1
|
Agudelo-Toro A, Michaels JA, Sheng WA, Scherberger H. Accurate neural control of a hand prosthesis by posture-related activity in the primate grasping circuit. Neuron 2024; 112:4115-4129.e8. [PMID: 39419024 DOI: 10.1016/j.neuron.2024.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 03/15/2024] [Accepted: 09/19/2024] [Indexed: 10/19/2024]
Abstract
Brain-computer interfaces (BCIs) have the potential to restore hand movement for people with paralysis, but current devices still lack the fine control required to interact with objects of daily living. Following our understanding of cortical activity during arm reaches, hand BCI studies have focused primarily on velocity control. However, mounting evidence suggests that posture, and not velocity, dominates in hand-related areas. To explore whether this signal can causally control a prosthesis, we developed a BCI training paradigm centered on the reproduction of posture transitions. Monkeys trained with this protocol were able to control a multidimensional hand prosthesis with high accuracy, including execution of the very intricate precision grip. Analysis revealed that the posture signal in the target grasping areas was the main contributor to control. We present, for the first time, neural posture control of a multidimensional hand prosthesis, opening the door for future interfaces to leverage this additional information channel.
Collapse
Affiliation(s)
- Andres Agudelo-Toro
- Neurobiology Laboratory, Deutsches Primatenzentrum GmbH, Göttingen 37077, Germany.
| | - Jonathan A Michaels
- Neurobiology Laboratory, Deutsches Primatenzentrum GmbH, Göttingen 37077, Germany; School of Kinesiology and Health Science, Faculty of Health, York University, Toronto, ON M3J 1P3, Canada
| | - Wei-An Sheng
- Neurobiology Laboratory, Deutsches Primatenzentrum GmbH, Göttingen 37077, Germany; Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Hansjörg Scherberger
- Neurobiology Laboratory, Deutsches Primatenzentrum GmbH, Göttingen 37077, Germany; Faculty of Biology and Psychology, University of Göttingen, Göttingen 37073, Germany.
| |
Collapse
|
2
|
Singer-Clark T, Hou X, Card NS, Wairagkar M, Iacobacci C, Peracha H, Hochberg LR, Stavisky SD, Brandman DM. Speech motor cortex enables BCI cursor control and click. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.12.623096. [PMID: 39605556 PMCID: PMC11601350 DOI: 10.1101/2024.11.12.623096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Decoding neural activity from ventral (speech) motor cortex is known to enable high-performance speech brain-computer interface (BCI) control. It was previously unknown whether this brain area could also enable computer control via neural cursor and click, as is typically associated with dorsal (arm and hand) motor cortex. We recruited a clinical trial participant with ALS and implanted intracortical microelectrode arrays in ventral precentral gyrus (vPCG), which the participant used to operate a speech BCI in a prior study. We developed a cursor BCI driven by the participant's vPCG neural activity, and evaluated performance on a series of target selection tasks. The reported vPCG cursor BCI enabled rapidly-calibrating (40 seconds), accurate (2.90 bits per second) cursor control and click. The participant also used the BCI to control his own personal computer independently. These results suggest that placing electrodes in vPCG to optimize for speech decoding may also be a viable strategy for building a multi-modal BCI which enables both speech-based communication and computer control via cursor and click.
Collapse
Affiliation(s)
- Tyler Singer-Clark
- Department of Neurological Surgery, University of California Davis, Davis, CA, USA
- Department of Biomedical Engineering, University of California Davis, Davis, CA, USA
| | - Xianda Hou
- Department of Neurological Surgery, University of California Davis, Davis, CA, USA
- Department of Computer Science, University of California Davis, Davis, CA, USA
| | - Nicholas S. Card
- Department of Neurological Surgery, University of California Davis, Davis, CA, USA
| | - Maitreyee Wairagkar
- Department of Neurological Surgery, University of California Davis, Davis, CA, USA
| | - Carrina Iacobacci
- Department of Neurological Surgery, University of California Davis, Davis, CA, USA
| | - Hamza Peracha
- Department of Neurological Surgery, University of California Davis, Davis, CA, USA
| | - Leigh R. Hochberg
- School of Engineering and Carney Institute for Brain Sciences, Brown University, Providence, RI, USA
- VA RR&D Center for Neurorestoration and Neurotechnology, VA Providence Healthcare, Providence, RI
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Sergey D. Stavisky
- Department of Neurological Surgery, University of California Davis, Davis, CA, USA
| | - David M. Brandman
- Department of Neurological Surgery, University of California Davis, Davis, CA, USA
| |
Collapse
|
3
|
Karpowicz BM, Ye J, Fan C, Tostado-Marcos P, Rizzoglio F, Washington C, Scodeler T, de Lucena D, Nason-Tomaszewski SR, Mender MJ, Ma X, Arneodo EM, Hochberg LR, Chestek CA, Henderson JM, Gentner TQ, Gilja V, Miller LE, Rouse AG, Gaunt RA, Collinger JL, Pandarinath C. Few-shot Algorithms for Consistent Neural Decoding (FALCON) Benchmark. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.15.613126. [PMID: 39345641 PMCID: PMC11429771 DOI: 10.1101/2024.09.15.613126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Intracortical brain-computer interfaces (iBCIs) can restore movement and communication abilities to individuals with paralysis by decoding their intended behavior from neural activity recorded with an implanted device. While this activity yields high-performance decoding over short timescales, neural data are often nonstationary, which can lead to decoder failure if not accounted for. To maintain performance, users must frequently recalibrate decoders, which requires the arduous collection of new neural and behavioral data. Aiming to reduce this burden, several approaches have been developed that either limit recalibration data requirements (few-shot approaches) or eliminate explicit recalibration entirely (zero-shot approaches). However, progress is limited by a lack of standardized datasets and comparison metrics, causing methods to be compared in an ad hoc manner. Here we introduce the FALCON benchmark suite (Few-shot Algorithms for COnsistent Neural decoding) to standardize evaluation of iBCI robustness. FALCON curates five datasets of neural and behavioral data that span movement and communication tasks to focus on behaviors of interest to modern-day iBCIs. Each dataset includes calibration data, optional few-shot recalibration data, and private evaluation data. We implement a flexible evaluation platform which only requires user-submitted code to return behavioral predictions on unseen data. We also seed the benchmark by applying baseline methods spanning several classes of possible approaches. FALCON aims to provide rigorous selection criteria for robust iBCI decoders, easing their translation to real-world devices.
Collapse
|
4
|
Pun TK, Khoshnevis M, Hosman T, Wilson GH, Kapitonava A, Kamdar F, Henderson JM, Simeral JD, Vargas-Irwin CE, Harrison MT, Hochberg LR. Measuring instability in chronic human intracortical neural recordings towards stable, long-term brain-computer interfaces. Commun Biol 2024; 7:1363. [PMID: 39433844 PMCID: PMC11494208 DOI: 10.1038/s42003-024-06784-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 08/26/2024] [Indexed: 10/23/2024] Open
Abstract
Intracortical brain-computer interfaces (iBCIs) enable people with tetraplegia to gain intuitive cursor control from movement intentions. To translate to practical use, iBCIs should provide reliable performance for extended periods of time. However, performance begins to degrade as the relationship between kinematic intention and recorded neural activity shifts compared to when the decoder was initially trained. In addition to developing decoders to better handle long-term instability, identifying when to recalibrate will also optimize performance. We propose a method, "MINDFUL", to measure instabilities in neural data for useful long-term iBCI, without needing labels of user intentions. Longitudinal data were analyzed from two BrainGate2 participants with tetraplegia as they used fixed decoders to control a computer cursor spanning 142 days and 28 days, respectively. We demonstrate a measure of instability that correlates with changes in closed-loop cursor performance solely based on the recorded neural activity (Pearson r = 0.93 and 0.72, respectively). This result suggests a strategy to infer online iBCI performance from neural data alone and to determine when recalibration should take place for practical long-term use.
Collapse
Affiliation(s)
- Tsam Kiu Pun
- Biomedical Engineering Graduate Program, School of Engineering, Brown University, Providence, RI, USA.
- School of Engineering, Brown University, Providence, RI, USA.
- Carney Institute for Brain Science, Brown University, Providence, RI, USA.
| | - Mona Khoshnevis
- Division of Applied Mathematics, Brown University, Providence, RI, USA
| | - Tommy Hosman
- School of Engineering, Brown University, Providence, RI, USA
- VA RR&D Center for Neurorestoration and Neurotechnology, Rehabilitation R&D Service, Providence VA Medical Center, Providence, RI, USA
| | - Guy H Wilson
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
| | - Anastasia Kapitonava
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Foram Kamdar
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
| | - Jaimie M Henderson
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
- Wu Tsai Neurosciences Institute and Bio-X Institute, Stanford University, Stanford, CA, USA
| | - John D Simeral
- School of Engineering, Brown University, Providence, RI, USA
- Carney Institute for Brain Science, Brown University, Providence, RI, USA
- VA RR&D Center for Neurorestoration and Neurotechnology, Rehabilitation R&D Service, Providence VA Medical Center, Providence, RI, USA
| | - Carlos E Vargas-Irwin
- Carney Institute for Brain Science, Brown University, Providence, RI, USA
- VA RR&D Center for Neurorestoration and Neurotechnology, Rehabilitation R&D Service, Providence VA Medical Center, Providence, RI, USA
- Department of Neuroscience, Brown University, Providence, RI, USA
| | - Matthew T Harrison
- Carney Institute for Brain Science, Brown University, Providence, RI, USA
- Division of Applied Mathematics, Brown University, Providence, RI, USA
| | - Leigh R Hochberg
- School of Engineering, Brown University, Providence, RI, USA
- Carney Institute for Brain Science, Brown University, Providence, RI, USA
- VA RR&D Center for Neurorestoration and Neurotechnology, Rehabilitation R&D Service, Providence VA Medical Center, Providence, RI, USA
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
5
|
Alcolea P, Ma X, Bodkin K, Miller LE, Danziger ZC. Less is more: selection from a small set of options improves BCI velocity control. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.03.596241. [PMID: 38895473 PMCID: PMC11185569 DOI: 10.1101/2024.06.03.596241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
We designed the discrete direction selection (DDS) decoder for intracortical brain computer interface (iBCI) cursor control and showed that it outperformed currently used decoders in a human-operated real-time iBCI simulator and in monkey iBCI use. Unlike virtually all existing decoders that map between neural activity and continuous velocity commands, DDS uses neural activity to select among a small menu of preset cursor velocities. We compared closed-loop cursor control across four visits by each of 48 naïve, able-bodied human subjects using either DDS or one of three common continuous velocity decoders: direct regression with assist (an affine map from neural activity to cursor velocity), ReFIT, and the velocity Kalman Filter. DDS outperformed all three by a substantial margin. Subsequently, a monkey using an iBCI also had substantially better performance with DDS than with the Wiener filter decoder (direct regression decoder that includes time history). Discretizing the decoded velocity with DDS effectively traded high resolution velocity commands for less tortuous and lower noise trajectories, highlighting the potential benefits of simplifying online iBCI control.
Collapse
Affiliation(s)
- Pedro Alcolea
- Department of Biomedical Engineering, Florida International University, Miami, FL 33199, USA
| | - Xuan Ma
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Kevin Bodkin
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Lee E. Miller
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL 60208, USA
- Shirley Ryan AbilityLab, Chicago, IL 60611, USA
| | - Zachary C. Danziger
- Department of Biomedical Engineering, Florida International University, Miami, FL 33199, USA
- Department of Rehabilitation Medicine - Division of Physical Therapy, Emory University, Atlanta, GA 30322, USA
- W.H. Coulter Department of Biomedical Engineering, Emory University Atlanta, GA 30322, USA
| |
Collapse
|
6
|
Yang SH, Huang CJ, Huang JS. Increasing Robustness of Intracortical Brain-Computer Interfaces for Recording Condition Changes via Data Augmentation. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 251:108208. [PMID: 38754326 DOI: 10.1016/j.cmpb.2024.108208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/30/2024] [Indexed: 05/18/2024]
Abstract
BACKGROUND AND OBJECTIVE Intracortical brain-computer interfaces (iBCIs) aim to help paralyzed individuals restore their motor functions by decoding neural activity into intended movement. However, changes in neural recording conditions hinder the decoding performance of iBCIs, mainly because the neural-to-kinematic mappings shift. Conventional approaches involve either training the neural decoders using large datasets before deploying the iBCI or conducting frequent calibrations during its operation. However, collecting data for extended periods can cause user fatigue, negatively impacting the quality and consistency of neural signals. Furthermore, frequent calibration imposes a substantial computational load. METHODS This study proposes a novel approach to increase iBCIs' robustness against changing recording conditions. The approach uses three neural augmentation operators to generate augmented neural activity that mimics common recording conditions. Then, contrastive learning is used to learn latent factors by maximizing the similarity between the augmented neural activities. The learned factors are expected to remain stable despite varying recording conditions and maintain a consistent correlation with the intended movement. RESULTS Experimental results demonstrate that the proposed iBCI outperformed the state-of-the-art iBCIs and was robust to changing recording conditions across days for long-term use on one publicly available nonhuman primate dataset. It achieved satisfactory offline decoding performance, even when a large training dataset was unavailable. CONCLUSIONS This study paves the way for reducing the need for frequent calibration of iBCIs and collecting a large amount of annotated training data. Potential future works aim to improve offline decoding performance with an ultra-small training dataset and improve the iBCIs' robustness to severely disabled electrodes.
Collapse
Affiliation(s)
- Shih-Hung Yang
- Department of Mechanical Engineering, National Cheng Kung University, Tainan, 701, Taiwan.
| | - Chun-Jui Huang
- Department of Mechanical Engineering, National Cheng Kung University, Tainan, 701, Taiwan
| | - Jhih-Siang Huang
- Department of Mechanical Engineering, National Cheng Kung University, Tainan, 701, Taiwan
| |
Collapse
|
7
|
Shah NP, Willsey MS, Hahn N, Kamdar F, Avansino DT, Fan C, Hochberg LR, Willett FR, Henderson JM. A flexible intracortical brain-computer interface for typing using finger movements. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.22.590630. [PMID: 38712189 PMCID: PMC11071346 DOI: 10.1101/2024.04.22.590630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Keyboard typing with finger movements is a versatile digital interface for users with diverse skills, needs, and preferences. Currently, such an interface does not exist for people with paralysis. We developed an intracortical brain-computer interface (BCI) for typing with attempted flexion/extension movements of three finger groups on the right hand, or both hands, and demonstrated its flexibility in two dominant typing paradigms. The first paradigm is "point-and-click" typing, where a BCI user selects one key at a time using continuous real-time control, allowing selection of arbitrary sequences of symbols. During cued character selection with this paradigm, a human research participant with paralysis achieved 30-40 selections per minute with nearly 90% accuracy. The second paradigm is "keystroke" typing, where the BCI user selects each character by a discrete movement without real-time feedback, often giving a faster speed for natural language sentences. With 90 cued characters per minute, decoding attempted finger movements and correcting errors using a language model resulted in more than 90% accuracy. Notably, both paradigms matched the state-of-the-art for BCI performance and enabled further flexibility by the simultaneous selection of multiple characters as well as efficient decoder estimation across paradigms. Overall, the high-performance interface is a step towards the wider accessibility of BCI technology by addressing unmet user needs for flexibility.
