1
|
Freychet G, Zhernenkov M. Flatfielding of hybrid pixel detectors in tender x-ray scattering. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2023; 94:2888612. [PMID: 37144942 DOI: 10.1063/5.0139377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 04/23/2023] [Indexed: 05/06/2023]
Abstract
The ability of the soft matter interfaces beamline at National Synchrotron Light Source II to access x-ray energy in the tender x-ray regime, i.e., from 2.1 to 5 keV, enables new resonant x-ray scattering studies at the sulfur K-edge and others. We present a new approach to correct data acquired in the tender x-ray regime with a Pilatus3 detector in order to improve the data quality and to correct the various artifacts inherent to hybrid pixel detectors, such as variations in modules' efficiency or noisy detector module junctions. This new flatfielding significantly enhances the data quality and enables detection of weak scattering signals.
Collapse
Affiliation(s)
- Guillaume Freychet
- National Synchrotron Light Source-II, Brookhaven National Laboratory, Upton, New York 11973, USA
- Univ. Grenoble Alpes, CEA, Leti, F-38000 Grenoble, France
| | - Mikhail Zhernenkov
- National Synchrotron Light Source-II, Brookhaven National Laboratory, Upton, New York 11973, USA
| |
Collapse
|
2
|
Flenner S, Hagemann J, Wittwer F, Longo E, Kubec A, Rothkirch A, David C, Müller M, Greving I. Hard X-ray full-field nanoimaging using a direct photon-counting detector. JOURNAL OF SYNCHROTRON RADIATION 2023; 30:390-399. [PMID: 36891852 PMCID: PMC10000802 DOI: 10.1107/s1600577522012103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 12/22/2022] [Indexed: 06/18/2023]
Abstract
Full-field X-ray nanoimaging is a widely used tool in a broad range of scientific areas. In particular, for low-absorbing biological or medical samples, phase contrast methods have to be considered. Three well established phase contrast methods at the nanoscale are transmission X-ray microscopy with Zernike phase contrast, near-field holography and near-field ptychography. The high spatial resolution, however, often comes with the drawback of a lower signal-to-noise ratio and significantly longer scan times, compared with microimaging. In order to tackle these challenges a single-photon-counting detector has been implemented at the nanoimaging endstation of the beamline P05 at PETRA III (DESY, Hamburg) operated by Helmholtz-Zentrum Hereon. Thanks to the long sample-to-detector distance available, spatial resolutions of below 100 nm were reached in all three presented nanoimaging techniques. This work shows that a single-photon-counting detector in combination with a long sample-to-detector distance allows one to increase the time resolution for in situ nanoimaging, while keeping a high signal-to-noise level.
Collapse
Affiliation(s)
- Silja Flenner
- Helmholtz-Zentrum Hereon, Max-Planck-Strasse 1, 21502 Geesthacht, Germany
| | - Johannes Hagemann
- Center for X-ray and Nano Science – CXNS, Deutsches Elektronen-Synchrotron – DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Felix Wittwer
- Center for X-ray and Nano Science – CXNS, Deutsches Elektronen-Synchrotron – DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Elena Longo
- Helmholtz-Zentrum Hereon, Max-Planck-Strasse 1, 21502 Geesthacht, Germany
| | - Adam Kubec
- Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen, Switzerland
| | - André Rothkirch
- Center for X-ray and Nano Science – CXNS, Deutsches Elektronen-Synchrotron – DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Christian David
- Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen, Switzerland
| | - Martin Müller
- Helmholtz-Zentrum Hereon, Max-Planck-Strasse 1, 21502 Geesthacht, Germany
| | - Imke Greving
- Helmholtz-Zentrum Hereon, Max-Planck-Strasse 1, 21502 Geesthacht, Germany
| |
Collapse
|
3
|
Storm SLS, Axford D, Owen RL. Experimental evidence for the benefits of higher X-ray energies for macromolecular crystallography. IUCRJ 2021; 8:896-904. [PMID: 34804543 PMCID: PMC8562668 DOI: 10.1107/s2052252521008423] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 08/13/2021] [Indexed: 06/13/2023]
Abstract
X-ray-induced radiation damage is a limiting factor for the macromolecular crystallographer and data must often be merged from many crystals to yield complete data sets for the structure solution of challenging samples. Increasing the X-ray energy beyond the typical 10-15 keV range promises to provide an extension of crystal lifetime via an increase in diffraction efficiency. To date, however, hardware limitations have negated any possible gains. Through the first use of a cadmium telluride EIGER2 detector and a beamline optimized for high-energy data collection, it is shown that at higher energies fewer crystals will be required to obtain complete data, as the diffracted intensity per unit dose increases by a factor of more than two between 12.4 and 25 keV. Additionally, these higher energy data can provide more information, as shown by a systematic increase in the high-resolution cutoff of the data collected. Taken together, these gains point to a high-energy future for synchrotron-based macromolecular crystallography.
Collapse
Affiliation(s)
- Selina L. S. Storm
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - Danny Axford
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - Robin L. Owen
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| |
Collapse
|
4
|
Dudas D, Semmler M, Průša P, Neue G, Koniarova I, Peterkova K, Gallus P, Koncek O, Vrba V. The use of Pantherpix pixel detector in radiotherapy QA. Phys Med 2021; 82:332-340. [PMID: 33721792 DOI: 10.1016/j.ejmp.2021.01.072] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 12/23/2020] [Accepted: 01/16/2021] [Indexed: 11/17/2022] Open
Abstract
There are various different detectors, which can be used for radiotherapy measurements, and more are about to be adopted. Hybrid pixel detectors (HPD) have been originally developed for the high energy physics. However, over the last few years they also expanded in the medical physics. Novel 2D detector Pantherpix is a HPD designed specifically for the radiotherapy. In this article, its properties are characterised and an assessment of its use in radiotherapy photon beams is provided. Properties such as response stability, response linearity, angular dependence and energy dependence were studied. In order to prove sufficient clinical quality for relative dosimetry, further measurements were undertaken (i.e. dose profiles and collimator scatter factors). Acquired results were compared with ion chamber and gafchromic film results. Namely the applicability of PhPix for cobalt beam therapy, which is still widely used (and will be used in near future) in economically less developed countries, is considered.
