1
|
Jang S, Lee JB, Yoo C, Kim HS, Choi K, Lee J, Lee DY. Biocompatible and nondegradable microcapsules using an ethylamine-bridged EGCG dimer for successful therapeutic cell transplantation. J Control Release 2024; 373:520-532. [PMID: 39059498 DOI: 10.1016/j.jconrel.2024.07.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 07/22/2024] [Accepted: 07/22/2024] [Indexed: 07/28/2024]
Abstract
Conventional alginate microcapsules are widely used for encapsulating therapeutic cells to reduce the host immune response. However, the exchange of monovalent cations with divalent cations for crosslinking can lead to a sol-gel phase transition, resulting in gradual degradation and swelling of the microcapsules in the body. To address this limitation, we present a biocompatible and nondegradable epigallocatechin-3-gallate (EGCG)-based microencapsulation with ethylamine-bridged EGCG dimers (EGCG(d)), denoted as 'Epi-Capsules'. These Epi-Capsules showed increased physical properties and Ca2+ chelating resistance compared to conventional alginate microcapsules. Horseradish peroxidase (HRP) treatment is very effective in increasing the stability of Epi-Capsule((+)HRP) due to the crosslinking between EGCG(d) molecules. Interestingly, the Epi-Capsules(oxi) using a pre-oxidized EGCG(d) can support long-term survival (>90 days) of xenotransplanted insulin-secreting islets in diabetic mice in vivo, which is attributed to its structural stability and reactive oxygen species (ROS) scavenging for lower fibrotic activity. Collectively, this EGCG-based microencapsulation can create Ca2+ chelating-resistance and anti-oxidant activity, which could be a promising strategy for cell therapies for diabetes and other diseases.
Collapse
Affiliation(s)
- Seonmi Jang
- Department of Bioengineering, College of Engineering, and BK FOUR Biopharmaceutical Innovation Leader for Education and Research Group, Hanyang University, Seoul 04763, Republic of Korea
| | - Jae Bin Lee
- Department of Bioengineering, College of Engineering, and BK FOUR Biopharmaceutical Innovation Leader for Education and Research Group, Hanyang University, Seoul 04763, Republic of Korea
| | - Chaerim Yoo
- Department of Bioengineering, College of Engineering, and BK FOUR Biopharmaceutical Innovation Leader for Education and Research Group, Hanyang University, Seoul 04763, Republic of Korea
| | - Hyung Shik Kim
- Department of Bioengineering, College of Engineering, and BK FOUR Biopharmaceutical Innovation Leader for Education and Research Group, Hanyang University, Seoul 04763, Republic of Korea
| | - Kimyung Choi
- Optipharm Co., Ltd., Cheongju 28158, Republic of Korea
| | - Joonseok Lee
- Department of Chemistry, Hanyang University, Seoul 04763, Republic of Korea.
| | - Dong Yun Lee
- Department of Bioengineering, College of Engineering, and BK FOUR Biopharmaceutical Innovation Leader for Education and Research Group, Hanyang University, Seoul 04763, Republic of Korea; Institute of Nano Science and Technology (INST), Hanyang University, Seoul 04763, Republic of Korea; Institute for Bioengineering and Biopharmaceutical Research (IBBR), Hanyang University, Seoul 04763, Republic of Korea; Elixir Pharmatech Inc., Seoul 04763, Republic of Korea.
