1
|
Li H, Dong L, Liu J, Zhang X, Zhang H. Abnormal characteristics in disorders of consciousness: A resting-state functional magnetic resonance imaging study. Brain Res 2025; 1850:149401. [PMID: 39674532 DOI: 10.1016/j.brainres.2024.149401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/20/2024] [Accepted: 12/10/2024] [Indexed: 12/16/2024]
Abstract
AIMS To explore the functional brain imaging characteristics of patients with disorders of consciousness (DoC). METHODS This prospective cohort study consecutively enrolled 27 patients in minimally conscious state (MCS), 23 in vegetative state (VS), and 25 age-matched healthy controls (HC). Resting-state functional magnetic resonance imaging (rs-fMRI) was employed to evaluate the amplitude of low-frequency fluctuation (ALFF), regional homogeneity (ReHo), degree centrality (DC), and functional connectivity (FC). Sliding windows approach was conducted to construct dynamic FC (dFC) matrices. Moreover, receiver operating characteristic analysis and Pearson correlation were used to distinguish these altered characteristics in DoC. RESULTS Both MCS and VS exhibited lower ALFF, ReHo, and DC values, along with reduced FC in multiple brain regions compared with HC. Furthermore, the values in certain regions of VS were lower than those in MCS. The primary differences in brain function between patients with varying levels of consciousness were evident in the cortico-striatopallidal-thalamo-cortical mesocircuit. Significant differences in the temporal properties of dFC (including frequency, mean dwell time, number of transitions, and transition probability) were also noted among the three groups. Moreover, these multimodal alterations demonstrated high classificatory accuracy (AUC > 0.8) and were correlated with the Coma Recovery Scale-Revised (CRS-R). CONCLUSION Patients with DoC displayed abnormal patterns in local and global dynamic and static brain functions. These alterations in rs-fMRI were closely related to the level of consciousness.
Collapse
Affiliation(s)
- Hui Li
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; China Rehabilitation Research Center, Beijing, China; University of Health and Rehabilitation Sciences, Qingdao, Shandong, China
| | - Linghui Dong
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; China Rehabilitation Research Center, Beijing, China; University of Health and Rehabilitation Sciences, Qingdao, Shandong, China
| | - Jiajie Liu
- China Rehabilitation Research Center, Beijing, China; Capital Medical University, Beijing, China
| | | | - Hao Zhang
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; China Rehabilitation Research Center, Beijing, China; University of Health and Rehabilitation Sciences, Qingdao, Shandong, China; Capital Medical University, Beijing, China.
| |
Collapse
|
2
|
Ge Y, Yin J, Chen C, Yang S, Han Y, Ding C, Zheng J, Zheng Y, Zhang J. An EEG-based framework for automated discrimination of conversion to Alzheimer's disease in patients with amnestic mild cognitive impairment: an 18-month longitudinal study. Front Aging Neurosci 2025; 16:1470836. [PMID: 39834619 PMCID: PMC11743677 DOI: 10.3389/fnagi.2024.1470836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 12/17/2024] [Indexed: 01/22/2025] Open
Abstract
Background As a clinical precursor to Alzheimer's disease (AD), amnestic mild cognitive impairment (aMCI) bears a considerably heightened risk of transitioning to AD compared to cognitively normal elders. Early prediction of whether aMCI will progress to AD is of paramount importance, as it can provide pivotal guidance for subsequent clinical interventions in an early and effective manner. Methods A total of 107 aMCI cases were enrolled and their electroencephalogram (EEG) data were collected at the time of the initial diagnosis. During 18-month follow-up period, 42 individuals progressed to AD (PMCI), while 65 remained in the aMCI stage (SMCI). Spectral, nonlinear, and functional connectivity features were extracted from the EEG data, subjected to feature selection and dimensionality reduction, and then fed into various machine learning classifiers for discrimination. The performance of each model was assessed using 10-fold cross-validation and evaluated in terms of accuracy (ACC), area under the curve (AUC), sensitivity (SEN), specificity (SPE), positive predictive value (PPV), and F1-score. Results Compared to SMCI patients, PMCI patients exhibit a trend of "high to low" frequency shift, decreased complexity, and a disconnection phenomenon in EEG signals. An epoch-based classification procedure, utilizing the extracted EEG features and k-nearest neighbor (KNN) classifier, achieved the ACC of 99.96%, AUC of 99.97%, SEN of 99.98%, SPE of 99.95%, PPV of 99.93%, and F1-score of 99.96%. Meanwhile, the subject-based classification procedure also demonstrated commendable performance, achieving an ACC of 78.37%, an AUC of 83.89%, SEN of 77.68%, SPE of 76.24%, PPV of 82.55%, and F1-score of 78.47%. Conclusion Aiming to explore the EEG biomarkers with predictive value for AD in the early stages of aMCI, the proposed discriminant framework provided robust longitudinal evidence for the trajectory of the aMCI cases, aiding in the achievement of early diagnosis and proactive intervention.
Collapse
Affiliation(s)
- Yingfeng Ge
- Department of Medical Statistics, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Jianan Yin
- Department of Medical Statistics, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Caie Chen
- Department of Medical Statistics, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Shuo Yang
- Department of Medical Statistics, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Yuduan Han
- Department of Medical Statistics, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Chonglong Ding
- Department of Medical Statistics, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Jiaming Zheng
- Department of Clinical Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yifan Zheng
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jinxin Zhang
- Department of Medical Statistics, School of Public Health, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
3
|
Taguas I, Doval S, Maestú F, López-Sanz D. Toward a more comprehensive understanding of network centrality disruption in amnestic mild cognitive impairment: a MEG multilayer approach. Alzheimers Res Ther 2024; 16:216. [PMID: 39385281 PMCID: PMC11462918 DOI: 10.1186/s13195-024-01576-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 09/13/2024] [Indexed: 10/12/2024]
Abstract
BACKGROUND Alzheimer's Disease (AD) is the most common form of dementia. Its early stage, amnestic Mild Cognitive Impairment (aMCI), is characterized by disrupted information flow in the brain. Previous studies have yielded inconsistent results when using electrophysiological techniques to investigate functional connectivity changes in AD, and a contributing factor may be the study of brain activity divided into frequencies. METHODS Our study aimed to address this issue by employing a cross-frequency approach to compare the functional networks of 172 healthy subjects and 105 aMCI patients. Using magnetoencephalography, we constructed source-based multilayer graphs considering both intra- and inter-frequency functional connectivity. We then assessed changes in network organization through three centrality measures, and combined them into a unified centrality score to provide a comprehensive assessment of centrality disruption in aMCI. RESULTS The results revealed a noteworthy shift in centrality distribution in aMCI patients, both in terms of spatial distribution and frequency. Posterior brain regions decrease synchrony between their high-frequency oscillations and other regions' activity across all frequencies, while anterior regions increase synchrony between their low-frequency oscillations and other regions' activity across all frequencies. Thus, posterior regions reduce their relative importance in favor of anterior regions. CONCLUSIONS Our findings provide valuable insights into the intricate changes that occur in functional brain networks during the early stages of AD, demonstrating that considering the interplays between different frequency bands enhances our understanding of AD network dynamics and setting a precedent for the study of functional networks using a multilayer approach.
Collapse
Affiliation(s)
- Ignacio Taguas
- Center for Cognitive and Computational Neuroscience, Complutense University of Madrid, Madrid, 28015, Spain.
- Department of Legal Medicine, Psychiatry and Pathology, Complutense University of Madrid, Madrid, 28040, Spain.
| | - Sandra Doval
- Center for Cognitive and Computational Neuroscience, Complutense University of Madrid, Madrid, 28015, Spain
- Department of Experimental Psychology, Cognitive Psychology and Speech and Language Therapy, Complutense University of Madrid, Pozuelo de Alarcón, 28223, Spain
| | - Fernando Maestú
- Center for Cognitive and Computational Neuroscience, Complutense University of Madrid, Madrid, 28015, Spain.
- Department of Experimental Psychology, Cognitive Psychology and Speech and Language Therapy, Complutense University of Madrid, Pozuelo de Alarcón, 28223, Spain.
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), Madrid, 28240, Spain.
| | - David López-Sanz
- Center for Cognitive and Computational Neuroscience, Complutense University of Madrid, Madrid, 28015, Spain
- Department of Experimental Psychology, Cognitive Psychology and Speech and Language Therapy, Complutense University of Madrid, Pozuelo de Alarcón, 28223, Spain
| |
Collapse
|
4
|
Hasoon J, Hamilton CA, Schumacher J, Colloby S, Donaghy PC, Thomas AJ, Taylor JP. EEG Functional Connectivity Differences Predict Future Conversion to Dementia in Mild Cognitive Impairment With Lewy Body or Alzheimer Disease. Int J Geriatr Psychiatry 2024; 39:e6138. [PMID: 39261275 DOI: 10.1002/gps.6138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 08/04/2024] [Accepted: 08/13/2024] [Indexed: 09/13/2024]
Abstract
BACKGROUND Predicting which individuals may convert to dementia from mild cognitive impairment (MCI) remains difficult in clinical practice. Electroencephalography (EEG) is a widely available investigation but there is limited research exploring EEG connectivity differences in patients with MCI who convert to dementia. METHODS Participants with a diagnosis of MCI due to Alzheimer's disease (MCI-AD) or Lewy body disease (MCI-LB) underwent resting state EEG recording. They were followed up annually with a review of the clinical diagnosis (n = 66). Participants with a diagnosis of dementia at year 1 or year 2 follow up were classed as converters (n = 23) and those with a diagnosis of MCI at year 2 were classed as stable (n = 43). We used phase lag index (PLI) to estimate functional connectivity as well as analysing dominant frequency (DF) and relative band power. The Network-based statistic (NBS) toolbox was used to assess differences in network topology. RESULTS The converting group had reduced DF (U = 285.5, p = 0.005) and increased relative pre-alpha power (U = 702, p = 0.005) consistent with previous findings. PLI showed reduced average beta band synchrony in the converting group (U = 311, p = 0.014) as well as significant differences in alpha and beta network topology. Logistic regression models using regional beta PLI values revealed that right central to right lateral (Sens = 56.5%, Spec = 86.0%, -2LL = 72.48, p = 0.017) and left central to right lateral (Sens = 47.8%, Spec = 81.4%, -2LL = 71.37, p = 0.012) had the best classification accuracy and fit when adjusted for age and MMSE score. CONCLUSION Patients with MCI who convert to dementia have significant differences in EEG frequency, average connectivity and network topology prior to the onset of dementia. The MCI group is clinically heterogeneous and have underlying physiological differences that may be driving the progression of cognitive symptoms. EEG connectivity could be useful to predict which patients with MCI-AD and MCI-LB convert to dementia, regardless of the neurodegenerative aetiology.
Collapse
Affiliation(s)
- Jahfer Hasoon
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Calum A Hamilton
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Julia Schumacher
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) Rostock-Greifswald, Rostock, Germany
- Department of Neurology, University Medical Center Rostock, Rostock, Germany
| | - Sean Colloby
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Paul C Donaghy
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Alan J Thomas
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - John-Paul Taylor
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
5
|
Jiang Y, Zhang X, Guo Z, Jiang N. Altered EEG Theta and Alpha Band Functional Connectivity in Mild Cognitive Impairment During Working Memory Coding. IEEE Trans Neural Syst Rehabil Eng 2024; 32:2845-2853. [PMID: 38905095 DOI: 10.1109/tnsre.2024.3417617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2024]
Abstract
Individuals with mild cognitive impairment (MCI), the preclinical stage of Alzheimer disease (AD), suffer decline in their visual working memory (WM) functions. Using large-scale network analysis of electroencephalography (EEG), the current study intended to investigate if there are differences in functional connectivity properties extracted during visual WM coding stages between MCI patients and normal controls (NC). A total of 21 MCI patients and 20 NC performed visual memory tasks of load four, while 32-channel EEG recordings were acquired. The functional connectivity properties were extracted from the acquired EEGs by the directed transform function (DTF) via spectral Granger causal analysis. Brain network analyses revealed distinctive brain network patterns between the two groups during the WM coding stage. Compared with the NC, MCI patients exhibited a reduced visual network connectivity of the frontal-temporal in θ (4-7Hz) band. A likely compensation mechanism was observed in MCI patients, with a strong brain functional connectivity of the frontal-occipital and parietal-occipital in both θ and α (8-13Hz) band. Further analyses of the network core node properties based on the differential brain network showed that, in θ band, there was a significant difference in the out-degree of the frontal lobe and parietal lobe between the two groups, while in α band, such difference was located only in the parietal lobe. The current study found that, in MCI patients, dysconnectivity is found from the prefrontal lobe to bilateral temporal lobes, leading to increased recruitment of functional connectivity in the frontal-occipital and parietal-occipital direction. The dysconnectivity pattern of MCI is more complex and primarily driven by core nodes Pz and Fz. These results significantly expanded previous knowledge of MCI patients' EEG dynamics during WM tasks and provide new insights into the underpinning neural mechanism MCI. It further provided a potential therapeutic target for clinical interventions of the condition.