Collapse
Affiliation(s)
| | - Matthew S Willsey
- Department of Neurosurgery, Stanford University
- Department of Neurosurgery, The University of Texas at Austin, Austin, TX, USA + This work was primarily conducted at Stanford University
| | - Nick Hahn
- Department of Neurosurgery, Stanford University
| | | | - Donald T Avansino
- Department of Neurosurgery, Stanford University
- Howard Hughes Medical Institute at Stanford University, Stanford, CA, USA
| | - Chaofei Fan
- Department of Neurosurgery, Stanford University
| | - Leigh R Hochberg
- VA RR&D Center for Neurorestoration and Neurotechnology, Rehabilitation R&D Service, Providence VA Medical Center, Providence, RI, USA
- School of Engineering, Brown University, Providence, RI, USA
- Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, RI, USA
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Francis R Willett
- Howard Hughes Medical Institute at Stanford University, Stanford, CA, USA
| | - Jaimie M Henderson
- Department of Neurosurgery, Stanford University
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
- Bio-X Institute, Stanford University, Stanford, CA, USA
| |
Collapse
|
8
|
Pun TK, Khoshnevis M, Hosman T, Wilson GH, Kapitonava A, Kamdar F, Henderson JM, Simeral JD, Vargas-Irwin CE, Harrison MT, Hochberg LR. Measuring instability in chronic human intracortical neural recordings towards stable, long-term brain-computer interfaces. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.29.582733. [PMID: 38496552 PMCID: PMC10942277 DOI: 10.1101/2024.02.29.582733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Intracortical brain-computer interfaces (iBCIs) enable people with tetraplegia to gain intuitive cursor control from movement intentions. To translate to practical use, iBCIs should provide reliable performance for extended periods of time. However, performance begins to degrade as the relationship between kinematic intention and recorded neural activity shifts compared to when the decoder was initially trained. In addition to developing decoders to better handle long-term instability, identifying when to recalibrate will also optimize performance. We propose a method to measure instability in neural data without needing to label user intentions. Longitudinal data were analyzed from two BrainGate2 participants with tetraplegia as they used fixed decoders to control a computer cursor spanning 142 days and 28 days, respectively. We demonstrate a measure of instability that correlates with changes in closed-loop cursor performance solely based on the recorded neural activity (Pearson r = 0.93 and 0.72, respectively). This result suggests a strategy to infer online iBCI performance from neural data alone and to determine when recalibration should take place for practical long-term use.
Collapse
|
9
|
Holt MW, Robinson EC, Shlobin NA, Hanson JT, Bozkurt I. Intracortical brain-computer interfaces for improved motor function: a systematic review. Rev Neurosci 2024; 35:213-223. [PMID: 37845811 DOI: 10.1515/revneuro-2023-0077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/23/2023] [Indexed: 10/18/2023]
Abstract
In this systematic review, we address the status of intracortical brain-computer interfaces (iBCIs) applied to the motor cortex to improve function in patients with impaired motor ability. This study followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 2020 Guidelines for Systematic Reviews. Risk Of Bias In Non-randomized Studies - of Interventions (ROBINS-I) and the Effective Public Health Practice Project (EPHPP) were used to assess bias and quality. Advances in iBCIs in the last two decades demonstrated the use of iBCI to activate limbs for functional tasks, achieve neural typing for communication, and other applications. However, the inconsistency of performance metrics employed by these studies suggests the need for standardization. Each study was a pilot clinical trial consisting of 1-4, majority male (64.28 %) participants, with most trials featuring participants treated for more than 12 months (55.55 %). The systems treated patients with various conditions: amyotrophic lateral sclerosis, stroke, spinocerebellar degeneration without cerebellar involvement, and spinal cord injury. All participants presented with tetraplegia at implantation and were implanted with microelectrode arrays via pneumatic insertion, with nearly all electrode locations solely at the precentral gyrus of the motor cortex (88.88 %). The development of iBCI devices using neural signals from the motor cortex to improve motor-impaired patients has enhanced the ability of these systems to return ability to their users. However, many milestones remain before these devices can prove their feasibility for recovery. This review summarizes the achievements and shortfalls of these systems and their respective trials.
Collapse
Affiliation(s)
- Matthew W Holt
- Department of Natural Sciences, University of South Carolina Beaufort, 1 University Blvd, Bluffton, 29909, USA
| | | | - Nathan A Shlobin
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Jacob T Hanson
- Rocky Vista University College of Osteopathic Medicine, Englewood, CO 80112, USA
| | - Ismail Bozkurt
- Department of Neurosurgery, School of Medicine, Yuksek Ihtisas University, 06530 Ankara, Türkiye
- Department of Neurosurgery, Medical Park Ankara Hospital, 06680 Ankara, Türkiye
| |
Collapse
|
10
|
Wang HL, Kuo YT, Lo YC, Kuo CH, Chen BW, Wang CF, Wu ZY, Lee CE, Yang SH, Lin SH, Chen PC, Chen YY. Enhancing Prediction of Forelimb Movement Trajectory through a Calibrating-Feedback Paradigm Incorporating RAT Primary Motor and Agranular Cortical Ensemble Activity in the Goal-Directed Reaching Task. Int J Neural Syst 2023; 33:2350051. [PMID: 37632142 DOI: 10.1142/s012906572350051x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2023]
Abstract
Complete reaching movements involve target sensing, motor planning, and arm movement execution, and this process requires the integration and communication of various brain regions. Previously, reaching movements have been decoded successfully from the motor cortex (M1) and applied to prosthetic control. However, most studies attempted to decode neural activities from a single brain region, resulting in reduced decoding accuracy during visually guided reaching motions. To enhance the decoding accuracy of visually guided forelimb reaching movements, we propose a parallel computing neural network using both M1 and medial agranular cortex (AGm) neural activities of rats to predict forelimb-reaching movements. The proposed network decodes M1 neural activities into the primary components of the forelimb movement and decodes AGm neural activities into internal feedforward information to calibrate the forelimb movement in a goal-reaching movement. We demonstrate that using AGm neural activity to calibrate M1 predicted forelimb movement can improve decoding performance significantly compared to neural decoders without calibration. We also show that the M1 and AGm neural activities contribute to controlling forelimb movement during goal-reaching movements, and we report an increase in the power of the local field potential (LFP) in beta and gamma bands over AGm in response to a change in the target distance, which may involve sensorimotor transformation and communication between the visual cortex and AGm when preparing for an upcoming reaching movement. The proposed parallel computing neural network with the internal feedback model improves prediction accuracy for goal-reaching movements.
Collapse
Affiliation(s)
- Han-Lin Wang
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, No. 155, Sec. 2 Linong St., Taipei 112304, Taiwan
| | - Yun-Ting Kuo
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, No. 155, Sec. 2 Linong St., Taipei 112304, Taiwan
| | - Yu-Chun Lo
- The Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, 12F., Education & Research Building, Shuang-Ho Campus, No. 301, Yuantong Rd., New Taipei City 235235, Taiwan
| | - Chao-Hung Kuo
- Department of Neurosurgery, Neurological Institute Taipei Veterans General Hospital, No. 201, Sec. 2 Shipai Rd., Taipei 11217, Taiwan
| | - Bo-Wei Chen
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, No. 155, Sec. 2 Linong St., Taipei 112304, Taiwan
| | - Ching-Fu Wang
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, No. 155, Sec. 2 Linong St., Taipei 112304, Taiwan
- Biomedical Engineering Research and Development Center, National Yang Ming Chiao Tung University, No. 155, Sec. 2 Linong St., Taipei 112304, Taiwan
| | - Zu-Yu Wu
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, No. 155, Sec. 2 Linong St., Taipei 112304, Taiwan
| | - Chi-En Lee
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, No. 155, Sec. 2 Linong St., Taipei 112304, Taiwan
| | - Shih-Hung Yang
- Department of Mechanical Engineering, National Cheng Kung University, No. 1, University Rd., Tainan 70101, Taiwan
| | - Sheng-Huang Lin
- Department of Neurology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, No. 707, Sec. 3 Zhongyang Rd., Hualien 97002, Taiwan
- Department of Neurology, School of Medicine, Tzu Chi University, No. 701, Sec. 3, Zhongyang Rd., Hualien 97004, Taiwan
| | - Po-Chuan Chen
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - You-Yin Chen
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, No. 155, Sec. 2 Linong St., Taipei 112304, Taiwan
- The Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, 12F., Education & Research Building, Shuang-Ho Campus, No. 301, Yuantong Rd., New Taipei City 235235, Taiwan
| |
Collapse
|
11
|
Natraj N, Seko S, Abiri R, Yan H, Graham Y, Tu-Chan A, Chang EF, Ganguly K. Flexible regulation of representations on a drifting manifold enables long-term stable complex neuroprosthetic control. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.11.551770. [PMID: 37645922 PMCID: PMC10462094 DOI: 10.1101/2023.08.11.551770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
The nervous system needs to balance the stability of neural representations with plasticity. It is unclear what is the representational stability of simple actions, particularly those that are well-rehearsed in humans, and how it changes in new contexts. Using an electrocorticography brain-computer interface (BCI), we found that the mesoscale manifold and relative representational distances for a repertoire of simple imagined movements were remarkably stable. Interestingly, however, the manifold's absolute location demonstrated day-to-day drift. Strikingly, representational statistics, especially variance, could be flexibly regulated to increase discernability during BCI control without somatotopic changes. Discernability strengthened with practice and was specific to the BCI, demonstrating remarkable contextual specificity. Accounting for drift, and leveraging the flexibility of representations, allowed neuroprosthetic control of a robotic arm and hand for over 7 months without recalibration. Our study offers insight into how electrocorticography can both track representational statistics across long periods and allow long-term complex neuroprosthetic control.
Collapse
Affiliation(s)
- Nikhilesh Natraj
- Dept. of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, California, USA
- UCSF - Veteran Affairs Medical Center, San Francisco, California, USA
| | - Sarah Seko
- Dept. of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, California, USA
- UCSF - Veteran Affairs Medical Center, San Francisco, California, USA
| | - Reza Abiri
- Electrical, Computer and Biomedical Engineering, University of Rhode Island, Rhode Island, USA
| | - Hongyi Yan
- Dept. of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, California, USA
- UCSF - Veteran Affairs Medical Center, San Francisco, California, USA
| | - Yasmin Graham
- Dept. of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, California, USA
- UCSF - Veteran Affairs Medical Center, San Francisco, California, USA
| | - Adelyn Tu-Chan
- Dept. of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, California, USA
- UCSF - Veteran Affairs Medical Center, San Francisco, California, USA
| | - Edward F Chang
- Department of Neurological Surgery, Weill Institute for Neuroscience, University of California-San Francisco, San Francisco, California, USA
| | - Karunesh Ganguly
- Dept. of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, California, USA
- UCSF - Veteran Affairs Medical Center, San Francisco, California, USA
| |
Collapse
|
12
|
Wan Z, Liu T, Ran X, Liu P, Chen W, Zhang S. The influence of non-stationarity of spike signals on decoding performance in intracortical brain-computer interface: a simulation study. Front Comput Neurosci 2023; 17:1135783. [PMID: 37251598 PMCID: PMC10213332 DOI: 10.3389/fncom.2023.1135783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 04/28/2023] [Indexed: 05/31/2023] Open
Abstract
Introduction Intracortical Brain-Computer Interfaces (iBCI) establish a new pathway to restore motor functions in individuals with paralysis by interfacing directly with the brain to translate movement intention into action. However, the development of iBCI applications is hindered by the non-stationarity of neural signals induced by the recording degradation and neuronal property variance. Many iBCI decoders were developed to overcome this non-stationarity, but its effect on decoding performance remains largely unknown, posing a critical challenge for the practical application of iBCI. Methods To improve our understanding on the effect of non-stationarity, we conducted a 2D-cursor simulation study to examine the influence of various types of non-stationarities. Concentrating on spike signal changes in chronic intracortical recording, we used the following three metrics to simulate the non-stationarity: mean firing rate (MFR), number of isolated units (NIU), and neural preferred directions (PDs). MFR and NIU were decreased to simulate the recording degradation while PDs were changed to simulate the neuronal property variance. Performance evaluation based on simulation data was then conducted on three decoders and two different training schemes. Optimal Linear Estimation (OLE), Kalman Filter (KF), and Recurrent Neural Network (RNN) were implemented as decoders and trained using static and retrained schemes. Results In our evaluation, RNN decoder and retrained scheme showed consistent better performance under small recording degradation. However, the serious signal degradation would cause significant performance to drop eventually. On the other hand, RNN performs significantly better than the other two decoders in decoding simulated non-stationary spike signals, and the retrained scheme maintains the decoders' high performance when changes are limited to PDs. Discussion Our simulation work demonstrates the effects of neural signal non-stationarity on decoding performance and serves as a reference for selecting decoders and training schemes in chronic iBCI. Our result suggests that comparing to KF and OLE, RNN has better or equivalent performance using both training schemes. Performance of decoders under static scheme is influenced by recording degradation and neuronal property variation while decoders under retrained scheme are only influenced by the former one.