| |
Collapse
|
2
|
Navarro Chica CE, Qin T, Pinheiro-Machado E, de Haan BJ, Faas M, Smink AM, Sierra L, López BL, de Vos P. Species-dependent impact of immunosuppressive squalene-gusperimus nanoparticles and adipose-derived stem cells on isolated human and rat pancreatic islets. Islets 2022; 14:164-183. [PMID: 35838041 PMCID: PMC9291694 DOI: 10.1080/19382014.2022.2100191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Transplantation of pancreatic islets is a promising approach to controlling glucose levels in type 1 diabetes mellitus (T1DM), but islet survival is still limited. To overcome this, islet co-culture with mesenchymal stromal cells (MSCs) together with safe immunosuppressive agents like squalene-gusperimus nanoparticles (Sq-GusNPs) may be applied. This could support islet survival and engraftment. Here, we studied how Sq-GusNPs and adipose-derived stem cells (ASCs) influence islets response under pro-inflammatory conditions. Through qRT-PCR, we studied the expression of specific genes at 24 hours in human and rat islets and ASCs in co-culture under indirect contact with or without treatment with Sq-GusNPs. We characterized how the response of islets and ASCs starts at molecular level before impaired viability or function is observed and how this response differs between species. Human islets and ASCs responses showed to be principally influenced by NF-κB activation, whereas rat islet and ASCs responses showed to be principally mediated by nitrosative stress. Rat islets showed tolerance to inflammatory conditions due to IL-1Ra secretion which was also observed in rat ASCs. Human islets induced the expression of cytokines and chemokines with pro-angiogenic, tissue repair, and anti-apoptotic properties in human ASCs under basal conditions. This expression was not inhibited by Sq-GusNPs. Our results showed a clear difference in the response elicited by human and rat islets and ASCs in front of an inflammatory stimulus and Sq-GusNPs. Our data support the use of ASCs and Sq-GusNP to facilitate engraftment of islets for T1DM treatment.
Collapse
Affiliation(s)
- Carlos E. Navarro Chica
- Department of Pathology and Medical Biology, Section of Immunoendocrinology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
- Grupo de Investigación Ciencia de los Materiales, Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia, Medellín, Colombia
- CONTACT Carlos E. Navarro Chica Pathology and Medical Biology, Section of Immunoendocrinology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, EA11, 9713 GZGroningen, the Netherlands
| | - Tian Qin
- Department of Pathology and Medical Biology, Section of Immunoendocrinology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Erika Pinheiro-Machado
- Department of Pathology and Medical Biology, Section of Immunoendocrinology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Bart J. de Haan
- Department of Pathology and Medical Biology, Section of Immunoendocrinology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - M.M. Faas
- Department of Pathology and Medical Biology, Section of Immunoendocrinology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Alexandra M. Smink
- Department of Pathology and Medical Biology, Section of Immunoendocrinology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Ligia Sierra
- Grupo de Investigación Ciencia de los Materiales, Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia, Medellín, Colombia
| | - Betty L. López
- Grupo de Investigación Ciencia de los Materiales, Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia, Medellín, Colombia
| | - Paul de Vos
- Department of Pathology and Medical Biology, Section of Immunoendocrinology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
3
|
Successful Islet Transplantation Into a Subcutaneous Polycaprolactone Scaffold in Mice and Pigs. Transplant Direct 2022; 9:e1417. [PMID: 36591328 PMCID: PMC9788983 DOI: 10.1097/txd.0000000000001417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 12/27/2022] Open
Abstract
Islet transplantation is a promising treatment for type 1 diabetes. It has the potential to improve glycemic control, particularly in patients suffering from hypoglycemic unawareness and glycemic instability. As most islet grafts do not function permanently, efforts are needed to create an accessible and replaceable site, for islet grafts or for insulin-producing cells obtained from replenishable sources. To this end, we designed and tested an artificial, polymeric subcutaneous transplantation site that allows repeated transplantation of islets. Methods In this study, we developed and compared scaffolds made of poly(D,L,-lactide-co-ε-caprolactone) (PDLLCL) and polycaprolactone (PCL). Efficacy was first tested in mice' and then, as a proof of principle for application in a large animal model, the scaffolds were tested in pigs, as their skin structure is similar to that of humans. Results In mice, islet transplantation in a PCL scaffold expedited return to normoglycemia in comparison to PDLLCL (7.7 ± 3.7 versus 16.8 ± 6.5 d), but it took longer than the kidney capsule control group. PCL also supported porcine functional islet survival in vitro. Subcutaneous implantation of PDLLCL and PCL scaffolds in pigs revealed that PCL scaffolds were more stable and was associated with less infiltration by immune cells than PDLLCL scaffolds. Prevascularized PCL scaffolds were therefore used to demonstrate the functional survival of allogenic islets under the skin of pigs. Conclusions To conclude, a novel PCL scaffold shows efficacy as a readily accessible and replaceable, subcutaneous transplantation site for islets in mice and demonstrated islet survival after a month in pigs.
