1
|
Ehlich J, Vašíček Č, Dobeš J, Ruggiero A, Vejvodová M, Głowacki ED. Shattering the Water Window: Comprehensive Mapping of Faradaic Reactions on Bioelectronics Electrodes. ACS APPLIED MATERIALS & INTERFACES 2024; 16:53567-53576. [PMID: 39351783 PMCID: PMC11472339 DOI: 10.1021/acsami.4c12268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 10/11/2024]
Abstract
It is generally accepted that for safe use of neural interface electrodes, irreversible faradaic reactions should be avoided in favor of capacitive charge injection. However, in some cases, faradaic reactions can be desirable for controlling specific (electro)physiological outcomes or for biosensing purposes. This study aims to systematically map the basic faradaic reactions occurring at bioelectronic electrode interfaces. We analyze archetypical platinum-iridium (PtIr), the most commonly used electrode material in biomedical implants. By providing a detailed guide to these reactions and the factors that influence them, we offer a valuable resource for researchers seeking to suppress or exploit faradaic reactions in various electrode materials. We employed a combination of electrochemical techniques and direct quantification methods, including amperometric, potentiometric, and spectrophotometric assays, to measure O2, H2, pH, H2O2, Cl2/OCl-, and soluble platinum and iridium ions. We compared phosphate-buffered saline (PBS) with an unbuffered electrolyte and complex cell culture media containing proteins. Our results reveal that the "water window"─the potential range without significant water electrolysis─varies depending on the electrolyte used. In the culture medium that is rich with redox-active species, a window of potentials where no faradaic process occurs essentially does not exist. Under cathodic polarizations, significant pH increases (alkalization) were observed, while anodic water splitting competes with other processes in media, preventing prevalent acidification. We quantified the oxygen reduction reaction and accumulation of H2O2 as a byproduct. PtIr efficiently deoxygenates the electrolyte under low cathodic polarizations, generating local hypoxia. Under anodic polarizations, chloride oxidation competes with oxygen evolution, producing relatively high and cytotoxic concentrations of hypochlorite (OCl-) under certain conditions. These oxidative processes occur alongside PtIr dissolution through the formation of soluble salts. Our findings indicate that the conventional understanding of the water window is an oversimplification. Important faradaic reactions, such as oxygen reduction and chloride oxidation, occur within or near the edges of the water window. Furthermore, the definition of the water window significantly depends on the electrolyte composition, with PBS yielding different results compared with culture media.
Collapse
Affiliation(s)
- Jiří Ehlich
- Bioelectronics
Materials and Devices Laboratory, Central European Institute of Technology
CEITEC, Brno University of Technology, Purkyňova 123, Brno 61200, Czech Republic
| | - Čeněk Vašíček
- Bioelectronics
Materials and Devices Laboratory, Central European Institute of Technology
CEITEC, Brno University of Technology, Purkyňova 123, Brno 61200, Czech Republic
| | - Jan Dobeš
- Department
of Chemistry, Faculty of Science, Masaryk
University, Kotlářská 2, Brno 611 37, Czech Republic
| | - Amedeo Ruggiero
- Bioelectronics
Materials and Devices Laboratory, Central European Institute of Technology
CEITEC, Brno University of Technology, Purkyňova 123, Brno 61200, Czech Republic
| | - Markéta Vejvodová
- Department
of Chemistry, Faculty of Science, Masaryk
University, Kotlářská 2, Brno 611 37, Czech Republic
| | - Eric Daniel Głowacki
- Bioelectronics
Materials and Devices Laboratory, Central European Institute of Technology
CEITEC, Brno University of Technology, Purkyňova 123, Brno 61200, Czech Republic
| |
Collapse
|
2
|
Niederhoffer T, Vanhoestenberghe A, Lancashire HT. Extending the understanding of Shannon's safe stimulation limit for platinum electrodes: biphasic charge-balanced pulse trains in unbuffered saline at pH = 1 to pH = 12. J Neural Eng 2024; 21:056007. [PMID: 38579740 DOI: 10.1088/1741-2552/ad3b6a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 04/05/2024] [Indexed: 04/07/2024]
Abstract
Objective.In neural electrical stimulation, safe stimulation guidelines are essential to deliver efficient treatment while avoiding neural damage and electrode degradation. The widely used Shannon's limit,k, gives conditions on the stimulation parameters to avoid neural damage, however, underlying damage mechanisms are not fully understood. Moreover, the translation from bench testing toin vivoexperiments still presents some challenges, including the increased polarisation observed, which may influence charge-injection mechanisms. In this work, we studied the influence on damage mechanisms of two electrolyte parameters that are differentin vivocompared to usual bench tests: solution pH and electrolyte gelation.Approach.The potential of a platinum macroelectrode was monitored in a three-electrode setup during current-controlled biphasic charge-balanced cathodic-first pulse trains. Maximum anodic and cathodic potential excursions during pulse trains were projected on cyclic voltammograms to infer possible electrochemical reactions.Main results.In unbuffered saline of pH ranging from 1 to 12, the maximum anodic potential was systematically located in the oxide formation region, while the cathodic potential was located the molecular oxygen and oxide reduction region whenkapproached Shannon's damage limit, independent of solution pH. The results support the hypothesis that Shannon's limit corresponds to the beginning of platinum dissolution following repeated cycles of platinum oxidation and reduction, for which the cathodic excursion is a key tipping point. Despite similar potential excursions between solution and gel electrolytes, we found a joint influence of pH and gelation on the cathodic potential alone, while we observed no effect on the anodic potential. We hypothesise that gelation creates a positive feedback loop exacerbating the effects of pH ; however, the extent of that influence needs to be examined further.Significance.This work supports the hypothesis of charge injection mechanisms associated with stimulation-induced damage at platinum electrodes. The validity of a major hypothesis explaining stimulation-induced damage was tested and supported on a range of electrolytes representing potential electrode environments, calling for further characterisation of platinum dissolution during electrical stimulation in various testing conditions.