Collapse
Affiliation(s)
- Denis Dudas
- CTU - Faculty of Nuclear Sciences and Physical Engineering, Prague, Czech Republic; UJP PRAHA a.s., Prague, Czech Republic.
| | | | - Petr Průša
- CTU - Faculty of Nuclear Sciences and Physical Engineering, Prague, Czech Republic.
| | - Gordon Neue
- CTU - Faculty of Nuclear Sciences and Physical Engineering, Prague, Czech Republic
| | - Irena Koniarova
- National Radiation Protection Institute v.v.i., Prague, Czech Republic
| | | | | | | | - Vaclav Vrba
- CTU - Faculty of Nuclear Sciences and Physical Engineering, Prague, Czech Republic
| |
Collapse
|
5
|
Rovezzi M, Harris A, Detlefs B, Bohdan T, Svyazhin A, Santambrogio A, Degler D, Baran R, Reynier B, Noguera Crespo P, Heyman C, Van Der Kleij HP, Van Vaerenbergh P, Marion P, Vitoux H, Lapras C, Verbeni R, Kocsis MM, Manceau A, Glatzel P. TEXS: in-vacuum tender X-ray emission spectrometer with 11 Johansson crystal analyzers. JOURNAL OF SYNCHROTRON RADIATION 2020; 27:813-826. [PMID: 32381786 PMCID: PMC7285681 DOI: 10.1107/s160057752000243x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 02/20/2020] [Indexed: 05/22/2023]
Abstract
The design and first results of a large-solid-angle X-ray emission spectrometer that is optimized for energies between 1.5 keV and 5.5 keV are presented. The spectrometer is based on an array of 11 cylindrically bent Johansson crystal analyzers arranged in a non-dispersive Rowland circle geometry. The smallest achievable energy bandwidth is smaller than the core hole lifetime broadening of the absorption edges in this energy range. Energy scanning is achieved using an innovative design, maintaining the Rowland circle conditions for all crystals with only four motor motions. The entire spectrometer is encased in a high-vacuum chamber that allocates a liquid helium cryostat and provides sufficient space for in situ cells and operando catalysis reactors.
Collapse
Affiliation(s)
- Mauro Rovezzi
- Université Grenoble Alpes, CNRS, IRD, Irstea, Météo France, OSUG, FAME, 71 avenue des Martyrs, CS 40220, 38043 Grenoble, France
- European Synchrotron Radiation Facility, 71 avenue des Martyrs, CS 40220, 38043 Grenoble, France
| | | | - Blanka Detlefs
- European Synchrotron Radiation Facility, 71 avenue des Martyrs, CS 40220, 38043 Grenoble, France
| | - Timothy Bohdan
- European Synchrotron Radiation Facility, 71 avenue des Martyrs, CS 40220, 38043 Grenoble, France
| | - Artem Svyazhin
- European Synchrotron Radiation Facility, 71 avenue des Martyrs, CS 40220, 38043 Grenoble, France
- M. N. Miheev Institute of Metal Physics, Ural Branch of the Russian Academy of Science, 620990 Ekaterinburg, Russia
| | - Alessandro Santambrogio
- European Synchrotron Radiation Facility, 71 avenue des Martyrs, CS 40220, 38043 Grenoble, France
| | - David Degler
- European Synchrotron Radiation Facility, 71 avenue des Martyrs, CS 40220, 38043 Grenoble, France
| | - Rafal Baran
- European Synchrotron Radiation Facility, 71 avenue des Martyrs, CS 40220, 38043 Grenoble, France
| | - Benjamin Reynier
- European Synchrotron Radiation Facility, 71 avenue des Martyrs, CS 40220, 38043 Grenoble, France
| | - Pedro Noguera Crespo
- Added Value Solutions (AVS), Pol. Ind. Sigma Xixilion Kalea 2, Bajo Pabellón 10, 20870 Elgoibar, Spain
| | | | - Hans-Peter Van Der Kleij
- European Synchrotron Radiation Facility, 71 avenue des Martyrs, CS 40220, 38043 Grenoble, France
| | - Pierre Van Vaerenbergh
- European Synchrotron Radiation Facility, 71 avenue des Martyrs, CS 40220, 38043 Grenoble, France
| | - Philippe Marion
- European Synchrotron Radiation Facility, 71 avenue des Martyrs, CS 40220, 38043 Grenoble, France
| | - Hugo Vitoux
- European Synchrotron Radiation Facility, 71 avenue des Martyrs, CS 40220, 38043 Grenoble, France
| | - Christophe Lapras
- European Synchrotron Radiation Facility, 71 avenue des Martyrs, CS 40220, 38043 Grenoble, France
| | - Roberto Verbeni
- European Synchrotron Radiation Facility, 71 avenue des Martyrs, CS 40220, 38043 Grenoble, France
| | - Menhard Menyhert Kocsis
- European Synchrotron Radiation Facility, 71 avenue des Martyrs, CS 40220, 38043 Grenoble, France
| | - Alain Manceau
- ISTerre, Université Grenoble Alpes, CNRS, CS 40700, 38058 Grenoble, France
| | - Pieter Glatzel
- European Synchrotron Radiation Facility, 71 avenue des Martyrs, CS 40220, 38043 Grenoble, France
| |
Collapse
|
6
|
Skroblin D, Schavkan A, Pflüger M, Pilet N, Lüthi B, Krumrey M. Vacuum-compatible photon-counting hybrid pixel detector for wide-angle x-ray scattering, x-ray diffraction, and x-ray reflectometry in the tender x-ray range. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2020; 91:023102. [PMID: 32113456 DOI: 10.1063/1.5128487] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 01/29/2020] [Indexed: 06/10/2023]
Abstract
A vacuum-compatible photon-counting hybrid pixel detector has been installed in the ultra-high vacuum reflectometer of the four-crystal monochromator beamline of the Physikalisch-Technische Bundesanstalt at the electron storage ring BESSY II in Berlin, Germany. The setup is based on the PILATUS3 100K module. The detector can be used in the entire photon energy range accessible at the beamline from 1.75 keV to 10 keV. Complementing the already installed vacuum-compatible PILATUS 1M detector used for small-angle x-ray scattering (SAXS) and grazing incidence SAXS, it is possible to access larger scattering angles. The water-cooled module is located on the goniometer arm and can be positioned from -90° to 90° with respect to the incoming beam at a distance of about 200 mm from the sample. To perform absolute scattering experiments, the linearity, homogeneity, and angular dependence of the quantum efficiency, including their relative uncertainties, have been investigated. In addition, the first results of the performance in wide-angle x-ray scattering, x-ray diffraction, and x-ray reflectometry are presented.