Collapse
|
6
|
Wu S, Zhan P, Wang G, Yu X, Liu H, Wang W. Changes of brain functional network in Alzheimer's disease and frontotemporal dementia: a graph-theoretic analysis. BMC Neurosci 2024; 25:30. [PMID: 38965489 PMCID: PMC11223280 DOI: 10.1186/s12868-024-00877-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 06/18/2024] [Indexed: 07/06/2024] Open
Abstract
BACKGROUND Alzheimer's disease (AD) and frontotemporal dementia (FTD) are the two most common neurodegenerative dementias, presenting with similar clinical features that challenge accurate diagnosis. Despite extensive research, the underlying pathophysiological mechanisms remain unclear, and effective treatments are limited. This study aims to investigate the alterations in brain network connectivity associated with AD and FTD to enhance our understanding of their pathophysiology and establish a scientific foundation for their diagnosis and treatment. METHODS We analyzed preprocessed electroencephalogram (EEG) data from the OpenNeuro public dataset, comprising 36 patients with AD, 23 patients with FTD, and 29 healthy controls (HC). Participants were in a resting state with eyes closed. We estimated the average functional connectivity using the Phase Lag Index (PLI) for lower frequencies (delta and theta) and the Amplitude Envelope Correlation with leakage correction (AEC-c) for higher frequencies (alpha, beta, and gamma). Graph theory was applied to calculate topological parameters, including mean node degree, clustering coefficient, characteristic path length, global and local efficiency. A permutation test was then utilized to assess changes in brain network connectivity in AD and FTD based on these parameters. RESULTS Both AD and FTD patients showed increased mean PLI values in the theta frequency band, along with increases in average node degree, clustering coefficient, global efficiency, and local efficiency. Conversely, mean AEC-c values in the alpha frequency band were notably diminished, which was accompanied by decreases average node degree, clustering coefficient, global efficiency, and local efficiency. Furthermore, AD patients in the occipital region showed an increase in theta band node degree and decreased alpha band clustering coefficient and local efficiency, a pattern not observed in FTD. CONCLUSIONS Our findings reveal distinct abnormalities in the functional network topology and connectivity in AD and FTD, which may contribute to a better understanding of the pathophysiological mechanisms of these diseases. Specifically, patients with AD demonstrated a more widespread change in functional connectivity, while those with FTD retained connectivity in the occipital lobe. These observations could provide valuable insights for developing electrophysiological markers to differentiate between the two diseases.
Collapse
Affiliation(s)
- Shijing Wu
- Medical Innovation Research Division, Chinese PLA General Hospital, Beijing, 100853, China
- Key Laboratory of Biomedical Engineering and Translational Medicine, Ministry of Industry and Information Technology, Beijing, 100853, China
| | - Ping Zhan
- Medical Innovation Research Division, Chinese PLA General Hospital, Beijing, 100853, China
- Key Laboratory of Biomedical Engineering and Translational Medicine, Ministry of Industry and Information Technology, Beijing, 100853, China
| | - Guojing Wang
- Medical Innovation Research Division, Chinese PLA General Hospital, Beijing, 100853, China
- Key Laboratory of Biomedical Engineering and Translational Medicine, Ministry of Industry and Information Technology, Beijing, 100853, China
| | - Xiaohua Yu
- Medical Innovation Research Division, Chinese PLA General Hospital, Beijing, 100853, China
- Key Laboratory of Biomedical Engineering and Translational Medicine, Ministry of Industry and Information Technology, Beijing, 100853, China
| | - Hongyun Liu
- Medical Innovation Research Division, Chinese PLA General Hospital, Beijing, 100853, China.
- Key Laboratory of Biomedical Engineering and Translational Medicine, Ministry of Industry and Information Technology, Beijing, 100853, China.
| | - Weidong Wang
- Medical Innovation Research Division, Chinese PLA General Hospital, Beijing, 100853, China.
- Key Laboratory of Biomedical Engineering and Translational Medicine, Ministry of Industry and Information Technology, Beijing, 100853, China.
| |
Collapse
|
7
|
Gutiérrez-de Pablo V, Poza J, Maturana-Candelas A, Rodríguez-González V, Tola-Arribas MÁ, Cano M, Hoshi H, Shigihara Y, Hornero R, Gómez C. Exploring the disruptions of the neurophysiological organization in Alzheimer's disease: An integrative approach. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 250:108197. [PMID: 38688139 DOI: 10.1016/j.cmpb.2024.108197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 12/20/2023] [Accepted: 04/21/2024] [Indexed: 05/02/2024]
Abstract
BACKGROUND AND OBJECTIVE Alzheimer's disease (AD) is a neurological disorder that impairs brain functions associated with cognition, memory, and behavior. Noninvasive neurophysiological techniques like magnetoencephalography (MEG) and electroencephalography (EEG) have shown promise in reflecting brain changes related to AD. These techniques are usually assessed at two levels: local activation (spectral, nonlinear, and dynamic properties) and global synchronization (functional connectivity, frequency-dependent network, and multiplex network organization characteristics). Nonetheless, the understanding of the organization formed by the existing relationships between these levels, henceforth named neurophysiological organization, remains unexplored. This work aims to assess the alterations AD causes in the resting-state neurophysiological organization. METHODS To that end, three datasets from healthy controls (HC) and patients with dementia due to AD were considered: MEG database (55 HC and 87 patients with AD), EEG1 database (51 HC and 100 patients with AD), and EEG2 database (45 HC and 82 patients with AD). To explore the alterations induced by AD in the relationships between several features extracted from M/EEG data, association networks (ANs) were computed. ANs are graphs, useful to quantify and visualize the intricate relationships between multiple features. RESULTS Our results suggested a disruption in the neurophysiological organization of patients with AD, exhibiting a greater inclination towards the local activation level; and a significant decrease in the complexity and diversity of the ANs (p-value ¡ 0.05, Mann-Whitney U-test, Bonferroni correction). This effect might be due to a shift of the neurophysiological organization towards more regular configurations, which may increase its vulnerability. Moreover, our findings support the crucial role played by the local activation level in maintaining the stability of the neurophysiological organization. Classification performance exhibited accuracy values of 83.91%, 73.68%, and 72.65% for MEG, EEG1, and EEG2 databases, respectively. CONCLUSION This study introduces a novel, valuable methodology able to integrate parameters characterize different properties of the brain activity and to explore the intricate organization of the neurophysiological organization at different levels. It was noted that AD increases susceptibility to changes in functional neural organization, suggesting a greater ease in the development of severe impairments. Therefore, ANs could facilitate a deeper comprehension of the complex interactions in brain function from a global standpoint.
Collapse
Affiliation(s)
- Víctor Gutiérrez-de Pablo
- Biomedical Engineering Group, University of Valladolid, Valladolid, Spain; CIBER-BBN, Centro de Investigación Biomédica en Red - Bioingeniería, Biomateriales y Nanomedicina, Spain.
| | - Jesús Poza
- Biomedical Engineering Group, University of Valladolid, Valladolid, Spain; CIBER-BBN, Centro de Investigación Biomédica en Red - Bioingeniería, Biomateriales y Nanomedicina, Spain; IMUVA, Instituto de Investigación en Matemáticas, University of Valladolid, Spain
| | - Aarón Maturana-Candelas
- Biomedical Engineering Group, University of Valladolid, Valladolid, Spain; CIBER-BBN, Centro de Investigación Biomédica en Red - Bioingeniería, Biomateriales y Nanomedicina, Spain
| | - Víctor Rodríguez-González
- Biomedical Engineering Group, University of Valladolid, Valladolid, Spain; CIBER-BBN, Centro de Investigación Biomédica en Red - Bioingeniería, Biomateriales y Nanomedicina, Spain
| | - Miguel Ángel Tola-Arribas
- CIBER-BBN, Centro de Investigación Biomédica en Red - Bioingeniería, Biomateriales y Nanomedicina, Spain; Department of Neurology, Río Hortega University Hospital, Valladolid, Spain
| | - Mónica Cano
- Department of Clinical Neurophysiology, Río Hortega University Hospital, Valladolid, Spain
| | - Hideyuki Hoshi
- Precision Medicine Centre, Hokuto Hospital, Obihiro, Japan
| | | | - Roberto Hornero
- Biomedical Engineering Group, University of Valladolid, Valladolid, Spain; CIBER-BBN, Centro de Investigación Biomédica en Red - Bioingeniería, Biomateriales y Nanomedicina, Spain; IMUVA, Instituto de Investigación en Matemáticas, University of Valladolid, Spain
| | - Carlos Gómez
- Biomedical Engineering Group, University of Valladolid, Valladolid, Spain; CIBER-BBN, Centro de Investigación Biomédica en Red - Bioingeniería, Biomateriales y Nanomedicina, Spain
| |
Collapse
|
8
|
Carrasco-Gómez M, García-Colomo A, Nebreda A, Bruña R, Santos A, Maestú F. Dynamic functional connectivity is modulated by the amount of p-Tau231 in blood in cognitively intact participants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.29.596323. [PMID: 38854147 PMCID: PMC11160744 DOI: 10.1101/2024.05.29.596323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
INTRODUCTION Electrophysiology and plasma biomarkers are early and non-invasive candidates for Alzheimer's disease detection. The purpose of this paper is to evaluate changes in dynamic functional connectivity measured with magnetoencephalography, associated with the plasma pathology marker p-tau231 in unimpaired adults. METHODS 73 individuals were included. Static and dynamic functional connectivity were calculated using leakage corrected amplitude envelope correlation. Each source's strength entropy across trials was calculated. A data-driven statistical analysis was performed to find the association between functional connectivity and plasma p-tau231 levels. Regression models were used to assess the influence of other variables over the clusters' connectivity. RESULTS Frontotemporal dynamic connectivity positively associated with p-tau231 levels. Linear regression models identified pathological, functional and structural factors that influence dynamic functional connectivity. DISCUSSION These results expand previous literature on dynamic functional connectivity in healthy individuals at risk of AD, highlighting its usefulness as an early, non-invasive and more sensitive biomarker.
Collapse
Affiliation(s)
- Martín Carrasco-Gómez
- Department of Electronic Engineering, ETSIT, Universidad Politécnica de Madrid, 28040, Madrid, Spain
- Center for Cognitive and Computational Neuroscience, Complutense University of Madrid, 28223, Madrid, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Alejandra García-Colomo
- Center for Cognitive and Computational Neuroscience, Complutense University of Madrid, 28223, Madrid, Spain
- Department of Experimental Psychology, Cognitive Psychology and Speech & Language Therapy, Complutense University of Madrid, 28223, Madrid, Spain
| | - Alberto Nebreda
- Center for Cognitive and Computational Neuroscience, Complutense University of Madrid, 28223, Madrid, Spain
- Department of Experimental Psychology, Cognitive Psychology and Speech & Language Therapy, Complutense University of Madrid, 28223, Madrid, Spain
| | - Ricardo Bruña
- Center for Cognitive and Computational Neuroscience, Complutense University of Madrid, 28223, Madrid, Spain
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28240, Madrid, Spain
- Department of Radiology, Universidad Complutense de Madrid, 28240, Madrid, Spain
| | - Andrés Santos
- Department of Electronic Engineering, ETSIT, Universidad Politécnica de Madrid, 28040, Madrid, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Fernando Maestú
- Center for Cognitive and Computational Neuroscience, Complutense University of Madrid, 28223, Madrid, Spain
- Department of Experimental Psychology, Cognitive Psychology and Speech & Language Therapy, Complutense University of Madrid, 28223, Madrid, Spain
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28240, Madrid, Spain
| |
Collapse
|
9
|
Nobukawa S, Ikeda T, Kikuchi M, Takahashi T. Atypical instantaneous spatio-temporal patterns of neural dynamics in Alzheimer's disease. Sci Rep 2024; 14:88. [PMID: 38167950 PMCID: PMC10761722 DOI: 10.1038/s41598-023-50265-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 12/18/2023] [Indexed: 01/05/2024] Open
Abstract
Cognitive functions produced by large-scale neural integrations are the most representative 'emergence phenomena' in complex systems. A novel approach focusing on the instantaneous phase difference of brain oscillations across brain regions has succeeded in detecting moment-to-moment dynamic functional connectivity. However, it is restricted to pairwise observations of two brain regions, contrary to large-scale spatial neural integration in the whole-brain. In this study, we introduce a microstate analysis to capture whole-brain instantaneous phase distributions instead of pairwise differences. Upon applying this method to electroencephalography signals of Alzheimer's disease (AD), which is characterised by progressive cognitive decline, the AD-specific state transition among the four states defined as the leading phase location due to the loss of brain regional interactions could be promptly characterised. In conclusion, our synthetic analysis approach, focusing on the microstate and instantaneous phase, enables the capture of the instantaneous spatiotemporal neural dynamics of brain activity and characterises its pathological conditions.
Collapse
Affiliation(s)
- Sou Nobukawa
- Department of Computer Science, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino, 275-0016, Chiba, Japan.
- Research Center for Mathematical Engineering, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino, 275-0016, Chiba, Japan.
- Department of Preventive Intervention for Psychiatric Disorders, National Institute of Mental Health, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, 187-8661, Tokyo, Japan.
| | - Takashi Ikeda
- Research Center for Child Mental Development, Kanazawa University, 13-1 Takaramachi, Kanazawa, 920-8640, Ishikawa, Japan
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, and University of Fukui, 2-2 Yamadaoka, Suita, 565-0871, Osaka, Japan
| | - Mitsuru Kikuchi
- Research Center for Child Mental Development, Kanazawa University, 13-1 Takaramachi, Kanazawa, 920-8640, Ishikawa, Japan
- Department of Psychiatry and Behavioral Science, Kanazawa University, 13-1 Takaramachi, Kanazawa, 920-8640, Ishikawa, Japan
| | - Tetsuya Takahashi
- Research Center for Child Mental Development, Kanazawa University, 13-1 Takaramachi, Kanazawa, 920-8640, Ishikawa, Japan
- Department of Neuropsychiatry, University of Fukui, 23-3 Matsuoka, Yoshida, 910-1193, Fukui, Japan
- Uozu Shinkei Sanatorium, 1784-1 Eguchi, Uozu, 937-0017, Toyama, Japan
| |
Collapse
|
10
|
Buzi G, Fornari C, Perinelli A, Mazza V. Functional connectivity changes in mild cognitive impairment: A meta-analysis of M/EEG studies. Clin Neurophysiol 2023; 156:183-195. [PMID: 37967512 DOI: 10.1016/j.clinph.2023.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/31/2023] [Accepted: 10/22/2023] [Indexed: 11/17/2023]
Abstract
OBJECTIVE Early synchrony alterations have been observed through electrophysiological techniques in Mild Cognitive Impairment (MCI), which is considered the intermediate phase between healthy aging (HC) and Alzheimer's disease (AD). However, the documented direction (hyper/hypo-synchronization), regions and frequency bands affected are inconsistent. This meta-analysis intended to elucidate existing evidence linked to potential neurophysiological biomarkers of AD. METHODS We conducted a random-effects meta-analysis that entailed the unbiased inclusion of Non-statistically Significant Unreported Effect Sizes ("MetaNSUE") of electroencephalogram (EEG) and magnetoencephalogram (MEG) studies investigating functional connectivity changes at rest along the healthy-pathological aging continuum, searched through PubMed, Scopus, Web of Science and PsycINFO databases until June 2023. RESULTS Of the 3852 articles extracted, we analyzed 12 papers, and we found an alpha synchrony decrease in MCI compared to HC, specifically between temporal-parietal (d = -0.26) and frontal-parietal areas (d = -0.25). CONCLUSIONS Alterations of alpha synchrony are present even at MCI stage. SIGNIFICANCE Synchrony measures may be promising for the detection of the first hallmarks of connectivity alterations, even at the prodromal stages of the AD, before clinical symptoms occur.