Collapse
Affiliation(s)
- Thomas Niederhoffer
- Department of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, United Kingdom
| | - Anne Vanhoestenberghe
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Henry T Lancashire
- Department of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, United Kingdom
| |
Collapse
|
3
|
Gryszel M, Jakešová M, Vu XT, Ingebrandt S, Głowacki ED. Elevating Platinum to Volumetric Capacitance: High Surface Area Electrodes through Reactive Pt Sputtering. Adv Healthc Mater 2024; 13:e2302400. [PMID: 38758352 DOI: 10.1002/adhm.202302400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 05/14/2024] [Indexed: 05/18/2024]
Abstract
Platinum is the most widespread electrode material used for implantable biomedical and neuroelectronic devices, motivating exploring ways to improve its performance and understand its fundamental properties. Using reactive magnetron sputtering, PtOx is prepared, which upon partial reduction yields a porous thin-film form of platinum with favorable properties, notably record-low impedance values outcompeting other reports for platinum-based electrodes. It is established that its high electrochemical capacitance scales with thickness, in the way of volumetric capacitor materials like IrOx and poly(3,4-ethylenedioxythiophene), PEDOT. Unlike these two well-known analogs, however, it is found that PtOx capacitance is not caused by reversible pseudofaradaic reactions but rather due to high surface area. In contrast to IrOx, PtOx is not a reversible valence-change oxide, but rather a porous form of platinum. The findings show that this oxygen-containing form of Pt can place Pt electrodes on a level competitive with IrOx and PEDOT. Due to its relatively low cost and ease of preparation, PtOx can be a good choice for microfabricated bioelectronic devices.
Collapse
Affiliation(s)
- Maciej Gryszel
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Bredgatan 33, Norrköping, 60174, Sweden
| | - Marie Jakešová
- Bioelectronics Materials and Devices Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 123, Brno, 61200, Czech Republic
| | - Xuan Thang Vu
- Institute of Materials in Electrical Engineering 1, RWTH Aachen University, 52074, Aachen, Germany
| | - Sven Ingebrandt
- Institute of Materials in Electrical Engineering 1, RWTH Aachen University, 52074, Aachen, Germany
| | - Eric Daniel Głowacki
- Bioelectronics Materials and Devices Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 123, Brno, 61200, Czech Republic
| |
Collapse
|
4
|
Viana D, Walston ST, Masvidal-Codina E, Illa X, Rodríguez-Meana B, Del Valle J, Hayward A, Dodd A, Loret T, Prats-Alfonso E, de la Oliva N, Palma M, Del Corro E, Del Pilar Bernicola M, Rodríguez-Lucas E, Gener T, de la Cruz JM, Torres-Miranda M, Duvan FT, Ria N, Sperling J, Martí-Sánchez S, Spadaro MC, Hébert C, Savage S, Arbiol J, Guimerà-Brunet A, Puig MV, Yvert B, Navarro X, Kostarelos K, Garrido JA. Nanoporous graphene-based thin-film microelectrodes for in vivo high-resolution neural recording and stimulation. NATURE NANOTECHNOLOGY 2024; 19:514-523. [PMID: 38212522 PMCID: PMC11026161 DOI: 10.1038/s41565-023-01570-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 11/07/2023] [Indexed: 01/13/2024]
Abstract
One of the critical factors determining the performance of neural interfaces is the electrode material used to establish electrical communication with the neural tissue, which needs to meet strict electrical, electrochemical, mechanical, biological and microfabrication compatibility requirements. This work presents a nanoporous graphene-based thin-film technology and its engineering to form flexible neural interfaces. The developed technology allows the fabrication of small microelectrodes (25 µm diameter) while achieving low impedance (∼25 kΩ) and high charge injection (3-5 mC cm-2). In vivo brain recording performance assessed in rodents reveals high-fidelity recordings (signal-to-noise ratio >10 dB for local field potentials), while stimulation performance assessed with an intrafascicular implant demonstrates low current thresholds (<100 µA) and high selectivity (>0.8) for activating subsets of axons within the rat sciatic nerve innervating tibialis anterior and plantar interosseous muscles. Furthermore, the tissue biocompatibility of the devices was validated by chronic epicortical (12 week) and intraneural (8 week) implantation. This work describes a graphene-based thin-film microelectrode technology and demonstrates its potential for high-precision and high-resolution neural interfacing.