Collapse
Affiliation(s)
- D Skroblin
- Physikalisch-Technische Bundesanstalt (PTB), Abbestraße 2-12, 10587 Berlin, Germany
| | - A Schavkan
- Physikalisch-Technische Bundesanstalt (PTB), Abbestraße 2-12, 10587 Berlin, Germany
| | - M Pflüger
- Physikalisch-Technische Bundesanstalt (PTB), Abbestraße 2-12, 10587 Berlin, Germany
| | - N Pilet
- DECTRIS Ltd., Taeferweg 1, 5405 Baden, Switzerland
| | - B Lüthi
- DECTRIS Ltd., Taeferweg 1, 5405 Baden, Switzerland
| | - M Krumrey
- Physikalisch-Technische Bundesanstalt (PTB), Abbestraße 2-12, 10587 Berlin, Germany
| |
Collapse
|
7
|
Storm SLS, Crawshaw AD, Devenish NE, Bolton R, Hall DR, Tews I, Evans G. Measuring energy-dependent photoelectron escape in microcrystals. IUCRJ 2020; 7:129-135. [PMID: 31949913 PMCID: PMC6949606 DOI: 10.1107/s2052252519016178] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 12/02/2019] [Indexed: 05/22/2023]
Abstract
With the increasing trend of using microcrystals and intense microbeams at synchrotron X-ray beamlines, radiation damage becomes a more pressing problem. Theoretical calculations show that the photoelectrons that primarily cause damage can escape microcrystals. This effect would become more pronounced with decreasing crystal size as well as at higher energies. To prove this effect, data from cryocooled lysozyme crystals of dimensions 5 × 3 × 3 and 20 × 8 × 8 µm mounted on cryo-transmission electron microscopy (cryo-TEM) grids were collected at 13.5 and 20.1 keV using a PILATUS CdTe 2M detector, which has a similar quantum efficiency at both energies. Accurate absorbed doses were calculated through the direct measurement of individual crystal sizes using scanning electron microscopy after the experiment and characterization of the X-ray microbeam. The crystal lifetime was then quantified based on the D 1/2 metric. In this first systematic study, a longer crystal lifetime for smaller crystals was observed and crystal lifetime increased at higher X-ray energies, supporting the theoretical predictions of photoelectron escape. The use of detector technologies specifically optimized for data collection at energies above 20 keV allows the theoretically predicted photoelectron escape to be quantified and exploited, guiding future beamline-design choices.
Collapse
Affiliation(s)
- Selina L. S. Storm
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - Adam D. Crawshaw
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - Nicholas E. Devenish
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - Rachel Bolton
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
- Biological Sciences, Institute for Life Sciences, University of Southampton, Highfield Campus, Southampton SO17 1BJ, United Kingdom
| | - David R. Hall
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - Ivo Tews
- Biological Sciences, Institute for Life Sciences, University of Southampton, Highfield Campus, Southampton SO17 1BJ, United Kingdom
| | - Gwyndaf Evans
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| |
Collapse
|
8
|
Dickerson JL, Garman EF. The potential benefits of using higher X-ray energies for macromolecular crystallography. JOURNAL OF SYNCHROTRON RADIATION 2019; 26:922-930. [PMID: 31274414 DOI: 10.1107/s160057751900612x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 05/01/2019] [Indexed: 05/06/2023]
Abstract
Using X-ray energies higher than those normally used (5-15 keV) for macromolecular X-ray crystallography (MX) at synchrotron sources can theoretically increase the achievable signal as a function of dose and reduce the rate of radiation damage. In practice, a major stumbling block to the use of higher X-ray energy has been the reduced quantum efficiency of silicon detectors as the X-ray energy increases, but hybrid photon-counting CdTe detectors are optimized for higher X-ray energies, and their performance has been steadily improving. Here the potential advantages of using higher incident beam energy together with a CdTe detector for MX are explored, with a particular focus on the advantages that higher beam energies may have for MX experiments with microbeams or microcrystals. Monte Carlo simulations are presented here which for the first time include the efficiency responses of some available X-ray detectors, as well as the possible escape of photoelectrons from the sample and their entry from surrounding material. The results reveal a `sweet spot' at an incident X-ray energy of 26 keV, and show a greater than factor of two improvement in diffraction efficiency at this energy when using microbeams and microcrystals of 5 µm or less.