Collapse
Affiliation(s)
- Giulia Buzi
- U1077 INSERM-EPHE-UNICAEN, Caen 14000, France
| | - Chiara Fornari
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Rovereto, Italy.
| | - Alessio Perinelli
- Department of Physics, University of Trento, Trento, Italy; INFN-TIFPA, Trento, Italy
| | - Veronica Mazza
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Rovereto, Italy.
| |
Collapse
|
11
|
Martial C, Cassol H, Slater M, Bourdin P, Mensen A, Oliva R, Laureys S, Núñez P. Electroencephalographic Signature of Out-of-Body Experiences Induced by Virtual Reality: A Novel Methodological Approach. J Cogn Neurosci 2023; 35:1410-1422. [PMID: 37255451 DOI: 10.1162/jocn_a_02011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Out-of-body experiences (OBEs) are subjective experiences of seeing one's own body and the environment from a location outside the physical body. They can arise spontaneously or in specific conditions, such as during the intake of dissociative drug. Given its unpredictable occurrence, one way to empirically study it is to induce subjective experiences resembling an OBE using technology such as virtual reality. We employed a complex multisensory method of virtual embodiment in a virtual reality scenario with seven healthy participants to induce virtual OBE-like experiences. Participants performed two conditions in a randomly determined order. For both conditions, the participant's viewpoint was lifted out of the virtual body toward the ceiling of the virtual room, and real body movements were (visuo-tactile ON condition) or were not (visuo-tactile OFF condition) translated into movements on the virtual body below-the latter aiming to maintain a feeling of connection with the virtual body. A continuous 128-electrode EEG was recorded. Participants reported subjective experiences of floating in the air and of feeling high up in the virtual room at a strong intensity, but a weak to moderate feeling of being "out of their body" in both conditions. The EEG analysis revealed that this subjective experience was associated with a power shift that manifested in an increase of delta and a decrease of alpha relative power. A reduction of theta complexity and an increase of beta-2 connectivity were also found. This supports the growing body of evidence revealing a prominent role of delta activity during particular conscious states.
Collapse
Affiliation(s)
| | | | - Mel Slater
- University of Barcelona, Spain
- Institute of Neurosciences of the University of Barcelona, Spain
| | - Pierre Bourdin
- University of Barcelona, Spain
- Open University of Catalonia, Spain
| | | | | | - Steven Laureys
- University of Liège, Belgium
- University Hospital of Liège, Belgium
- University Laval, Québec, Canada
| | | |
Collapse
|
12
|
Ulbl J, Rakusa M. The Importance of Subjective Cognitive Decline Recognition and the Potential of Molecular and Neurophysiological Biomarkers-A Systematic Review. Int J Mol Sci 2023; 24:10158. [PMID: 37373304 DOI: 10.3390/ijms241210158] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/01/2023] [Accepted: 06/10/2023] [Indexed: 06/29/2023] Open
Abstract
Subjective cognitive decline (SCD) and mild cognitive impairment (MCI) are early stages of Alzheimer's disease (AD). Neurophysiological markers such as electroencephalography (EEG) and event-related potential (ERP) are emerging as alternatives to traditional molecular and imaging markers. This paper aimed to review the literature on EEG and ERP markers in individuals with SCD. We analysed 30 studies that met our criteria, with 17 focusing on resting-state or cognitive task EEG, 11 on ERPs, and two on both EEG and ERP parameters. Typical spectral changes were indicative of EEG rhythm slowing and were associated with faster clinical progression, lower education levels, and abnormal cerebrospinal fluid biomarkers profiles. Some studies found no difference in ERP components between SCD subjects, controls, or MCI, while others reported lower amplitudes in the SCD group compared to controls. Further research is needed to explore the prognostic value of EEG and ERP in relation to molecular markers in individuals with SCD.
Collapse
Affiliation(s)
- Janina Ulbl
- Division of Neurology, University Medical Centre Maribor, 2000 Maribor, Slovenia
- Faculty of Medicine, University of Maribor, 2000 Maribor, Slovenia
| | - Martin Rakusa
- Division of Neurology, University Medical Centre Maribor, 2000 Maribor, Slovenia
- Faculty of Medicine, University of Maribor, 2000 Maribor, Slovenia
| |
Collapse
|
13
|
Prado P, Moguilner S, Mejía JA, Sainz-Ballesteros A, Otero M, Birba A, Santamaria-Garcia H, Legaz A, Fittipaldi S, Cruzat J, Tagliazucchi E, Parra M, Herzog R, Ibáñez A. Source space connectomics of neurodegeneration: One-metric approach does not fit all. Neurobiol Dis 2023; 179:106047. [PMID: 36841423 PMCID: PMC11170467 DOI: 10.1016/j.nbd.2023.106047] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 02/05/2023] [Accepted: 02/15/2023] [Indexed: 02/25/2023] Open
Abstract
Brain functional connectivity in dementia has been assessed with dissimilar EEG connectivity metrics and estimation procedures, thereby increasing results' heterogeneity. In this scenario, joint analyses integrating information from different metrics may allow for a more comprehensive characterization of brain functional interactions in different dementia subtypes. To test this hypothesis, resting-state electroencephalogram (rsEEG) was recorded in individuals with Alzheimer's Disease (AD), behavioral variant frontotemporal dementia (bvFTD), and healthy controls (HCs). Whole-brain functional connectivity was estimated in the EEG source space using 101 different types of functional connectivity, capturing linear and nonlinear interactions in both time and frequency-domains. Multivariate machine learning and progressive feature elimination was run to discriminate AD from HCs, and bvFTD from HCs, based on joint analyses of i) EEG frequency bands, ii) complementary frequency-domain metrics (e.g., instantaneous, lagged, and total connectivity), and iii) time-domain metrics with different linearity assumption (e.g., Pearson correlation coefficient and mutual information). <10% of all possible connections were responsible for the differences between patients and controls, and atypical connectivity was never captured by >1/4 of all possible connectivity measures. Joint analyses revealed patterns of hypoconnectivity (patientsHCs) in both groups was mainly identified in frontotemporal regions. These atypicalities were differently captured by frequency- and time-domain connectivity metrics, in a bandwidth-specific fashion. The multi-metric representation of source space whole-brain functional connectivity evidenced the inadequacy of single-metric approaches, and resulted in a valid alternative for the selection problem in EEG connectivity. These joint analyses reveal patterns of brain functional interdependence that are overlooked with single metrics approaches, contributing to a more reliable and interpretable description of atypical functional connectivity in neurodegeneration.
Collapse
Affiliation(s)
- Pavel Prado
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile; Escuela de Fonoaudiología, Facultad de Odontología y Ciencias de la Rehabilitación, Universidad San Sebastián, Santiago, Chile
| | - Sebastian Moguilner
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile; Cognitive Neuroscience Center (CNC), Universidad de San Andrés & CONICET, Buenos Aires, Argentina
| | - Jhony A Mejía
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile; Departamento de Ingeniería Biomédica, Universidad de Los Andes, Bogotá, Colombia
| | | | - Mónica Otero
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Santiago, Chile; Centro BASAL Ciencia & Vida, Universidad San Sebastián, Santiago, Chile
| | - Agustina Birba
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile; Cognitive Neuroscience Center (CNC), Universidad de San Andrés & CONICET, Buenos Aires, Argentina
| | - Hernando Santamaria-Garcia
- PhD Neuroscience Program, Physiology and Psychiatry Departments, Pontificia Universidad Javeriana, Bogotá, Colombia; Memory and Cognition Center Intellectus, Hospital Universitario San Ignacio, Bogotá, Colombia; Global Brain Health Institute, University of California San Francisco, San Francisco, California; Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland
| | - Agustina Legaz
- Cognitive Neuroscience Center (CNC), Universidad de San Andrés & CONICET, Buenos Aires, Argentina; National Scientific and Technical Research Council, Buenos Aires, Argentina
| | - Sol Fittipaldi
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile; Cognitive Neuroscience Center (CNC), Universidad de San Andrés & CONICET, Buenos Aires, Argentina; Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland; National Scientific and Technical Research Council, Buenos Aires, Argentina
| | - Josephine Cruzat
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile
| | - Enzo Tagliazucchi
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile; Departamento de Física, Universidad de Buenos Aires and Instituto de Física de Buenos Aires (IFIBA -CONICET), Buenos Aires, Argentina
| | - Mario Parra
- School of Psychological Sciences and Health, University of Strathclyde, Glasgow, United Kingdom
| | - Rubén Herzog
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile; Fundación para el Estudio de la Conciencia Humana (EcoH), Chile
| | - Agustín Ibáñez
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile; Cognitive Neuroscience Center (CNC), Universidad de San Andrés & CONICET, Buenos Aires, Argentina; PhD Neuroscience Program, Physiology and Psychiatry Departments, Pontificia Universidad Javeriana, Bogotá, Colombia; Memory and Cognition Center Intellectus, Hospital Universitario San Ignacio, Bogotá, Colombia; Trinity College Dublin (TCD), Dublin, Ireland.
| |
Collapse
|
14
|
Hyperconnectivity matters in early-onset Alzheimer's disease: a resting-state EEG connectivity study. Neurophysiol Clin 2022; 52:459-471. [DOI: 10.1016/j.neucli.2022.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 10/17/2022] [Accepted: 10/21/2022] [Indexed: 11/11/2022] Open
|
15
|
Stecker M. A Perspective: Challenges in Dementia Research. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:1368. [PMID: 36295529 PMCID: PMC9609997 DOI: 10.3390/medicina58101368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/21/2022] [Accepted: 09/27/2022] [Indexed: 11/17/2022]
Abstract
Although dementia is a common and devastating disease that has been studied intensely for more than 100 years, no effective disease modifying treatment has been found. At this impasse, new approaches are important. The purpose of this paper is to provide, in the context of current research, one clinician's perspective regarding important challenges in the field in the form of specific challenges. These challenges not only illustrate the scope of the problems inherent in finding treatments for dementia, but can also be specific targets to foster discussion, criticism and new research. One common theme is the need to transform research activities from small projects in individual laboratories/clinics to larger multinational projects, in which each clinician and researcher works as an integral part. This transformation will require collaboration between researchers, large corporations, regulatory/governmental authorities and the general population, as well as significant financial investments. However, the costs of transforming the approach are small in comparison with the cost of dementia.
Collapse
Affiliation(s)
- Mark Stecker
- Fresno Institute of Neuroscience, Fresno, CA 93720, USA
| |
Collapse
|
16
|
Dynamic Functional Connectivity of Emotion Processing in Beta Band with Naturalistic Emotion Stimuli. Brain Sci 2022; 12:brainsci12081106. [PMID: 36009166 PMCID: PMC9405988 DOI: 10.3390/brainsci12081106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/11/2022] [Accepted: 08/16/2022] [Indexed: 11/17/2022] Open
Abstract
While naturalistic stimuli, such as movies, better represent the complexity of the real world and are perhaps crucial to understanding the dynamics of emotion processing, there is limited research on emotions with naturalistic stimuli. There is a need to understand the temporal dynamics of emotion processing and their relationship to different dimensions of emotion experience. In addition, there is a need to understand the dynamics of functional connectivity underlying different emotional experiences that occur during or prior to such experiences. To address these questions, we recorded the EEG of participants and asked them to mark the temporal location of their emotional experience as they watched a video. We also obtained self-assessment ratings for emotional multimedia stimuli. We calculated dynamic functional the connectivity (DFC) patterns in all the frequency bands, including information about hubs in the network. The change in functional networks was quantified in terms of temporal variability, which was then used in regression analysis to evaluate whether temporal variability in DFC (tvDFC) could predict different dimensions of emotional experience. We observed that the connectivity patterns in the upper beta band could differentiate emotion categories better during or prior to the reported emotional experience. The temporal variability in functional connectivity dynamics is primarily related to emotional arousal followed by dominance. The hubs in the functional networks were found across the right frontal and bilateral parietal lobes, which have been reported to facilitate affect, interoception, action, and memory-related processing. Since our study was performed with naturalistic real-life resembling emotional videos, the study contributes significantly to understanding the dynamics of emotion processing. The results support constructivist theories of emotional experience and show that changes in dynamic functional connectivity can predict aspects of our emotional experience.
Collapse
|
17
|
Ponomareva NV, Andreeva TV, Protasova M, Konovalov RN, Krotenkova MV, Kolesnikova EP, Malina DD, Kanavets EV, Mitrofanov AA, Fokin VF, Illarioshkin SN, Rogaev EI. Genetic association of apolipoprotein E genotype with EEG alpha rhythm slowing and functional brain network alterations during normal aging. Front Neurosci 2022; 16:931173. [PMID: 35979332 PMCID: PMC9376365 DOI: 10.3389/fnins.2022.931173] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/27/2022] [Indexed: 12/02/2022] Open
Abstract
The ε4 allele of the apolipoprotein E (APOE4+) genotype is a major genetic risk factor for Alzheimer’s disease (AD), but the mechanisms underlying its influence remain incompletely understood. The study aimed to investigate the possible effect of the APOE genotype on spontaneous electroencephalogram (EEG) alpha characteristics, resting-state functional MRI (fMRI) connectivity (rsFC) in large brain networks and the interrelation of alpha rhythm and rsFC characteristics in non-demented adults during aging. We examined the EEG alpha subband’s relative power, individual alpha peak frequency (IAPF), and fMRI rsFC in non-demented volunteers (age range 26–79 years) stratified by the APOE genotype. The presence of the APOE4+ genotype was associated with lower IAPF and lower relative power of the 11–13 Hz alpha subbands. The age related decrease in EEG IAPF was more pronounced in the APOE4+ carriers than in the APOE4+ non-carriers (APOE4-). The APOE4+ carriers had a stronger fMRI positive rsFC of the interhemispheric regions of the frontoparietal, lateral visual and salience networks than the APOE4– individuals. In contrast, the negative rsFC in the network between the left hippocampus and the right posterior parietal cortex was reduced in the APOE4+ carriers compared to the non-carriers. Alpha rhythm slowing was associated with the dysfunction of hippocampal networks. Our results show that in adults without dementia APOE4+ genotype is associated with alpha rhythm slowing and that this slowing is age-dependent. Our data suggest predominant alterations of inhibitory processes in large-scale brain network of non-demented APOE4+ carriers. Moreover, dysfunction of large-scale hippocampal network can influence APOE-related alpha rhythm vulnerability.