Collapse
|
4
|
Shi Y, Zhao YZ, Jiang Z, Wang Z, Wang Q, Kou L, Yao Q. Immune-Protective Formulations and Process Strategies for Improved Survival and Function of Transplanted Islets. Front Immunol 2022; 13:923241. [PMID: 35903090 PMCID: PMC9315421 DOI: 10.3389/fimmu.2022.923241] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/13/2022] [Indexed: 11/25/2022] Open
Abstract
Type 1 diabetes (T1D) is an autoimmune disease caused by the immune system attacking and destroying insulin-producing β cells in the pancreas. Islet transplantation is becoming one of the most promising therapies for T1D patients. However, its clinical use is limited by substantial cell loss after islet infusion, closely related to immune reactions, including instant blood-mediated inflammatory responses, oxidative stress, and direct autoimmune attack. Especially the grafted islets are not only exposed to allogeneic immune rejection after transplantation but are also subjected to an autoimmune process that caused the original disease. Due to the development and convergence of expertise in biomaterials, nanotechnology, and immunology, protective strategies are being investigated to address this issue, including exploring novel immune protective agents, encapsulating islets with biomaterials, and searching for alternative implantation sites, or co-transplantation with functional cells. These methods have significantly increased the survival rate and function of the transplanted islets. However, most studies are still limited to animal experiments and need further studies. In this review, we introduced the immunological challenges for islet graft and summarized the recent developments in immune-protective strategies to improve the outcomes of islet transplantation.
Collapse
Affiliation(s)
- Yannan Shi
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Ying-Zheng Zhao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Zhikai Jiang
- The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zeqing Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Qian Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Longfa Kou
- The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- *Correspondence: Qing Yao, ; Longfa Kou,
| | - Qing Yao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
- *Correspondence: Qing Yao, ; Longfa Kou,
| |
Collapse
|
5
|
Qin T, Hu S, Smink AM, de Haan BJ, Silva-Lagos LA, Lakey JR, de Vos P. Inclusion of extracellular matrix molecules and necrostatin-1 in the intracapsular environment of alginate-based microcapsules synergistically protects pancreatic β cells against cytokine-induced inflammatory stress. Acta Biomater 2022; 146:434-449. [PMID: 35500812 DOI: 10.1016/j.actbio.2022.04.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/22/2022] [Accepted: 04/26/2022] [Indexed: 11/01/2022]
Abstract
Immunoisolation of pancreatic islets in alginate-based microcapsules is a promising approach for grafting of islets in absence of immunosuppression. However, loss and damage to the extracellular matrix (ECM) during islet isolation enhance susceptibility of islets for inflammatory stress. In this study, a combined strategy was applied to reduce this stress by incorporating ECM components (collagen type IV/RGD) and necroptosis inhibitor, necrostatin-1 (Nec-1) in alginate-based microcapsules in vitro. To demonstrate efficacy, viability and function of MIN6 β-cells and human islets in capsules with collagen type IV/RGD and/or Nec-1 was investigated in presence and absence of IL-1β, IFN-γ and TNF-α. The combination of collagen type IV/RGD and Nec-1 had higher protective effects than the molecules alone. Presence of collagen type IV/RGD and Nec-1 in the intracapsular environment reduced cytokine-induced overproduction of free radical species and unfavorable shifts in mitochondrial dynamics. In addition, the ECM components collagen type IV/RGD prevented a cytokine induced suppression of the FAK/Akt pathway. Our data indicate that the inclusion of collagen type IV/RGD and Nec-1 in the intracapsular environment prevents islet-cell loss when exposed to inflammatory stress, which might contribute to higher survival of β-cells in the immediate period after transplantation. This approach of inclusion of stress reducing agents in the intracapsular environment of immunoisolating devices may be an effective way to enhance the longevity of encapsulated islet grafts. STATEMENT OF SIGNIFICANCE: Islet-cells in immunoisolated alginate-based microcapsules are very susceptible to inflammatory stress which impacts long-term survival of islet grafts. Here we show that incorporation of ECM components (collagen type IV/RGD) and necrostatin-1 (Nec-1) in the intracapsular environment of alginate-based capsules attenuates this susceptibility and promotes islet-cell survival. This effect induced by collagen type IV/RGD and Nec-1 was probably due to lowering free radical production, preventing mitochondrial dysfunction and by maintaining ECM/integrin/FAK/Akt signaling and Nec-1/RIP1/RIP3 signaling. Our study provides an effective strategy to extend longevity of islet grafts which might be of great potential for future clinical application of immunoisolated cells.