Collapse
Affiliation(s)
- Joshua L Dickerson
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Elspeth F Garman
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| |
Collapse
|
9
|
Andrä M, Zhang J, Bergamaschi A, Barten R, Borca C, Borghi G, Boscardin M, Busca P, Brückner M, Cartiglia N, Chiriotti S, Dalla Betta GF, Dinapoli R, Fajardo P, Ferrero M, Ficorella F, Fröjdh E, Greiffenberg D, Huthwelker T, Lopez-Cuenca C, Meyer M, Mezza D, Mozzanica A, Pancheri L, Paternoster G, Redford S, Ruat M, Ruder C, Schmitt B, Shi X, Sola V, Thattil D, Tinti G, Vetter S. Development of low-energy X-ray detectors using LGAD sensors. JOURNAL OF SYNCHROTRON RADIATION 2019; 26:1226-1237. [PMID: 31274448 DOI: 10.1107/s1600577519005393] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 04/19/2019] [Indexed: 06/09/2023]
Abstract
Recent advances in segmented low-gain avalanche detectors (LGADs) make them promising for the position-sensitive detection of low-energy X-ray photons thanks to their internal gain. LGAD microstrip sensors fabricated by Fondazione Bruno Kessler have been investigated using X-rays with both charge-integrating and single-photon-counting readout chips developed at the Paul Scherrer Institut. In this work it is shown that the charge multiplication occurring in the sensor allows the detection of X-rays with improved signal-to-noise ratio in comparison with standard silicon sensors. The application in the tender X-ray energy range is demonstrated by the detection of the sulfur Kα and Kβ lines (2.3 and 2.46 keV) in an energy-dispersive fluorescence spectrometer at the Swiss Light Source. Although further improvements in the segmentation and in the quantum efficiency at low energy are still necessary, this work paves the way for the development of single-photon-counting detectors in the soft X-ray energy range.
Collapse
Affiliation(s)
- Marie Andrä
- Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen PSI, Switzerland
| | - Jiaguo Zhang
- Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen PSI, Switzerland
| | - Anna Bergamaschi
- Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen PSI, Switzerland
| | - Rebecca Barten
- Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen PSI, Switzerland
| | - Camelia Borca
- Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen PSI, Switzerland
| | - Giacomo Borghi
- Fondazione Bruno Kessler, Via Sommarive 18, 38123 Trento, Italy
| | | | - Paolo Busca
- European Synchrotron Radiation Facility, Grenoble, France
| | - Martin Brückner
- Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen PSI, Switzerland
| | | | - Sabina Chiriotti
- Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen PSI, Switzerland
| | | | - Roberto Dinapoli
- Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen PSI, Switzerland
| | - Pablo Fajardo
- European Synchrotron Radiation Facility, Grenoble, France
| | - Marco Ferrero
- INFN Torino, Via Pietro Giuria 1, 10125 Torino, Italy
| | | | - Erik Fröjdh
- Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen PSI, Switzerland
| | | | - Thomas Huthwelker
- Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen PSI, Switzerland
| | - Carlos Lopez-Cuenca
- Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen PSI, Switzerland
| | - Markus Meyer
- Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen PSI, Switzerland
| | - Davide Mezza
- Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen PSI, Switzerland
| | - Aldo Mozzanica
- Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen PSI, Switzerland
| | - Lucio Pancheri
- University of Trento, Via Sommarive 9, 38123 Trento, Italy
| | | | - Sophie Redford
- Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen PSI, Switzerland
| | - Marie Ruat
- European Synchrotron Radiation Facility, Grenoble, France
| | - Christian Ruder
- Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen PSI, Switzerland
| | - Bernd Schmitt
- Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen PSI, Switzerland
| | - Xintian Shi
- Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen PSI, Switzerland
| | | | - Dhanya Thattil
- Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen PSI, Switzerland
| | - Gemma Tinti
- Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen PSI, Switzerland
| | - Seraphin Vetter
- Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen PSI, Switzerland
| |
Collapse
|
10
|
Basu S, Olieric V, Leonarski F, Matsugaki N, Kawano Y, Takashi T, Huang CY, Yamada Y, Vera L, Olieric N, Basquin J, Wojdyla JA, Bunk O, Diederichs K, Yamamoto M, Wang M. Long-wavelength native-SAD phasing: opportunities and challenges. IUCRJ 2019; 6:373-386. [PMID: 31098019 PMCID: PMC6503925 DOI: 10.1107/s2052252519002756] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 02/22/2019] [Indexed: 05/04/2023]
Abstract
Native single-wavelength anomalous dispersion (SAD) is an attractive experimental phasing technique as it exploits weak anomalous signals from intrinsic light scatterers (Z < 20). The anomalous signal of sulfur in particular, is enhanced at long wavelengths, however the absorption of diffracted X-rays owing to the crystal, the sample support and air affects the recorded intensities. Thereby, the optimal measurable anomalous signals primarily depend on the counterplay of the absorption and the anomalous scattering factor at a given X-ray wavelength. Here, the benefit of using a wavelength of 2.7 over 1.9 Å is demonstrated for native-SAD phasing on a 266 kDa multiprotein-ligand tubulin complex (T2R-TTL) and is applied in the structure determination of an 86 kDa helicase Sen1 protein at beamline BL-1A of the KEK Photon Factory, Japan. Furthermore, X-ray absorption at long wavelengths was controlled by shaping a lysozyme crystal into spheres of defined thicknesses using a deep-UV laser, and a systematic comparison between wavelengths of 2.7 and 3.3 Å is reported for native SAD. The potential of laser-shaping technology and other challenges for an optimized native-SAD experiment at wavelengths >3 Å are discussed.