Collapse
Affiliation(s)
- Damià Viana
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Barcelona, Spain
| | - Steven T Walston
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Barcelona, Spain
| | - Eduard Masvidal-Codina
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Barcelona, Spain
| | - Xavi Illa
- Institut de Microelectrònica de Barcelona, IMB-CNM (CSIC), Campus UAB, Bellaterra, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Madrid, Spain
| | - Bruno Rodríguez-Meana
- Institute of Neurosciences, Department of Cell Biology, Physiology and Immunology, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Jaume Del Valle
- Institute of Neurosciences, Department of Cell Biology, Physiology and Immunology, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Universitat Autònoma de Barcelona, Barcelona, Spain
- Secció de Fisiologia, Department de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l'Alimentació, Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| | - Andrew Hayward
- Nanomedicine Lab, National Graphene Institute and Faculty of Biology, Medicine & Health, Manchester, UK
| | - Abbie Dodd
- Nanomedicine Lab, National Graphene Institute and Faculty of Biology, Medicine & Health, Manchester, UK
| | - Thomas Loret
- Nanomedicine Lab, National Graphene Institute and Faculty of Biology, Medicine & Health, Manchester, UK
| | - Elisabet Prats-Alfonso
- Institut de Microelectrònica de Barcelona, IMB-CNM (CSIC), Campus UAB, Bellaterra, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Madrid, Spain
| | - Natàlia de la Oliva
- Institute of Neurosciences, Department of Cell Biology, Physiology and Immunology, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Marie Palma
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, Grenoble, France
| | - Elena Del Corro
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Barcelona, Spain
| | - María Del Pilar Bernicola
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Barcelona, Spain
| | - Elisa Rodríguez-Lucas
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Barcelona, Spain
- Hospital del Mar Research Institute, Barcelona, Spain
| | - Thomas Gener
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Barcelona, Spain
- Hospital del Mar Research Institute, Barcelona, Spain
| | - Jose Manuel de la Cruz
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Barcelona, Spain
| | - Miguel Torres-Miranda
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Barcelona, Spain
| | - Fikret Taygun Duvan
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Barcelona, Spain
| | - Nicola Ria
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Barcelona, Spain
| | - Justin Sperling
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Barcelona, Spain
| | - Sara Martí-Sánchez
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Barcelona, Spain
| | - Maria Chiara Spadaro
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Barcelona, Spain
| | - Clément Hébert
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Barcelona, Spain
| | - Sinead Savage
- Nanomedicine Lab, National Graphene Institute and Faculty of Biology, Medicine & Health, Manchester, UK
| | - Jordi Arbiol
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Barcelona, Spain
- ICREA, Barcelona, Spain
| | - Anton Guimerà-Brunet
- Institut de Microelectrònica de Barcelona, IMB-CNM (CSIC), Campus UAB, Bellaterra, Spain
| | - M Victoria Puig
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Barcelona, Spain
- Hospital del Mar Research Institute, Barcelona, Spain
| | - Blaise Yvert
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, Grenoble, France
| | - Xavier Navarro
- Institute of Neurosciences, Department of Cell Biology, Physiology and Immunology, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Kostas Kostarelos
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Barcelona, Spain.
- Institute of Neurosciences, Department of Cell Biology, Physiology and Immunology, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Universitat Autònoma de Barcelona, Barcelona, Spain.
- Nanomedicine Lab, National Graphene Institute and Faculty of Biology, Medicine & Health, Manchester, UK.
| | - Jose A Garrido
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Barcelona, Spain.
- ICREA, Barcelona, Spain.
| |
Collapse
|
5
|
Wang X, Jiang W, Yang H, Ye Y, Zhou Z, Sun L, Nie Y, Tao TH, Wei X. Ultraflexible PEDOT:PSS/IrO x-Modified Electrodes: Applications in Behavioral Modulation and Neural Signal Recording in Mice. MICROMACHINES 2024; 15:447. [PMID: 38675259 PMCID: PMC11051784 DOI: 10.3390/mi15040447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024]
Abstract
Recent advancements in neural probe technology have become pivotal in both neuroscience research and the clinical management of neurological disorders. State-of-the-art developments have led to the advent of multichannel, high-density bidirectional neural interfaces that are adept at both recording and modulating neuronal activity within the central nervous system. Despite this progress, extant bidirectional probes designed for simultaneous recording and stimulation are beset with limitations, including elicitation of inflammatory responses and insufficient charge injection capacity. In this paper, we delineate the design and application of an innovative ultraflexible bidirectional neural probe engineered from polyimide. This probe is distinguished by its ability to facilitate high-resolution recordings and precise stimulation control in deep brain regions. Electrodes enhanced with a PEDOT:PSS/IrOx composite exhibit a substantial increase in charge storage capacity, escalating from 0.14 ± 0.01 mC/cm2 to an impressive 24.75 ± 0.18 mC/cm2. This augmentation significantly bolsters the electrodes' charge transfer efficacy. In tandem, we observed a notable reduction in electrode impedance, from 3.47 ± 1.77 MΩ to a mere 41.88 ± 4.04 kΩ, while the phase angle exhibited a positive shift from -72.61 ± 1.84° to -34.17 ± 0.42°. To substantiate the electrodes' functional prowess, we conducted in vivo experiments, where the probes were surgically implanted into the bilateral motor cortex of mice. These experiments involved the synchronous recording and meticulous analysis of neural signal fluctuations during stimulation and an assessment of the probes' proficiency in modulating directional turning behaviors in the subjects. The empirical evidence corroborates that targeted stimulation within the bilateral motor cortex of mice can modulate the intensity of neural signals in the stimulated locale, enabling the directional control of the mice's turning behavior to the contralateral side of the stimulation site.
Collapse
Affiliation(s)
- Xueying Wang
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China; (X.W.); (W.J.); (H.Y.); (Y.Y.); (Z.Z.); (L.S.); (T.H.T.)
- School of Graduate Study, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wanqi Jiang
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China; (X.W.); (W.J.); (H.Y.); (Y.Y.); (Z.Z.); (L.S.); (T.H.T.)
- School of Graduate Study, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huiran Yang
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China; (X.W.); (W.J.); (H.Y.); (Y.Y.); (Z.Z.); (L.S.); (T.H.T.)
| | - Yifei Ye
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China; (X.W.); (W.J.); (H.Y.); (Y.Y.); (Z.Z.); (L.S.); (T.H.T.)
- 2020 X-Lab, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
| | - Zhitao Zhou
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China; (X.W.); (W.J.); (H.Y.); (Y.Y.); (Z.Z.); (L.S.); (T.H.T.)
- School of Graduate Study, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liuyang Sun
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China; (X.W.); (W.J.); (H.Y.); (Y.Y.); (Z.Z.); (L.S.); (T.H.T.)
- School of Graduate Study, University of Chinese Academy of Sciences, Beijing 100049, China
- 2020 X-Lab, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
| | - Yanyan Nie
- Shanghai Laboratory Animal Research Center, Shanghai 201203, China;
| | - Tiger H. Tao
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China; (X.W.); (W.J.); (H.Y.); (Y.Y.); (Z.Z.); (L.S.); (T.H.T.)