Collapse
Affiliation(s)
- Zijun Wan
- Key Laboratory of Biomedical Engineering of Education Ministry, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Department of Biomedical Engineering, School of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, China
| | - Tengjun Liu
- Key Laboratory of Biomedical Engineering of Education Ministry, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Department of Biomedical Engineering, School of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, China
| | - Xingchen Ran
- Key Laboratory of Biomedical Engineering of Education Ministry, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Department of Biomedical Engineering, School of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, China
| | - Pengfu Liu
- Key Laboratory of Biomedical Engineering of Education Ministry, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Department of Biomedical Engineering, School of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, China
| | - Weidong Chen
- Key Laboratory of Biomedical Engineering of Education Ministry, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Department of Biomedical Engineering, School of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, China
| | - Shaomin Zhang
- Key Laboratory of Biomedical Engineering of Education Ministry, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Department of Biomedical Engineering, School of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, China
| |
Collapse
|
13
|
Śliwowski M, Martin M, Souloumiac A, Blanchart P, Aksenova T. Impact of dataset size and long-term ECoG-based BCI usage on deep learning decoders performance. Front Hum Neurosci 2023; 17:1111645. [PMID: 37007675 PMCID: PMC10061076 DOI: 10.3389/fnhum.2023.1111645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/27/2023] [Indexed: 03/18/2023] Open
Abstract
IntroductionIn brain-computer interfaces (BCI) research, recording data is time-consuming and expensive, which limits access to big datasets. This may influence the BCI system performance as machine learning methods depend strongly on the training dataset size. Important questions arise: taking into account neuronal signal characteristics (e.g., non-stationarity), can we achieve higher decoding performance with more data to train decoders? What is the perspective for further improvement with time in the case of long-term BCI studies? In this study, we investigated the impact of long-term recordings on motor imagery decoding from two main perspectives: model requirements regarding dataset size and potential for patient adaptation.MethodsWe evaluated the multilinear model and two deep learning (DL) models on a long-term BCI & Tetraplegia (ClinicalTrials.gov identifier: NCT02550522) clinical trial dataset containing 43 sessions of ECoG recordings performed with a tetraplegic patient. In the experiment, a participant executed 3D virtual hand translation using motor imagery patterns. We designed multiple computational experiments in which training datasets were increased or translated to investigate the relationship between models' performance and different factors influencing recordings.ResultsOur results showed that DL decoders showed similar requirements regarding the dataset size compared to the multilinear model while demonstrating higher decoding performance. Moreover, high decoding performance was obtained with relatively small datasets recorded later in the experiment, suggesting motor imagery patterns improvement and patient adaptation during the long-term experiment. Finally, we proposed UMAP embeddings and local intrinsic dimensionality as a way to visualize the data and potentially evaluate data quality.DiscussionDL-based decoding is a prospective approach in BCI which may be efficiently applied with real-life dataset size. Patient-decoder co-adaptation is an important factor to consider in long-term clinical BCI.
Collapse
Affiliation(s)
- Maciej Śliwowski
- Université Grenoble Alpes, CEA, LETI, Clinatec, Grenoble, France
- Université Paris-Saclay, CEA, List, Palaiseau, France
| | - Matthieu Martin
- Université Grenoble Alpes, CEA, LETI, Clinatec, Grenoble, France
| | | | | | - Tetiana Aksenova
- Université Grenoble Alpes, CEA, LETI, Clinatec, Grenoble, France
- *Correspondence: Tetiana Aksenova
| |
Collapse
|
14
|
Dong Y, Hu D, Wang S, He J. Decoder calibration framework for intracortical brain-computer interface system via domain adaptation. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2022.104453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
15
|
Moly A, Aksenov A, Martel F, Aksenova T. Online adaptive group-wise sparse Penalized Recursive Exponentially Weighted N-way Partial Least Square for epidural intracranial BCI. Front Hum Neurosci 2023; 17:1075666. [PMID: 36950147 PMCID: PMC10025377 DOI: 10.3389/fnhum.2023.1075666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 02/03/2023] [Indexed: 03/08/2023] Open
Abstract
Introduction Motor Brain-Computer Interfaces (BCIs) create new communication pathways between the brain and external effectors for patients with severe motor impairments. Control of complex effectors such as robotic arms or exoskeletons is generally based on the real-time decoding of high-resolution neural signals. However, high-dimensional and noisy brain signals pose challenges, such as limitations in the generalization ability of the decoding model and increased computational demands. Methods The use of sparse decoders may offer a way to address these challenges. A sparsity-promoting penalization is a common approach to obtaining a sparse solution. BCI features are naturally structured and grouped according to spatial (electrodes), frequency, and temporal dimensions. Applying group-wise sparsity, where the coefficients of a group are set to zero simultaneously, has the potential to decrease computational time and memory usage, as well as simplify data transfer. Additionally, online closed-loop decoder adaptation (CLDA) is known to be an efficient procedure for BCI decoder training, taking into account neuronal feedback. In this study, we propose a new algorithm for online closed-loop training of group-wise sparse multilinear decoders using L p -Penalized Recursive Exponentially Weighted N-way Partial Least Square (PREW-NPLS). Three types of sparsity-promoting penalization were explored using L p with p = 0., 0.5, and 1. Results The algorithms were tested offline in a pseudo-online manner for features grouped by spatial dimension. A comparison study was conducted using an epidural ECoG dataset recorded from a tetraplegic individual during long-term BCI experiments for controlling a virtual avatar (left/right-hand 3D translation). Novel algorithms showed comparable or better decoding performance than conventional REW-NPLS, which was achieved with sparse models. The proposed algorithms are compatible with real-time CLDA. Discussion The proposed algorithm demonstrated good performance while drastically reducing the computational load and the memory consumption. However, the current study is limited to offline computation on data recorded with a single patient, with penalization restricted to the spatial domain only.
Collapse
Affiliation(s)
- Alexandre Moly
- Université Grenoble Alpes, CEA, LETI, Clinatec, Grenoble, France
| | | | - Félix Martel
- Université Grenoble Alpes, CEA, LETI, Clinatec, Grenoble, France
| | - Tetiana Aksenova
- Université Grenoble Alpes, CEA, LETI, Clinatec, Grenoble, France
- *Correspondence: Tetiana Aksenova
| |
Collapse
|
16
|
Awasthi P, Lin TH, Bae J, Miller LE, Danziger ZC. Validation of a non-invasive, real-time, human-in-the-loop model of intracortical brain-computer interfaces. J Neural Eng 2022; 19:056038. [PMID: 36198278 PMCID: PMC9855658 DOI: 10.1088/1741-2552/ac97c3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 10/05/2022] [Indexed: 01/26/2023]
Abstract
Objective. Despite the tremendous promise of invasive brain-computer interfaces (iBCIs), the associated study costs, risks, and ethical considerations limit the opportunity to develop and test the algorithms that decode neural activity into a user's intentions. Our goal was to address this challenge by designing an iBCI model capable of testing many human subjects in closed-loop.Approach. We developed an iBCI model that uses artificial neural networks (ANNs) to translate human finger movements into realistic motor cortex firing patterns, which can then be decoded in real time. We call the model the joint angle BCI, or jaBCI. jaBCI allows readily recruited, healthy subjects to perform closed-loop iBCI tasks using any neural decoder, preserving subjects' control-relevant short-latency error correction and learning dynamics.Main results. We validated jaBCI offline through emulated neuron firing statistics, confirming that emulated neural signals have firing rates, low-dimensional PCA geometry, and rotational jPCA dynamics that are quite similar to the actual neurons (recorded in monkey M1) on which we trained the ANN. We also tested jaBCI in closed-loop experiments, our single study examining roughly as many subjects as have been tested world-wide with iBCIs (n= 25). Performance was consistent with that of the paralyzed, human iBCI users with implanted intracortical electrodes. jaBCI allowed us to imitate the experimental protocols (e.g. the same velocity Kalman filter decoder and center-out task) and compute the same seven behavioral measures used in three critical studies.Significance. These encouraging results suggest the jaBCI's real-time firing rate emulation is a useful means to provide statistically robust sample sizes for rapid prototyping and optimization of decoding algorithms, the study of bi-directional learning in iBCIs, and improving iBCI control.
Collapse
Affiliation(s)
- Peeyush Awasthi
- Department of Biomedical Engineering, Florida International University, Miami, FL, United States of Amercia
| | - Tzu-Hsiang Lin
- Department of Biomedical Engineering, Florida International University, Miami, FL, United States of Amercia
| | - Jihye Bae
- Department of Electrical and Computer Engineering, University of Kentucky, Lexington, KY, United States
| | - Lee E Miller
- Department of Neuroscience, Physical Medicine, and Rehabilitation, Northwestern University, Chicago, IL, United States
| | - Zachary C Danziger
- Department of Biomedical Engineering, Florida International University, Miami, FL, United States of Amercia,Author to whom any correspondence should be addressed
| |
Collapse
|
17
|
Pandarinath C, Bensmaia SJ. The science and engineering behind sensitized brain-controlled bionic hands. Physiol Rev 2022; 102:551-604. [PMID: 34541898 PMCID: PMC8742729 DOI: 10.1152/physrev.00034.2020] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/07/2021] [Accepted: 09/13/2021] [Indexed: 12/13/2022] Open
Abstract
Advances in our understanding of brain function, along with the development of neural interfaces that allow for the monitoring and activation of neurons, have paved the way for brain-machine interfaces (BMIs), which harness neural signals to reanimate the limbs via electrical activation of the muscles or to control extracorporeal devices, thereby bypassing the muscles and senses altogether. BMIs consist of reading out motor intent from the neuronal responses monitored in motor regions of the brain and executing intended movements with bionic limbs, reanimated limbs, or exoskeletons. BMIs also allow for the restoration of the sense of touch by electrically activating neurons in somatosensory regions of the brain, thereby evoking vivid tactile sensations and conveying feedback about object interactions. In this review, we discuss the neural mechanisms of motor control and somatosensation in able-bodied individuals and describe approaches to use neuronal responses as control signals for movement restoration and to activate residual sensory pathways to restore touch. Although the focus of the review is on intracortical approaches, we also describe alternative signal sources for control and noninvasive strategies for sensory restoration.
Collapse
Affiliation(s)
- Chethan Pandarinath
- Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, Georgia
- Department of Neurosurgery, Emory University, Atlanta, Georgia
| | - Sliman J Bensmaia
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, Illinois
- Committee on Computational Neuroscience, University of Chicago, Chicago, Illinois
- Grossman Institute for Neuroscience, Quantitative Biology, and Human Behavior, University of Chicago, Chicago, Illinois
| |
Collapse
|
18
|
Kiang L, Woodington B, Carnicer-Lombarte A, Malliaras G, Barone DG. Spinal cord bioelectronic interfaces: opportunities in neural recording and clinical challenges. J Neural Eng 2022; 19. [PMID: 35320780 DOI: 10.1088/1741-2552/ac605f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 03/23/2022] [Indexed: 11/11/2022]
Abstract
Bioelectronic stimulation of the spinal cord has demonstrated significant progress in restoration of motor function in spinal cord injury (SCI). The proximal, uninjured spinal cord presents a viable target for the recording and generation of control signals to drive targeted stimulation. Signals have been directly recorded from the spinal cord in behaving animals and correlated with limb kinematics. Advances in flexible materials, electrode impedance and signal analysis will allow SCR to be used in next-generation neuroprosthetics. In this review, we summarize the technological advances enabling progress in SCR and describe systematically the clinical challenges facing spinal cord bioelectronic interfaces and potential solutions, from device manufacture, surgical implantation to chronic effects of foreign body reaction and stress-strain mismatches between electrodes and neural tissue. Finally, we establish our vision of bi-directional closed-loop spinal cord bioelectronic bypass interfaces that enable the communication of disrupted sensory signals and restoration of motor function in SCI.
Collapse
Affiliation(s)
- Lei Kiang
- Orthopaedic Surgery, Singapore General Hospital, Outram Road, Singapore, Singapore, 169608, SINGAPORE
| | - Ben Woodington
- Department of Engineering, University of Cambridge, Electrical Engineering Division, 9 JJ Thomson Ave, Cambridge, Cambridge, CB2 1TN, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Alejandro Carnicer-Lombarte
- Clinical Neurosciences, University of Cambridge, Bioelectronics Laboratory, Cambridge, CB2 0PY, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - George Malliaras
- University of Cambridge, University of Cambridge, Cambridge, CB2 1TN, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Damiano G Barone
- Department of Engineering, University of Cambridge, Electrical Engineering Division, 9 JJ Thomson Ave, Cambridge, Cambridge, Cambridgeshire, CB2 1TN, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| |
Collapse
|
19
|
Moly A, Costecalde T, Martel F, Martin M, Larzabal C, Karakas S, Verney A, Charvet G, Chabardès S, Benabid AL, Aksenova T. An adaptive closed-loop ECoG decoder for long-term and stable bimanual control of an exoskeleton by a tetraplegic. J Neural Eng 2022; 19. [PMID: 35234665 DOI: 10.1088/1741-2552/ac59a0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 03/01/2022] [Indexed: 11/12/2022]
Abstract
OBJECTIVE The article aims at addressing 2 challenges to step motor BCI out of laboratories: asynchronous control of complex bimanual effectors with large numbers of degrees of freedom, using chronic and safe recorders, and the decoding performance stability over time without frequent decoder recalibration. APPROACH Closed-loop adaptive/incremental decoder training is one strategy to create a model stable over time. Adaptive decoders update their parameters with new incoming data, optimizing the model parameters in real time. It allows cross-session training with multiple recording conditions during closed loop BCI experiments. In the article, an adaptive tensor-based Recursive Exponentially Weighted Markov-Switching multi-Linear Model (REW-MSLM) decoder is proposed. REW-MSLM uses a Mixture of Expert (ME) architecture, mixing or switching independent decoders (experts) according to the probability estimated by a "gating" model. A Hidden Markov model approach is employed as gating model to improve the decoding robustness and to provide strong idle state support. The ME architecture fits the multi-limb paradigm associating an expert to a particular limb or action. MAIN RESULTS Asynchronous control of an exoskeleton by a tetraplegic patient using a chronically implanted epidural electrocorticography (EpiCoG) recorder is reported. The stable over a period of 6 months (without decoder recalibration) 8-dimensional alternative bimanual control of the exoskeleton and its virtual avatar is demonstrated. SIGNIFICANCE Based on the long-term (>36 months) chronic bilateral epidural ECoG recordings in a tetraplegic (ClinicalTrials.gov, NCT02550522), we addressed the poorly explored field of asynchronous bimanual BCI. The new decoder was designed to meet to several challenges: the high-dimensional control of a complex effector in experiments closer to real-world behaviour (point-to-point pursuit versus conventional center-out tasks), with the ability of the BCI system to act as a stand-alone device switching between idle and control states, and a stable performance over a long period of time without decoder recalibration.