Collapse
|
6
|
Wang X, Brown NK, Wang B, Shariati K, Wang K, Fuchs S, Melero‐Martin JM, Ma M. Local Immunomodulatory Strategies to Prevent Allo-Rejection in Transplantation of Insulin-Producing Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2003708. [PMID: 34258870 PMCID: PMC8425879 DOI: 10.1002/advs.202003708] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 05/12/2021] [Indexed: 05/02/2023]
Abstract
Islet transplantation has shown promise as a curative therapy for type 1 diabetes (T1D). However, the side effects of systemic immunosuppression and limited long-term viability of engrafted islets, together with the scarcity of donor organs, highlight an urgent need for the development of new, improved, and safer cell-replacement strategies. Induction of local immunotolerance to prevent allo-rejection against islets and stem cell derived β cells has the potential to improve graft function and broaden the applicability of cellular therapy while minimizing adverse effects of systemic immunosuppression. In this mini review, recent developments in non-encapsulation, local immunomodulatory approaches for T1D cell replacement therapies, including islet/β cell modification, immunomodulatory biomaterial platforms, and co-transplantation of immunomodulatory cells are discussed. Key advantages and remaining challenges in translating such technologies to clinical settings are identified. Although many of the studies discussed are preliminary, the growing interest in the field has led to the exploration of new combinatorial strategies involving cellular engineering, immunotherapy, and novel biomaterials. Such interdisciplinary research will undoubtedly accelerate the development of therapies that can benefit the whole T1D population.
Collapse
Affiliation(s)
- Xi Wang
- Department of Biological and Environmental EngineeringCornell UniversityIthacaNY14853USA
| | - Natalie K. Brown
- Department of Biological and Environmental EngineeringCornell UniversityIthacaNY14853USA
| | - Bo Wang
- Department of Biological and Environmental EngineeringCornell UniversityIthacaNY14853USA
| | - Kaavian Shariati
- Department of Biological and Environmental EngineeringCornell UniversityIthacaNY14853USA
| | - Kai Wang
- Department of Cardiac SurgeryBoston Children's HospitalBostonMA02115USA
- Department of SurgeryHarvard Medical SchoolBostonMA02115USA
| | - Stephanie Fuchs
- Department of Biological and Environmental EngineeringCornell UniversityIthacaNY14853USA
| | - Juan M. Melero‐Martin
- Department of Cardiac SurgeryBoston Children's HospitalBostonMA02115USA
- Department of SurgeryHarvard Medical SchoolBostonMA02115USA
- Harvard Stem Cell InstituteCambridgeMA02138USA
| | - Minglin Ma
- Department of Biological and Environmental EngineeringCornell UniversityIthacaNY14853USA
| |
Collapse
|
7
|
Navarro Chica CE, Qin T, de Haan BJ, Faas MM, Smink AM, Sierra L, López BL, de Vos P. In Vitro Studies of Squalene‐Gusperimus Nanoparticles in Islet‐Containing Alginate Microcapsules to Regulate the Immune Response in the Immediate Posttransplant Period. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202100055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Carlos E. Navarro Chica
- Department of Pathology and Medical Biology, Section of Immunoendocrinology University Medical Center Groningen University of Groningen Hanzeplein 1, EA11 Groningen 9713 GZ The Netherlands