- School of Graduate Study, University of Chinese Academy of Sciences, Beijing 100049, China
- 2020 X-Lab, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
- Neuroxess Co., Ltd. (Jiangxi), Nanchang 330029, China
- Guangdong Institute of Intelligence Science and Technology, Hengqin, Zhuhai 519031, China
- Tianqiao and Chrissy Chen Institute for Translational Research, Shanghai 200040, China
| | - Xiaoling Wei
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China; (X.W.); (W.J.); (H.Y.); (Y.Y.); (Z.Z.); (L.S.); (T.H.T.)
- School of Graduate Study, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
6
|
González-González MA, Conde SV, Latorre R, Thébault SC, Pratelli M, Spitzer NC, Verkhratsky A, Tremblay MÈ, Akcora CG, Hernández-Reynoso AG, Ecker M, Coates J, Vincent KL, Ma B. Bioelectronic Medicine: a multidisciplinary roadmap from biophysics to precision therapies. Front Integr Neurosci 2024; 18:1321872. [PMID: 38440417 PMCID: PMC10911101 DOI: 10.3389/fnint.2024.1321872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/10/2024] [Indexed: 03/06/2024] Open
Abstract
Bioelectronic Medicine stands as an emerging field that rapidly evolves and offers distinctive clinical benefits, alongside unique challenges. It consists of the modulation of the nervous system by precise delivery of electrical current for the treatment of clinical conditions, such as post-stroke movement recovery or drug-resistant disorders. The unquestionable clinical impact of Bioelectronic Medicine is underscored by the successful translation to humans in the last decades, and the long list of preclinical studies. Given the emergency of accelerating the progress in new neuromodulation treatments (i.e., drug-resistant hypertension, autoimmune and degenerative diseases), collaboration between multiple fields is imperative. This work intends to foster multidisciplinary work and bring together different fields to provide the fundamental basis underlying Bioelectronic Medicine. In this review we will go from the biophysics of the cell membrane, which we consider the inner core of neuromodulation, to patient care. We will discuss the recently discovered mechanism of neurotransmission switching and how it will impact neuromodulation design, and we will provide an update on neuronal and glial basis in health and disease. The advances in biomedical technology have facilitated the collection of large amounts of data, thereby introducing new challenges in data analysis. We will discuss the current approaches and challenges in high throughput data analysis, encompassing big data, networks, artificial intelligence, and internet of things. Emphasis will be placed on understanding the electrochemical properties of neural interfaces, along with the integration of biocompatible and reliable materials and compliance with biomedical regulations for translational applications. Preclinical validation is foundational to the translational process, and we will discuss the critical aspects of such animal studies. Finally, we will focus on the patient point-of-care and challenges in neuromodulation as the ultimate goal of bioelectronic medicine. This review is a call to scientists from different fields to work together with a common endeavor: accelerate the decoding and modulation of the nervous system in a new era of therapeutic possibilities.
Collapse
Affiliation(s)
- María Alejandra González-González
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, United States
- Department of Pediatric Neurology, Baylor College of Medicine, Houston, TX, United States
| | - Silvia V. Conde
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NOVA University, Lisbon, Portugal
| | - Ramon Latorre
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Stéphanie C. Thébault
- Laboratorio de Investigación Traslacional en salud visual (D-13), Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro, Mexico
| | - Marta Pratelli
- Neurobiology Department, Kavli Institute for Brain and Mind, UC San Diego, La Jolla, CA, United States
| | - Nicholas C. Spitzer
- Neurobiology Department, Kavli Institute for Brain and Mind, UC San Diego, La Jolla, CA, United States
| | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
- Achucarro Centre for Neuroscience, IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
- International Collaborative Center on Big Science Plan for Purinergic Signaling, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- Department of Molecular Medicine, Université Laval, Québec City, QC, Canada
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, Canada
| | - Cuneyt G. Akcora
- Department of Computer Science, University of Central Florida, Orlando, FL, United States
| | | | - Melanie Ecker
- Department of Biomedical Engineering, University of North Texas, Denton, TX, United States
| | | | - Kathleen L. Vincent
- Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, TX, United States
| | - Brandy Ma
- Stanley H. Appel Department of Neurology, Houston Methodist Hospital, Houston, TX, United States
| |
Collapse
|
7
|
Miranda JA, Rapeaux A, Samper IC, Silveira C, Willé DR, Hunsberger GE, Dopson WJ, Yao H, Karicherla A, Chew DJ. Functional Electrochemistry: On-Nerve Assessment of Electrode Materials for Electrochemistry and Functional Neurostimulation. IEEE OPEN JOURNAL OF ENGINEERING IN MEDICINE AND BIOLOGY 2024; 5:59-65. [PMID: 38445242 PMCID: PMC10914184 DOI: 10.1109/ojemb.2024.3356818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/26/2023] [Accepted: 01/15/2024] [Indexed: 03/07/2024] Open
Abstract
Emerging therapies in bioelectronic medicine highlight the need for deeper understanding of electrode material performance in the context of tissue stimulation. Electrochemical properties are characterized on the benchtop, facilitating standardization across experiments. On-nerve electrochemistry differs from benchtop characterization and the relationship between electrochemical performance and nerve activation thresholds are not commonly established. This relationship is important in understanding differences between electrical stimulation requirements and electrode performance. We report functional electrochemistry as a follow-up to benchtop testing, describing a novel experimental approach for evaluating on-nerve electrochemical performance in the context of nerve activation. An ex-vivo rat sciatic nerve preparation was developed to quantify activation thresholds of fiber subtypes and electrode material charge injection limits for platinum iridium, iridium oxide, titanium nitride and PEDOT. Finally, we address experimental complexities arising in these studies, and demonstrate statistical solutions that support rigorous material performance comparisons for decision making in neural interface development.
Collapse
Affiliation(s)
| | - Adrien Rapeaux
- Galvani Bioelectonics Ltd., StevenageSG1 2NYHertfordshireU.K.
- Imperial College LondonSW7 2BXLondonU.K.
| | - Isabelle C. Samper
- Galvani Bioelectonics Ltd., StevenageSG1 2NYHertfordshireU.K.