Collapse
Affiliation(s)
- Alexandre Moly
- Univ. Grenoble Alpes, CEA, LETI, Clinatec,, 17 av. des martyrs, Grenoble, Auvergne-Rhône-Alpes, 38000, FRANCE
| | - Thomas Costecalde
- Univ. Grenoble Alpes, CEA, LETI, Clinatec,, 17 av. des martyrs, Grenoble, Auvergne-Rhône-Alpes, 38000, FRANCE
| | - Félix Martel
- Univ. Grenoble Alpes, CEA, LETI, Clinatec,, 17 av. des martyrs, Grenoble, Auvergne-Rhône-Alpes, 38000, FRANCE
| | - Matthieu Martin
- Univ. Grenoble Alpes, CEA, LETI, Clinatec,, 17 av. des Martyrs, Grenoble, 38000, FRANCE
| | - Christelle Larzabal
- Univ. Grenoble Alpes, CEA, LETI, Clinatec,, 17 av. des martyrs, Grenoble, Auvergne-Rhône-Alpes, 38000, FRANCE
| | - Serpil Karakas
- Univ. Grenoble Alpes, CEA, LETI, Clinatec,, 17 av. des martyrs, Grenoble, Auvergne-Rhône-Alpes, 38000, FRANCE
| | - Alexandre Verney
- Université Paris-Saclay, Palaiseau, Palaiseau, Île-de-France, 91120, FRANCE
| | - Guillaume Charvet
- Univ. Grenoble Alpes, CEA, LETI, Clinatec,, 17 av. des martyrs, Grenoble, Auvergne-Rhône-Alpes, 38000, FRANCE
| | - Stephan Chabardès
- CHU Grenoble Alpes, Boulevard de la Chantourne, La Tronche, Auvergne-Rhône-Alpes, 38700, FRANCE
| | - Alim-Louis Benabid
- Univ. Grenoble Alpes, CEA, LETI, Clinatec, 17, avenue des Martyrs, Grenoble, 38000, FRANCE
| | - Tatiana Aksenova
- Univ. Grenoble Alpes, CEA, LETI, Clinatec,, 17 av. des martyrs, Grenoble, Auvergne-Rhône-Alpes, 38000, FRANCE
| |
Collapse
|
20
|
Deo DR, Rezaii P, Hochberg LR, M Okamura A, Shenoy KV, Henderson JM. Effects of Peripheral Haptic Feedback on Intracortical Brain-Computer Interface Control and Associated Sensory Responses in Motor Cortex. IEEE TRANSACTIONS ON HAPTICS 2021; 14:762-775. [PMID: 33844633 PMCID: PMC8745032 DOI: 10.1109/toh.2021.3072615] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Intracortical brain-computer interfaces (iBCIs) provide people with paralysis a means to control devices with signals decoded from brain activity. Despite recent impressive advances, these devices still cannot approach able-bodied levels of control. To achieve naturalistic control and improved performance of neural prostheses, iBCIs will likely need to include proprioceptive feedback. With the goal of providing proprioceptive feedback via mechanical haptic stimulation, we aim to understand how haptic stimulation affects motor cortical neurons and ultimately, iBCI control. We provided skin shear haptic stimulation as a substitute for proprioception to the back of the neck of a person with tetraplegia. The neck location was determined via assessment of touch sensitivity using a monofilament test kit. The participant was able to correctly report skin shear at the back of the neck in 8 unique directions with 65% accuracy. We found motor cortical units that exhibited sensory responses to shear stimuli, some of which were strongly tuned to the stimuli and well modeled by cosine-shaped functions. In this article, we also demonstrated online iBCI cursor control with continuous skin-shear feedback driven by decoded command signals. Cursor control performance increased slightly but significantly when the participant was given haptic feedback, compared to the purely visual feedback condition.
Collapse
|
21
|
Replay of Learned Neural Firing Sequences during Rest in Human Motor Cortex. Cell Rep 2021; 31:107581. [PMID: 32375031 PMCID: PMC7337233 DOI: 10.1016/j.celrep.2020.107581] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/13/2020] [Accepted: 04/07/2020] [Indexed: 11/24/2022] Open
Abstract
The offline “replay” of neural firing patterns underlying waking experience, previously observed in non-human animals, is thought to be a mechanism for memory consolidation. Here, we test for replay in the human brain by recording spiking activity from the motor cortex of two participants who had intracortical microelectrode arrays placed chronically as part of a brain-computer interface pilot clinical trial. Participants took a nap before and after playing a neurally controlled sequence-copying game that consists of many repetitions of one “repeated” sequence sparsely interleaved with varying “control” sequences. Both participants performed repeated sequences more accurately than control sequences, consistent with learning. We compare the firing rate patterns that caused the cursor movements when performing each sequence to firing rate patterns throughout both rest periods. Correlations with repeated sequences increase more from pre- to post-task rest than do correlations with control sequences, providing direct evidence of learning-related replay in the human brain. Eichenlaub et al. show that in the motor cortex of brain-computer interface trial participants, the firing rate patterns corresponding to a previously learned motor sequence are replayed during rest. These findings provide direct evidence of memory replay in the human brain.
Collapse
|
22
|
Burkhart MC, Brandman DM, Franco B, Hochberg LR, Harrison MT. The Discriminative Kalman Filter for Bayesian Filtering with Nonlinear and Nongaussian Observation Models. Neural Comput 2020; 32:969-1017. [PMID: 32187000 PMCID: PMC8259355 DOI: 10.1162/neco_a_01275] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
The Kalman filter provides a simple and efficient algorithm to compute the posterior distribution for state-space models where both the latent state and measurement models are linear and gaussian. Extensions to the Kalman filter, including the extended and unscented Kalman filters, incorporate linearizations for models where the observation model p ( observation | state ) is nonlinear. We argue that in many cases, a model for p ( state | observation ) proves both easier to learn and more accurate for latent state estimation. Approximating p ( state | observation ) as gaussian leads to a new filtering algorithm, the discriminative Kalman filter (DKF), which can perform well even when p ( observation | state ) is highly nonlinear and/or nongaussian. The approximation, motivated by the Bernstein-von Mises theorem, improves as the dimensionality of the observations increases. The DKF has computational complexity similar to the Kalman filter, allowing it in some cases to perform much faster than particle filters with similar precision, while better accounting for nonlinear and nongaussian observation models than Kalman-based extensions. When the observation model must be learned from training data prior to filtering, off-the-shelf nonlinear and nonparametric regression techniques can provide a gaussian model for p ( observation | state ) that cleanly integrates with the DKF. As part of the BrainGate2 clinical trial, we successfully implemented gaussian process regression with the DKF framework in a brain-computer interface to provide real-time, closed-loop cursor control to a person with a complete spinal cord injury. In this letter, we explore the theory underlying the DKF, exhibit some illustrative examples, and outline potential extensions.
Collapse
Affiliation(s)
- Michael C Burkhart
- Division of Applied Mathematics, Brown University, Providence, RI 02912, U.S.A.
| | - David M Brandman
- Department of Neuroscience, Brown University, Providence, RI 02912, U.S.A., and Department of Surgery (Neurosurgery), Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Brian Franco
- Center for Neurotechnology and Neurorecovery, Neurology, Massachusetts General Hospital, Boston, MA 02114, U.S.A.
| | - Leigh R Hochberg
- Center for Neurotechnology and Neurorecovery, Neurology, Massachusetts General Hospital, Boston, MA 02114, U.S.A.; School of Engineering and Carney Institute for Brain Science, Brown University, Providence, RI 02912, U.S.A.; Neurology, Harvard Medical School, Boston, MA 02115, U.S.A.; and VA RR&D Center for Neurorestoration and Neurotechnology, Providence Veterans Affairs Medical Center, Providence, RI 02908, U.S.A.
| | - Matthew T Harrison
- Division of Applied Mathematics, Brown University, Providence, RI 02912, U.S.A.
| |
Collapse
|
23
|
Yang SH, Wang HL, Lo YC, Lai HY, Chen KY, Lan YH, Kao CC, Chou C, Lin SH, Huang JW, Wang CF, Kuo CH, Chen YY. Inhibition of Long-Term Variability in Decoding Forelimb Trajectory Using Evolutionary Neural Networks With Error-Correction Learning. Front Comput Neurosci 2020; 14:22. [PMID: 32296323 PMCID: PMC7136463 DOI: 10.3389/fncom.2020.00022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 03/04/2020] [Indexed: 11/13/2022] Open
Abstract
Objective: In brain machine interfaces (BMIs), the functional mapping between neural activities and kinematic parameters varied over time owing to changes in neural recording conditions. The variability in neural recording conditions might result in unstable long-term decoding performance. Relevant studies trained decoders with several days of training data to make them inherently robust to changes in neural recording conditions. However, these decoders might not be robust to changes in neural recording conditions when only a few days of training data are available. In time-series prediction and feedback control system, an error feedback was commonly adopted to reduce the effects of model uncertainty. This motivated us to introduce an error feedback to a neural decoder for dealing with the variability in neural recording conditions. Approach: We proposed an evolutionary constructive and pruning neural network with error feedback (ECPNN-EF) as a neural decoder. The ECPNN-EF with partially connected topology decoded the instantaneous firing rates of each sorted unit into forelimb movement of a rat. Furthermore, an error feedback was adopted as an additional input to provide kinematic information and thus compensate for changes in functional mapping. The proposed neural decoder was trained on data collected from a water reward-related lever-pressing task for a rat. The first 2 days of data were used to train the decoder, and the subsequent 10 days of data were used to test the decoder. Main Results: The ECPNN-EF under different settings was evaluated to better understand the impact of the error feedback and partially connected topology. The experimental results demonstrated that the ECPNN-EF achieved significantly higher daily decoding performance with smaller daily variability when using the error feedback and partially connected topology. Significance: These results suggested that the ECPNN-EF with partially connected topology could cope with both within- and across-day changes in neural recording conditions. The error feedback in the ECPNN-EF compensated for decreases in decoding performance when neural recording conditions changed. This mechanism made the ECPNN-EF robust against changes in functional mappings and thus improved the long-term decoding stability when only a few days of training data were available.
Collapse
Affiliation(s)
- Shih-Hung Yang
- Department of Mechanical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Han-Lin Wang
- Department of Biomedical Engineering, National Yang Ming University, Taipei, Taiwan
| | - Yu-Chun Lo
- The Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Hsin-Yi Lai
- Key Laboratory of Medical Neurobiology of Zhejiang Province, Department of Neurology of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, China
| | - Kuan-Yu Chen
- Department of Biomedical Engineering, National Yang Ming University, Taipei, Taiwan
| | - Yu-Hao Lan
- Department of Biomedical Engineering, National Yang Ming University, Taipei, Taiwan
| | - Ching-Chia Kao
- Research Center for Information Technology Innovation, Academia Sinica, Taipei, Taiwan
| | - Chin Chou
- Department of Regulatory & Quality Sciences, University of Southern California, Los Angeles, CA, United States
| | - Sheng-Huang Lin
- Buddhist Tzu Chi Medical Foundation, Department of Neurology, Hualien Tzu Chi Hospital, Hualien, Taiwan
- Department of Neurology, School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Jyun-We Huang
- Department of Mechanical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Ching-Fu Wang
- Department of Biomedical Engineering, National Yang Ming University, Taipei, Taiwan
| | - Chao-Hung Kuo
- Department of Biomedical Engineering, National Yang Ming University, Taipei, Taiwan
- Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Neurological Surgery, University of Washington, Seattle, WA, United States
| | - You-Yin Chen
- Department of Biomedical Engineering, National Yang Ming University, Taipei, Taiwan
- The Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
24
|
Rastogi A, Vargas-Irwin CE, Willett FR, Abreu J, Crowder DC, Murphy BA, Memberg WD, Miller JP, Sweet JA, Walter BL, Cash SS, Rezaii PG, Franco B, Saab J, Stavisky SD, Shenoy KV, Henderson JM, Hochberg LR, Kirsch RF, Ajiboye AB. Neural Representation of Observed, Imagined, and Attempted Grasping Force in Motor Cortex of Individuals with Chronic Tetraplegia. Sci Rep 2020; 10:1429. [PMID: 31996696 PMCID: PMC6989675 DOI: 10.1038/s41598-020-58097-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 01/07/2020] [Indexed: 12/15/2022] Open
Abstract
Hybrid kinetic and kinematic intracortical brain-computer interfaces (iBCIs) have the potential to restore functional grasping and object interaction capabilities in individuals with tetraplegia. This requires an understanding of how kinetic information is represented in neural activity, and how this representation is affected by non-motor parameters such as volitional state (VoS), namely, whether one observes, imagines, or attempts an action. To this end, this work investigates how motor cortical neural activity changes when three human participants with tetraplegia observe, imagine, and attempt to produce three discrete hand grasping forces with the dominant hand. We show that force representation follows the same VoS-related trends as previously shown for directional arm movements; namely, that attempted force production recruits more neural activity compared to observed or imagined force production. Additionally, VoS-modulated neural activity to a greater extent than grasping force. Neural representation of forces was lower than expected, possibly due to compromised somatosensory pathways in individuals with tetraplegia, which have been shown to influence motor cortical activity. Nevertheless, attempted forces (but not always observed or imagined forces) could be decoded significantly above chance, thereby potentially providing relevant information towards the development of a hybrid kinetic and kinematic iBCI.
Collapse
Affiliation(s)
- Anisha Rastogi
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44016, USA
| | - Carlos E Vargas-Irwin
- Department of Neuroscience, Brown University, Providence, RI, 02912, USA
- Robert J. Nancy D. Carney Institute for Brain Sciences, Brown University, Providence, RI, 02912, USA
- VA RR&D Center for Neurorestoration and Neurotechnology, Department of VA Medical Center, Providence, RI, 02912, USA
| | - Francis R Willett
- Neurosurgery, Stanford University, Stanford, CA, 94035, USA
- Electrical Engineering, Stanford University, Stanford, CA, 94035, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, 94035, USA
| | - Jessica Abreu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44016, USA
- FES Center, Rehabilitation R&D Service, Louis Stokes Cleveland Department of VA Medical Center, Cleveland, OH, 44016, USA
| | - Douglas C Crowder
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44016, USA
- FES Center, Rehabilitation R&D Service, Louis Stokes Cleveland Department of VA Medical Center, Cleveland, OH, 44016, USA
| | - Brian A Murphy
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44016, USA
- FES Center, Rehabilitation R&D Service, Louis Stokes Cleveland Department of VA Medical Center, Cleveland, OH, 44016, USA
| | - William D Memberg
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44016, USA
- FES Center, Rehabilitation R&D Service, Louis Stokes Cleveland Department of VA Medical Center, Cleveland, OH, 44016, USA
| | - Jonathan P Miller
- FES Center, Rehabilitation R&D Service, Louis Stokes Cleveland Department of VA Medical Center, Cleveland, OH, 44016, USA
- Department of Neurological Surgery, UH Cleveland Med. Ctr., Cleveland, OH, 44106, USA
- Neurological Surgery, CWRU School of Medicine, Cleveland, OH, 44106, USA
| | - Jennifer A Sweet
- FES Center, Rehabilitation R&D Service, Louis Stokes Cleveland Department of VA Medical Center, Cleveland, OH, 44016, USA
- Department of Neurological Surgery, UH Cleveland Med. Ctr., Cleveland, OH, 44106, USA
- Neurological Surgery, CWRU School of Medicine, Cleveland, OH, 44106, USA
| | - Benjamin L Walter
- FES Center, Rehabilitation R&D Service, Louis Stokes Cleveland Department of VA Medical Center, Cleveland, OH, 44016, USA
- Department of Neurology, UH Cleveland Med. Ctr., Cleveland, OH, 44106, USA
| | - Sydney S Cash
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Neurology, Harvard Medical School, Boston, MA, 02115, USA
| | | | - Brian Franco
- Department of Neurology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Jad Saab
- Robert J. Nancy D. Carney Institute for Brain Sciences, Brown University, Providence, RI, 02912, USA
- School of Engineering, Brown University, Providence, RI, 02912, USA
- VA RR&D Center for Neurorestoration and Neurotechnology, Department of VA Medical Center, Providence, RI, 02912, USA
| | - Sergey D Stavisky
- Neurosurgery, Stanford University, Stanford, CA, 94035, USA
- Electrical Engineering, Stanford University, Stanford, CA, 94035, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, 94035, USA
| | - Krishna V Shenoy
- Electrical Engineering, Stanford University, Stanford, CA, 94035, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, 94035, USA
- Bioengineering, Stanford University, Stanford, CA, 94035, USA
- Department of Neurobiology, Stanford University, Stanford, CA, 94035, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, 94035, USA
| | - Jaimie M Henderson
- Neurosurgery, Stanford University, Stanford, CA, 94035, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, 94035, USA
- Bio-X Program, Stanford University, Stanford, CA, 94035, USA
| | - Leigh R Hochberg
- School of Engineering, Brown University, Providence, RI, 02912, USA
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA, 02114, USA
- VA RR&D Center for Neurorestoration and Neurotechnology, Department of VA Medical Center, Providence, RI, 02912, USA
- Department of Neurology, Harvard Medical School, Boston, MA, 02115, USA
| | - Robert F Kirsch
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44016, USA
- FES Center, Rehabilitation R&D Service, Louis Stokes Cleveland Department of VA Medical Center, Cleveland, OH, 44016, USA
| | - A Bolu Ajiboye
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44016, USA.