Collapse
Affiliation(s)
- Natalya V. Ponomareva
- Research Center of Neurology, Moscow, Russia
- Center for Genetics and Life Science, Sirius University of Science and Technology, Sochi, Russia
- *Correspondence: Natalya V. Ponomareva,
| | - Tatiana V. Andreeva
- Center for Genetics and Life Science, Sirius University of Science and Technology, Sochi, Russia
- Vavilov Institute of General Genetics, Russian Academy of Sciences (RAS), Moscow, Russia
| | - Maria Protasova
- Center for Genetics and Life Science, Sirius University of Science and Technology, Sochi, Russia
- Vavilov Institute of General Genetics, Russian Academy of Sciences (RAS), Moscow, Russia
| | | | | | | | | | | | | | | | | | - Evgeny I. Rogaev
- Center for Genetics and Life Science, Sirius University of Science and Technology, Sochi, Russia
- Vavilov Institute of General Genetics, Russian Academy of Sciences (RAS), Moscow, Russia
- Brudnick Neuropsychiatric Research Institute (BNRI), University of Massachusetts Medical School, Worcester, MA, United States
- Evgeny I. Rogaev,
| |
Collapse
|
18
|
Edgar JC, Berman JI, Liu S, Chen YH, Huang M, Brodkin ES, Roberts TPL, Bloy L. Two mechanisms facilitate regional independence between brain regions based on an examination of alpha-band activity in healthy control adult males. Int J Psychophysiol 2022; 178:51-59. [PMID: 35718287 PMCID: PMC10155819 DOI: 10.1016/j.ijpsycho.2022.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 04/26/2022] [Accepted: 06/10/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND At rest, 8 to 12 Hz alpha rhythms are the dominant rhythm in the brain, with a common peak alpha frequency (PAF = the frequency at which alpha generators show maximum power) observed across brain regions. Although a common PAF across brain regions should result in high between-region connectivity, especially connectivity measures assessing the phase-similarity between alpha generators, high inter-regional alpha connectivity has not been observed. The present study was conducted as an initial step toward identifying mechanisms that allow brain regions to maintain functional independence in the presence of a common PAF. METHODS MEG data were obtained from 16 healthy control male adults (mean age = 24 years; range 21 to 30 years). A task requiring participants to alternate between a 10 s eyes-closed condition and a 5 s eyes-open condition was used to drive parietal-occipital alpha generators, with the 10 s eyes-closed condition eliciting large-amplitude alpha activity and thus providing alpha measures with good signal-to-noise ratio for source localization. Alpha source-space measures were obtained using Vector-based Spatial-Temporal Analysis using L1-minimum-norm. In each participant, the four strongest parietal-occipital alpha generators were identified. Connectivity between sources was assessed via a measure of phase-based connectivity called inter-site phase clustering (ISPC). RESULTS Intra-class correlations (ICC) showed very high similarity in the average PAF (=computed using all eyes-closed data) between the four alpha sources (ICC single measure = 0.88, p < 0.001). Despite a common average PAF, across participants, significant ISPC was often observed no more than that expected by chance. Examination of the alpha time course data indicated that low ISPC was often due to instantaneous changes in alpha phase (phase slips). ISPC analyses removing data with phase slips indicated that low ISPC was also due to slight continuous changes in the alpha frequency, with frequency drift more likely in non-significant than significant ISPC trials. CONCLUSIONS The present exploratory effort suggested two processes underlying the lack of observed inter-regional alpha phase coherence that may help maintain regional functional independence even in the presence of a common PAF. In particular, although the alpha generators were observed to oscillate at the same rate on average, across time each alpha generator oscillated a little slower or faster, and about every one and a half seconds an alpha generator abruptly lost the beat. Because of this, functional independence among alpha generators (and thus brain regions) was the rule rather than the exception. Studies replicating these processes that allow brain regions to maintain functional independence, using different source localization methods and in different conditions (e.g., a true resting state), are warranted. IMPACT STATEMENT Using source localization to measure parietal-occipital alpha generator activity, two properties that limit between-region alpha functional connectivity are proposed. In particular, a model of alpha generator activity is offered where via transient phase slips occurring approximately every 1.5 s, as well as slight non-stationarity in the alpha frequency, brain regions retain a common alpha frequency while also maintaining regional identity and presumably functionality. Findings also suggest novel markers for use in studies examining changes in alpha activity across maturation as well as in studies examining alpha activity in patient populations where alpha abnormalities have been reported.
Collapse
Affiliation(s)
| | | | - Song Liu
- The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Yu-Han Chen
- The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Mingxiong Huang
- The University of California San Diego, Department of Radiology, San Diego, CA, USA; San Diego VA Healthcare System, Department of Radiology, San Diego, CA, USA
| | - Edward S Brodkin
- Department of Psychiatry, Center for Neurobiology and Behavior, Perelman School of Medicine at the University of Pennsylvania, Translational Research Laboratory, Philadelphia, PA, USA
| | | | - Luke Bloy
- The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| |
Collapse
|
19
|
Liu L, Ren J, Li Z, Yang C. A review of MEG dynamic brain network research. Proc Inst Mech Eng H 2022; 236:763-774. [PMID: 35465768 DOI: 10.1177/09544119221092503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The dynamic description of neural networks has attracted the attention of researchers for dynamic networks may carry more information compared with resting-state networks. As a non-invasive electrophysiological data with high temporal and spatial resolution, magnetoencephalogram (MEG) can provide rich information for the analysis of dynamic functional brain networks. In this review, the development of MEG brain network was summarized. Several analysis methods such as sliding window, Hidden Markov model, and time-frequency based methods used in MEG dynamic brain network studies were discussed. Finally, the current research about multi-modal brain network analysis and their applications with MEG neurophysiology, which are prospected to be one of the research directions in the future, were concluded.
Collapse
Affiliation(s)
- Lu Liu
- Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | - Jiechuan Ren
- Department of Internal Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhimei Li
- Department of Internal Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Chunlan Yang
- Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| |
Collapse
|
20
|
Kim JG, Kim H, Hwang J, Kang SH, Lee CN, Woo J, Kim C, Han K, Kim JB, Park KW. Differentiating amnestic from non-amnestic mild cognitive impairment subtypes using graph theoretical measures of electroencephalography. Sci Rep 2022; 12:6219. [PMID: 35418202 PMCID: PMC9008046 DOI: 10.1038/s41598-022-10322-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 04/06/2022] [Indexed: 12/12/2022] Open
Abstract
The purpose of this study was to explore different patterns of functional networks between amnestic mild cognitive impairment (aMCI) and non-aMCI (naMCI) using electroencephalography (EEG) graph theoretical analysis. The data of 197 drug-naïve individuals who complained cognitive impairment were reviewed. Resting-state EEG data was acquired. Graph analyses were performed and compared between aMCI and naMCI, as well as between early and late aMCI. Correlation analyses were conducted between the graph measures and neuropsychological test results. Machine learning algorithms were applied to determine whether the EEG graph measures could be used to distinguish aMCI from naMCI. Compared to naMCI, aMCI showed higher modularity in the beta band and lower radius in the gamma band. Modularity was negatively correlated with scores on the semantic fluency test, and the radius in the gamma band was positively correlated with visual memory, phonemic, and semantic fluency tests. The naïve Bayes algorithm classified aMCI and naMCI with 89% accuracy. Late aMCI showed inefficient and segregated network properties compared to early aMCI. Graph measures could differentiate aMCI from naMCI, suggesting that these measures might be considered as predictive markers for progression to Alzheimer’s dementia in patients with MCI.
Collapse
Affiliation(s)
- Jae-Gyum Kim
- Department of Neurology, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Hayom Kim
- Department of Neurology, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Jihyeon Hwang
- Department of Neurology, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Sung Hoon Kang
- Department of Neurology, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Chan-Nyoung Lee
- Department of Neurology, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - JunHyuk Woo
- Laboratory of Computational Neurophysics, Brain Science Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Chanjin Kim
- Laboratory of Computational Neurophysics, Brain Science Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Kyungreem Han
- Laboratory of Computational Neurophysics, Brain Science Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Jung Bin Kim
- Department of Neurology, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea.
| | - Kun-Woo Park
- Department of Neurology, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
21
|
Schoonhoven DN, Briels CT, Hillebrand A, Scheltens P, Stam CJ, Gouw AA. Sensitive and reproducible MEG resting-state metrics of functional connectivity in Alzheimer's disease. Alzheimers Res Ther 2022; 14:38. [PMID: 35219327 PMCID: PMC8881826 DOI: 10.1186/s13195-022-00970-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 01/30/2022] [Indexed: 01/08/2023]
Abstract
Background Analysis of functional brain networks in Alzheimer’s disease (AD) has been hampered by a lack of reproducible, yet valid metrics of functional connectivity (FC). This study aimed to assess both the sensitivity and reproducibility of the corrected amplitude envelope correlation (AEC-c) and phase lag index (PLI), two metrics of FC that are insensitive to the effects of volume conduction and field spread, in two separate cohorts of patients with dementia due to AD versus healthy elderly controls. Methods Subjects with a clinical diagnosis of AD dementia with biomarker proof, and a control group of subjective cognitive decline (SCD), underwent two 5-min resting-state MEG recordings. Data consisted of a test (AD = 28; SCD = 29) and validation (AD = 29; SCD = 27) cohort. Time-series were estimated for 90 regions of interest (ROIs) in the automated anatomical labelling (AAL) atlas. For each of five canonical frequency bands, the AEC-c and PLI were calculated between all 90 ROIs, and connections were averaged per ROI. General linear models were constructed to compare the global FC differences between the groups, assess the reproducibility, and evaluate the effects of age and relative power. Reproducibility of the regional FC differences was assessed using the Mann-Whitney U tests, with correction for multiple testing using the false discovery rate (FDR). Results The AEC-c showed significantly and reproducibly lower global FC for the AD group compared to SCD, in the alpha (8–13 Hz) and beta (13–30 Hz) bands, while the PLI revealed reproducibly lower FC for the AD group in the delta (0.5–4 Hz) band and higher FC for the theta (4–8 Hz) band. Regionally, the beta band AEC-c showed reproducibility for almost all ROIs (except for 13 ROIs in the frontal and temporal lobes). For the other bands, the AEC-c and PLI did not show regional reproducibility after FDR correction. The theta band PLI was susceptible to the effect of relative power. Conclusion For MEG, the AEC-c is a sensitive and reproducible metric, able to distinguish FC differences between patients with AD dementia and cognitively healthy controls. These two measures likely reflect different aspects of neural activity and show differential sensitivity to changes in neural dynamics. Supplementary Information The online version contains supplementary material available at 10.1186/s13195-022-00970-4.
Collapse
Affiliation(s)
- Deborah N Schoonhoven
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands. .,Department of Clinical Neurophysiology and MEG Center, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands.
| | - Casper T Briels
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands.,Department of Clinical Neurophysiology and MEG Center, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Arjan Hillebrand
- Department of Clinical Neurophysiology and MEG Center, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Philip Scheltens
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Cornelis J Stam
- Department of Clinical Neurophysiology and MEG Center, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Alida A Gouw
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands.,Department of Clinical Neurophysiology and MEG Center, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| |
Collapse
|
22
|
Yang F, Jiang X, Yue F, Wang L, Boecker H, Han Y, Jiang J. Exploring dynamic functional connectivity alterations in the preclinical stage of Alzheimer's disease: an exploratory study from SILCODE. J Neural Eng 2022; 19. [PMID: 35147522 DOI: 10.1088/1741-2552/ac542d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 02/08/2022] [Indexed: 11/11/2022]
Abstract
INTRODUCTION Exploring functional connectivity (FC) alterations is important for the understanding of underlying neuronal network alterations in subjective cognitive decline (SCD). The objective of this study was to prove that dynamic FC can better reflect the changes of brain function in individuals with SCD compared to static FC, and further to explore the association between FC alterations and amyloid pathology in the preclinical stage of Alzheimer's disease (AD). METHODS 101 normal control (NC) subjects, 97 SCDs, and 55 cognitive impairment (CI) subjects constituted the whole-cohort. Of these, 29 NCs and 52 SCDs with amyloid images were selected as the sub-cohort. First, independent components (ICs) were identified by independent component analysis and static and dynamic FC were calculated by pairwise correlation coefficient between ICs. Second, FC alterations were identified through group comparison, and seed-based dynamic FC analysis was done. Analysis of variance (ANOVA) was used to compare the seed-based dynamic FC maps and measure the group or amyloid effects. Finally, correlation analysis was conducted between the altered dynamic FC and amyloid burden. RESULTS The results showed that 42 ICs were revealed. Significantly altered dynamic FC included those between the salience/ventral attention network, the default mode network, and the visual network. Specifically, the thalamus/caudate (IC 25) drove the hub role in the group differences. In the seed-based dynamic FC analysis, the dynamic FC between the thalamus/caudate and the middle temporal/frontal gyrus was observed to be higher in the SCD and CI groups. Moreover, a higher dynamic FC between the thalamus/caudate and visual cortex was observed in the amyloid positive group. Finally, the altered dynamic FC was associated with the amyloid global standardized uptake value ratio (SUVr). CONCLUSION Our findings suggest SCD-related alterations could be more reflected by dynamic FC than static FC, and the alterations are associated with global SUVr.
