified standard GA methods for application to designing temporal patterns of neural stimulation. We evaluated each modification individually and all modifications collectively by comparing performance to the standard GA across three test functions and two biophysically-based models of neural stimulation. MAIN RESULTS The proposed modifications of the GA significantly improved performance across the test functions and performed best when all were used collectively. The standard GA found patterns that outperformed fixed-frequency, clinically-standard patterns in biophysically-based models of neural stimulation, but the modified GA, in many fewer iterations, consistently converged to higher-scoring, non-regular patterns of stimulation. SIGNIFICANCE The proposed improvements to standard GA methodology reduced the number of iterations required for convergence and identified superior solutions.
Collapse
|
33
|
Sandler RA, Geng K, Song D, Hampson RE, Witcher MR, Deadwyler SA, Berger TW, Marmarelis VZ. Designing Patient-Specific Optimal Neurostimulation Patterns for Seizure Suppression. Neural Comput 2018; 30:1180-1208. [PMID: 29566356 DOI: 10.1162/neco_a_01075] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Neurostimulation is a promising therapy for abating epileptic seizures. However, it is extremely difficult to identify optimal stimulation patterns experimentally. In this study, human recordings are used to develop a functional 24 neuron network statistical model of hippocampal connectivity and dynamics. Spontaneous seizure-like activity is induced in silico in this reconstructed neuronal network. The network is then used as a testbed to design and validate a wide range of neurostimulation patterns. Commonly used periodic trains were not able to permanently abate seizures at any frequency. A simulated annealing global optimization algorithm was then used to identify an optimal stimulation pattern, which successfully abated 92% of seizures. Finally, in a fully responsive, or closed-loop, neurostimulation paradigm, the optimal stimulation successfully prevented the network from entering the seizure state. We propose that the framework presented here for algorithmically identifying patient-specific neurostimulation patterns can greatly increase the efficacy of neurostimulation devices for seizures.
Collapse
Affiliation(s)
- Roman A Sandler
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, U.S.A.
| | - Kunling Geng
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, U.S.A.
| | - Dong Song
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, U.S.A.
| | - Robert E Hampson
- Department of Physiology and Pharmacology, Wake Forest University, Winston-Salem, NC 27109, U.S.A.
| | - Mark R Witcher
- Department of Neurosurgery, Wake Forest University, Winston-Salem, NC 27109, U.S.A.
| | - Sam A Deadwyler
- Department of Physiology and Pharmacology, Wake Forest University, Winston-Salem, NC 27109, U.S.A.
| | - Theodore W Berger
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, U.S.A.
| | - Vasilis Z Marmarelis
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, U.S.A.
| |
Collapse
|
34
|
Ramirez-Zamora A, Giordano JJ, Gunduz A, Brown P, Sanchez JC, Foote KD, Almeida L, Starr PA, Bronte-Stewart HM, Hu W, McIntyre C, Goodman W, Kumsa D, Grill WM, Walker HC, Johnson MD, Vitek JL, Greene D, Rizzuto DS, Song D, Berger TW, Hampson RE, Deadwyler SA, Hochberg LR, Schiff ND, Stypulkowski P, Worrell G, Tiruvadi V, Mayberg HS, Jimenez-Shahed J, Nanda P, Sheth SA, Gross RE, Lempka SF, Li L, Deeb W, Okun MS. Evolving Applications, Technological Challenges and Future Opportunities in Neuromodulation: Proceedings of the Fifth Annual Deep Brain Stimulation Think Tank. Front Neurosci 2018; 11:734. [PMID: 29416498 PMCID: PMC5787550 DOI: 10.3389/fnins.2017.00734] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 12/15/2017] [Indexed: 12/21/2022] Open
Abstract
The annual Deep Brain Stimulation (DBS) Think Tank provides a focal opportunity for a multidisciplinary ensemble of experts in the field of neuromodulation to discuss advancements and forthcoming opportunities and challenges in the field. The proceedings of the fifth Think Tank summarize progress in neuromodulation neurotechnology and techniques for the treatment of a range of neuropsychiatric conditions including Parkinson's disease, dystonia, essential tremor, Tourette syndrome, obsessive compulsive disorder, epilepsy and cognitive, and motor disorders. Each section of this overview of the meeting provides insight to the critical elements of discussion, current challenges, and identified future directions of scientific and technological development and application. The report addresses key issues in developing, and emphasizes major innovations that have occurred during the past year. Specifically, this year's meeting focused on technical developments in DBS, design considerations for DBS electrodes, improved sensors, neuronal signal processing, advancements in development and uses of responsive DBS (closed-loop systems), updates on National Institutes of Health and DARPA DBS programs of the BRAIN initiative, and neuroethical and policy issues arising in and from DBS research and applications in practice.