- Global Health LabsBellevueWA98007USA
| | - Carolina Silveira
- Galvani Bioelectonics Ltd., StevenageSG1 2NYHertfordshireU.K.
- Medicines and Healthcare Products Regulatory AgencyE14 4PULondonU.K.
| | | | | | | | - Huanfen Yao
- Verily Life Sciences LLCSan FranciscoCA94080-4804USA
- Google LLCMountain ViewCA94043USA
| | - Annapurna Karicherla
- Verily Life Sciences LLCSan FranciscoCA94080-4804USA
- Microsoft Corp.Mountain ViewCA94043USA
| | - Daniel J. Chew
- Galvani Bioelectonics Ltd., StevenageSG1 2NYHertfordshireU.K.
| |
Collapse
|
8
|
Bill D, Jasper M, Weltin A, Urban GA, Rupitsch SJ, Kieninger J. Electrochemical Methods in the Cloud: FreiStat, an IoT-Enabled Embedded Potentiostat. Anal Chem 2023; 95:13003-13009. [PMID: 37582246 PMCID: PMC11321338 DOI: 10.1021/acs.analchem.3c02114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/04/2023] [Indexed: 08/17/2023]
Abstract
Embedded potentiostats enable electrochemical measurements in the Internet-of-Things (IoT) or other decentralized applications, such as remote environmental monitoring, electrochemical energy systems, and biomedical point-of-care applications. We report on Freiburg's Potentiostat (FreiStat) based on the AD5941 potentiostat circuit from Analog Devices, together with custom firmware, as the key to precise and advanced electrochemical methods. We demonstrated its analytical performance by various cyclic voltammetry measurements, advanced techniques such as differential pulse voltammetry, and a lactate biosensor measurement with currents in the nA range and a resolution of 54 pA. The FreiStat yielded analytical results comparable to benchtop devices and outperformed current commercial embedded potentiostats at significantly lower cost, smaller size, and lower power consumption. Decentralized corrosion analysis by a Tafel plot using the IBM Cloud showed its applicability in a typical IoT scenario. The developed open-source software framework facilitates the integration of electrochemical instrumentation into applications utilizing machine learning and other artificial intelligence. Together with the affordable and highly capable embedded potentiostat, our approach can leverage analytical chemistry toward increasingly important, more widespread and decentralized applications.
Collapse
Affiliation(s)
- David Bill
- Laboratory
for Sensors, IMTEK − Department of Microsystems Engineering, University of Freiburg, 79110 Freiburg, Germany
| | - Mark Jasper
- Laboratory
for Sensors, IMTEK − Department of Microsystems Engineering, University of Freiburg, 79110 Freiburg, Germany
| | - Andreas Weltin
- Laboratory
for Sensors, IMTEK − Department of Microsystems Engineering, University of Freiburg, 79110 Freiburg, Germany
- BrainLinks−BrainTools
Center, University of Freiburg, 79110 Freiburg, Germany
- Laboratory
for Electrical Instrumentation and Embedded Systems, IMTEK −
Department of Microsystems Engineering, University of Freiburg, 79110 Freiburg, Germany
| | - Gerald A. Urban
- Laboratory
for Sensors, IMTEK − Department of Microsystems Engineering, University of Freiburg, 79110 Freiburg, Germany
- BrainLinks−BrainTools
Center, University of Freiburg, 79110 Freiburg, Germany
| | - Stefan J. Rupitsch
- BrainLinks−BrainTools
Center, University of Freiburg, 79110 Freiburg, Germany
- Laboratory
for Electrical Instrumentation and Embedded Systems, IMTEK −
Department of Microsystems Engineering, University of Freiburg, 79110 Freiburg, Germany
| | - Jochen Kieninger
- Laboratory
for Sensors, IMTEK − Department of Microsystems Engineering, University of Freiburg, 79110 Freiburg, Germany
- BrainLinks−BrainTools
Center, University of Freiburg, 79110 Freiburg, Germany
- Laboratory
for Electrical Instrumentation and Embedded Systems, IMTEK −
Department of Microsystems Engineering, University of Freiburg, 79110 Freiburg, Germany
| |
Collapse
|
9
|
Kim JS, Kim J, Lim JW, Kim DJ, Lee JI, Choi H, Kweon H, Lee J, Yee H, Kim JH, Kim B, Kang MS, Jeong JH, Park SM, Kim DH. Implantable Multi-Cross-Linked Membrane-Ionogel Assembly for Reversible Non-Faradaic Neurostimulation. ACS NANO 2023; 17:14706-14717. [PMID: 37498185 DOI: 10.1021/acsnano.3c02637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Neural interfaces play a major role in modulating neural signals for therapeutic purposes. To meet the demand of conformable neural interfaces for developing bioelectronic medicine, recent studies have focused on the performance of electrical neurostimulators employing soft conductors such as conducting polymers and electronic or ionic conductive hydrogels. However, faradaic charge injection at the interface of the electrode and nerve tissue causes irreversible gas evolution, oxidation of electrodes, and reduction of biological ions, thus causing undesired tissue damage and electrode degradation. Here we report a conformable neural interface engineering based on multicross-linked membrane-ionogel assembly (termed McMiA), which enables nonfaradaic neurostimulation without irreversible charge transfer reaction. The McMiA consists of a genipin-cross-linked biopolymeric ionogel coupled with a dopamine-cross-linked graphene oxide membrane to prevent ion exchange between biological and synthetic McMiA ions and to function as a bioadhesive forming covalent bonds with the target tissues. In addition, the demonstration of bioelectronic medicine via the McMiA-based neurostimulation of sciatic nerves shows the enhanced clinical utility in treating the overactive bladder syndrome. As the McMiA-based neural interface is soft, robust for bioadhesion, and stable in a physiological environment, it can offer significant advancement in biocompatibility and long-term operability for neural interface engineering.