Collapse
Affiliation(s)
- Fan Yang
- Shanghai University, Shangda Road, Baoshan district, Shanghai, Shanghai, 200444, CHINA
| | - Xueyan Jiang
- Hainan University, Meilan District, Haikou City, Hainan Province, Haikou, 570288, CHINA
| | - Feng Yue
- Hainan University, Meilan District, Haikou City, Hainan Province, Haikou, 570288, CHINA
| | - Luyao Wang
- Shanghai University, Shangda road, Baoshan district, shanghai, Shanghai, 200444, CHINA
| | - Henning Boecker
- University Hospital Bonn, Positron Emission Tomography (PET) Group, Bonn, Germany, Bonn, Nordrhein-Westfalen, 53127, GERMANY
| | - Ying Han
- Hainan University, Meilan District, Haikou City, Hainan Province, Haikou, 570288, CHINA
| | - Jiehui Jiang
- Shanghai University, Shangda road, Baoshan district, Shanghai, Shanghai, 200444, CHINA
| |
Collapse
|
23
|
Núñez P, Gomez C, Rodríguez-González V, Hillebrand A, Tewarie P, Gomez-Pilar J, Molina V, Hornero R, Poza J. Schizophrenia induces abnormal frequency-dependent patterns of dynamic brain network reconfiguration during an auditory oddball task. J Neural Eng 2022; 19. [PMID: 35108688 DOI: 10.1088/1741-2552/ac514e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 02/02/2022] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Schizophrenia is a psychiatric disorder that has been shown to disturb the dynamic top-down processing of sensory information. Various imaging techniques have revealed abnormalities in brain activity associated with this disorder, both locally and between cerebral regions. However, there is increasing interest in investigating dynamic network response to novel and relevant events at the network level during an attention-demanding task with high-temporal-resolution techniques. The aim of the work was: (i) to test the capacity of a novel algorithm to detect recurrent brain meta-states from auditory oddball task recordings; and (ii) to evaluate how the dynamic activation and behavior of the aforementioned meta-states were altered in schizophrenia, since it has been shown to impair top-down processing of sensory information. APPROACH A novel unsupervised method for the detection of brain meta-states based on recurrence plots and community detection algorithms, previously tested on resting-state data, was used on auditory oddball task recordings. Brain meta-states and several properties related to their activation during target trials in the task were extracted from electroencephalography (EEG) data from patients with schizophrenia and cognitively healthy controls. MAIN RESULTS The methodology successfully detected meta-states during an auditory oddball task, and they appeared to show both frequency-dependent time-locked and non-time-locked activity with respect to the stimulus onset. Moreover, patients with schizophrenia displayed higher network diversity, and showed more sluggish meta-state transitions, reflected in increased dwell times, less complex meta-state sequences, decreased meta-state space speed, and abnormal ratio of negative meta-state correlations. SIGNIFICANCE Abnormal cognition in schizophrenia is also reflected in decreased brain flexibility at the dynamic network level, which may hamper top-down processing, possibly indicating impaired decision-making linked to dysfunctional predictive coding. Moreover, the results showed the ability of the methodology to find meaningful and task-relevant changes in dynamic connectivity and pathology-related group differences.
Collapse
Affiliation(s)
- Pablo Núñez
- Teoría de la señal y comunicaciones e ingeniería telemática, Universidad de Valladolid, E.T.S. Ingenieros de Telecomunicacion, Paseo de Belen 15, 47011 - Valladolid, Valladolid, 47002, SPAIN
| | - Carlos Gomez
- Grupo de Ingeniería Biomédica, Universidad de Valladolid, E. T. S. Ingenieros de Telecomunicación, Universidad de Valladolid, Paseo Belén, 15, Valladolid, Valladolid, 47011, SPAIN
| | - Víctor Rodríguez-González
- Teoría de la señal y comunicaciones e ingeniería telemática, Universidad de Valladolid, E.T.S. Ingenieros de Telecomunicacion, Paseo de Belen 15, 47011 - Valladolid, Valladolid, 47011, SPAIN
| | - Arjan Hillebrand
- Department of Clinical Neurophysiology and MEG Centre, VU University Medical Centre, VU University Medical Centre, 1081 HV Amsterdam, Netherlands, Amsterdam, 1081 HV, NETHERLANDS
| | - Prejaas Tewarie
- Department of Clinical Neurophysiology and MEG Centre, VU University Medical Centre Amsterdam, VU University Medical Centre, 1081 HV Amsterdam, Netherlands, Amsterdam, Noord-Holland, 1081 HV, NETHERLANDS
| | - Javier Gomez-Pilar
- Communications and Signal Theory, Universidad de Valladolid, E.T.S. Ingenieros de Telecomunicacion, Paseo de Belen 15, 47011 - Valladolid, Valladolid, Valladolid, 47011, SPAIN
| | - Vicente Molina
- Universidad de Valladolid, School of Medicine, University of Valladolid, 47005 - Valladolid, Valladolid, 47002, SPAIN
| | - Roberto Hornero
- Biomedical Engineering Group, Universidad de Valladolid, ETSI Telecomunicacion, Paseo Belen 15, Valladolid, 47011, SPAIN
| | - Jesus Poza
- Communications and Signal Theory, University of Valladolid, E.T.S. Ingenieros de Telecomunicacion, Paseo de Belen 15, 47011 - Valladolid, Valladolid, 47002, SPAIN
| |
Collapse
|
24
|
Nunez P, Rodriguez-Gonzalez V, Gutierrez-de Pablo V, Gomez C, Shigihara Y, Hoshi H, Hornero R, Poza J. Effect of segment length, sampling frequency, and imaging modality on the estimation of measures of brain meta-state activation: an MEG/EEG study. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:315-318. [PMID: 34891299 DOI: 10.1109/embc46164.2021.9630583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The main objective of this study was to examine the influence that recording length, sampling frequency, and imaging modality have on the estimation and characterization of spontaneous brain meta-states during rest. To this end, a recently developed method of meta-state extraction and characterization was applied to a subset of 16 healthy elderly subjects from two independent electroencephalographic and magnetoencephalographic (EEG/MEG) databases. The recordings were segmented into the first 5, 10, 15, 20, 25, 30, 60 and 90-s of artifact-free activity and meta-states were extracted. Temporal activation sequence (TAS) complexity, which characterizes the complexity of the metastateactivation sequences during rest, was calculated. Then, its stability as a function of segment length, sampling frequency, and imaging modality was assessed. The results showed that, in general, the minimum segment length needed to fully characterize resting-state meta-state activation complexity ranged from 15 to 25 seconds. Moreover, it was found that the sampling frequency has a slight influence on the complexity measure, and that results were similar across EEG and MEG. The findings indicate that the proposed methodology can be applied to both EEG and MEG recordings and displays stable behavior with relatively short segments. However, methodological choices, such as sampling frequency, should be carefully considered.
Collapse
|
25
|
Fodor Z, Horváth A, Hidasi Z, Gouw AA, Stam CJ, Csukly G. EEG Alpha and Beta Band Functional Connectivity and Network Structure Mark Hub Overload in Mild Cognitive Impairment During Memory Maintenance. Front Aging Neurosci 2021; 13:680200. [PMID: 34690735 PMCID: PMC8529331 DOI: 10.3389/fnagi.2021.680200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 09/20/2021] [Indexed: 12/18/2022] Open
Abstract
Background: While decreased alpha and beta-band functional connectivity (FC) and changes in network topology have been reported in Alzheimer's disease, it is not yet entirely known whether these differences can mark cognitive decline in the early stages of the disease. Our study aimed to analyze electroencephalography (EEG) FC and network differences in the alpha and beta frequency band during visuospatial memory maintenance between Mild Cognitive Impairment (MCI) patients and healthy elderly with subjective memory complaints. Methods: Functional connectivity and network structure of 17 MCI patients and 20 control participants were studied with 128-channel EEG during a visuospatial memory task with varying memory load. FC between EEG channels was measured by amplitude envelope correlation with leakage correction (AEC-c), while network analysis was performed by applying the Minimum Spanning Tree (MST) approach, which reconstructs the critical backbone of the original network. Results: Memory load (increasing number of to-be-learned items) enhanced the mean AEC-c in the control group in both frequency bands. In contrast to that, after an initial increase, the MCI group showed significantly (p < 0.05) diminished FC in the alpha band in the highest memory load condition, while in the beta band this modulation was absent. Moreover, mean alpha and beta AEC-c correlated significantly with the size of medial temporal lobe structures in the entire sample. The network analysis revealed increased maximum degree, betweenness centrality, and degree divergence, and decreased diameter and eccentricity in the MCI group compared to the control group in both frequency bands independently of the memory load. This suggests a rerouted network in the MCI group with a more centralized topology and a more unequal traffic load distribution. Conclusion: Alpha- and beta-band FC measured by AEC-c correlates with cognitive load-related modulation, with subtle medial temporal lobe atrophy, and with the disruption of hippocampal fiber integrity in the earliest stages of cognitive decline. The more integrated network topology of the MCI group is in line with the "hub overload and failure" framework and might be part of a compensatory mechanism or a consequence of neural disinhibition.
Collapse
Affiliation(s)
- Zsuzsanna Fodor
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary
| | - András Horváth
- Department of Neurology, National Institute of Clinical Neurosciences, Budapest, Hungary
| | - Zoltán Hidasi
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary
| | - Alida A. Gouw
- Department of Clinical Neurophysiology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam University Medical Centers, Amsterdam, Netherlands
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Cornelis J. Stam
- Department of Clinical Neurophysiology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Gábor Csukly
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary
| |
Collapse
|
26
|
Ahmadi M, Kazemi K, Kuc K, Cybulska-Klosowicz A, Helfroush MS, Aarabi A. Resting state dynamic functional connectivity in children with attention deficit/hyperactivity disorder. J Neural Eng 2021; 18. [PMID: 34289458 DOI: 10.1088/1741-2552/ac16b3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 07/21/2021] [Indexed: 11/11/2022]
Abstract
Attention deficit/hyperactivity disorder (ADHD) is characterized by inattention, hyperactivity and impulsivity. In this study, we investigated group differences in dynamic functional connectivity (dFC) between 113 children with inattentive (46 ADHDI) and combined (67 ADHDC) ADHD and 76 typically developing (TD) children using resting-state functional MRI data. For dynamic connectivity analysis, the data were first decomposed into 100 independent components, among which 88 were classified into eight well-known resting-state networks (RSNs). Three discrete FC states were then identified using k-means clustering and used to estimate transition probabilities between states in both patient and control groups using a hidden Markov model. Our results showed state-dependent alterations in intra and inter-network connectivity in both ADHD subtypes in comparison with TD. Spending less time than healthy controls in state 1, both ADHDIand ADHDCwere characterized with weaker intra-hemispheric connectivity with functional asymmetries. In this state, ADHDIfurther showed weaker inter-hemispheric connectivity. The patients spent more time in state 2, exhibiting characteristic abnormalities in corticosubcortical and corticocerebellar connectivity. In state 3, a less frequently state observed across the ADHD and TD children, ADHDCwas differentiated from ADHDIby significant alterations in FC between bilateral temporal regions and other brain areas in comparison with TD. Across all three states, several strategic brain regions, mostly bilateral, exhibited significant alterations in both static functional connectivity (sFC) and dFC in the ADHD groups compared to TD, including inferior, middle and superior temporal gyri, middle frontal gyri, insula, anterior cingulum cortex, precuneus, calcarine, fusiform, superior motor area, and cerebellum. Our results show distributed abnormalities in sFC and dFC between different large-scale RSNs including cortical and subcortical regions in both ADHD subtypes compared to TD. Our findings show that the dynamic changes in brain FC can better explain the underlying pathophysiology of ADHD such as deficits in visual cognition, attention, memory and emotion processing, and cognitive and motor control.
Collapse
Affiliation(s)
- Maliheh Ahmadi
- Department of Electrical and Electronics Engineering, Shiraz University of Technology, Shiraz, Iran
| | - Kamran Kazemi
- Department of Electrical and Electronics Engineering, Shiraz University of Technology, Shiraz, Iran
| | - Katarzyna Kuc
- SWPS University of Social Sciences and Humanities, Warsaw, Poland
| | - Anita Cybulska-Klosowicz
- Laboratory of Emotions Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | | | - Ardalan Aarabi
- Laboratory of Functional Neuroscience and Pathologies (LNFP EA4559), University Research Center (CURS), University Hospital, Amiens, France.,Faculty of Medicine, University of Picardy Jules Verne, Amiens, France
| |
Collapse
|
27
|
Zhang H, Geng X, Wang Y, Guo Y, Gao Y, Zhang S, Du W, Liu L, Sun M, Jiao F, Yi F, Li X, Wang L. The Significance of EEG Alpha Oscillation Spectral Power and Beta Oscillation Phase Synchronization for Diagnosing Probable Alzheimer Disease. Front Aging Neurosci 2021; 13:631587. [PMID: 34163348 PMCID: PMC8215164 DOI: 10.3389/fnagi.2021.631587] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 05/11/2021] [Indexed: 11/30/2022] Open
Abstract
Alzheimer disease (AD) is the most common cause of dementia in geriatric population. At present, no effective treatments exist to reverse the progress of AD, however, early diagnosis and intervention might delay its progression. The search for biomarkers with good safety, repeatable detection, reliable sensitivity and community application is necessary for AD screening and early diagnosis and timely intervention. Electroencephalogram (EEG) examination is a non-invasive, quantitative, reproducible, and cost-effective technique which is suitable for screening large population for possible AD. The power spectrum, complexity and synchronization characteristics of EEG waveforms in AD patients have distinct deviation from normal elderly, indicating these EEG features can be a promising candidate biomarker of AD. However, current reported deviation results are inconsistent, possibly due to multiple factors such as diagnostic criteria, sample sizes and the use of different computational measures. In this study, we collected two neurological tests scores (MMSE and MoCA) and the resting-state EEG of 30 normal control elderly subjects (NC group) and 30 probable AD patients confirmed by Pittsburgh compound B positron emission tomography (PiB-PET) inspection (AD group). We calculated the power spectrum, spectral entropy and phase synchronization index features of these two groups’ EEG at left/right frontal, temporal, central and occipital brain regions in 4 frequency bands: δ oscillation (1–4 Hz), θ oscillation (4–8 Hz), α oscillation (8–13 Hz), and β oscillation (13–30 Hz). In most brain areas, we found that the AD group had significant differences compared to NC group: (1) decreased α oscillation power and increased θ oscillation power; (2) decreased spectral entropy in α oscillation and elevated spectral entropy in β oscillation; and (3) decrease phase synchronization index in δ, θ, and β oscillation. We also found that α oscillation spectral power and β oscillation phase synchronization index correlated well with the MMSE/MoCA test scores in AD groups. Our study suggests that these two EEG features might be useful metrics for population screening of probable AD patients.