Collapse
Affiliation(s)
- Shibom Basu
- Swiss Light Source, Paul Scherrer Institut, Villigen PSI, 5232, Switzerland
| | - Vincent Olieric
- Swiss Light Source, Paul Scherrer Institut, Villigen PSI, 5232, Switzerland
| | - Filip Leonarski
- Swiss Light Source, Paul Scherrer Institut, Villigen PSI, 5232, Switzerland
| | - Naohiro Matsugaki
- Structural Biology Research Center, Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization, Tsukuba, 305-0801, Japan
| | - Yoshiaki Kawano
- Advanced Photon Technology Division, RIKEN SPring-8 Center, Hyogo 679-5148, Japan
| | - Tomizaki Takashi
- Swiss Light Source, Paul Scherrer Institut, Villigen PSI, 5232, Switzerland
| | - Chia-Ying Huang
- Swiss Light Source, Paul Scherrer Institut, Villigen PSI, 5232, Switzerland
| | - Yusuke Yamada
- Structural Biology Research Center, Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization, Tsukuba, 305-0801, Japan
| | - Laura Vera
- Swiss Light Source, Paul Scherrer Institut, Villigen PSI, 5232, Switzerland
| | - Natacha Olieric
- Laboratory of Biomolecular Research, Department of Biology and Chemistry, Paul Scherrer Institut, Villigen, PSI 5232, Switzerland
| | - Jerome Basquin
- Department of Biochemistry, Max Planck Institute of Biochemistry, Munich, Germany
| | - Justyna A. Wojdyla
- Swiss Light Source, Paul Scherrer Institut, Villigen PSI, 5232, Switzerland
| | - Oliver Bunk
- Swiss Light Source, Paul Scherrer Institut, Villigen PSI, 5232, Switzerland
| | - Kay Diederichs
- Department of Biology, University of Konstanz, Konstanz, 78457, Germany
| | - Masaki Yamamoto
- Advanced Photon Technology Division, RIKEN SPring-8 Center, Hyogo 679-5148, Japan
| | - Meitian Wang
- Swiss Light Source, Paul Scherrer Institut, Villigen PSI, 5232, Switzerland
| |
Collapse
|
11
|
Thomae SLJ, Prinz N, Hartmann T, Teck M, Correll S, Zobel M. Pushing data quality for laboratory pair distribution function experiments. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2019; 90:043905. [PMID: 31043011 DOI: 10.1063/1.5093714] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 03/26/2019] [Indexed: 06/09/2023]
Abstract
Over the last decade, some studies with laboratory pair distribution function (PDF) data emerged. Yet, limited Qmax or instrumental resolution impeded in-depth structural refinements. With more advanced detector technologies, the question arose how to design novel PDF equipment for laboratories that will allow decent PDF refinements over r = 1-70 Å. It is crucial to reflect the essential requirements, namely, monochromatic X-rays, suppression of air scattering, instrumental resolution, and overall measurement times. The result is a novel PDF setup based on a STOE STADI P powder diffractometer in transmission-/Debye-Scherrer geometry with monochromatic Ag Kα1 radiation, featuring a MYTHEN2 4K detector covering a Q range of 0.3-20.5 Å-1. PDF data are collected in a moving PDF mode within 6 h. Structural signatures of liquids can be satisfactorily resolved in the PDF as shown for the ionic liquid hmimPF6. The high instrumental resolution is mirrored in low qdamp values determined from LaB6 measurements. PDF data from a powder sample of ca. 7 nm TiO2 nanoparticles were successfully refined over up to 70 Å with goodness-of-fit values Rw < 0.22 (respectively Rw = 0.18 over 30 Å), thanks to the low background and high instrumental resolution, hereby enlarging the accessible r range by several tens of Angstroms compared to previous laboratory PDF studies.
Collapse
Affiliation(s)
- Sabrina L J Thomae
- Chemistry Department, University Bayreuth, Universitaetsstr. 30, Bayreuth 95447, Germany
| | - Nils Prinz
- Chemistry Department, University Bayreuth, Universitaetsstr. 30, Bayreuth 95447, Germany
| | | | - Michael Teck
- STOE & Cie GmbH, Hilpertstr. 10, Darmstadt 64295, Germany
| | - Sascha Correll
- STOE & Cie GmbH, Hilpertstr. 10, Darmstadt 64295, Germany
| | - Mirijam Zobel
- Chemistry Department, University Bayreuth, Universitaetsstr. 30, Bayreuth 95447, Germany
| |
Collapse
|
12
|
Girard A, Nguyen-Thanh T, Souliou SM, Stekiel M, Morgenroth W, Paolasini L, Minelli A, Gambetti D, Winkler B, Bosak A. A new diffractometer for diffuse scattering studies on the ID28 beamline at the ESRF. JOURNAL OF SYNCHROTRON RADIATION 2019; 26:272-279. [PMID: 30655495 DOI: 10.1107/s1600577518016132] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 11/14/2018] [Indexed: 06/09/2023]
Abstract
A new diffractometer is now available to the general user community at the ESRF. The new diffractometer is a side station of the high-resolution inelastic X-ray scattering spectrometer on beamline ID28 and is located in the same experimental hutch. Both instruments can be operated simultaneously. The new diffractometer combines a fast and low-noise hybrid pixel detector with a variable diffraction geometry. The beam spot on the sample is 50 µm × 50 µm, where focusing is achieved by a combination of Be lenses and a KB mirror. Wavelengths from 0.5 to 0.8 Å can be used for the diffraction experiments. The setup is compatible with a variety of sample environments, allowing studies under non-ambient conditions. The diffractometer is optimized to allow a rapid survey of reciprocal space and diffuse scattering for the identification of regions of interest for subsequent inelastic scattering studies, but can also be employed as a fully independent station for structural studies from both powder and single-crystal diffraction experiments. Several software packages for the transformation and visualization of diffraction data are available. An analysis of data collected with the new diffractometer shows that the ID28 side station is a state-of-the-art instrument for structural investigations using diffraction and diffuse scattering experiments.