Collapse
Affiliation(s)
- Joo Sung Kim
- Department of Chemical Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Junho Kim
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Jun Woo Lim
- Department of Chemical Engineering, Soongsil University, Seoul 06978, Republic of Korea
| | - Dong Jun Kim
- Department of Chemical Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Jong Ik Lee
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Republic of Korea
| | - Hanbin Choi
- Department of Chemical Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Hyukmin Kweon
- Department of Chemical Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Jiho Lee
- Department of Convergence IT Engineering, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Hyeono Yee
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Republic of Korea
| | - Ji Hong Kim
- Department of Chemical Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Bokyung Kim
- Department of Chemical Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Moon Sung Kang
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Republic of Korea
- Institute of Emergent Materials, Sogang University, Seoul 04107, Republic of Korea
| | - Jae Hyun Jeong
- Department of Chemical Engineering, Soongsil University, Seoul 06978, Republic of Korea
| | - Sung-Min Park
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
- Department of Convergence IT Engineering, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Do Hwan Kim
- Department of Chemical Engineering, Hanyang University, Seoul 04763, Republic of Korea
- Institute of Nano Science and Technology, Hanyang University, Seoul 04763, Republic of Korea
- Clean-Energy Research Institute, Hanyang University, Seoul 04763, Republic of Korea
| |
Collapse
|
10
|
Dornhof J, Zieger V, Kieninger J, Frejek D, Zengerle R, Urban GA, Kartmann S, Weltin A. Bioprinting-based automated deposition of single cancer cell spheroids into oxygen sensor microelectrode wells. LAB ON A CHIP 2022; 22:4369-4381. [PMID: 36254669 DOI: 10.1039/d2lc00705c] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Three-dimensional (3D) cell agglomerates, such as microtissues, organoids, and spheroids, become increasingly relevant in biomedicine. They can provide in vitro models that recapitulate functions of the original tissue in the body and have applications in cancer research. For example, they are widely used in organ-on-chip systems. Microsensors can provide essential real-time information on cell metabolism as well as the reliability and quality of culture conditions. The combination of sensors and 3D cell cultures, especially single spheroids, is challenging in terms of reproducible formation, manipulation, and access to spheroids, precise positioning near sensors, and high cell-to-volume ratios to obtain meaningful biosignals in the most parallel approach possible. To overcome this challenge, we combined state-of-the-art bioprinting techniques to automatically print tumour spheroids directly into microwells of a chip-based electrochemical oxygen sensor array. We demonstrated highly accurate and reproducible spheroid formation (diameter of approx. 200 μm) and a spheroid deposition precision of 25 μm within a volume of 22 nl per droplet. Microstructures and hydrogel-coated microwells allowed the placement of single MCF-7 breast cancer spheroids close to the sensor electrodes. The microelectrode wells were sealed for oxygen measurements within a 55 nl volume for fast concentration changes. Accurate and stable amperometric oxygen sensor performance was demonstrated from atmospheric to anoxic regions. Cellular respiration rates from single tumour spheroids in the range of 450-850 fmol min-1 were determined, and alterations of cell metabolism upon drug exposure were shown. Our results uniquely combine bioprinting with 3D cell culture monitoring and demonstrate the much-needed effort for facilitation, parallelization, sensor integration, and drug delivery in 3D cell culture and organ-on-chip experiments. The workflow has a high degree of automation and potential for scalability. In order to achieve greater flexibility in the automation of spheroid formation and trapping, we employed a method based on drop-on-demand liquid handling systems, instead of the typical on-chip approach commonly used in microfluidics. Its relevance ranges from fundamental metabolic research over standardization of cell culture experiments and toxicological studies, to personalized medicine, e.g. patient-specific chemotherapy.
Collapse
Affiliation(s)
- Johannes Dornhof
- Laboratory for Sensors, IMTEK - Department of Microsystems Engineering, University of Freiburg, Freiburg, Germany.
| | - Viktoria Zieger
- Laboratory for MEMS Applications, IMTEK - Department of Microsystems Engineering, University of Freiburg, Freiburg, Germany
| | - Jochen Kieninger
- Laboratory for Sensors, IMTEK - Department of Microsystems Engineering, University of Freiburg, Freiburg, Germany.
| | | | - Roland Zengerle
- Laboratory for MEMS Applications, IMTEK - Department of Microsystems Engineering, University of Freiburg, Freiburg, Germany
- Hahn-Schickard, Freiburg, Germany
| | - Gerald A Urban
- Laboratory for Sensors, IMTEK - Department of Microsystems Engineering, University of Freiburg, Freiburg, Germany.
| | - Sabrina Kartmann
- Laboratory for MEMS Applications, IMTEK - Department of Microsystems Engineering, University of Freiburg, Freiburg, Germany
- Hahn-Schickard, Freiburg, Germany
| | - Andreas Weltin
- Laboratory for Sensors, IMTEK - Department of Microsystems Engineering, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
11
|
Puglia MK, Bowen PK. Cyclic Voltammetry Study of Noble Metals and Their Alloys for Use in Implantable Electrodes. ACS OMEGA 2022; 7:34200-34212. [PMID: 36188288 PMCID: PMC9520554 DOI: 10.1021/acsomega.2c03563] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/30/2022] [Indexed: 06/16/2023]
Abstract
Innovation in the application and miniaturization of implantable electrodes has caused a spike in new electrode material research; however, few robust studies are available that compare different metal electrodes in biologically relevant media. Herein, cyclic voltammetry has been employed to compare platinum, palladium, and gold-based electrodes' potentiometric scans and their corresponding charge storage capacities (CSCs). Ten different noble metals and alloys in these families were tested under pseudophysiological conditions in phosphate-buffered saline (pH 7.4) at 37 °C. Charge storage capacity values (mC/cm2) were calculated for the oxide reduction, hydrogen adsorption, hydrogen desorption, and oxide formation peaks. Five scan rates spanning 2 orders of magnitude (10, 50, 100, 500, and 1000 mV/s) in both sparged and aerated environments were evaluated. Materials have been ranked by their charge storage capacities, reversibility, and trends discussed. Palladium-based alloys outperformed platinum-based alloys in the sparged condition and were ranked equally as high in the aerated condition. The Paliney 1100 (Pd-Re) alloy gave the highest observed calculated CSC value of 0.64 ± 0.02 mC/cm2 in the aerated condition, demonstrating 73 ± 5% reversibility. Trends between metal electrode families elicited in this study can afford valuable insight into future engineering of high performing implantable electrode materials.