- Grupo de Investigación Ciencia de los Materiales Instituto de Química, Facultad de Ciencias Exactas y Naturales Universidad de Antioquia Calle 70 No. 52-21 Medellín Antioquia Colombia
| | - Tian Qin
- Department of Pathology and Medical Biology, Section of Immunoendocrinology University Medical Center Groningen University of Groningen Hanzeplein 1, EA11 Groningen 9713 GZ The Netherlands
| | - Bart J. de Haan
- Department of Pathology and Medical Biology, Section of Immunoendocrinology University Medical Center Groningen University of Groningen Hanzeplein 1, EA11 Groningen 9713 GZ The Netherlands
| | - Marijke M. Faas
- Department of Pathology and Medical Biology, Section of Immunoendocrinology University Medical Center Groningen University of Groningen Hanzeplein 1, EA11 Groningen 9713 GZ The Netherlands
| | - Alexandra M. Smink
- Department of Pathology and Medical Biology, Section of Immunoendocrinology University Medical Center Groningen University of Groningen Hanzeplein 1, EA11 Groningen 9713 GZ The Netherlands
| | - Ligia Sierra
- Grupo de Investigación Ciencia de los Materiales Instituto de Química, Facultad de Ciencias Exactas y Naturales Universidad de Antioquia Calle 70 No. 52-21 Medellín Antioquia Colombia
| | - Betty L. López
- Grupo de Investigación Ciencia de los Materiales Instituto de Química, Facultad de Ciencias Exactas y Naturales Universidad de Antioquia Calle 70 No. 52-21 Medellín Antioquia Colombia
| | - Paul de Vos
- Department of Pathology and Medical Biology, Section of Immunoendocrinology University Medical Center Groningen University of Groningen Hanzeplein 1, EA11 Groningen 9713 GZ The Netherlands
| |
Collapse
|
8
|
Sthijns MMJPE, Jetten MJ, Mohammed SG, Claessen SMH, de Vries RHW, Stell A, de Bont DFA, Engelse MA, Mumcuoglu D, van Blitterswijk CA, Dankers PYW, de Koning EJP, van Apeldoorn AA, LaPointe VLS. Oxidative stress in pancreatic alpha and beta cells as a selection criterion for biocompatible biomaterials. Biomaterials 2020; 267:120449. [PMID: 33129188 DOI: 10.1016/j.biomaterials.2020.120449] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 10/06/2020] [Accepted: 10/10/2020] [Indexed: 12/12/2022]
Abstract
The clinical success rate of islet transplantation, namely independence from insulin injections, is limited by factors that lead to graft failure, including inflammation, acute ischemia, acute phase response, and insufficient vascularization. The ischemia and insufficient vascularization both lead to high levels of oxidative stress, which are further aggravated by islet encapsulation, inflammation, and undesirable cell-biomaterial interactions. To identify biomaterials that would not further increase damaging oxidative stress levels and that are also suitable for manufacturing a beta cell encapsulation device, we studied five clinically approved polymers for their effect on oxidative stress and islet (alpha and beta cell) function. We found that 300 poly(ethylene oxide terephthalate) 55/poly(butylene terephthalate) 45 (PEOT/PBT300) was more resistant to breakage and more elastic than other biomaterials, which is important for its immunoprotective function. In addition, it did not induce oxidative stress or reduce viability in the MIN6 beta cell line, and even promoted protective endogenous antioxidant expression over 7 days. Importantly, PEOT/PBT300 is one of the biomaterials we studied that did not interfere with insulin secretion in human islets.