Collapse
Affiliation(s)
- Adolfo Ramirez-Zamora
- Department of Neurology, Center for Movement Disorders and Neurorestoration, University of Florida, Gainesville, FL, United States,*Correspondence: Adolfo Ramirez-Zamora
| | - James J. Giordano
- Department of Neurology, Pellegrino Center for Clinical Bioethics, Georgetown University Medical Center, Washington, DC, United States
| | - Aysegul Gunduz
- J. Crayton Pruitt Family Department of Biomedical Engineering, Center for Movement Disorders and Neurorestoration, University of Florida, Gainesville, FL, United States
| | - Peter Brown
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Justin C. Sanchez
- Biological Technologies Office, Defense Advanced Research Projects Agency, Arlington, VA, United States
| | - Kelly D. Foote
- Department of Neurosurgery, Center for Movement Disorders and Neurorestoration, University of Florida, Gainesville, FL, United States
| | - Leonardo Almeida
- Department of Neurology, Center for Movement Disorders and Neurorestoration, University of Florida, Gainesville, FL, United States
| | - Philip A. Starr
- Department of Neurological Surgery, Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA, United States
| | - Helen M. Bronte-Stewart
- Departments of Neurology and Neurological Sciences and Neurosurgery, Stanford University, Stanford, CA, United States
| | - Wei Hu
- Department of Neurology, Center for Movement Disorders and Neurorestoration, University of Florida, Gainesville, FL, United States
| | - Cameron McIntyre
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
| | - Wayne Goodman
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Doe Kumsa
- Division of Biomedical Physics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, United States Food and Drug Administration, White Oak Federal Research Center, Silver Spring, MD, United States
| | - Warren M. Grill
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
| | - Harrison C. Walker
- Division of Movement Disorders, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, United States,Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Matthew D. Johnson
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Jerrold L. Vitek
- Department of Neurology, University of Minnesota, Minneapolis, MN, United States
| | - David Greene
- NeuroPace, Inc., Mountain View, CA, United States
| | - Daniel S. Rizzuto
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, United States
| | - Dong Song
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States
| | - Theodore W. Berger
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States
| | - Robert E. Hampson
- Physiology and Pharmacology, Wake Forest University School of Medicine, Wake Forest University, Winston-Salem, NC, United States
| | - Sam A. Deadwyler
- Physiology and Pharmacology, Wake Forest University School of Medicine, Wake Forest University, Winston-Salem, NC, United States
| | - Leigh R. Hochberg
- Department of Neurology, Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital, Harvard Medical School, Harvard University, Boston, MA, United States,Center for Neurorestoration and Neurotechnology, Rehabilitation R and D Service, Veterans Affairs Medical Center, Providence, RI, United States,School of Engineering and Brown Institute for Brain Science, Brown University, Providence, RI, United States
| | - Nicholas D. Schiff
- Laboratory of Cognitive Neuromodulation, Feil Family Brain Mind Research Institute, Weill Cornell Medicine, New York, NY, United States
| | | | - Greg Worrell
- Department of Neurology, Mayo Clinic, Rochester, MN, United States
| | - Vineet Tiruvadi
- Department of Biomedical Engineering, Georgia Institute of Technology, Emory University School of Medicine, Emory University, Atlanta, GA, United States
| | - Helen S. Mayberg
- Departments of Psychiatry, Neurology, and Radiology, Emory University School of Medicine, Emory University, Atlanta, GA, United States
| | - Joohi Jimenez-Shahed
- Parkinson's Disease Center and Movement Disorders Clinic, Department of Neurology, Baylor College of Medicine, Houston, TX, United States
| | - Pranav Nanda
- Department of Neurological Surgery, The Neurological Institute, Columbia University Herbert and Florence Irving Medical Center, Colombia University, New York, NY, United States
| | - Sameer A. Sheth
- Department of Neurological Surgery, The Neurological Institute, Columbia University Herbert and Florence Irving Medical Center, Colombia University, New York, NY, United States
| | - Robert E. Gross
- Department of Neurosurgery, Emory University, Atlanta, GA, United States
| | - Scott F. Lempka
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Luming Li
- National Engineering Laboratory for Neuromodulation, School of Aerospace Engineering, Tsinghua University, Beijing, China,Precision Medicine and Healthcare Research Center, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Beijing, China,Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing, China
| | - Wissam Deeb
- Department of Neurology, Center for Movement Disorders and Neurorestoration, University of Florida, Gainesville, FL, United States
| | - Michael S. Okun
- Department of Neurology, Center for Movement Disorders and Neurorestoration, University of Florida, Gainesville, FL, United States