Collapse
|
12
|
Doering M, Kieninger J, Urban GA, Weltin A. In situ stability monitoring of platinum thin-film electrodes for neural interfaces in the presence of proteins. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2022; 2022:1577-1580. [PMID: 36083919 DOI: 10.1109/embc48229.2022.9871177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The long-term stability of platinum electrodes is a key factor that determines the life-time of biomedical devices, such as implanted neural interfaces like brain stimulation or recording electrodes, cochlear implants, and biosensors. The downsizing of such devices relies on the usage of microfabricated thin-film electrodes. In order to determine and investigate the causal degradation processes for platinum electrodes, it is essential to use potential-controlled experiments, which allow selectable polarization of the electrode without exceeding the water stability window boundaries. Therefore, the surface processes and redox reactions occurring at the electrode are known at all times. In this study, we present the continuous in situ monitoring of platinum-based thin-film electrodes along their complete life cycle in neutral pH with and without the presence of proteins. The usage of chronoamperometry for electrode aging, monitoring of surface processes and the tracking of analyte redox processes, together with cyclic voltammetry to determine the complete amount of surface charge, allows a reliable quantification of fundamental degradation processes. We found that platinum dissolution is primarily driven by the formation and removal of Pt oxide. Despite the significantly lowered charge transfer, the presence of proteins did not prevent material loss or increase electrode lifetime. These results should be considered when interpreting results from current-controlled methods as typically used for neural interfaces. Clinical Relevance- All clinically relevant applications of microelectrodes, ranging from cell culture over diagnostics to in vivo use, involve the presence of proteins. Detailed and fundamental insight into electrode stability in the presence of proteins is therefore essential for successful clinical translation of neural interface technologies.
Collapse
|
13
|
Ehlich J, Migliaccio L, Sahalianov I, Nikić M, Brodský J, Gablech I, Vu XT, Ingebrandt S, Głowacki ED. Direct measurement of oxygen reduction reactions at neurostimulation electrodes. J Neural Eng 2022; 19. [PMID: 35688124 DOI: 10.1088/1741-2552/ac77c0] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 06/10/2022] [Indexed: 11/11/2022]
Abstract
Objective. Electric stimulation delivered by implantable electrodes is a key component of neural engineering. While factors affecting long-term stability, safety, and biocompatibility are a topic of continuous investigation, a widely-accepted principle is that charge injection should be reversible, with no net electrochemical products forming. We want to evaluate oxygen reduction reactions (ORR) occurring at different electrode materials when using established materials and stimulation protocols.Approach. As stimulation electrodes, we have tested platinum, gold, tungsten, nichrome, iridium oxide, titanium, titanium nitride, and poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate). We use cyclic voltammetry and voltage-step amperometry in oxygenated versus inert conditions to establish at which potentials ORR occurs, and the magnitudes of diffusion-limited ORR currents. We also benchmark the areal capacitance of each electrode material. We use amperometric probes (Clark-type electrodes) to quantify the O2and H2O2concentrations in the vicinity of the electrode surface. O2and H2O2concentrations are measured while applying DC current, or various biphasic charge-balanced pulses of amplitude in the range 10-30µC cm-2/phase. To corroborate experimental measurements, we employ finite element modelling to recreate 3D gradients of O2and H2O2.Main results. All electrode materials support ORR and can create hypoxic conditions near the electrode surface. We find that electrode materials differ significantly in their onset potentials for ORR, and in the extent to which they produce H2O2as a by-product. A key result is that typical charge-balanced biphasic pulse protocols do lead to irreversible ORR. Some electrodes induce severely hypoxic conditions, others additionally produce an accumulation of hydrogen peroxide into the mM range.Significance. Our findings highlight faradaic ORR as a critical consideration for neural interface devices and show that the established biphasic/charge-balanced approach does not prevent irreversible changes in O2concentrations. Hypoxia and H2O2can result in different (electro)physiological consequences.