Collapse
Affiliation(s)
- Haifeng Zhang
- Medical School of Chinese People's Liberation Army, Beijing, China.,Department of Neurology, The 2nd Medical Center, National Clinical Research Center for Geriatric Disease, Chinese People's Liberation Army General Hospital, Beijing, China.,Health Service Department of the Guard Bureau of the Joint Staff Department, Joint Staff of the Central Military Commission of Chinese PLA, Beijing, China
| | - Xinling Geng
- School of Biomedical Engineering, Capital Medical University, Beijing, China
| | - Yuanyuan Wang
- Department of Neurology, The 2nd Medical Center, National Clinical Research Center for Geriatric Disease, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Yanjun Guo
- Department of Neurology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Ya Gao
- Department of Geriatrics, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Shouzi Zhang
- The Psycho Department of Beijing Geriatric Hospital, Beijing, China
| | - Wenjin Du
- Department of Neurology, Air Force Medical Center, Chinese People's Liberation Army, Beijing, China
| | - Lixin Liu
- The Psycho Department of Beijing Geriatric Hospital, Beijing, China
| | - Mingyan Sun
- Ninth Health Care Department of the Second Medical Center of PLA General Hospital, Beijing, China
| | - Fubin Jiao
- Medical School of Chinese People's Liberation Army, Beijing, China.,Department of Neurology, The 2nd Medical Center, National Clinical Research Center for Geriatric Disease, Chinese People's Liberation Army General Hospital, Beijing, China.,Health Service Department of the Guard Bureau of the Joint Staff Department, Joint Staff of the Central Military Commission of Chinese PLA, Beijing, China
| | - Fang Yi
- Department of Neurology, The 2nd Medical Center, National Clinical Research Center for Geriatric Disease, Chinese People's Liberation Army General Hospital, Beijing, China.,Department of Neurology, Lishilu Outpatient, Jingzhong Medical District, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Xiaoli Li
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Luning Wang
- Medical School of Chinese People's Liberation Army, Beijing, China.,Department of Neurology, The 2nd Medical Center, National Clinical Research Center for Geriatric Disease, Chinese People's Liberation Army General Hospital, Beijing, China
| |
Collapse
|
28
|
Revilla-Vallejo M, Poza J, Gomez-Pilar J, Hornero R, Tola-Arribas MÁ, Cano M, Gómez C. Exploring the Alterations in the Distribution of Neural Network Weights in Dementia Due to Alzheimer's Disease. ENTROPY (BASEL, SWITZERLAND) 2021; 23:500. [PMID: 33922270 PMCID: PMC8146430 DOI: 10.3390/e23050500] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/10/2021] [Accepted: 04/19/2021] [Indexed: 11/17/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder which has become an outstanding social problem. The main objective of this study was to evaluate the alterations that dementia due to AD elicits in the distribution of functional network weights. Functional connectivity networks were obtained using the orthogonalized Amplitude Envelope Correlation (AEC), computed from source-reconstructed resting-state eletroencephalographic (EEG) data in a population formed by 45 cognitive healthy elderly controls, 69 mild cognitive impaired (MCI) patients and 81 AD patients. Our results indicated that AD induces a progressive alteration of network weights distribution; specifically, the Shannon entropy (SE) of the weights distribution showed statistically significant between-group differences (p < 0.05, Kruskal-Wallis test, False Discovery Rate corrected). Furthermore, an in-depth analysis of network weights distributions was performed in delta, alpha, and beta-1 frequency bands to discriminate the weight ranges showing statistical differences in SE. Our results showed that lower and higher weights were more affected by the disease, whereas mid-range connections remained unchanged. These findings support the importance of performing detailed analyses of the network weights distribution to further understand the impact of AD progression on functional brain activity.
Collapse
Affiliation(s)
- Marcos Revilla-Vallejo
- Biomedical Engineering Group, E.T.S.I. de Telecomunicación, University of Valladolid, 47011 Valladolid, Spain; (J.P.); (J.G.-P.); (R.H.); (C.G.)
| | - Jesús Poza
- Biomedical Engineering Group, E.T.S.I. de Telecomunicación, University of Valladolid, 47011 Valladolid, Spain; (J.P.); (J.G.-P.); (R.H.); (C.G.)
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina, (CIBER-BBN), 28029 Madrid, Spain;
- IMUVA, Instituto de Investigación en Matemáticas, University of Valladolid, 47011 Valladolid, Spain
| | - Javier Gomez-Pilar
- Biomedical Engineering Group, E.T.S.I. de Telecomunicación, University of Valladolid, 47011 Valladolid, Spain; (J.P.); (J.G.-P.); (R.H.); (C.G.)
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina, (CIBER-BBN), 28029 Madrid, Spain;
| | - Roberto Hornero
- Biomedical Engineering Group, E.T.S.I. de Telecomunicación, University of Valladolid, 47011 Valladolid, Spain; (J.P.); (J.G.-P.); (R.H.); (C.G.)
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina, (CIBER-BBN), 28029 Madrid, Spain;
- IMUVA, Instituto de Investigación en Matemáticas, University of Valladolid, 47011 Valladolid, Spain
| | - Miguel Ángel Tola-Arribas
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina, (CIBER-BBN), 28029 Madrid, Spain;
- Department of Neurology, Río Hortega University Hospital, 47012 Valladolid, Spain
| | - Mónica Cano
- Department of Clinical Neurophysiology, Río Hortega University Hospital, 47012 Valladolid, Spain;
| | - Carlos Gómez
- Biomedical Engineering Group, E.T.S.I. de Telecomunicación, University of Valladolid, 47011 Valladolid, Spain; (J.P.); (J.G.-P.); (R.H.); (C.G.)
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina, (CIBER-BBN), 28029 Madrid, Spain;
| |
Collapse
|
29
|
Núñez P, Poza J, Gómez C, Rodríguez-González V, Hillebrand A, Tewarie P, Tola-Arribas MÁ, Cano M, Hornero R. Abnormal meta-state activation of dynamic brain networks across the Alzheimer spectrum. Neuroimage 2021; 232:117898. [PMID: 33621696 DOI: 10.1016/j.neuroimage.2021.117898] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 01/19/2021] [Accepted: 02/16/2021] [Indexed: 02/06/2023] Open
Abstract
The characterization of the distinct dynamic functional connectivity (dFC) patterns that activate in the brain during rest can help to understand the underlying time-varying network organization. The presence and behavior of these patterns (known as meta-states) have been widely studied by means of functional magnetic resonance imaging (fMRI). However, modalities with high-temporal resolution, such as electroencephalography (EEG), enable the characterization of fast temporally evolving meta-state sequences. Mild cognitive impairment (MCI) and dementia due to Alzheimer's disease (AD) have been shown to disrupt spatially localized activation and dFC between different brain regions, but not much is known about how they affect meta-state network topologies and their network dynamics. The main hypothesis of the study was that MCI and dementia due to AD alter normal meta-state sequences by inducing a loss of structure in their patterns and a reduction of their dynamics. Moreover, we expected that patients with MCI would display more flexible behavior compared to patients with dementia due to AD. Thus, the aim of the current study was twofold: (i) to find repeating, distinctly organized network patterns (meta-states) in neural activity; and (ii) to extract information about meta-state fluctuations and how they are influenced by MCI and dementia due to AD. To accomplish these goals, we present a novel methodology to characterize dynamic meta-states and their temporal fluctuations by capturing aspects based on both their discrete activation and the continuous evolution of their individual strength. These properties were extracted from 60-s resting-state EEG recordings from 67 patients with MCI due to AD, 50 patients with dementia due to AD, and 43 cognitively healthy controls. First, the instantaneous amplitude correlation (IAC) was used to estimate instantaneous functional connectivity with a high temporal resolution. We then extracted meta-states by means of graph community detection based on recurrence plots (RPs), both at the individual- and group-level. Subsequently, a diverse set of properties of the continuous and discrete fluctuation patterns of the meta-states was extracted and analyzed. The main novelty of the methodology lies in the usage of Louvain GJA community detection to extract meta-states from IAC-derived RPs and the extended analysis of their discrete and continuous activation. Our findings showed that distinct dynamic functional connectivity meta-states can be found on the EEG time-scale, and that these were not affected by the oscillatory slowing induced by MCI or dementia due to AD. However, both conditions displayed a loss of meta-state modularity, coupled with shorter dwell times and higher complexity of the meta-state sequences. Furthermore, we found evidence that meta-state sequencing is not entirely random; it shows an underlying structure that is partially lost in MCI and dementia due to AD. These results show evidence that AD progression is associated with alterations in meta-state switching, and a degradation of dynamic brain flexibility.
Collapse
Affiliation(s)
- Pablo Núñez
- Biomedical Engineering Group, University of Valladolid, Valladolid, Spain.
| | - Jesús Poza
- Biomedical Engineering Group, University of Valladolid, Valladolid, Spain; Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina, (CIBER-BBN), Madrid, Spain; IMUVA, Instituto de Investigación en Matemáticas, University of Valladolid, Spain
| | - Carlos Gómez
- Biomedical Engineering Group, University of Valladolid, Valladolid, Spain; Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina, (CIBER-BBN), Madrid, Spain
| | | | - Arjan Hillebrand
- Department of Clinical Neurophysiology and MEG Center, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Prejaas Tewarie
- Department of Clinical Neurophysiology and MEG Center, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Miguel Ángel Tola-Arribas
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina, (CIBER-BBN), Madrid, Spain
| | - Mónica Cano
- Department of Clinical Neurophysiology, "Río Hortega" University Hospital, Valladolid, Spain
| | - Roberto Hornero
- Biomedical Engineering Group, University of Valladolid, Valladolid, Spain; Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina, (CIBER-BBN), Madrid, Spain; IMUVA, Instituto de Investigación en Matemáticas, University of Valladolid, Spain
| |
Collapse
|
30
|
Macedo A, Gómez C, Rebelo MÂ, Poza J, Gomes I, Martins S, Maturana-Candelas A, Pablo VGD, Durães L, Sousa P, Figueruelo M, Rodríguez M, Pita C, Arenas M, Álvarez L, Hornero R, Lopes AM, Pinto N. Risk Variants in Three Alzheimer's Disease Genes Show Association with EEG Endophenotypes. J Alzheimers Dis 2021; 80:209-223. [PMID: 33522999 PMCID: PMC8075394 DOI: 10.3233/jad-200963] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Background: Dementia due to Alzheimer’s disease (AD) is a complex neurodegenerative disorder, which much of heritability remains unexplained. At the clinical level, one of the most common physiological alterations is the slowing of oscillatory brain activity, measurable by electroencephalography (EEG). Relative power (RP) at the conventional frequency bands (i.e., delta, theta, alpha, beta-1, and beta-2) can be considered as AD endophenotypes. Objective: The aim of this work is to analyze the association between sixteen genes previously related with AD: APOE, PICALM, CLU, BCHE, CETP, CR1, SLC6A3, GRIN2
β, SORL1, TOMM40, GSK3
β, UNC5C, OPRD1, NAV2, HOMER2, and IL1RAP, and the slowing of the brain activity, assessed by means of RP at the aforementioned frequency bands. Methods: An Iberian cohort of 45 elderly controls, 45 individuals with mild cognitive impairment, and 109 AD patients in the three stages of the disease was considered. Genomic information and brain activity of each subject were analyzed. Results: The slowing of brain activity was observed in carriers of risk alleles in IL1RAP (rs10212109, rs9823517, rs4687150), UNC5C (rs17024131), and NAV2 (rs1425227, rs862785) genes, regardless of the disease status and situation towards the strongest risk factors: age, sex, and APOE ɛ4 presence. Conclusion: Endophenotypes reduce the complexity of the general phenotype and genetic variants with a major effect on those specific traits may be then identified. The found associations in this work are novel and may contribute to the comprehension of AD pathogenesis, each with a different biological role, and influencing multiple factors involved in brain physiology.