| |
Collapse
|
35
|
van Dijk KJ, Verhagen R, Bour LJ, Heida C, Veltink PH. Avoiding Internal Capsule Stimulation With a New Eight-Channel Steering Deep Brain Stimulation Lead. Neuromodulation 2017; 21:553-561. [DOI: 10.1111/ner.12702] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 08/22/2017] [Accepted: 08/25/2017] [Indexed: 11/30/2022]
Affiliation(s)
- Kees J. van Dijk
- MIRA Institute for Biomedical Engineering and Technical Medicine, University of Twente; Enschede NL The Netherlands
| | - Rens Verhagen
- Department of Neurology/Clinical Neurophysiology; Academic Medical Center; Amsterdam NL The Netherlands
| | - Lo J. Bour
- Department of Neurology/Clinical Neurophysiology; Academic Medical Center; Amsterdam NL The Netherlands
| | - Ciska Heida
- MIRA Institute for Biomedical Engineering and Technical Medicine, University of Twente; Enschede NL The Netherlands
| | - Peter H. Veltink
- MIRA Institute for Biomedical Engineering and Technical Medicine, University of Twente; Enschede NL The Netherlands
| |
Collapse
|
36
|
Sitz A, Hoevels M, Hellerbach A, Gierich A, Luyken K, Dembek TA, Klehr M, Wirths J, Visser-Vandewalle V, Treuer H. Determining the orientation angle of directional leads for deep brain stimulation using computed tomography and digital x-ray imaging: A phantom study. Med Phys 2017. [PMID: 28639387 DOI: 10.1002/mp.12424] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE Orientating the angle of directional leads for deep brain stimulation (DBS) in an axial plane introduces a new degree of freedom that is indicated by embedded anisotropic directional markers. Our aim was to develop algorithms to determine lead orientation angles from computed tomography (CT) and stereotactic x-ray imaging using standard clinical protocols, and subsequently assess the accuracy of both methods. METHODS In CT the anisotropic marker artifact was taken as a signature of the lead orientation angle and analyzed using discrete Fourier transform of circular intensity profiles. The orientation angle was determined from phase angles at a frequency 2/360° and corrected for aberrations at oblique leads. In x-ray imaging, frontal and lateral images were registered to stereotactic space and sub-images containing directional markers were extracted. These images were compared with projection images of an identically located virtual marker at different orientation angles. A similarity index was calculated and used to determine the lead orientation angle. Both methods were tested using epoxy phantoms containing directional leads (Cartesia™, Boston Scientific, Marlborough, USA) with known orientation. Anthropomorphic phantoms were used to compare both methods for DBS cases. RESULTS Mean deviation between CT and x-ray was 1.5° ± 3.6° (range: -2.3° to 7.9°) for epoxy phantoms and 3.6° ± 7.1° (range: -5.6° to 14.6°) for anthropomorphic phantoms. After correction for imperfections in the epoxy phantoms, the mean deviation from ground truth was 0.0° ± 5.0° (range: -12° to 14°) for x-ray. For CT the results depended on the polar angle of the lead in the scanner. Mean deviation was -0.3° ± 1.9° (range: -4.6° to 6.6°) or 1.6° ± 8.9° (range: -23° to 34°) for polar angles ≤ 40° or > 40°. CONCLUSIONS The results show that both imaging modalities can be used to determine lead orientation angles with high accuracy. CT is superior to x-ray imaging, but oblique leads (polar angle > 40°) show limited precision due to the current design of the directional marker.
Collapse
Affiliation(s)
- Alexander Sitz
- Department of Stereotactic and Functional Neurosurgery, University Hospital of Cologne, Cologne, 50924, Germany
| | - Mauritius Hoevels
- Department of Stereotactic and Functional Neurosurgery, University Hospital of Cologne, Cologne, 50924, Germany
| | - Alexandra Hellerbach
- Department of Stereotactic and Functional Neurosurgery, University Hospital of Cologne, Cologne, 50924, Germany
| | - Andreas Gierich
- Department of Stereotactic and Functional Neurosurgery, University Hospital of Cologne, Cologne, 50924, Germany
| | - Klaus Luyken
- Department of Stereotactic and Functional Neurosurgery, University Hospital of Cologne, Cologne, 50924, Germany
| | - Till A Dembek
- Department of Stereotactic and Functional Neurosurgery, University Hospital of Cologne, Cologne, 50924, Germany.,Department of Neurology, University Hospital of Cologne, Cologne, 50924, Germany
| | - Martin Klehr
- Department of Stereotactic and Functional Neurosurgery, University Hospital of Cologne, Cologne, 50924, Germany
| | - Jochen Wirths
- Department of Stereotactic and Functional Neurosurgery, University Hospital of Cologne, Cologne, 50924, Germany
| | - Veerle Visser-Vandewalle
- Department of Stereotactic and Functional Neurosurgery, University Hospital of Cologne, Cologne, 50924, Germany
| | - Harald Treuer
- Department of Stereotactic and Functional Neurosurgery, University Hospital of Cologne, Cologne, 50924, Germany
| |
Collapse
|
37
|
Computational modeling to advance deep brain stimulation for the treatment of Parkinson’s disease. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.ddmod.2017.02.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|