- FES Center, Rehabilitation R&D Service, Louis Stokes Cleveland Department of VA Medical Center, Cleveland, OH, 44016, USA.
| |
Collapse
|
25
|
Shaikh S, So R, Sibindi T, Libedinsky C, Basu A. Sparse Ensemble Machine Learning to Improve Robustness of Long-Term Decoding in iBMIs. IEEE Trans Neural Syst Rehabil Eng 2020; 28:380-389. [PMID: 31899430 DOI: 10.1109/tnsre.2019.2962708] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
This paper presents a novel sparse ensemble based machine learning approach to enhance robustness of intracortical Brain Machine Interfaces (iBMIs) in the face of non-stationary distribution of input neural data across time. Each classifier in the ensemble is trained on a randomly sampled (with replacement) set of input channels. These sparse connections ensure that with a high chance, few of the base classifiers should be less affected by the variations in some of the recording channels. We have tested the generality of this technique on different base classifiers - linear discriminant analysis (LDA), support vector machine (SVM), extreme learning machine (ELM) and multilayer perceptron (MLP). Results show decoding accuracy improvements of up to ≈21 %, 13%, 19%, 10% in non-human primate (NHP) A and 7%, 9%, 7%, 9% in NHP B across test days while using the sparse ensemble approach over a single classifier model for LDA, SVM, ELM and MLP algorithms respectively. Furthermore, improvements of up to ≈7(14)%, 8(15)%, 9(19)%, 7(15)% in NHP A and 8(15)%, 12(20)%, 15(23)%, 12(19)% in NHP B over Random Forest (Long-short Term Memory) have been obtained by sparse ensemble LDA, SVM, ELM, MLP respectively.
Collapse
|
26
|
Abstract
Locked-in syndrome (LIS) is characterized by an inability to move or speak in the presence of intact cognition and can be caused by brainstem trauma or neuromuscular disease. Quality of life (QoL) in LIS is strongly impaired by the inability to communicate, which cannot always be remedied by traditional augmentative and alternative communication (AAC) solutions if residual muscle activity is insufficient to control the AAC device. Brain-computer interfaces (BCIs) may offer a solution by employing the person's neural signals instead of relying on muscle activity. Here, we review the latest communication BCI research using noninvasive signal acquisition approaches (electroencephalography, functional magnetic resonance imaging, functional near-infrared spectroscopy) and subdural and intracortical implanted electrodes, and we discuss current efforts to translate research knowledge into usable BCI-enabled communication solutions that aim to improve the QoL of individuals with LIS.
Collapse
|
27
|
Bullard AJ, Hutchison BC, Lee J, Chestek CA, Patil PG. Estimating Risk for Future Intracranial, Fully Implanted, Modular Neuroprosthetic Systems: A Systematic Review of Hardware Complications in Clinical Deep Brain Stimulation and Experimental Human Intracortical Arrays. Neuromodulation 2019; 23:411-426. [DOI: 10.1111/ner.13069] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 08/05/2019] [Accepted: 09/10/2019] [Indexed: 01/08/2023]
Affiliation(s)
- Autumn J. Bullard
- Department of Biomedical Engineering University of Michigan Ann Arbor MI USA
| | | | - Jiseon Lee
- Department of Biomedical Engineering University of Michigan Ann Arbor MI USA
| | - Cynthia A. Chestek
- Department of Biomedical Engineering University of Michigan Ann Arbor MI USA
- Department of Electrical Engineering and Computer Science University of Michigan Ann Arbor MI USA
| | - Parag G. Patil
- Department of Biomedical Engineering University of Michigan Ann Arbor MI USA
- Department of Neurosurgery University of Michigan Medical School Ann Arbor MI USA
| |
Collapse
|
28
|
Brandman DM, Hosman T, Saab J, Burkhart MC, Shanahan BE, Ciancibello JG, Sarma AA, Milstein DJ, Vargas-Irwin CE, Franco B, Kelemen J, Blabe C, Murphy BA, Young DR, Willett FR, Pandarinath C, Stavisky SD, Kirsch RF, Walter BL, Bolu Ajiboye A, Cash SS, Eskandar EN, Miller JP, Sweet JA, Shenoy KV, Henderson JM, Jarosiewicz B, Harrison MT, Simeral JD, Hochberg LR. Rapid calibration of an intracortical brain-computer interface for people with tetraplegia. J Neural Eng 2019; 15:026007. [PMID: 29363625 DOI: 10.1088/1741-2552/aa9ee7] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Brain-computer interfaces (BCIs) can enable individuals with tetraplegia to communicate and control external devices. Though much progress has been made in improving the speed and robustness of neural control provided by intracortical BCIs, little research has been devoted to minimizing the amount of time spent on decoder calibration. APPROACH We investigated the amount of time users needed to calibrate decoders and achieve performance saturation using two markedly different decoding algorithms: the steady-state Kalman filter, and a novel technique using Gaussian process regression (GP-DKF). MAIN RESULTS Three people with tetraplegia gained rapid closed-loop neural cursor control and peak, plateaued decoder performance within 3 min of initializing calibration. We also show that a BCI-naïve user (T5) was able to rapidly attain closed-loop neural cursor control with the GP-DKF using self-selected movement imagery on his first-ever day of closed-loop BCI use, acquiring a target 37 s after initiating calibration. SIGNIFICANCE These results demonstrate the potential for an intracortical BCI to be used immediately after deployment by people with paralysis, without the need for user learning or extensive system calibration.
Collapse
Affiliation(s)
- David M Brandman
- Neuroscience Graduate Program, Brown University, Providence, RI, United States of America. Department of Neuroscience, Brown University, Providence, RI, United States of America. Brown Institute for Brain Science, Brown University, Providence, RI, United States of America. Department of Surgery (Neurosurgery), Dalhousie University, Halifax, NS, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Zhang P, Ma X, Chen L, Zhou J, Wang C, Li W, He J. Decoder calibration with ultra small current sample set for intracortical brain-machine interface. J Neural Eng 2019; 15:026019. [PMID: 29343650 DOI: 10.1088/1741-2552/aaa8a4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
OBJECTIVE Intracortical brain-machine interfaces (iBMIs) aim to restore efficient communication and movement ability for paralyzed patients. However, frequent recalibration is required for consistency and reliability, and every recalibration will require relatively large most current sample set. The aim in this study is to develop an effective decoder calibration method that can achieve good performance while minimizing recalibration time. APPROACH Two rhesus macaques implanted with intracortical microelectrode arrays were trained separately on movement and sensory paradigm. Neural signals were recorded to decode reaching positions or grasping postures. A novel principal component analysis-based domain adaptation (PDA) method was proposed to recalibrate the decoder with only ultra small current sample set by taking advantage of large historical data, and the decoding performance was compared with other three calibration methods for evaluation. MAIN RESULTS The PDA method closed the gap between historical and current data effectively, and made it possible to take advantage of large historical data for decoder recalibration in current data decoding. Using only ultra small current sample set (five trials of each category), the decoder calibrated using the PDA method could achieve much better and more robust performance in all sessions than using other three calibration methods in both monkeys. SIGNIFICANCE (1) By this study, transfer learning theory was brought into iBMIs decoder calibration for the first time. (2) Different from most transfer learning studies, the target data in this study were ultra small sample set and were transferred to the source data. (3) By taking advantage of historical data, the PDA method was demonstrated to be effective in reducing recalibration time for both movement paradigm and sensory paradigm, indicating a viable generalization. By reducing the demand for large current training data, this new method may facilitate the application of intracortical brain-machine interfaces in clinical practice.
Collapse
Affiliation(s)
- Peng Zhang
- Neural Interface and Rehabilitation Technology Research Center, School of Automation, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
30
|
Tam WK, Wu T, Zhao Q, Keefer E, Yang Z. Human motor decoding from neural signals: a review. BMC Biomed Eng 2019; 1:22. [PMID: 32903354 PMCID: PMC7422484 DOI: 10.1186/s42490-019-0022-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 07/21/2019] [Indexed: 01/24/2023] Open
Abstract
Many people suffer from movement disability due to amputation or neurological diseases. Fortunately, with modern neurotechnology now it is possible to intercept motor control signals at various points along the neural transduction pathway and use that to drive external devices for communication or control. Here we will review the latest developments in human motor decoding. We reviewed the various strategies to decode motor intention from human and their respective advantages and challenges. Neural control signals can be intercepted at various points in the neural signal transduction pathway, including the brain (electroencephalography, electrocorticography, intracortical recordings), the nerves (peripheral nerve recordings) and the muscles (electromyography). We systematically discussed the sites of signal acquisition, available neural features, signal processing techniques and decoding algorithms in each of these potential interception points. Examples of applications and the current state-of-the-art performance were also reviewed. Although great strides have been made in human motor decoding, we are still far away from achieving naturalistic and dexterous control like our native limbs. Concerted efforts from material scientists, electrical engineers, and healthcare professionals are needed to further advance the field and make the technology widely available in clinical use.
Collapse
Affiliation(s)
- Wing-kin Tam
- Department of Biomedical Engineering, University of Minnesota Twin Cities, 7-105 Hasselmo Hall, 312 Church St. SE, Minnesota, 55455 USA
| | - Tong Wu
- Department of Biomedical Engineering, University of Minnesota Twin Cities, 7-105 Hasselmo Hall, 312 Church St. SE, Minnesota, 55455 USA
| | - Qi Zhao
- Department of Computer Science and Engineering, University of Minnesota Twin Cities, 4-192 Keller Hall, 200 Union Street SE, Minnesota, 55455 USA
| | - Edward Keefer
- Nerves Incorporated, Dallas, TX P. O. Box 141295 USA
| | - Zhi Yang
- Department of Biomedical Engineering, University of Minnesota Twin Cities, 7-105 Hasselmo Hall, 312 Church St. SE, Minnesota, 55455 USA
| |
Collapse
|
31
|
Willett FR, Young DR, Murphy BA, Memberg WD, Blabe CH, Pandarinath C, Stavisky SD, Rezaii P, Saab J, Walter BL, Sweet JA, Miller JP, Henderson JM, Shenoy KV, Simeral JD, Jarosiewicz B, Hochberg LR, Kirsch RF, Bolu Ajiboye A. Principled BCI Decoder Design and Parameter Selection Using a Feedback Control Model. Sci Rep 2019; 9:8881. [PMID: 31222030 PMCID: PMC6586941 DOI: 10.1038/s41598-019-44166-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 03/04/2019] [Indexed: 02/01/2023] Open
Abstract
Decoders optimized offline to reconstruct intended movements from neural recordings sometimes fail to achieve optimal performance online when they are used in closed-loop as part of an intracortical brain-computer interface (iBCI). This is because typical decoder calibration routines do not model the emergent interactions between the decoder, the user, and the task parameters (e.g. target size). Here, we investigated the feasibility of simulating online performance to better guide decoder parameter selection and design. Three participants in the BrainGate2 pilot clinical trial controlled a computer cursor using a linear velocity decoder under different gain (speed scaling) and temporal smoothing parameters and acquired targets with different radii and distances. We show that a user-specific iBCI feedback control model can predict how performance changes under these different decoder and task parameters in held-out data. We also used the model to optimize a nonlinear speed scaling function for the decoder. When used online with two participants, it increased the dynamic range of decoded speeds and decreased the time taken to acquire targets (compared to an optimized standard decoder). These results suggest that it is feasible to simulate iBCI performance accurately enough to be useful for quantitative decoder optimization and design.