Collapse
Affiliation(s)
- Mireille M J P E Sthijns
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229 ER, Maastricht, the Netherlands
| | - Marlon J Jetten
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229 ER, Maastricht, the Netherlands
| | - Sami G Mohammed
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229 ER, Maastricht, the Netherlands
| | - Sandra M H Claessen
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229 ER, Maastricht, the Netherlands
| | - Rick H W de Vries
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229 ER, Maastricht, the Netherlands
| | - Adam Stell
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229 ER, Maastricht, the Netherlands
| | - Denise F A de Bont
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229 ER, Maastricht, the Netherlands
| | - Marten A Engelse
- Department of Medicine, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, the Netherlands
| | - Didem Mumcuoglu
- Department of Biomedical Engineering, and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, the Netherlands
| | - Clemens A van Blitterswijk
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229 ER, Maastricht, the Netherlands
| | - Patricia Y W Dankers
- Department of Biomedical Engineering, and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, the Netherlands
| | - Eelco J P de Koning
- Department of Medicine, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, the Netherlands; Hubrecht Institute, Uppsalalaan 8, 3584 CT, Utrecht, the Netherlands
| | - Aart A van Apeldoorn
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229 ER, Maastricht, the Netherlands
| | - Vanessa L S LaPointe
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229 ER, Maastricht, the Netherlands.
| |
Collapse
|
9
|
Hu S, Kuwabara R, Navarro Chica CE, Smink AM, Koster T, Medina JD, de Haan BJ, Beukema M, Lakey JRT, García AJ, de Vos P. Toll-like receptor 2-modulating pectin-polymers in alginate-based microcapsules attenuate immune responses and support islet-xenograft survival. Biomaterials 2020; 266:120460. [PMID: 33099059 DOI: 10.1016/j.biomaterials.2020.120460] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 10/03/2020] [Accepted: 10/18/2020] [Indexed: 12/14/2022]
Abstract
Encapsulation of pancreatic islets in alginate-microcapsules is used to reduce or avoid the application of life-long immunosuppression in preventing rejection. Long-term graft function, however, is limited due to varying degrees of host tissue responses against the capsules. Major graft-longevity limiting responses include inflammatory responses provoked by biomaterials and islet-derived danger-associated molecular patterns (DAMPs). This paper reports on a novel strategy for engineering alginate microcapsules presenting immunomodulatory polymer pectin with varying degrees of methyl-esterification (DM) to reduce these host tissue responses. DM18-pectin/alginate microcapsules show a significant decrease of DAMP-induced Toll-Like Receptor-2 mediated immune activation in vitro, and reduce peri-capsular fibrosis in vivo in mice compared to higher DM-pectin/alginate microcapsules and conventional alginate microcapsules. By testing efficacy of DM18-pectin/alginate microcapsules in vivo, we demonstrate that low-DM pectin support long-term survival of xenotransplanted rat islets in diabetic mice. This study provides a novel strategy to attenuate host responses by creating immunomodulatory capsule surfaces that attenuate activation of specific pro-inflammatory immune receptors locally at the transplantation site.
Collapse
Affiliation(s)
- Shuxian Hu
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, EA 11, 9713 GZ, Groningen, the Netherlands.
| | - Rei Kuwabara
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, EA 11, 9713 GZ, Groningen, the Netherlands
| | - Carlos E Navarro Chica
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, EA 11, 9713 GZ, Groningen, the Netherlands
| | - Alexandra M Smink
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, EA 11, 9713 GZ, Groningen, the Netherlands
| | - Taco Koster
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, EA 11, 9713 GZ, Groningen, the Netherlands
| | - Juan D Medina
- Coulter Department of Biomedical Engineering, Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Drive, Atlanta, GA, 30332, USA
| | - Bart J de Haan
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, EA 11, 9713 GZ, Groningen, the Netherlands
| | - Martin Beukema
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, EA 11, 9713 GZ, Groningen, the Netherlands
| | - Jonathan R T Lakey