Collapse
Affiliation(s)
- A Girard
- Institut für Geowissenschaften, Goethe Universität Frankfurt, Altenhöferallee 1, D-60438 Frankfurt am Main, Germany
| | - T Nguyen-Thanh
- ESRF - The European Synchrotron, 71 Avenue des Martyrs, F-38000 Grenoble, France
| | - S M Souliou
- ESRF - The European Synchrotron, 71 Avenue des Martyrs, F-38000 Grenoble, France
| | - M Stekiel
- Institut für Geowissenschaften, Goethe Universität Frankfurt, Altenhöferallee 1, D-60438 Frankfurt am Main, Germany
| | - W Morgenroth
- Institut für Geowissenschaften, Goethe Universität Frankfurt, Altenhöferallee 1, D-60438 Frankfurt am Main, Germany
| | - L Paolasini
- ESRF - The European Synchrotron, 71 Avenue des Martyrs, F-38000 Grenoble, France
| | - A Minelli
- ESRF - The European Synchrotron, 71 Avenue des Martyrs, F-38000 Grenoble, France
| | - D Gambetti
- ESRF - The European Synchrotron, 71 Avenue des Martyrs, F-38000 Grenoble, France
| | - B Winkler
- Institut für Geowissenschaften, Goethe Universität Frankfurt, Altenhöferallee 1, D-60438 Frankfurt am Main, Germany
| | - A Bosak
- ESRF - The European Synchrotron, 71 Avenue des Martyrs, F-38000 Grenoble, France
| |
Collapse
|
13
|
Wang C, Lin Y, Bougie D, Gillilan RE. Predicting data quality in biological X-ray solution scattering. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2018; 74:727-738. [PMID: 30082508 DOI: 10.1107/s2059798318005004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 03/27/2018] [Indexed: 11/10/2022]
Abstract
Biological small-angle X-ray solution scattering (BioSAXS) is now widely used to gain information on biomolecules in the solution state. Often, however, it is not obvious in advance whether a particular sample will scatter strongly enough to give useful data to draw conclusions under practically achievable solution conditions. Conformational changes that appear to be large may not always produce scattering curves that are distinguishable from each other at realistic concentrations and exposure times. Emerging technologies such as time-resolved SAXS (TR-SAXS) pose additional challenges owing to small beams and short sample path lengths. Beamline optics vary in brilliance and degree of background scatter, and major upgrades and improvements to sources promise to expand the reach of these methods. Computations are developed to estimate BioSAXS sample intensity at a more detailed level than previous approaches, taking into account flux, energy, sample thickness, window material, instrumental background, detector efficiency, solution conditions and other parameters. The results are validated with calibrated experiments using standard proteins on four different beamlines with various fluxes, energies and configurations. The ability of BioSAXS to statistically distinguish a variety of conformational movements under continuous-flow time-resolved conditions is then computed on a set of matched structure pairs drawn from the Database of Macromolecular Motions (http://molmovdb.org). The feasibility of experiments is ranked according to sample consumption, a quantity that varies by over two orders of magnitude for the set of structures. In addition to photon flux, the calculations suggest that window scattering and choice of wavelength are also important factors given the short sample path lengths common in such setups.
Collapse
Affiliation(s)
- Chenzheng Wang
- DellEMC Shanghai COE, Shanghai 200433, People's Republic of China
| | - Yuexia Lin
- Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Devin Bougie
- CLASSE (Cornell Laboratory for Accelerator-based ScienceS and Education), Cornell University, Ithaca, NY 14853, USA
| | - Richard E Gillilan
- MacCHESS (Macromolecular Diffraction Facility at CHESS), Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
14
|
Grimes JM, Hall DR, Ashton AW, Evans G, Owen RL, Wagner A, McAuley KE, von Delft F, Orville AM, Sorensen T, Walsh MA, Ginn HM, Stuart DI. Where is crystallography going? Acta Crystallogr D Struct Biol 2018; 74:152-166. [PMID: 29533241 PMCID: PMC5947779 DOI: 10.1107/s2059798317016709] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Accepted: 11/20/2017] [Indexed: 11/28/2022] Open
Abstract
Macromolecular crystallography (MX) has been a motor for biology for over half a century and this continues apace. A series of revolutions, including the production of recombinant proteins and cryo-crystallography, have meant that MX has repeatedly reinvented itself to dramatically increase its reach. Over the last 30 years synchrotron radiation has nucleated a succession of advances, ranging from detectors to optics and automation. These advances, in turn, open up opportunities. For instance, a further order of magnitude could perhaps be gained in signal to noise for general synchrotron experiments. In addition, X-ray free-electron lasers offer to capture fragments of reciprocal space without radiation damage, and open up the subpicosecond regime of protein dynamics and activity. But electrons have recently stolen the limelight: so is X-ray crystallography in rude health, or will imaging methods, especially single-particle electron microscopy, render it obsolete for the most interesting biology, whilst electron diffraction enables structure determination from even the smallest crystals? We will lay out some information to help you decide.