Collapse
Affiliation(s)
- Francis R Willett
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA. .,Louis Stokes Cleveland Department of Veterans Affairs Medical Center, FES Center of Excellence, Rehab. R&D Service, Cleveland, Ohio, USA. .,Department of Neurosurgery, Stanford University, Stanford, California, USA. .,Department of Electrical Engineering, Stanford University, Stanford, California, USA.
| | - Daniel R Young
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA.,Louis Stokes Cleveland Department of Veterans Affairs Medical Center, FES Center of Excellence, Rehab. R&D Service, Cleveland, Ohio, USA
| | - Brian A Murphy
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA.,Louis Stokes Cleveland Department of Veterans Affairs Medical Center, FES Center of Excellence, Rehab. R&D Service, Cleveland, Ohio, USA
| | - William D Memberg
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA.,Louis Stokes Cleveland Department of Veterans Affairs Medical Center, FES Center of Excellence, Rehab. R&D Service, Cleveland, Ohio, USA
| | - Christine H Blabe
- Department of Neurosurgery, Stanford University, Stanford, California, USA
| | - Chethan Pandarinath
- Department of Neurosurgery, Stanford University, Stanford, California, USA.,Department of Electrical Engineering, Stanford University, Stanford, California, USA
| | - Sergey D Stavisky
- Department of Neurosurgery, Stanford University, Stanford, California, USA.,Department of Electrical Engineering, Stanford University, Stanford, California, USA
| | - Paymon Rezaii
- Department of Neurosurgery, Stanford University, Stanford, California, USA
| | - Jad Saab
- School of Engineering, Brown University, Providence, RI, USA.,Center for Neurorestoration and Neurotechnology, Rehabilitation R&D Service, Department of Veterans Affairs Medical Center, Providence, RI, USA
| | - Benjamin L Walter
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, FES Center of Excellence, Rehab. R&D Service, Cleveland, Ohio, USA.,Department of Neurology, University Hospitals Case Medical Center, Cleveland, Ohio, USA
| | - Jennifer A Sweet
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, FES Center of Excellence, Rehab. R&D Service, Cleveland, Ohio, USA.,Department of Neurosurgery, University Hospitals Case Medical Center, Cleveland, Ohio, USA
| | - Jonathan P Miller
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, FES Center of Excellence, Rehab. R&D Service, Cleveland, Ohio, USA.,Department of Neurosurgery, University Hospitals Case Medical Center, Cleveland, Ohio, USA
| | - Jaimie M Henderson
- Department of Neurosurgery, Stanford University, Stanford, California, USA.,Stanford Neurosciences Institute, Stanford University, Stanford, 94305, California, USA
| | - Krishna V Shenoy
- Department of Electrical Engineering, Stanford University, Stanford, California, USA.,Stanford Neurosciences Institute, Stanford University, Stanford, 94305, California, USA.,Department of Bioengineering, Stanford University, Stanford, California, 94305, USA.,Department of Neurobiology, Stanford University, Stanford, California, 94305, USA.,Howard Hughes Medical Institute, Stanford University, Stanford, California, 94305, USA.,Neurosciences Program, Stanford University, Stanford, California, 94305, USA.,Bio-X Program, Stanford University, Stanford, California, 94305, USA
| | - John D Simeral
- School of Engineering, Brown University, Providence, RI, USA.,Center for Neurorestoration and Neurotechnology, Rehabilitation R&D Service, Department of Veterans Affairs Medical Center, Providence, RI, USA.,Carney Institute for Brain Science, Brown University, Providence, Rhode Island, USA.,Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Beata Jarosiewicz
- Department of Neurosurgery, Stanford University, Stanford, California, USA
| | - Leigh R Hochberg
- School of Engineering, Brown University, Providence, RI, USA.,Center for Neurorestoration and Neurotechnology, Rehabilitation R&D Service, Department of Veterans Affairs Medical Center, Providence, RI, USA.,Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA.,Department of Neurology, Harvard Medical School, Boston, Massachusetts, USA
| | - Robert F Kirsch
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA.,Louis Stokes Cleveland Department of Veterans Affairs Medical Center, FES Center of Excellence, Rehab. R&D Service, Cleveland, Ohio, USA
| | - A Bolu Ajiboye
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA.,Louis Stokes Cleveland Department of Veterans Affairs Medical Center, FES Center of Excellence, Rehab. R&D Service, Cleveland, Ohio, USA
| |
Collapse
|
32
|
Tseng PH, Urpi NA, Lebedev M, Nicolelis M. Decoding Movements from Cortical Ensemble Activity Using a Long Short-Term Memory Recurrent Network. Neural Comput 2019; 31:1085-1113. [PMID: 30979355 DOI: 10.1162/neco_a_01189] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Although many real-time neural decoding algorithms have been proposed for brain-machine interface (BMI) applications over the years, an optimal, consensual approach remains elusive. Recent advances in deep learning algorithms provide new opportunities for improving the design of BMI decoders, including the use of recurrent artificial neural networks to decode neuronal ensemble activity in real time. Here, we developed a long-short term memory (LSTM) decoder for extracting movement kinematics from the activity of large (N = 134-402) populations of neurons, sampled simultaneously from multiple cortical areas, in rhesus monkeys performing motor tasks. Recorded regions included primary motor, dorsal premotor, supplementary motor, and primary somatosensory cortical areas. The LSTM's capacity to retain information for extended periods of time enabled accurate decoding for tasks that required both movements and periods of immobility. Our LSTM algorithm significantly outperformed the state-of-the-art unscented Kalman filter when applied to three tasks: center-out arm reaching, bimanual reaching, and bipedal walking on a treadmill. Notably, LSTM units exhibited a variety of well-known physiological features of cortical neuronal activity, such as directional tuning and neuronal dynamics across task epochs. LSTM modeled several key physiological attributes of cortical circuits involved in motor tasks. These findings suggest that LSTM-based approaches could yield a better algorithm strategy for neuroprostheses that employ BMIs to restore movement in severely disabled patients.
Collapse
Affiliation(s)
- Po-He Tseng
- Department of Neurobiology and Duke University Center for Neuroengineering, Duke University, Durham, NC 27710, U.S.A.
| | - Núria Armengol Urpi
- Departments of Information and Communication Technologies and Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, 08018, Spain; and Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - Mikhail Lebedev
- Department of Neurobiology and Duke University Center for Neuroengineering, Duke University, Durham, NC 27710, U.S.A.; and Center for Bioelectric Interfaces of the Institute for Cognitive Neuroscience of the National Research University Higher School of Economics, Moscow, Russia; and Department of Information and Internet Technologies of Digital Health Institute, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Miguel Nicolelis
- Departments of Neurobiology, Biomedical Engineering, Psychology and Neuroscience, Neurology, Neurosurgery, and Duke University Center for Neuroengineering, Duke University, Durham, NC 27710, U.S.A.; and Edmund and Lily Safra International Institute of Neuroscience, Natal Brazil 59066060
| |
Collapse
|
33
|
Young D, Willett F, Memberg WD, Murphy B, Rezaii P, Walter B, Sweet J, Miller J, Shenoy KV, Hochberg LR, Kirsch RF, Ajiboye AB. Closed-loop cortical control of virtual reach and posture using Cartesian and joint velocity commands. J Neural Eng 2018; 16:026011. [PMID: 30523839 DOI: 10.1088/1741-2552/aaf606] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
OBJECTIVE Brain-computer interfaces (BCIs) are a promising technology for the restoration of function to people with paralysis, especially for controlling coordinated reaching. Typical BCI studies decode Cartesian endpoint velocities as commands, but human arm movements might be better controlled in a joint-based coordinate frame, which may match underlying movement encoding in the motor cortex. A better understanding of BCI controlled reaching by people with paralysis may lead to performance improvements in brain-controlled assistive devices. APPROACH Two intracortical BCI participants in the BrainGate2 pilot clinical trial performed a visual 3D endpoint virtual reality reaching task using two decoders: Cartesian and joint velocity. Task performance metrics (i.e. success rate and path efficiency) and single feature and population tuning were compared across the two decoder conditions. The participants also demonstrated the first BCI control of a fourth dimension of reaching, the arm's swivel angle, in a 4D posture matching task. MAIN RESULTS Both users achieved significantly higher success rates using Cartesian velocity control, and joint controlled trajectories were more variable and significantly more curved. Neural tuning analyses showed that most single feature activity was best described by a Cartesian kinematic encoding model, and population analyses revealed only slight differences in aggregate activity between the decoder conditions. Simulations of a BCI user reproduced trajectory features seen during closed-loop joint control when assuming only Cartesian-tuned features passed through a joint decoder. With minimal training, both participants controlled the virtual arm's swivel angle to complete a 4D posture matching task, and achieved significantly higher success using a Cartesian + swivel velocity decoder compared to a joint velocity decoder. SIGNIFICANCE These results suggest that Cartesian velocity command interfaces may provide better BCI control of arm movements than other kinematic variables, even in 4D posture tasks with swivel angle targets.
Collapse
Affiliation(s)
- D Young
- Case Western Reserve University, Cleveland, OH, United States of America. Department of VA Medical Center, FES Center of Excellence, Rehabilitation R&D Service, Louis Stokes Cleveland, Cleveland, OH, United States of America
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Nuyujukian P, Albites Sanabria J, Saab J, Pandarinath C, Jarosiewicz B, Blabe CH, Franco B, Mernoff ST, Eskandar EN, Simeral JD, Hochberg LR, Shenoy KV, Henderson JM. Cortical control of a tablet computer by people with paralysis. PLoS One 2018; 13:e0204566. [PMID: 30462658 PMCID: PMC6248919 DOI: 10.1371/journal.pone.0204566] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Accepted: 09/11/2018] [Indexed: 12/16/2022] Open
Abstract
General-purpose computers have become ubiquitous and important for everyday life, but they are difficult for people with paralysis to use. Specialized software and personalized input devices can improve access, but often provide only limited functionality. In this study, three research participants with tetraplegia who had multielectrode arrays implanted in motor cortex as part of the BrainGate2 clinical trial used an intracortical brain-computer interface (iBCI) to control an unmodified commercial tablet computer. Neural activity was decoded in real time as a point-and-click wireless Bluetooth mouse, allowing participants to use common and recreational applications (web browsing, email, chatting, playing music on a piano application, sending text messages, etc.). Two of the participants also used the iBCI to "chat" with each other in real time. This study demonstrates, for the first time, high-performance iBCI control of an unmodified, commercially available, general-purpose mobile computing device by people with tetraplegia.
Collapse
Affiliation(s)
- Paul Nuyujukian
- Department of Neurosurgery, Stanford University, Stanford, CA, United States of America
- Department of Electrical Engineering, Stanford University, Stanford, CA, United States of America
- Department of Bioengineering, Stanford University, Stanford, CA, United States of America
- Neurosciences Institute, Stanford University, Stanford, CA, United States of America
- Bio-X Institute, Stanford University, Stanford, CA, United States of America
- Neurosciences Program, Stanford University, Stanford, CA, United States of America
| | - Jose Albites Sanabria
- School of Engineering, Brown University, Providence, RI, United States of America
- Carney Institute for Brain Science, Brown University, Providence, RI, United States of America
| | - Jad Saab
- School of Engineering, Brown University, Providence, RI, United States of America
- Carney Institute for Brain Science, Brown University, Providence, RI, United States of America
- Center for Neurorestoration and Neurotechnology, Rehabilitation Research and Development Service, VA Medical Center, Providence, RI, United States of America
| | - Chethan Pandarinath
- Department of Neurosurgery, Stanford University, Stanford, CA, United States of America
- Department of Electrical Engineering, Stanford University, Stanford, CA, United States of America
- Department of Biomedical Engineering, Emory University and the Georgia Institute of Technology, Atlanta, GA, United States of America
- Department of Neurosurgery, Emory University, Atlanta, GA, United States of America
| | - Beata Jarosiewicz
- Department of Neurosurgery, Stanford University, Stanford, CA, United States of America
- Department of Electrical Engineering, Stanford University, Stanford, CA, United States of America
- Carney Institute for Brain Science, Brown University, Providence, RI, United States of America
- Department of Neuroscience, Brown University, Providence, RI, United States of America
| | - Christine H. Blabe
- Department of Neurosurgery, Stanford University, Stanford, CA, United States of America
| | - Brian Franco
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA, United States of America
| | - Stephen T. Mernoff
- Center for Neurorestoration and Neurotechnology, Rehabilitation Research and Development Service, VA Medical Center, Providence, RI, United States of America
- Department of Neurology, Warren Alpert Medical School of Brown University, Providence, RI, United States of America
| | - Emad N. Eskandar
- Department of Neurosurgery, Harvard Medical School, Boston, MA, United States of America
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, United States of America
| | - John D. Simeral
- School of Engineering, Brown University, Providence, RI, United States of America
- Carney Institute for Brain Science, Brown University, Providence, RI, United States of America
- Center for Neurorestoration and Neurotechnology, Rehabilitation Research and Development Service, VA Medical Center, Providence, RI, United States of America
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA, United States of America
| | - Leigh R. Hochberg
- School of Engineering, Brown University, Providence, RI, United States of America
- Carney Institute for Brain Science, Brown University, Providence, RI, United States of America
- Center for Neurorestoration and Neurotechnology, Rehabilitation Research and Development Service, VA Medical Center, Providence, RI, United States of America
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA, United States of America
- Department of Neurology, Harvard Medical School, Boston, MA, United States of America
| | - Krishna V. Shenoy
- Department of Electrical Engineering, Stanford University, Stanford, CA, United States of America
- Department of Bioengineering, Stanford University, Stanford, CA, United States of America
- Neurosciences Institute, Stanford University, Stanford, CA, United States of America
- Bio-X Institute, Stanford University, Stanford, CA, United States of America
- Neurosciences Program, Stanford University, Stanford, CA, United States of America
- Department of Neurobiology, Stanford University, Stanford, CA, United States of America
- Howard Hughes Medical Institute at Stanford University, Chevy Chase, MD, United States of America
| | - Jaimie M. Henderson
- Department of Electrical Engineering, Stanford University, Stanford, CA, United States of America
- Neurosciences Institute, Stanford University, Stanford, CA, United States of America
- Bio-X Institute, Stanford University, Stanford, CA, United States of America
| |
Collapse
|
35
|
Vargas-Irwin CE, Feldman JM, King B, Simeral JD, Sorice BL, Oakley EM, Cash SS, Eskandar EN, Friehs GM, Hochberg LR, Donoghue JP. Watch, Imagine, Attempt: Motor Cortex Single-Unit Activity Reveals Context-Dependent Movement Encoding in Humans With Tetraplegia. Front Hum Neurosci 2018; 12:450. [PMID: 30524258 PMCID: PMC6262367 DOI: 10.3389/fnhum.2018.00450] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 10/19/2018] [Indexed: 12/11/2022] Open
Abstract
Planning and performing volitional movement engages widespread networks in the human brain, with motor cortex considered critical to the performance of skilled limb actions. Motor cortex is also engaged when actions are observed or imagined, but the manner in which ensembles of neurons represent these volitional states (VoSs) is unknown. Here we provide direct demonstration that observing, imagining or attempting action activates shared neural ensembles in human motor cortex. Two individuals with tetraplegia (due to brainstem stroke or amyotrophic lateral sclerosis, ALS) were verbally instructed to watch, imagine, or attempt reaching actions displayed on a computer screen. Neural activity in the precentral gyrus incorporated information about both cognitive state and movement kinematics; the three conditions presented overlapping but unique, statistically distinct activity patterns. These findings demonstrate that individual neurons in human motor cortex reflect information related to sensory inputs and VoS in addition to movement features, and are a key part of a broader network linking perception and cognition to action.