- Department of Surgery, University of California Irvine, 333 City Boulevard West Suite 1600, Orange, CA, 92868, USA; Department of Biomedical Engineering, University of California Irvine, 5200 Engineering Hall, Irvine, CA, 92697, USA
| | - Andrés J García
- Woodruff School of Mechanical Engineering, Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Drive, Atlanta, GA, 30332, USA
| | - Paul de Vos
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, EA 11, 9713 GZ, Groningen, the Netherlands
| |
Collapse
|
10
|
Hu S, Kuwabara R, Beukema M, Ferrari M, de Haan BJ, Walvoort MTC, de Vos P, Smink AM. Low methyl-esterified pectin protects pancreatic β-cells against diabetes-induced oxidative and inflammatory stress via galectin-3. Carbohydr Polym 2020; 249:116863. [PMID: 32933690 DOI: 10.1016/j.carbpol.2020.116863] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 07/28/2020] [Accepted: 07/30/2020] [Indexed: 12/20/2022]
Abstract
Insufficient intake of dietary fibers in Western societies is considered a major contributing factor in the high incidence rates of diabetes. The dietary fiber pectin has been suggested to be beneficial for management of both Diabetes Type 1 and Type 2, but mechanisms and effects of pectin on insulin producing pancreatic β-cells are unknown. Our study aimed to determine the effects of lemon pectins with different degree of methyl-esterification (DM) on β-cells under oxidative (streptozotocin) and inflammatory (cytokine) stress and to elucidate the underlying rescuing mechanisms, including effects on galectin-3. We found that specific pectins had rescuing effects on toxin and cytokine induced stress on β-cells but effects depended on the pectin concentration and DM-value. Protection was more pronounced with low DM5 pectin and was enhanced with higher pectin-concentrations. Our findings show that specific pectins might prevent diabetes by making insulin producing β-cells less susceptible for stress.
Collapse
Affiliation(s)
- Shuxian Hu
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, EA 11, 9713 GZ, Groningen, The Netherlands.
| | - Rei Kuwabara
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, EA 11, 9713 GZ, Groningen, The Netherlands
| | - Martin Beukema
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, EA 11, 9713 GZ, Groningen, The Netherlands
| | - Michela Ferrari
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Bart J de Haan
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, EA 11, 9713 GZ, Groningen, The Netherlands
| | - Marthe T C Walvoort
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Paul de Vos
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, EA 11, 9713 GZ, Groningen, The Netherlands
| | - Alexandra M Smink
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, EA 11, 9713 GZ, Groningen, The Netherlands
| |
Collapse
|
11
|
Skrzypek K, Groot Nibbelink M, Liefers-Visser J, Smink AM, Stoimenou E, Engelse MA, de Koning EJP, Karperien M, de Vos P, van Apeldoorn A, Stamatialis D. A High Cell-Bearing Capacity Multibore Hollow Fiber Device for Macroencapsulation of Islets of Langerhans. Macromol Biosci 2020; 20:e2000021. [PMID: 32567161 DOI: 10.1002/mabi.202000021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 06/02/2020] [Indexed: 01/03/2023]
Abstract
Macroencapsulation of islets of Langerhans is a promising strategy for transplantation of insulin-producing cells in the absence of immunosuppression to treat type 1 diabetes. Hollow fiber membranes are of interest there because they offer a large surface-to-volume ratio and can potentially be retrieved or refilled. However, current available fibers have limitations in exchange of nutrients, oxygen, and delivery of insulin potentially impacting graft survival. Here, multibore hollow fibers for islets encapsulation are designed and tested. They consist of seven bores and are prepared using nondegradable polymers with high mechanical stability and low cell adhesion properties. Human islets encapsulated there have a glucose induced insulin response (GIIS) similar to nonencapsulated islets. During 7 d of cell culture in vitro, the GIIS increases with graded doses of islets demonstrating the suitability of the microenvironment for islet survival. Moreover, first implantation studies in mice demonstrate device material biocompatibility with minimal tissue responses. Besides, formation of new blood vessels close to the implanted device is observed, an important requirement for maintaining islet viability and fast exchange of glucose and insulin. The results indicate that the developed fibers have high islet bearing capacity and can potentially be applied for a clinically applicable bioartificial pancreas.