Collapse
Affiliation(s)
- Ana Macedo
- IPATIMUP - Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal.,i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,JTA: The Data Scientists, Porto, Portugal
| | - Carlos Gómez
- Grupo de Ingeniería Biomédica, Universidad de Valladolid, Valladolid, Spain.,Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | - Miguel Ângelo Rebelo
- IPATIMUP - Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal.,i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Jesús Poza
- Grupo de Ingeniería Biomédica, Universidad de Valladolid, Valladolid, Spain.,Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain.,Instituto de Investigación en Matemáticas (IMUVA), Universidad de Valladolid, Valladolid, Spain
| | - Iva Gomes
- IPATIMUP - Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal.,i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Sandra Martins
- IPATIMUP - Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal.,i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | | | | | - Luis Durães
- Associação Portuguesa de Familiares e Amigos de Doentes de Alzheimer, Lavra, Portugal
| | - Patrícia Sousa
- Associação Portuguesa de Familiares e Amigos de Doentes de Alzheimer, Lavra, Portugal
| | - Manuel Figueruelo
- Asociación de Familiares y Amigos de Enfermos de Alzheimer y otras demencias de Zamora, Zamora, Spain
| | - María Rodríguez
- Asociación de Familiares y Amigos de Enfermos de Alzheimer y otras demencias de Zamora, Zamora, Spain
| | - Carmen Pita
- Asociación de Familiares y Amigos de Enfermos de Alzheimer y otras demencias de Zamora, Zamora, Spain
| | - Miguel Arenas
- IPATIMUP - Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal.,i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,CINBIO (Biomedical Research Center), University of Vigo, Vigo, Spain.,Department of Biochemistry, Genetics and Immunology, University of Vigo, Vigo, Spain
| | - Luis Álvarez
- IPATIMUP - Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal.,i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Adeneas, Valencia, Spain
| | - Roberto Hornero
- Grupo de Ingeniería Biomédica, Universidad de Valladolid, Valladolid, Spain.,Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain.,Instituto de Investigación en Matemáticas (IMUVA), Universidad de Valladolid, Valladolid, Spain
| | - Alexandra M Lopes
- IPATIMUP - Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal.,i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Nádia Pinto
- IPATIMUP - Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal.,i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Centro de Matemática da Universidade do Porto, Porto, Portugal
| |
Collapse
|
31
|
Zink N, Mückschel M, Beste C. Resting-state EEG Dynamics Reveals Differences in Network Organization and its Fluctuation between Frequency Bands. Neuroscience 2020; 453:43-56. [PMID: 33276088 DOI: 10.1016/j.neuroscience.2020.11.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 11/21/2020] [Accepted: 11/23/2020] [Indexed: 12/24/2022]
Abstract
Functional connectivity in EEG resting-state is not stable but fluctuates considerably. The aim of this study was to investigate how efficient information flows through a network, i.e. how resting-state EEG networks are organized and whether this organization it also subject to fluctuations. Differences of the network organization (small-worldness), degree of clustered connectivity, and path length as an indicator of how information is integrated into the network across time was compared between theta, alpha and beta bands. We show robust differences in network organization (small-worldness) between frequency bands. Fluctuations in network organization were larger in the theta, compared to the alpha and beta frequency. Variation in network organization and not the frequency of fluctuations differs between frequency bands. Furthermore, the degree of clustered connectivity and its modulation across time is the same across frequency bands, but the path length revealed the same modulatory pattern as the small-world metric. It is therefore the interplay of local processing efficiency and global information processing efficiency in the brain that fluctuates in a frequency-specific way. Properties of how information can be integrated is subject to fluctuations in a frequency-specific way in the resting-state. The possible relevance of these resting-state EEG properties is discussed including its clinical relevance.
Collapse
Affiliation(s)
- Nicolas Zink
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, United States; Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine of the TU, Dresden, Germany.
| | - Moritz Mückschel
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine of the TU, Dresden, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine of the TU, Dresden, Germany
| |
Collapse
|
32
|
Sjøgård M, Wens V, Van Schependom J, Costers L, D'hooghe M, D'haeseleer M, Woolrich M, Goldman S, Nagels G, De Tiège X. Brain dysconnectivity relates to disability and cognitive impairment in multiple sclerosis. Hum Brain Mapp 2020; 42:626-643. [PMID: 33242237 PMCID: PMC7814767 DOI: 10.1002/hbm.25247] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 09/10/2020] [Accepted: 09/29/2020] [Indexed: 12/27/2022] Open
Abstract
The pathophysiology of cognitive dysfunction in multiple sclerosis (MS) is still unclear. This magnetoencephalography (MEG) study investigates the impact of MS on brain resting-state functional connectivity (rsFC) and its relationship to disability and cognitive impairment. We investigated rsFC based on power envelope correlation within and between different frequency bands, in a large cohort of participants consisting of 99 MS patients and 47 healthy subjects. Correlations were investigated between rsFC and outcomes on disability, disease duration and 7 neuropsychological scores within each group, while stringently correcting for multiple comparisons and possible confounding factors. Specific dysconnections correlating with MS-induced physical disability and disease duration were found within the sensorimotor and language networks, respectively. Global network-level reductions in within- and cross-network rsFC were observed in the default-mode network. Healthy subjects and patients significantly differed in their scores on cognitive fatigue and verbal fluency. Healthy subjects and patients showed different correlation patterns between rsFC and cognitive fatigue or verbal fluency, both of which involved a shift in patients from the posterior default-mode network to the language network. Introducing electrophysiological rsFC in a regression model of verbal fluency and cognitive fatigue in MS patients significantly increased the explained variance compared to a regression limited to structural MRI markers (relative thalamic volume and lesion load). This MEG study demonstrates that MS induces distinct changes in the resting-state functional brain architecture that relate to disability, disease duration and specific cognitive functioning alterations. It highlights the potential value of electrophysiological intrinsic rsFC for monitoring the cognitive impairment in patients with MS.
Collapse
Affiliation(s)
- Martin Sjøgård
- Laboratoire de Cartographie fonctionnelle du Cerveau, UNI-ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Vincent Wens
- Laboratoire de Cartographie fonctionnelle du Cerveau, UNI-ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Brussels, Belgium.,Department of Functional Neuroimaging, Service of Nuclear Medicine, CUB-Hôpital Erasme, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Jeroen Van Schependom
- Center for Neurosciences, Vrije Universiteit Brussel, Brussels, Belgium.,National MS Center, Belgium
| | - Lars Costers
- Center for Neurosciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Marie D'hooghe
- Center for Neurosciences, Vrije Universiteit Brussel, Brussels, Belgium.,National MS Center, Belgium
| | - Miguel D'haeseleer
- Center for Neurosciences, Vrije Universiteit Brussel, Brussels, Belgium.,National MS Center, Belgium
| | - Mark Woolrich
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, UK
| | - Serge Goldman
- Laboratoire de Cartographie fonctionnelle du Cerveau, UNI-ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Brussels, Belgium.,Department of Functional Neuroimaging, Service of Nuclear Medicine, CUB-Hôpital Erasme, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Guy Nagels
- Center for Neurosciences, Vrije Universiteit Brussel, Brussels, Belgium.,National MS Center, Belgium.,St Edmund Hall, University of Oxford, Oxford, UK
| | - Xavier De Tiège
- Laboratoire de Cartographie fonctionnelle du Cerveau, UNI-ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Brussels, Belgium.,Department of Functional Neuroimaging, Service of Nuclear Medicine, CUB-Hôpital Erasme, Université libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
33
|
Rebelo MÂ, Gómez C, Gomes I, Poza J, Martins S, Maturana-Candelas A, Ruiz-Gómez SJ, Durães L, Sousa P, Figueruelo M, Rodríguez M, Pita C, Arenas M, Álvarez L, Hornero R, Pinto N, Lopes AM. Genome-Wide Scan for Five Brain Oscillatory Phenotypes Identifies a New QTL Associated with Theta EEG Band. Brain Sci 2020; 10:brainsci10110870. [PMID: 33218114 PMCID: PMC7698967 DOI: 10.3390/brainsci10110870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/06/2020] [Accepted: 11/10/2020] [Indexed: 11/17/2022] Open
Abstract
Brain waves, measured by electroencephalography (EEG), are a powerful tool in the investigation of neurophysiological traits and a noninvasive and cost-effective alternative in the diagnostic of some neurological diseases. In order to identify novel Quantitative Trait Loci (QTLs) for brain wave relative power (RP), we collected resting state EEG data in five frequency bands (δ, θ, α, β1, and β2) and genome-wide data in a cohort of 105 patients with late onset Alzheimer’s disease (LOAD), 41 individuals with mild cognitive impairment and 45 controls from Iberia, correcting for disease status. One novel association was found with an interesting candidate for a role in brain wave biology, CLEC16A (C-type lectin domain family 16), with a variant at this locus passing the adjusted genome-wide significance threshold after Bonferroni correction. This finding reinforces the importance of immune regulation in brain function. Additionally, at a significance cutoff value of 5 × 10−6, 18 independent association signals were detected. These signals comprise brain expression Quantitative Loci (eQTLs) in caudate basal ganglia, spinal cord, anterior cingulate cortex and hypothalamus, as well as chromatin interactions in adult and fetal cortex, neural progenitor cells and hippocampus. Moreover, in the set of genes showing signals of association with brain wave RP in our dataset, there is an overrepresentation of loci previously associated with neurological traits and pathologies, evidencing the pleiotropy of the genetic variation modulating brain function.
Collapse
Affiliation(s)
- Miguel Ângelo Rebelo
- IPATIMUP—Instituto de Patologia e Imunologia Molecular da Universidade do Porto, 4200-135 Porto, Portugal; (M.Â.R.); (I.G.); (S.M.); (A.M.L.)
- I3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Carlos Gómez
- Grupo de Ingeniería Biomédica, Universidad de Valladolid, 47011 Valladolid, Spain; (J.P.); (A.M.-C.); (S.J.R.-G.); (R.H.)
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina, (CIBER-BBN), 47011 Valladolid, Spain
- Correspondence: (C.G.); (N.P.)
| | - Iva Gomes
- IPATIMUP—Instituto de Patologia e Imunologia Molecular da Universidade do Porto, 4200-135 Porto, Portugal; (M.Â.R.); (I.G.); (S.M.); (A.M.L.)
- I3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Jesús Poza
- Grupo de Ingeniería Biomédica, Universidad de Valladolid, 47011 Valladolid, Spain; (J.P.); (A.M.-C.); (S.J.R.-G.); (R.H.)
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina, (CIBER-BBN), 47011 Valladolid, Spain
- Instituto de Investigación en Matemáticas (IMUVA), Universidad de Valladolid, 47011 Valladolid, Spain
| | - Sandra Martins
- IPATIMUP—Instituto de Patologia e Imunologia Molecular da Universidade do Porto, 4200-135 Porto, Portugal; (M.Â.R.); (I.G.); (S.M.); (A.M.L.)
- I3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Aarón Maturana-Candelas
- Grupo de Ingeniería Biomédica, Universidad de Valladolid, 47011 Valladolid, Spain; (J.P.); (A.M.-C.); (S.J.R.-G.); (R.H.)
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina, (CIBER-BBN), 47011 Valladolid, Spain
| | - Saúl J. Ruiz-Gómez
- Grupo de Ingeniería Biomédica, Universidad de Valladolid, 47011 Valladolid, Spain; (J.P.); (A.M.-C.); (S.J.R.-G.); (R.H.)
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina, (CIBER-BBN), 47011 Valladolid, Spain
| | - Luis Durães
- Associação Portuguesa de Familiares e Amigos de Doentes de Alzheimer, Delegação Norte, 4455-301 Lavra, Portugal; (L.D.); (P.S.)
| | - Patrícia Sousa
- Associação Portuguesa de Familiares e Amigos de Doentes de Alzheimer, Delegação Norte, 4455-301 Lavra, Portugal; (L.D.); (P.S.)
| | - Manuel Figueruelo
- Asociación de Familiares y Amigos de Enfermos de Alzheimer y otras demencias de Zamora, 49021 Zamora, Spain; (M.F.); (M.R.); (C.P.)
| | - María Rodríguez
- Asociación de Familiares y Amigos de Enfermos de Alzheimer y otras demencias de Zamora, 49021 Zamora, Spain; (M.F.); (M.R.); (C.P.)
| | - Carmen Pita
- Asociación de Familiares y Amigos de Enfermos de Alzheimer y otras demencias de Zamora, 49021 Zamora, Spain; (M.F.); (M.R.); (C.P.)
| | - Miguel Arenas
- Department of Biochemistry, Genetics and Immunology, University of Vigo, 36310 Vigo, Spain;
| | | | - Roberto Hornero
- Grupo de Ingeniería Biomédica, Universidad de Valladolid, 47011 Valladolid, Spain; (J.P.); (A.M.-C.); (S.J.R.-G.); (R.H.)
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina, (CIBER-BBN), 47011 Valladolid, Spain
- Instituto de Investigación en Matemáticas (IMUVA), Universidad de Valladolid, 47011 Valladolid, Spain
| | - Nádia Pinto
- IPATIMUP—Instituto de Patologia e Imunologia Molecular da Universidade do Porto, 4200-135 Porto, Portugal; (M.Â.R.); (I.G.); (S.M.); (A.M.L.)
- I3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- Centro de Matemática da, Universidade do Porto, 4169-007 Porto, Portugal
- Correspondence: (C.G.); (N.P.)
| | - Alexandra M. Lopes
- IPATIMUP—Instituto de Patologia e Imunologia Molecular da Universidade do Porto, 4200-135 Porto, Portugal; (M.Â.R.); (I.G.); (S.M.); (A.M.L.)
- I3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| |
Collapse
|
34
|
Lejko N, Larabi DI, Herrmann CS, Aleman A, Ćurčić-Blake B. Alpha Power and Functional Connectivity in Cognitive Decline: A Systematic Review and Meta-Analysis. J Alzheimers Dis 2020; 78:1047-1088. [PMID: 33185607 PMCID: PMC7739973 DOI: 10.3233/jad-200962] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Background: Mild cognitive impairment (MCI) is a stage between expected age-related cognitive decline and dementia. Dementias have been associated with changes in neural oscillations across the frequency spectrum, including the alpha range. Alpha is the most prominent rhythm in human EEG and is best detected during awake resting state (RS). Though several studies measured alpha power and synchronization in MCI, findings have not yet been integrated. Objective: To consolidate findings on power and synchronization of alpha oscillations across stages of cognitive decline. Methods: We included studies published until January 2020 that compared power or functional connectivity between 1) people with MCI and cognitively healthy older adults (OA) or people with a neurodegenerative dementia, and 2) people with progressive and stable MCI. Random-effects meta-analyses were performed when enough data was available. Results: Sixty-eight studies were included in the review. Global RS alpha power was lower in AD than in MCI (ES = –0.30; 95% CI = –0.51, –0.10; k = 6), and in MCI than in OA (ES = –1.49; 95% CI = –2.69, –0.29; k = 5). However, the latter meta-analysis should be interpreted cautiously due to high heterogeneity. The review showed lower RS alpha power in progressive than in stable MCI, and lower task-related alpha reactivity in MCI than in OA. People with MCI had both lower and higher functional connectivity than OA. Publications lacked consistency in MCI diagnosis and EEG measures. Conclusion: Research indicates that RS alpha power decreases with increasing impairment, and could—combined with measures from other frequency bands—become a biomarker of early cognitive decline.