Collapse
Affiliation(s)
- Jiří Ehlich
- Bioelectronics Materials and Devices Laboratory, Central European Institute of Technology CEITEC, Brno University of Technology, Purkyňova 123, 61200 Brno, Czech Republic
| | - Ludovico Migliaccio
- Bioelectronics Materials and Devices Laboratory, Central European Institute of Technology CEITEC, Brno University of Technology, Purkyňova 123, 61200 Brno, Czech Republic
| | - Ihor Sahalianov
- Bioelectronics Materials and Devices Laboratory, Central European Institute of Technology CEITEC, Brno University of Technology, Purkyňova 123, 61200 Brno, Czech Republic
| | - Marta Nikić
- Bioelectronics Materials and Devices Laboratory, Central European Institute of Technology CEITEC, Brno University of Technology, Purkyňova 123, 61200 Brno, Czech Republic.,Institute of Neuroelectronics, Technical University of Munich, Munich, Germany
| | - Jan Brodský
- Bioelectronics Materials and Devices Laboratory, Central European Institute of Technology CEITEC, Brno University of Technology, Purkyňova 123, 61200 Brno, Czech Republic
| | - Imrich Gablech
- Bioelectronics Materials and Devices Laboratory, Central European Institute of Technology CEITEC, Brno University of Technology, Purkyňova 123, 61200 Brno, Czech Republic
| | - Xuan Thang Vu
- Institute of Materials in Electrical Engineering 1, RWTH Aachen University, 52074 Aachen, Germany
| | - Sven Ingebrandt
- Institute of Materials in Electrical Engineering 1, RWTH Aachen University, 52074 Aachen, Germany
| | - Eric Daniel Głowacki
- Bioelectronics Materials and Devices Laboratory, Central European Institute of Technology CEITEC, Brno University of Technology, Purkyňova 123, 61200 Brno, Czech Republic
| |
Collapse
|
14
|
Doering M, Kieninger J, Urban G, Weltin A. Electrochemical microelectrode degradation monitoring: in situ investigation of platinum corrosion at neutral pH. J Neural Eng 2022; 19. [PMID: 34983028 DOI: 10.1088/1741-2552/ac47da] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/04/2022] [Indexed: 11/11/2022]
Abstract
OBJECTIVE The stability of platinum and other noble metal electrodes is critical for neural implants, electrochemical sensors, and energy sources. Beyond the acidic or alkaline environment found in most electrochemical studies, the investigation of electrode corrosion in neutral pH and chloride containing electrolytes is essential, particularly regarding the long-term stability of neural interfaces, such as brain stimulation electrodes or cochlear implants. In addition, the increased use of microfabricated devices demands the investigation of thin-film electrode stability. APPROACH We developed a procedure of electrochemical methods for continuous tracking of electrode degradation in situ over the complete life cycle of platinum thin-film microelectrodes in a unique combination with simultaneous chemical sensing. We used chronoamperometry and cyclic voltammetry to measure electrode surface and analyte redox processes, together with accelerated electrochemical degradation. MAIN RESULTS We compared degradation between thin-film microelectrodes and bulk electrodes, neutral to acidic pH, different pulsing schemes, and the presence of the redox active species oxygen and hydrogen peroxide. Results were confirmed by mechanical profilometry and microscopy to determine material changes on a nanometer scale. We found that electrode degradation is mainly driven by repeated formation and removal of the platinum surface oxide, also within the electrochemical stability window of water. There was no considerable difference between thin-film micro- and macroscopic bulk electrodes or in the presence of reactive species, whereas acidic pH or extending the potential window led to increased degradation. SIGNIFICANCE Our results provide valuable fundamental information on platinum microelectrode degradation under conditions found in biomedical applications. For the first time, we deployed a unified method to report quantitative data on electrode degradation up to a defined endpoint. Our method is a widely applicable framework for comparative long-term studies of sensor and neural interface stability.
Collapse
Affiliation(s)
- Moritz Doering
- University of Freiburg, Georges-Köhler-Allee 103, Freiburg im Breisgau, Baden-Württemberg, 79110, GERMANY
| | - Jochen Kieninger
- University of Freiburg, Georges-Köhler-Allee 103, Freiburg im Breisgau, Baden-Württemberg, 79110, GERMANY
| | - Gerald Urban
- Department of Microsystems Engineering, Albert-Ludwigs-Universitat Freiburg, Georges-Köhler-Allee 103, Freiburg im Breisgau, 79110, GERMANY
| | - Andreas Weltin
- IMTEK - Department of Microsystems Engineering, University of Freiburg, Georges-Köhler-Allee 103, Freiburg im Breisgau, 79110, GERMANY
| |
Collapse
|
15
|
Weltin A, Kieninger J, Urban GA, Buchholz S, Arndt S, Rosskothen-Kuhl N. Standard cochlear implants as electrochemical sensors: Intracochlear oxygen measurements in vivo. Biosens Bioelectron 2021; 199:113859. [PMID: 34911002 DOI: 10.1016/j.bios.2021.113859] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 11/02/2022]
Abstract
Cochlear implants are the most successful neural prostheses worldwide and routinely restore sensorineural hearing loss by direct electrical stimulation of the auditory nerve. Enhancing this standard implant by chemical sensor functionality opens up new possibilities, ranging from access to the biochemical microenvironment of the implanted electrode array to the long-term study of the electrode status. We developed an electrochemical method to turn the platinum stimulation microelectrodes of cochlear implants into electrochemical sensors. The electrodes showed excellent and stable chemical sensor properties, as demonstrated by in vitro characterizations with combined amperometric and active potentiometric dissolved oxygen and hydrogen peroxide measurements. Linear, stable and highly reproducible sensor responses within the relevant concentration ranges with negligible offset were shown. This approach was successfully applied in vivo in an animal model. Intracochlear oxygen dynamics in rats upon breathing pure oxygen were reproducibly and precisely measured in real-time from the perilymph. At the same time, correct implant placement and its functionality was verified by measurements of electrically evoked auditory brainstem responses with clearly distinguishable peaks. Acute measurements indicated no adverse influence of electrical stimulation on electrochemical measurements and vice versa. Our work is ground-breaking towards advanced implant functionality, future implant lifetime monitoring, and implant-life-long in situ investigation of electrode degradation in cochlear implant patients.
Collapse
Affiliation(s)
- Andreas Weltin
- Laboratory for Sensors, IMTEK - Department of Microsystems Engineering, University of Freiburg, Freiburg, Germany; BrainLinks-BrainTools Center, University of Freiburg, Freiburg, Germany.
| | - Jochen Kieninger
- Laboratory for Sensors, IMTEK - Department of Microsystems Engineering, University of Freiburg, Freiburg, Germany; BrainLinks-BrainTools Center, University of Freiburg, Freiburg, Germany
| | - Gerald A Urban
- Laboratory for Sensors, IMTEK - Department of Microsystems Engineering, University of Freiburg, Freiburg, Germany; BrainLinks-BrainTools Center, University of Freiburg, Freiburg, Germany
| | - Sarah Buchholz
- Department of Oto-Rhino-Laryngology, Section of Experimental and Clinical Otology, Neurobiological Research Laboratory, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Susan Arndt
- Department of Oto-Rhino-Laryngology, Section of Experimental and Clinical Otology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Nicole Rosskothen-Kuhl
- Department of Oto-Rhino-Laryngology, Section of Experimental and Clinical Otology, Neurobiological Research Laboratory, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany.
| |
Collapse
|