Collapse
Affiliation(s)
- Carlos E Vargas-Irwin
- Department of Neuroscience, Brown University, Providence, RI, United States.,Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, RI, United States
| | - Jessica M Feldman
- Department of Neuroscience, Brown University, Providence, RI, United States
| | - Brandon King
- Department of Neuroscience, Brown University, Providence, RI, United States
| | - John D Simeral
- Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, RI, United States.,Center for Neurorestoration and Neurotechnology (CfNN), Rehabilitation R&D Service, Department of Veterans Affairs Medical Center, Providence, RI, United States.,School of Engineering, Brown University, Providence, RI, United States
| | - Brittany L Sorice
- Center for Neurotechnology and Neurorecovery (CNTR), Department of Neurology, Massachusetts General Hospital, Boston, MA, United States
| | - Erin M Oakley
- Center for Neurotechnology and Neurorecovery (CNTR), Department of Neurology, Massachusetts General Hospital, Boston, MA, United States
| | - Sydney S Cash
- Center for Neurotechnology and Neurorecovery (CNTR), Department of Neurology, Massachusetts General Hospital, Boston, MA, United States.,Department of Neurology, Harvard Medical School, Boston, MA, United States
| | - Emad N Eskandar
- Department of Neurosurgery, Harvard Medical School and Massachusetts General Hospital, Boston, MA, United States
| | - Gerhard M Friehs
- Department of Neurosurgery, Rhode Island Hospital, Providence, RI, United States
| | - Leigh R Hochberg
- Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, RI, United States.,Center for Neurorestoration and Neurotechnology (CfNN), Rehabilitation R&D Service, Department of Veterans Affairs Medical Center, Providence, RI, United States.,School of Engineering, Brown University, Providence, RI, United States.,Center for Neurotechnology and Neurorecovery (CNTR), Department of Neurology, Massachusetts General Hospital, Boston, MA, United States.,Department of Neurology, Harvard Medical School, Boston, MA, United States
| | - John P Donoghue
- Department of Neuroscience, Brown University, Providence, RI, United States.,Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, RI, United States.,Center for Neurorestoration and Neurotechnology (CfNN), Rehabilitation R&D Service, Department of Veterans Affairs Medical Center, Providence, RI, United States.,School of Engineering, Brown University, Providence, RI, United States
| |
Collapse
|
36
|
Schwemmer MA, Skomrock ND, Sederberg PB, Ting JE, Sharma G, Bockbrader MA, Friedenberg DA. Meeting brain-computer interface user performance expectations using a deep neural network decoding framework. Nat Med 2018; 24:1669-1676. [PMID: 30250141 DOI: 10.1038/s41591-018-0171-y] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 07/31/2018] [Indexed: 12/12/2022]
Abstract
Brain-computer interface (BCI) neurotechnology has the potential to reduce disability associated with paralysis by translating neural activity into control of assistive devices1-9. Surveys of potential end-users have identified key BCI system features10-14, including high accuracy, minimal daily setup, rapid response times, and multifunctionality. These performance characteristics are primarily influenced by the BCI's neural decoding algorithm1,15, which is trained to associate neural activation patterns with intended user actions. Here, we introduce a new deep neural network16 decoding framework for BCI systems enabling discrete movements that addresses these four key performance characteristics. Using intracortical data from a participant with tetraplegia, we provide offline results demonstrating that our decoder is highly accurate, sustains this performance beyond a year without explicit daily retraining by combining it with an unsupervised updating procedure3,17-20, responds faster than competing methods8, and can increase functionality with minimal retraining by using a technique known as transfer learning21. We then show that our participant can use the decoder in real-time to reanimate his paralyzed forearm with functional electrical stimulation (FES), enabling accurate manipulation of three objects from the grasp and release test (GRT)22. These results demonstrate that deep neural network decoders can advance the clinical translation of BCI technology.
Collapse
Affiliation(s)
| | | | - Per B Sederberg
- Department of Psychology, University of Virginia, Charlottesville, VA, USA
| | - Jordyn E Ting
- Medical Devices and Neuromodulation, Battelle Memorial Institute, Columbus, OH, USA
| | - Gaurav Sharma
- Medical Devices and Neuromodulation, Battelle Memorial Institute, Columbus, OH, USA
| | - Marcia A Bockbrader
- Neurological Institute, Ohio State University, Columbus, OH, USA.,Department of Physical Medicine and Rehabilitation, Ohio State University, Columbus, OH, USA
| | | |
Collapse
|
37
|
Brandman DM, Burkhart MC, Kelemen J, Franco B, Harrison MT, Hochberg LR. Robust Closed-Loop Control of a Cursor in a Person with Tetraplegia using Gaussian Process Regression. Neural Comput 2018; 30:2986-3008. [PMID: 30216140 DOI: 10.1162/neco_a_01129] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Intracortical brain computer interfaces can enable individuals with paralysis to control external devices through voluntarily modulated brain activity. Decoding quality has been previously shown to degrade with signal nonstationarities-specifically, the changes in the statistics of the data between training and testing data sets. This includes changes to the neural tuning profiles and baseline shifts in firing rates of recorded neurons, as well as nonphysiological noise. While progress has been made toward providing long-term user control via decoder recalibration, relatively little work has been dedicated to making the decoding algorithm more resilient to signal nonstationarities. Here, we describe how principled kernel selection with gaussian process regression can be used within a Bayesian filtering framework to mitigate the effects of commonly encountered nonstationarities. Given a supervised training set of (neural features, intention to move in a direction)-pairs, we use gaussian process regression to predict the intention given the neural data. We apply kernel embedding for each neural feature with the standard radial basis function. The multiple kernels are then summed together across each neural dimension, which allows the kernel to effectively ignore large differences that occur only in a single feature. The summed kernel is used for real-time predictions of the posterior mean and variance under a gaussian process framework. The predictions are then filtered using the discriminative Kalman filter to produce an estimate of the neural intention given the history of neural data. We refer to the multiple kernel approach combined with the discriminative Kalman filter as the MK-DKF. We found that the MK-DKF decoder was more resilient to nonstationarities frequently encountered in-real world settings yet provided similar performance to the currently used Kalman decoder. These results demonstrate a method by which neural decoding can be made more resistant to nonstationarities.
Collapse
Affiliation(s)
- David M Brandman
- Neuroscience Graduate Program, Department of Neuroscience, Carney Institute for Brain Science, and School of Engineering, Brown University, Providence, RI 02912, U.S.A.; and Department of Surgery (Neurosurgery), Dalhousie University, Halifax, NS B3H 347 Canada
| | - Michael C Burkhart
- Division of Applied Mathematics, Brown University, Providence, RI 02912, U.S.A.
| | - Jessica Kelemen
- Center for Neurotechnology and Neurorecovery, Neurology, Massachusetts General Hospital, Boston, MA 02114, U.S.A.
| | - Brian Franco
- Center for Neurotechnology and Neurorecovery, Neurology, Massachusetts General Hospital, Boston, MA 02114, U.S.A.
| | - Matthew T Harrison
- Division of Applied Mathematics, Brown University, Providence, RI 02912, U.S.A.
| | - Leigh R Hochberg
- Center for Neurorestoration and Neurotechnology, Rehabilitation R&D Service, Department of Veterans Affairs Medical Center, Providence, RI 02908; Carney Institute for Brain Science and School of Engineering, Brown University, Providence, RI 02912; Center for Neurotechnology and Neurorecovery, Neurology, Massachusetts General Hospital, Boston, MA 02114; and Neurology, Harvard Medical School, Boston, MA 02115, U.S.A.
| |
Collapse
|
38
|
Willett FR, Murphy BA, Young DR, Memberg WD, Blabe CH, Pandarinath C, Franco B, Saab J, Walter BL, Sweet JA, Miller JP, Henderson JM, Shenoy KV, Simeral JD, Jarosiewicz B, Hochberg LR, Kirsch RF, Ajiboye AB. A Comparison of Intention Estimation Methods for Decoder Calibration in Intracortical Brain-Computer Interfaces. IEEE Trans Biomed Eng 2018; 65:2066-2078. [PMID: 29989927 PMCID: PMC6043406 DOI: 10.1109/tbme.2017.2783358] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
OBJECTIVE Recent reports indicate that making better assumptions about the user's intended movement can improve the accuracy of decoder calibration for intracortical brain-computer interfaces. Several methods now exist for estimating user intent, including an optimal feedback control model, a piecewise-linear feedback control model, ReFIT, and other heuristics. Which of these methods yields the best decoding performance? METHODS Using data from the BrainGate2 pilot clinical trial, we measured how a steady-state velocity Kalman filter decoder was affected by the choice of intention estimation method. We examined three separate components of the Kalman filter: dimensionality reduction, temporal smoothing, and output gain (speed scaling). RESULTS The decoder's dimensionality reduction properties were largely unaffected by the intention estimation method. Decoded velocity vectors differed by <5% in terms of angular error and speed vs. target distance curves across methods. In contrast, the smoothing and gain properties of the decoder were greatly affected (> 50% difference in average values). Since the optimal gain and smoothing properties are task-specific (e.g. lower gains are better for smaller targets but worse for larger targets), no one method was better for all tasks. CONCLUSION Our results show that, when gain and smoothing differences are accounted for, current intention estimation methods yield nearly equivalent decoders and that simple models of user intent, such as a position error vector (target position minus cursor position), perform comparably to more elaborate models. Our results also highlight that simple differences in gain and smoothing properties have a large effect on online performance and can confound decoder comparisons.
Collapse
|
39
|
Schaeffer MC, Aksenova T. Data-Driven Transducer Design and Identification for Internally-Paced Motor Brain Computer Interfaces: A Review. Front Neurosci 2018; 12:540. [PMID: 30158847 PMCID: PMC6104172 DOI: 10.3389/fnins.2018.00540] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 07/17/2018] [Indexed: 11/13/2022] Open
Abstract
Brain-Computer Interfaces (BCIs) are systems that establish a direct communication pathway between the users' brain activity and external effectors. They offer the potential to improve the quality of life of motor-impaired patients. Motor BCIs aim to permit severely motor-impaired users to regain limb mobility by controlling orthoses or prostheses. In particular, motor BCI systems benefit patients if the decoded actions reflect the users' intentions with an accuracy that enables them to efficiently interact with their environment. One of the main challenges of BCI systems is to adapt the BCI's signal translation blocks to the user to reach a high decoding accuracy. This paper will review the literature of data-driven and user-specific transducer design and identification approaches and it focuses on internally-paced motor BCIs. In particular, continuous kinematic biomimetic and mental-task decoders are reviewed. Furthermore, static and dynamic decoding approaches, linear and non-linear decoding, offline and real-time identification algorithms are considered. The current progress and challenges related to the design of clinical-compatible motor BCI transducers are additionally discussed.
Collapse
Affiliation(s)
| | - Tetiana Aksenova
- CEA, LETI, CLINATEC, MINATEC Campus, Université Grenoble Alpes, Grenoble, France
| |
Collapse
|
40
|
Downey JE, Schwed N, Chase SM, Schwartz AB, Collinger JL. Intracortical recording stability in human brain–computer interface users. J Neural Eng 2018; 15:046016. [PMID: 29553484 DOI: 10.1088/1741-2552/aab7a0] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
41
|
|
42
|
Brandman DM, Cash SS, Hochberg LR. Review: Human Intracortical Recording and Neural Decoding for Brain-Computer Interfaces. IEEE Trans Neural Syst Rehabil Eng 2017; 25:1687-1696. [PMID: 28278476 PMCID: PMC5815832 DOI: 10.1109/tnsre.2017.2677443] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Brain-computer interfaces (BCIs) use neural information recorded from the brain for the voluntary control of external devices. The development of BCI systems has largely focused on improving functional independence for individuals with severe motor impairments, including providing tools for communication and mobility. In this review, we describe recent advances in intracortical BCI technology and provide potential directions for further research.
Collapse
|
43
|
Schaeffer MC, Aksenova T. Switching Markov decoders for asynchronous trajectory reconstruction from ECoG signals in monkeys for BCI applications. ACTA ACUST UNITED AC 2017; 110:348-360. [PMID: 28288824 DOI: 10.1016/j.jphysparis.2017.03.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 12/07/2016] [Accepted: 03/06/2017] [Indexed: 10/20/2022]
Abstract
Brain-Computer Interfaces (BCIs) are systems which translate brain neural activity into commands for external devices. BCI users generally alternate between No-Control (NC) and Intentional Control (IC) periods. NC/IC discrimination is crucial for clinical BCIs, particularly when they provide neural control over complex effectors such as exoskeletons. Numerous BCI decoders focus on the estimation of continuously-valued limb trajectories from neural signals. The integration of NC support into continuous decoders is investigated in the present article. Most discrete/continuous BCI hybrid decoders rely on static state models which don't exploit the dynamic of NC/IC state succession. A hybrid decoder, referred to as Markov Switching Linear Model (MSLM), is proposed in the present article. The MSLM assumes that the NC/IC state sequence is generated by a first-order Markov chain, and performs dynamic NC/IC state detection. Linear continuous movement models are probabilistically combined using the NC and IC state posterior probabilities yielded by the state decoder. The proposed decoder is evaluated for the task of asynchronous wrist position decoding from high dimensional space-time-frequency ElectroCorticoGraphic (ECoG) features in monkeys. The MSLM is compared with another dynamic hybrid decoder proposed in the literature, namely a Switching Kalman Filter (SKF). A comparison is additionally drawn with a Wiener filter decoder which infers NC states by thresholding trajectory estimates. The MSLM decoder is found to outperform both the SKF and the thresholded Wiener filter decoder in terms of False Positive Ratio and NC/IC state detection error. It additionally surpasses the SKF with respect to the Pearson Correlation Coefficient and Root Mean Squared Error between true and estimated continuous trajectories.
Collapse
Affiliation(s)
| | - Tetiana Aksenova
- Univ. Grenoble Alpes, CEA, LETI, CLINATEC, MINATEC Campus, 38000 Grenoble, France.
| |
Collapse
|
44
|
Making brain-machine interfaces robust to future neural variability. Nat Commun 2016; 7:13749. [PMID: 27958268 PMCID: PMC5159828 DOI: 10.1038/ncomms13749] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 10/29/2016] [Indexed: 01/15/2023] Open
Abstract
A major hurdle to clinical translation of brain–machine interfaces (BMIs) is that current decoders, which are trained from a small quantity of recent data, become ineffective when neural recording conditions subsequently change. We tested whether a decoder could be made more robust to future neural variability by training it to handle a variety of recording conditions sampled from months of previously collected data as well as synthetic training data perturbations. We developed a new multiplicative recurrent neural network BMI decoder that successfully learned a large variety of neural-to-kinematic mappings and became more robust with larger training data sets. Here we demonstrate that when tested with a non-human primate preclinical BMI model, this decoder is robust under conditions that disabled a state-of-the-art Kalman filter-based decoder. These results validate a new BMI strategy in which accumulated data history are effectively harnessed, and may facilitate reliable BMI use by reducing decoder retraining downtime. Brain-machine interfaces (BMI) depend on algorithms to decode neural signals, but these decoders cope poorly with signal variability. Here, authors report a BMI decoder which circumvents these problems by using a large and perturbed training dataset to improve performance with variable neural signals.