Collapse
Affiliation(s)
- Jonathan M. Grimes
- Science Division, Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, England
- Division of Structural Biology, Wellcome Centre for Human Genetics, Roosevelt Drive, Oxford OX3 7BN, England
| | - David R. Hall
- Science Division, Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, England
| | - Alun W. Ashton
- Science Division, Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, England
| | - Gwyndaf Evans
- Science Division, Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, England
| | - Robin L. Owen
- Science Division, Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, England
| | - Armin Wagner
- Science Division, Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, England
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot OX11 0FA, England
| | - Katherine E. McAuley
- Science Division, Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, England
| | - Frank von Delft
- Science Division, Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, England
- Structural Genomics Consortium, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, England
| | - Allen M. Orville
- Science Division, Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, England
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot OX11 0FA, England
| | - Thomas Sorensen
- Science Division, Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, England
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot OX11 0FA, England
| | - Martin A. Walsh
- Science Division, Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, England
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot OX11 0FA, England
| | - Helen M. Ginn
- Science Division, Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, England
- Division of Structural Biology, Wellcome Centre for Human Genetics, Roosevelt Drive, Oxford OX3 7BN, England
| | - David I. Stuart
- Science Division, Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, England
- Division of Structural Biology, Wellcome Centre for Human Genetics, Roosevelt Drive, Oxford OX3 7BN, England
| |
Collapse
|
15
|
Abstract
Current photon counting x-ray detector (PCD) technology faces limitations associated with spectral fidelity and photon starvation. One strategy for addressing these limitations is to supplement PCD data with high-resolution, low-noise data acquired with an energy-integrating detector (EID). In this work, we propose an iterative, hybrid reconstruction technique which combines the spectral properties of PCD data with the resolution and signal-to-noise characteristics of EID data. Our hybrid reconstruction technique is based on an algebraic model of data fidelity which substitutes the EID data into the data fidelity term associated with the PCD reconstruction, resulting in a joint reconstruction problem. Within the split Bregman framework, these data fidelity constraints are minimized subject to additional constraints on spectral rank and on joint intensity-gradient sparsity measured between the reconstructions of the EID and PCD data. Following a derivation of the proposed technique, we apply it to the reconstruction of a digital phantom which contains realistic concentrations of iodine, barium, and calcium encountered in small-animal micro-CT. The results of this experiment suggest reliable separation and detection of iodine at concentrations ≥ 5 mg/ml and barium at concentrations ≥ 10 mg/ml in 2-mm features for EID and PCD data reconstructed with inherent spatial resolutions of 176 μm and 254 μm, respectively (point spread function, FWHM). Furthermore, hybrid reconstruction is demonstrated to enhance spatial resolution within material decomposition results and to improve low-contrast detectability by as much as 2.6 times relative to reconstruction with PCD data only. The parameters of the simulation experiment are based on an in vivo micro-CT experiment conducted in a mouse model of soft-tissue sarcoma. Material decomposition results produced from this in vivo data demonstrate the feasibility of distinguishing two K-edge contrast agents with a spectral separation on the order of the energy resolution of the PCD hardware.
Collapse
Affiliation(s)
- Darin P. Clark
- Center for In Vivo Microscopy, Department of Radiology, Duke University Medical Center, Durham, NC, United States of America
| | - Cristian T. Badea
- Center for In Vivo Microscopy, Department of Radiology, Duke University Medical Center, Durham, NC, United States of America
- * E-mail:
| |
Collapse
|
16
|
Liebschner D, Yamada Y, Matsugaki N, Senda M, Senda T. On the influence of crystal size and wavelength on native SAD phasing. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2016; 72:728-41. [PMID: 27303793 DOI: 10.1107/s2059798316005349] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Accepted: 03/29/2016] [Indexed: 11/11/2022]
Abstract
Native SAD is an emerging phasing technique that uses the anomalous signal of native heavy atoms to obtain crystallographic phases. The method does not require specific sample preparation to add anomalous scatterers, as the light atoms contained in the native sample are used as marker atoms. The most abundant anomalous scatterer used for native SAD, which is present in almost all proteins, is sulfur. However, the absorption edge of sulfur is at low energy (2.472 keV = 5.016 Å), which makes it challenging to carry out native SAD phasing experiments as most synchrotron beamlines are optimized for shorter wavelength ranges where the anomalous signal of sulfur is weak; for longer wavelengths, which produce larger anomalous differences, the absorption of X-rays by the sample, solvent, loop and surrounding medium (e.g. air) increases tremendously. Therefore, a compromise has to be found between measuring strong anomalous signal and minimizing absorption. It was thus hypothesized that shorter wavelengths should be used for large crystals and longer wavelengths for small crystals, but no thorough experimental analyses have been reported to date. To study the influence of crystal size and wavelength, native SAD experiments were carried out at different wavelengths (1.9 and 2.7 Å with a helium cone; 3.0 and 3.3 Å with a helium chamber) using lysozyme and ferredoxin reductase crystals of various sizes. For the tested crystals, the results suggest that larger sample sizes do not have a detrimental effect on native SAD data and that long wavelengths give a clear advantage with small samples compared with short wavelengths. The resolution dependency of substructure determination was analyzed and showed that high-symmetry crystals with small unit cells require higher resolution for the successful placement of heavy atoms.
Collapse
Affiliation(s)
- Dorothee Liebschner
- Structural Biology Research Center, Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba 305-0801, Japan
| | - Yusuke Yamada
- Structural Biology Research Center, Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba 305-0801, Japan
| | - Naohiro Matsugaki
- Structural Biology Research Center, Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba 305-0801, Japan
| | - Miki Senda
- Structural Biology Research Center, Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba 305-0801, Japan
| | - Toshiya Senda
- Structural Biology Research Center, Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba 305-0801, Japan
| |
Collapse
|
17
|
|
18
|
Wacha A, Varga Z, Bóta A. CREDO: a new general-purpose laboratory instrument for small-angle X-ray scattering. J Appl Crystallogr 2014. [DOI: 10.1107/s1600576714019918] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The details of a newly constructed small-angle X-ray scattering instrument are presented. The geometry of the instrument is highly customizable, enabling it to address vastly different experimental situations from academic research to industrial problems. The high degree of motorization and automation compared to conventional laboratory-scale SAXS instruments facilitates the alignment and daily use. Data reduction routines are incorporated in the instrument control software, yielding fully corrected and calibrated results promptly after the end of measurements. Optimization of the fluxversus resolution balance can be done routinely for each measurement task. A wide, continuous range ofq= 4πsinθ/λ can be reached, from below 0.02 nm−1up to 30 nm−1, corresponding to periodic distances ofca 350 nm down to 0.2 nm. A few representative results obtained from samples of different research fields demonstrate the versatility of the instrument. Scattering curves are routinely calibrated into absolute units using a glassy carbon secondary standard. More information and recent developments can be found on the web page of the instrument at http://credo.ttk.mta.hu.