Collapse
Affiliation(s)
- Nena Lejko
- University of Groningen, University Medical Center Groningen, Department of Biomedical Sciences of Cells & Systems, Cognitive Neuroscience Center, Groningen, The Netherlands
| | - Daouia I Larabi
- University of Groningen, University Medical Center Groningen, Department of Biomedical Sciences of Cells & Systems, Cognitive Neuroscience Center, Groningen, The Netherlands.,Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany.,Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | | | - André Aleman
- University of Groningen, University Medical Center Groningen, Department of Biomedical Sciences of Cells & Systems, Cognitive Neuroscience Center, Groningen, The Netherlands
| | - Branislava Ćurčić-Blake
- University of Groningen, University Medical Center Groningen, Department of Biomedical Sciences of Cells & Systems, Cognitive Neuroscience Center, Groningen, The Netherlands
| |
Collapse
|
35
|
Rodríguez-González V, Gómez C, Shigihara Y, Hoshi H, Revilla-Vallejo M, Hornero R, Poza J. Consistency of local activation parameters at sensor- and source-level in neural signals. J Neural Eng 2020; 17:056020. [PMID: 33055364 DOI: 10.1088/1741-2552/abb582] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Although magnetoencephalography and electroencephalography (M/EEG) signals at sensor level are robust and reliable, they suffer from different degrees of distortion due to changes in brain tissue conductivities, known as field spread and volume conduction effects. To estimate original neural generators from M/EEG activity acquired at sensor level, diverse source localisation algorithms have been proposed; however, they are not exempt from limitations and usually involve time-consuming procedures. Connectivity and network-based M/EEG analyses have been found to be affected by field spread and volume conduction effects; nevertheless, the influence of the aforementioned effects on widely used local activation parameters has not been assessed yet. The goal of this study is to evaluate the consistency of various local activation parameters when they are computed at sensor- and source-level. APPROACH Six spectral (relative power, median frequency, and individual alpha frequency) and non-linear parameters (Lempel-Ziv complexity, sample entropy, and central tendency measure) are computed from M/EEG signals at sensor- and source-level using four source inversion methods: weighted minimum norm estimate (wMNE), standardised low-resolution brain electromagnetic tomography (sLORETA), linear constrained minimum variance (LCMV), and dynamical statistical parametric mapping (dSPM). MAIN RESULTS Our results show that the spectral and non-linear parameters yield similar results at sensor- and source-level, showing high correlation values between them for all the source inversion methods evaluated and both modalities of signal, EEG and MEG. Furthermore, the correlation values remain high when performing coarse-grained spatial analyses. SIGNIFICANCE To the best of our knowledge, this is the first study analysing how field spread and volume conduction effects impact on local activation parameters computed from resting-state neural activity. Our findings evidence that local activation parameters are robust against field spread and volume conduction effects and provide equivalent information at sensor- and source-level even when performing regional analyses.
Collapse
|
36
|
Briels CT, Schoonhoven DN, Stam CJ, de Waal H, Scheltens P, Gouw AA. Reproducibility of EEG functional connectivity in Alzheimer's disease. Alzheimers Res Ther 2020; 12:68. [PMID: 32493476 PMCID: PMC7271479 DOI: 10.1186/s13195-020-00632-3] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 05/18/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Although numerous electroencephalogram (EEG) studies have described differences in functional connectivity in Alzheimer's disease (AD) compared to healthy subjects, there is no general consensus on the methodology of estimating functional connectivity in AD. Inconsistent results are reported due to multiple methodological factors such as diagnostic criteria, small sample sizes and the use of functional connectivity measures sensitive to volume conduction. We aimed to investigate the reproducibility of the disease-associated effects described by commonly used functional connectivity measures with respect to the amyloid, tau and neurodegeneration (A/T/N) criteria. METHODS Eyes-closed task-free 21-channel EEG was used from patients with probable AD and subjective cognitive decline (SCD), to form two cohorts. Artefact-free epochs were visually selected and several functional connectivity measures (AEC(-c), coherence, imaginary coherence, PLV, PLI, wPLI) were estimated in five frequency bands. Functional connectivity was compared between diagnoses using AN(C)OVA models correcting for sex, age and, additionally, relative power of the frequency band. Another model predicted the Mini-Mental State Exam (MMSE) score of AD patients by functional connectivity estimates. The analysis was repeated in a subpopulation fulfilling the A/T/N criteria, after correction for influencing factors. The analyses were repeated in the second cohort. RESULTS Two large cohorts were formed (SCD/AD; n = 197/214 and n = 202/196). Reproducible effects were found for the AEC-c in the alpha and beta frequency bands (p = 6.20 × 10-7, Cohen's d = - 0.53; p = 5.78 × 10-4, d = - 0.37) and PLI and wPLI in the theta band (p = 3.81 × 10-8, d = 0.59; p = 1.62 × 10-8, d = 0.60, respectively). Only effects of the AEC-c remained significant after statistical correction for the relative power of the selected bandwidth. In addition, alpha band AEC-c correlated with disease severity represented by MMSE score. CONCLUSION The choice of functional connectivity measure and frequency band can have a large impact on the outcome of EEG studies in AD. Our results indicate that in the alpha and beta frequency bands, the effects measured by the AEC-c are reproducible and the most valid in terms of influencing factors, correlation with disease severity and preferable properties such as correction for volume conduction. Phase-based measures with correction for volume conduction, such as the PLI, showed reproducible effects in the theta frequency band.
Collapse
Affiliation(s)
- Casper T Briels
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands.
- Department of Clinical Neurophysiology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands.
| | - Deborah N Schoonhoven
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
- Department of Clinical Neurophysiology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Cornelis J Stam
- Department of Clinical Neurophysiology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Hanneke de Waal
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Philip Scheltens
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Alida A Gouw
- Department of Clinical Neurophysiology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| |
Collapse
|
37
|
Cai L, Wang J, Guo Y, Lu M, Dong Y, Wei X. Altered inter-frequency dynamics of brain networks in disorder of consciousness. J Neural Eng 2020; 17:036006. [PMID: 32311694 DOI: 10.1088/1741-2552/ab8b2c] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Growing evidence have linked disorders of consciousness (DOC) with the changes in frequency-specific functional networks. However, the alteration of inter-frequency dynamics in brain networks remain largely unknown. In this study, we investigated the network integration and segregation across frequency bands in a multiplex network framework. APPROACH Resting-state EEG data were recorded and analysed from 19 patients in minimally conscious state, 35 patients in unresponsive wakefulness syndrome (UWS) and 23 healthy controls. Frequency-based multiplex (cross-frequency) networks were reconstructed by integrating the five frequency-specific networks. Multiplex graph metrics, named multiplex participation coefficient and multiplex clustering coefficient, were employed to assess the network topology of subjects with different levels of consciousness. MAIN RESULTS Results revealed DOC networks, compared to those of healthy controls, may work at a less optimal point (closer to complete disorder) with increased integration and decreased segregation considering inter-frequency dynamics. Both metrics show increased spatial and temporal variability with the consciousness levels. Moreover, significant correlation can be found between the alteration of cross-frequency networks in DOC patients and their behavioural performance at both local and global scales. SIGNIFICANCE These findings may contribute to the development of EEG network study and benefit our understanding of the processes of consciousness and their pathophysiology for DOC.
Collapse
Affiliation(s)
- Lihui Cai
- School of Electrical and Information Engineering, Tianjin University, Tianjin, People's Republic of China
| | | | | | | | | | | |
Collapse
|
38
|
Ponomareva N, Andreeva T, Protasova M, Konovalov R, Krotenkova M, Malina D, Mitrofanov A, Fokin V, Illarioshkin S, Rogaev E. Genetic Association Between Alzheimer's Disease Risk Variant of the PICALM Gene and EEG Functional Connectivity in Non-demented Adults. Front Neurosci 2020; 14:324. [PMID: 32372909 PMCID: PMC7177435 DOI: 10.3389/fnins.2020.00324] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 03/19/2020] [Indexed: 11/13/2022] Open
Abstract
Genome wide association studies (GWAS) have identified and validated the association of the PICALM genotype with Alzheimer's disease (AD). The PICALM rs3851179 A allele is thought to have a protective effect, whereas the G allele appears to confer risk for AD. The influence of the PICALM genotype on brain functional connectivity in non-demented subjects remains largely unknown. We examined the association of the PICALM rs3851179 genotype with the characteristics of lagged linear connectivity (LLC) of resting EEG sources in 104 non-demented adults younger than 60 years of age. The EEG analysis was performed using exact low-resolution brain electromagnetic tomography (eLORETA) freeware (Pascual-Marqui et al., 2011). We found that the carriers of the A PICALM allele (PICALM AA and AG genotypes) had higher widespread interhemispheric LLC of alpha sources compared to the carriers of the GG PICALM allele. An exploratory correlation analysis showed a moderate positive association between the alpha LLC interhemispheric characteristics and the corpus callosum size and between the alpha interhemispheric LLC characteristics and the Luria word memory scores. These results suggest that the PICALM rs3851179 A allele provides protection against cognitive decline by facilitating neurophysiological reserve capacities in non-demented adults. In contrast, lower functional connectivity in carriers of the AD risk variant, PICALM GG, suggests early functional alterations in alpha rhythm networks.
Collapse
Affiliation(s)
- Natalya Ponomareva
- Research Center of Neurology, Russian Academy of Sciences, Moscow, Russia
| | - Tatiana Andreeva
- Laboratory of Evolutionary Genomics, Department of Human Genetics and Genomics, Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia.,Center for Genetics and Genetic Technologies, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Maria Protasova
- Laboratory of Evolutionary Genomics, Department of Human Genetics and Genomics, Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Rodion Konovalov
- Research Center of Neurology, Russian Academy of Sciences, Moscow, Russia
| | - Marina Krotenkova
- Research Center of Neurology, Russian Academy of Sciences, Moscow, Russia
| | - Daria Malina
- Research Center of Neurology, Russian Academy of Sciences, Moscow, Russia
| | - Andrey Mitrofanov
- Research Center of Mental Health, Russian Academy of Medical Sciences, Moscow, Russia
| | - Vitaly Fokin
- Research Center of Neurology, Russian Academy of Sciences, Moscow, Russia
| | | | - Evgeny Rogaev
- Laboratory of Evolutionary Genomics, Department of Human Genetics and Genomics, Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia.,Center for Genetics and Genetic Technologies, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia.,Department of Psychiatry, University of Massachusetts Medical School, Worcester, MA, United States.,Sirius University of Science and Technology, Sochi, Russia
| |
Collapse
|
39
|
Cai L, Wei X, Wang J, Yi G, Lu M, Dong Y. Characterization of network switching in disorder of consciousness at multiple time scales. J Neural Eng 2020; 17:026024. [PMID: 32097898 DOI: 10.1088/1741-2552/ab79f5] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Recent works have shown that flexible information processing is closely related to the reconfiguration of human brain networks underlying brain functions. However, the role of network switching for consciousness is poorly explored and whether such transition can indicate the behavioral performance of patients with disorders of consciousness (DOC) remains unknown. Here, we investigate the relationship between the switching of brain networks (states) over time and the consciousness levels. APPROACH By applying multilayer network methods, we calculated time-resolved functional connectivity from source-level EEG data in different frequency bands. At various time scales, we explored how the human brain changes its community structure and traverses across defined network states (integrated and segregated states) in subjects with different consciousness levels. MAIN RESULTS Network switching in the human brain is decreased with increasing time scale opposite to that in random systems. Transitions of community assignment (denoted by flexibility) are negatively correlated with the consciousness levels (particularly in the alpha band) at short time scales. At long time scales, the opposite trend is found. Compared to healthy controls, patients show a new balance between dynamic segregation and integration, with decreased proportion and mean duration of segregated state (contrary to those of integrated state) at small scales. SIGNIFICANCE These findings may contribute to the development of EEG-based network analysis and shed new light on the pathological mechanisms of neurological disorders like DOC.
Collapse
Affiliation(s)
- Lihui Cai
- School of Electrical and Information Engineering, Tianjin University, Tianjin, People's Republic of China
| | | | | | | | | | | |
Collapse
|
40
|
Núñez P, Poza J, Gómez C, Barroso-García V, Maturana-Candelas A, Tola-Arribas MA, Cano M, Hornero R. Characterization of the dynamic behavior of neural activity in Alzheimer's disease: exploring the non-stationarity and recurrence structure of EEG resting-state activity. J Neural Eng 2020; 17:016071. [PMID: 32000144 DOI: 10.1088/1741-2552/ab71e9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
OBJECTIVE Mild cognitive impairment (MCI) and dementia due to Alzheimer's disease (AD) have been shown to induce perturbations to normal neuronal behavior and disrupt neuronal networks. Recent work suggests that the dynamic properties of resting-state neuronal activity could be affected by MCI and AD-induced neurodegeneration. The aim of the study was to characterize these properties from different perspectives: (i) using the Kullback-Leibler divergence (KLD), a measure of non-stationarity derived from the continuous wavelet transform; and (ii) using the entropy of the recurrence point density ([Formula: see text]) and the median of the recurrence point density ([Formula: see text]), two novel metrics based on recurrence quantification analysis. APPROACH KLD, [Formula: see text] and [Formula: see text] were computed for 49 patients with dementia due to AD, 66 patients with MCI due to AD and 43 cognitively healthy controls from 60 s electroencephalographic (EEG) recordings with a 10 s sliding window with no overlap. Afterwards, we tested whether the measures reflected alterations to normal neuronal activity induced by MCI and AD. MAIN RESULTS Our results showed that frequency-dependent alterations to normal dynamic behavior can be found in patients with MCI and AD, both in non-stationarity and recurrence structure. Patients with MCI showed signs of patterns of abnormal state recurrence in the theta (4-8 Hz) and beta (13-30 Hz) frequency bands that became more marked in AD. Moreover, abnormal non-stationarity patterns were found in MCI patients, but not in patients with AD in delta (1-4 Hz), alpha (8-13 Hz), and gamma (30-70 Hz). SIGNIFICANCE The alterations in normal levels of non-stationarity in patients with MCI suggest an initial increase in cortical activity during the development of AD. This increase could possibly be due to an impairment in neuronal inhibition that is not present during later stages. MCI and AD induce alterations to the recurrence structure of cortical activity, suggesting that normal state switching during rest may be affected by these pathologies.
Collapse
Affiliation(s)
- Pablo Núñez
- Biomedical Engineering Group, University of Valladolid, Valladolid, Spain. Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina CIBER-BBN, Valladolid, Spain. Author to whom any correspondence should be addressed
| | | | | | | | | | | | | | | |
Collapse
|