Collapse
|
45
|
Willett FR, Pandarinath C, Jarosiewicz B, Murphy BA, Memberg WD, Blabe CH, Saab J, Walter BL, Sweet JA, Miller JP, Henderson JM, Shenoy KV, Simeral JD, Hochberg LR, Kirsch RF, Ajiboye AB. Feedback control policies employed by people using intracortical brain-computer interfaces. J Neural Eng 2016; 14:016001. [PMID: 27900953 DOI: 10.1088/1741-2560/14/1/016001] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVE When using an intracortical BCI (iBCI), users modulate their neural population activity to move an effector towards a target, stop accurately, and correct for movement errors. We call the rules that govern this modulation a 'feedback control policy'. A better understanding of these policies may inform the design of higher-performing neural decoders. APPROACH We studied how three participants in the BrainGate2 pilot clinical trial used an iBCI to control a cursor in a 2D target acquisition task. Participants used a velocity decoder with exponential smoothing dynamics. Through offline analyses, we characterized the users' feedback control policies by modeling their neural activity as a function of cursor state and target position. We also tested whether users could adapt their policy to different decoder dynamics by varying the gain (speed scaling) and temporal smoothing parameters of the iBCI. MAIN RESULTS We demonstrate that control policy assumptions made in previous studies do not fully describe the policies of our participants. To account for these discrepancies, we propose a new model that captures (1) how the user's neural population activity gradually declines as the cursor approaches the target from afar, then decreases more sharply as the cursor comes into contact with the target, (2) how the user makes constant feedback corrections even when the cursor is on top of the target, and (3) how the user actively accounts for the cursor's current velocity to avoid overshooting the target. Further, we show that users can adapt their control policy to decoder dynamics by attenuating neural modulation when the cursor gain is high and by damping the cursor velocity more strongly when the smoothing dynamics are high. SIGNIFICANCE Our control policy model may help to build better decoders, understand how neural activity varies during active iBCI control, and produce better simulations of closed-loop iBCI movements.
Collapse
Affiliation(s)
- Francis R Willett
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA. Louis Stokes Cleveland Department of Veterans Affairs Medical Center, FES Center of Excellence, Rehab. R&D Service, Cleveland, OH, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Jarosiewicz B, Sarma AA, Saab J, Franco B, Cash SS, Eskandar EN, Hochberg LR. Retrospectively supervised click decoder calibration for self-calibrating point-and-click brain-computer interfaces. JOURNAL OF PHYSIOLOGY, PARIS 2016; 110:382-391. [PMID: 28286237 PMCID: PMC5591042 DOI: 10.1016/j.jphysparis.2017.03.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 12/20/2016] [Accepted: 03/01/2017] [Indexed: 11/25/2022]
Abstract
Brain-computer interfaces (BCIs) aim to restore independence to people with severe motor disabilities by allowing control of acursor on a computer screen or other effectors with neural activity. However, physiological and/or recording-related nonstationarities in neural signals can limit long-term decoding stability, and it would be tedious for users to pause use of the BCI whenever neural control degrades to perform decoder recalibration routines. We recently demonstrated that a kinematic decoder (i.e. a decoder that controls cursor movement) can be recalibrated using data acquired during practical point-and-click control of the BCI by retrospectively inferring users' intended movement directions based on their subsequent selections. Here, we extend these methods to allow the click decoder to also be recalibrated using data acquired during practical BCI use. We retrospectively labeled neural data patterns as corresponding to "click" during all time bins in which the click log-likelihood (decoded using linear discriminant analysis, or LDA) had been above the click threshold that was used during real-time neural control. We labeled as "non-click" those periods that the kinematic decoder's retrospective target inference (RTI) heuristics determined to be consistent with intended cursor movement. Once these neural activity patterns were labeled, the click decoder was calibrated using standard supervised classifier training methods. Combined with real-time bias correction and baseline firing rate tracking, this set of "retrospectively labeled" decoder calibration methods enabled a BrainGate participant with amyotrophic lateral sclerosis (T9) to type freely across 11 research sessions spanning 29days, maintaining high-performance neural control over cursor movement and click without needing to interrupt virtual keyboard use for explicit calibration tasks. By eliminating the need for tedious calibration tasks with prescribed targets and pre-specified click times, this approach advances the potential clinical utility of intracortical BCIs for individuals with severe motor disability.
Collapse
Affiliation(s)
- Beata Jarosiewicz
- Neuroscience, Brown University, Providence, RI 02912, United States; Center for Neurorestoration and Neurotechnology, Rehabilitation R&D Service, Veterans Affairs Medical Center, Providence, RI 02908, United States; Brown Institute for Brain Science, Brown University, Providence, RI 02912, United States.
| | - Anish A Sarma
- Center for Neurorestoration and Neurotechnology, Rehabilitation R&D Service, Veterans Affairs Medical Center, Providence, RI 02908, United States; Brown Institute for Brain Science, Brown University, Providence, RI 02912, United States; School of Engineering, Brown University, Providence, RI 02912, United States
| | - Jad Saab
- School of Engineering, Brown University, Providence, RI 02912, United States; Center for Neurorestoration and Neurotechnology, Rehabilitation R&D Service, Veterans Affairs Medical Center, Providence, RI 02908, United States; Brown Institute for Brain Science, Brown University, Providence, RI 02912, United States
| | - Brian Franco
- Neurology, Massachusetts General Hospital, Boston, MA 02114, United States
| | - Sydney S Cash
- Neurology, Massachusetts General Hospital, Boston, MA 02114, United States; Neurology, Harvard Medical School, Boston, MA 02115, United States
| | - Emad N Eskandar
- Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, United States; Neuroscience, Harvard Medical School, Boston, MA 02115, United States
| | - Leigh R Hochberg
- Center for Neurorestoration and Neurotechnology, Rehabilitation R&D Service, Veterans Affairs Medical Center, Providence, RI 02908, United States; Brown Institute for Brain Science, Brown University, Providence, RI 02912, United States; School of Engineering, Brown University, Providence, RI 02912, United States; Neurology, Massachusetts General Hospital, Boston, MA 02114, United States; Neurology, Harvard Medical School, Boston, MA 02115, United States
| |
Collapse
|
47
|
Rouse AG, Williams JJ, Wheeler JJ, Moran DW. Spatial co-adaptation of cortical control columns in a micro-ECoG brain-computer interface. J Neural Eng 2016; 13:056018. [PMID: 27651034 DOI: 10.1088/1741-2560/13/5/056018] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Electrocorticography (ECoG) has been used for a range of applications including electrophysiological mapping, epilepsy monitoring, and more recently as a recording modality for brain-computer interfaces (BCIs). Studies that examine ECoG electrodes designed and implanted chronically solely for BCI applications remain limited. The present study explored how two key factors influence chronic, closed-loop ECoG BCI: (i) the effect of inter-electrode distance on BCI performance and (ii) the differences in neural adaptation and performance when fixed versus adaptive BCI decoding weights are used. APPROACH The amplitudes of epidural micro-ECoG signals between 75 and 105 Hz with 300 μm diameter electrodes were used for one-dimensional and two-dimensional BCI tasks. The effect of inter-electrode distance on BCI control was tested between 3 and 15 mm. Additionally, the performance and cortical modulation differences between constant, fixed decoding using a small subset of channels versus adaptive decoding weights using the entire array were explored. MAIN RESULTS Successful BCI control was possible with two electrodes separated by 9 and 15 mm. Performance decreased and the signals became more correlated when the electrodes were only 3 mm apart. BCI performance in a 2D BCI task improved significantly when using adaptive decoding weights (80%-90%) compared to using constant, fixed weights (50%-60%). Additionally, modulation increased for channels previously unavailable for BCI control under the fixed decoding scheme upon switching to the adaptive, all-channel scheme. SIGNIFICANCE Our results clearly show that neural activity under a BCI recording electrode (which we define as a 'cortical control column') readily adapts to generate an appropriate control signal. These results show that the practical minimal spatial resolution of these control columns with micro-ECoG BCI is likely on the order of 3 mm. Additionally, they show that the combination and interaction between neural adaptation and machine learning are critical to optimizing ECoG BCI performance.
Collapse
|
48
|
Jarosiewicz B, Sarma AA, Bacher D, Masse NY, Simeral JD, Sorice B, Oakley EM, Blabe C, Pandarinath C, Gilja V, Cash SS, Eskandar EN, Friehs G, Henderson JM, Shenoy KV, Donoghue JP, Hochberg LR. Virtual typing by people with tetraplegia using a self-calibrating intracortical brain-computer interface. Sci Transl Med 2016; 7:313ra179. [PMID: 26560357 DOI: 10.1126/scitranslmed.aac7328] [Citation(s) in RCA: 193] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Brain-computer interfaces (BCIs) promise to restore independence for people with severe motor disabilities by translating decoded neural activity directly into the control of a computer. However, recorded neural signals are not stationary (that is, can change over time), degrading the quality of decoding. Requiring users to pause what they are doing whenever signals change to perform decoder recalibration routines is time-consuming and impractical for everyday use of BCIs. We demonstrate that signal nonstationarity in an intracortical BCI can be mitigated automatically in software, enabling long periods (hours to days) of self-paced point-and-click typing by people with tetraplegia, without degradation in neural control. Three key innovations were included in our approach: tracking the statistics of the neural activity during self-timed pauses in neural control, velocity bias correction during neural control, and periodically recalibrating the decoder using data acquired during typing by mapping neural activity to movement intentions that are inferred retrospectively based on the user's self-selected targets. These methods, which can be extended to a variety of neurally controlled applications, advance the potential for intracortical BCIs to help restore independent communication and assistive device control for people with paralysis.
Collapse
Affiliation(s)
- Beata Jarosiewicz
- Department of Neuroscience, Brown University, Providence, RI 02912, USA. Center for Neurorestoration and Neurotechnology, Rehabilitation R&D Service, Department of Veterans Affairs Medical Center, Providence, RI 02908, USA. Brown Institute for Brain Science, Brown University, Providence, RI 02912, USA.
| | - Anish A Sarma
- Center for Neurorestoration and Neurotechnology, Rehabilitation R&D Service, Department of Veterans Affairs Medical Center, Providence, RI 02908, USA. Brown Institute for Brain Science, Brown University, Providence, RI 02912, USA. School of Engineering, Brown University, Providence, RI 02912, USA
| | - Daniel Bacher
- Brown Institute for Brain Science, Brown University, Providence, RI 02912, USA. Brown Institute for Brain Science, Brown University, Providence, RI 02912, USA
| | - Nicolas Y Masse
- Department of Neuroscience, Brown University, Providence, RI 02912, USA. Brown Institute for Brain Science, Brown University, Providence, RI 02912, USA
| | - John D Simeral
- Center for Neurorestoration and Neurotechnology, Rehabilitation R&D Service, Department of Veterans Affairs Medical Center, Providence, RI 02908, USA. Brown Institute for Brain Science, Brown University, Providence, RI 02912, USA. School of Engineering, Brown University, Providence, RI 02912, USA. Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Brittany Sorice
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Erin M Oakley
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Christine Blabe
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA
| | - Chethan Pandarinath
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA. Stanford Neurosciences Institute, Stanford University, Stanford, CA 94305, USA. Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Vikash Gilja
- School of Engineering, Brown University, Providence, RI 02912, USA. Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA. Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Sydney S Cash
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA. Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Emad N Eskandar
- Neurosurgery, Harvard Medical School and Massachusetts General Hospital, Boston, MA 02115, USA
| | - Gerhard Friehs
- Neurosurgery, Rhode Island Hospital, Providence, RI 02903, USA
| | - Jaimie M Henderson
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA. Stanford Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
| | - Krishna V Shenoy
- Stanford Neurosciences Institute, Stanford University, Stanford, CA 94305, USA. Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA. Department of Neurobiology, Stanford University, Stanford, CA 94305, USA. Department of Bioengineering, Stanford University, Stanford, CA 94305, USA. Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - John P Donoghue
- Center for Neurorestoration and Neurotechnology, Rehabilitation R&D Service, Department of Veterans Affairs Medical Center, Providence, RI 02908, USA. Department of Neuroscience, Brown University, Providence, RI 02912, USA. Brown Institute for Brain Science, Brown University, Providence, RI 02912, USA. School of Engineering, Brown University, Providence, RI 02912, USA
| | - Leigh R Hochberg
- Center for Neurorestoration and Neurotechnology, Rehabilitation R&D Service, Department of Veterans Affairs Medical Center, Providence, RI 02908, USA. Brown Institute for Brain Science, Brown University, Providence, RI 02912, USA. School of Engineering, Brown University, Providence, RI 02912, USA. Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA. Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
49
|
Libedinsky C. Adaptive decoding using local field potentials in a brain-machine interface. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2016; 2016:5721-5724. [PMID: 28269554 DOI: 10.1109/embc.2016.7592026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Brain-machine interface (BMI) systems have the potential to restore function to people who suffer from paralysis due to a spinal cord injury. However, in order to achieve long-term use, BMI systems have to overcome two challenges - signal degeneration over time, and non-stationarity of signals. Effects of loss in spike signals over time can be mitigated by using local field potential (LFP) signals for decoding, and a solution to address the signal non-stationarity is to use adaptive methods for periodic recalibration of the decoding model. We implemented a BMI system in a nonhuman primate model that allows brain-controlled movement of a robotic platform. Using this system, we showed that LFP signals alone can be used for decoding in a closed-loop brain-controlled BMI. Further, we performed offline analysis to assess the potential implementation of an adaptive decoding method that does not presume knowledge of the target location. Our results show that with periodic signal and channel selection adaptation, decoding accuracy using LFP alone can be improved by between 5-50%. These results demonstrate the feasibility of implementing unsupervised adaptive methods during asynchronous decoding of LFP signals for long-term usage in a BMI system.
Collapse
|
50
|
Wright J, Macefield VG, van Schaik A, Tapson JC. A Review of Control Strategies in Closed-Loop Neuroprosthetic Systems. Front Neurosci 2016; 10:312. [PMID: 27462202 PMCID: PMC4940409 DOI: 10.3389/fnins.2016.00312] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 06/21/2016] [Indexed: 11/23/2022] Open
Abstract
It has been widely recognized that closed-loop neuroprosthetic systems achieve more favorable outcomes for users then equivalent open-loop devices. Improved performance of tasks, better usability, and greater embodiment have all been reported in systems utilizing some form of feedback. However, the interdisciplinary work on neuroprosthetic systems can lead to miscommunication due to similarities in well-established nomenclature in different fields. Here we present a review of control strategies in existing experimental, investigational and clinical neuroprosthetic systems in order to establish a baseline and promote a common understanding of different feedback modes and closed-loop controllers. The first section provides a brief discussion of feedback control and control theory. The second section reviews the control strategies of recent Brain Machine Interfaces, neuromodulatory implants, neuroprosthetic systems, and assistive neurorobotic devices. The final section examines the different approaches to feedback in current neuroprosthetic and neurorobotic systems.
Collapse
Affiliation(s)
- James Wright
- Biomedical Engineering and Neuroscience, The MARCS Institute, University of Western Sydney Sydney, NSW, Australia
| | - Vaughan G Macefield
- Biomedical Engineering and Neuroscience, The MARCS Institute, University of Western SydneySydney, NSW, Australia; School of Medicine, University of Western SydneySydney, NSW, Australia; Neuroscience Research AustraliaSydney, NSW, Australia
| | - André van Schaik
- Biomedical Engineering and Neuroscience, The MARCS Institute, University of Western Sydney Sydney, NSW, Australia
| | - Jonathan C Tapson
- Biomedical Engineering and Neuroscience, The MARCS Institute, University of Western Sydney Sydney, NSW, Australia
| |
Collapse
|