Collapse
|
19
|
Wernecke J, Okuda H, Ogawa H, Siewert F, Krumrey M. Depth-Dependent Structural Changes in PS-b-P2VP Thin Films Induced by Annealing. Macromolecules 2014. [DOI: 10.1021/ma500642d] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Jan Wernecke
- Physikalisch-Technische Bundesanstalt (PTB), Abbestrasse 2-12, 10587 Berlin, Germany
| | - Hiroshi Okuda
- Department
of Materials Science and Engineering, Kyoto University, Yoshida Honmachi, Sakyoku, Kyoto, 606-8501, Japan
| | - Hiroki Ogawa
- SPring-8, Japan Synchrotron Radiation Research Institute , 1-1-1, Kouto,
Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Frank Siewert
- Institute
Nanometre Optics and Technology, Helmholtz Zentrum Berlin (HZB), Albert-Einstein-Strasse 15, 12489 Berlin, Germany
| | - Michael Krumrey
- Physikalisch-Technische Bundesanstalt (PTB), Abbestrasse 2-12, 10587 Berlin, Germany
| |
Collapse
|
20
|
Wernecke J, Gollwitzer C, Müller P, Krumrey M. Characterization of an in-vacuum PILATUS 1M detector. JOURNAL OF SYNCHROTRON RADIATION 2014; 21:529-536. [PMID: 24763642 DOI: 10.1107/s160057751400294x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 02/09/2014] [Indexed: 06/03/2023]
Abstract
A dedicated in-vacuum X-ray detector based on the hybrid pixel PILATUS 1M detector has been installed at the four-crystal monochromator beamline of the PTB at the electron storage ring BESSY II in Berlin, Germany. Owing to its windowless operation, the detector can be used in the entire photon energy range of the beamline from 10 keV down to 1.75 keV for small-angle X-ray scattering (SAXS) experiments and anomalous SAXS at absorption edges of light elements. The radiometric and geometric properties of the detector such as quantum efficiency, pixel pitch and module alignment have been determined with low uncertainties. The first grazing-incidence SAXS results demonstrate the superior resolution in momentum transfer achievable at low photon energies.
Collapse
Affiliation(s)
- Jan Wernecke
- Physikalisch-Technische Bundesanstalt (PTB), Abbestrasse 2-12, 10587 Berlin, Germany
| | - Christian Gollwitzer
- Physikalisch-Technische Bundesanstalt (PTB), Abbestrasse 2-12, 10587 Berlin, Germany
| | - Peter Müller
- Physikalisch-Technische Bundesanstalt (PTB), Abbestrasse 2-12, 10587 Berlin, Germany
| | - Michael Krumrey
- Physikalisch-Technische Bundesanstalt (PTB), Abbestrasse 2-12, 10587 Berlin, Germany
| |
Collapse
|
21
|
Varga Z, Yuana Y, Grootemaat AE, van der Pol E, Gollwitzer C, Krumrey M, Nieuwland R. Towards traceable size determination of extracellular vesicles. J Extracell Vesicles 2014; 3:23298. [PMID: 24511372 PMCID: PMC3916677 DOI: 10.3402/jev.v3.23298] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 12/30/2013] [Accepted: 01/01/2014] [Indexed: 12/31/2022] Open
Abstract
Background Extracellular vesicles (EVs) have clinical importance due to their roles in a wide range of biological processes. The detection and characterization of EVs are challenging because of their small size, low refractive index, and heterogeneity. Methods In this manuscript, the size distribution of an erythrocyte-derived EV sample is determined using state-of-the-art techniques such as nanoparticle tracking analysis, resistive pulse sensing, and electron microscopy, and novel techniques in the field, such as small-angle X-ray scattering (SAXS) and size exclusion chromatography coupled with dynamic light scattering detection. Results The mode values of the size distributions of the studied erythrocyte EVs reported by the different methods show only small deviations around 130 nm, but there are differences in the widths of the size distributions. Conclusion SAXS is a promising technique with respect to traceability, as this technique was already applied for traceable size determination of solid nanoparticles in suspension. To reach the traceable measurement of EVs, monodisperse and highly concentrated samples are required.
Collapse
Affiliation(s)
- Zoltán Varga
- Department of Biological Nanochemistry, Institute of Molecular Pharmacology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Yuana Yuana
- Department of Clinical Chemistry, Academic Medical Centre of the University of Amsterdam, Amsterdam, The Netherlands
| | - Anita E Grootemaat
- Department of Clinical Chemistry, Academic Medical Centre of the University of Amsterdam, Amsterdam, The Netherlands
| | - Edwin van der Pol
- Department of Clinical Chemistry, Academic Medical Centre of the University of Amsterdam, Amsterdam, The Netherlands ; Department of Biomedical Engineering and Physics, Academic Medical Centre of the University of Amsterdam, Amsterdam, The Netherlands
| | | | - Michael Krumrey
- Physikalisch-Technische Bundesanstalt (PTB), Berlin, Germany
| | - Rienk Nieuwland
- Department of Clinical Chemistry, Academic Medical Centre of the University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|