Collapse
Affiliation(s)
- Katarzyna Skrzypek
- Bioartificial Organs, Biomaterials Science and Technology Department, Faculty of Science and Technology, TechMed Centre, University of Twente, Enschede, 7500AE, The Netherlands
| | - Milou Groot Nibbelink
- Developmental BioEngineering, Faculty of Science and Technology, TechMed Centre, University of Twente, Enschede, 7500AE, The Netherlands
| | - Jolanda Liefers-Visser
- Pathology and Medical Biology, Section Immunoendocrinology, University of Groningen, University Medical Center Groningen, Groningen, 9713GZ, The Netherlands
| | - Alexandra M Smink
- Pathology and Medical Biology, Section Immunoendocrinology, University of Groningen, University Medical Center Groningen, Groningen, 9713GZ, The Netherlands
| | - Eleftheria Stoimenou
- Faculty of Sciences, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
| | - Marten A Engelse
- Nephrology, Leiden University Medical Center, Leiden, 2333ZA, The Netherlands
| | - Eelco J P de Koning
- Nephrology, Leiden University Medical Center, Leiden, 2333ZA, The Netherlands.,Hubrecht Institute, Utrecht, 3584CT, The Netherlands
| | - Marcel Karperien
- Developmental BioEngineering, Faculty of Science and Technology, TechMed Centre, University of Twente, Enschede, 7500AE, The Netherlands
| | - Paul de Vos
- Pathology and Medical Biology, Section Immunoendocrinology, University of Groningen, University Medical Center Groningen, Groningen, 9713GZ, The Netherlands
| | - Aart van Apeldoorn
- Complex Tissue Regeneration, MERLN Institute for Technology Inspired Regenerative Medicine, Maastricht University, Maastricht, 6229ER, The Netherlands
| | - Dimitrios Stamatialis
- Bioartificial Organs, Biomaterials Science and Technology Department, Faculty of Science and Technology, TechMed Centre, University of Twente, Enschede, 7500AE, The Netherlands
| |
Collapse
|
12
|
Hu S, Kuwabara R, de Haan BJ, Smink AM, de Vos P. Acetate and Butyrate Improve β-cell Metabolism and Mitochondrial Respiration under Oxidative Stress. Int J Mol Sci 2020; 21:ijms21041542. [PMID: 32102422 PMCID: PMC7073211 DOI: 10.3390/ijms21041542] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/18/2020] [Accepted: 02/21/2020] [Indexed: 01/04/2023] Open
Abstract
Islet dysfunction mediated by oxidative and mitochondrial stress contributes to the development of type 1 and 2 diabetes. Acetate and butyrate, produced by gut microbiota via fermentation, have been shown to protect against oxidative and mitochondrial stress in many cell types, but their effect on pancreatic β-cell metabolism has not been studied. Here, human islets and the mouse insulinoma cell line MIN6 were pre-incubated with 1, 2, and 4 mM of acetate or butyrate with and without exposure to the apoptosis inducer and metabolic stressor streptozotocin (STZ). Both short-chain fatty acids (SCFAs) enhanced the viability of islets and β-cells, but the beneficial effects were more pronounced in the presence of STZ. Both SCFAs prevented STZ-induced cell apoptosis, viability reduction, mitochondrial dysfunction, and the overproduction of reactive oxygen species (ROS) and nitric oxide (NO) at a concentration of 1 mM but not at higher concentrations. These rescue effects of SCFAs were accompanied by preventing reduction of the mitochondrial fusion genes MFN, MFN2, and OPA1. In addition, elevation of the fission genes DRP1 and FIS1 during STZ exposure was prevented. Acetate showed more efficiency in enhancing metabolism and inhibiting ROS, while butyrate had less effect but was stronger in inhibiting the SCFA receptor GPR41 and NO generation. Our data suggest that SCFAs play an essential role in supporting β-cell metabolism and promoting survival under stressful conditions. It therewith provides a novel mechanism by which enhanced dietary fiber intake contributes to the reduction of Western diseases such as diabetes.
Collapse
Affiliation(s)
- Shuxian Hu
- Correspondence: ; Tel.: +31-(0)50-361-8043
| | | | | | | | | |
Collapse
|
13
|
Haim Zada M, Kumar A, Elmalak O, Mechrez G, Domb AJ. Effect of Ethylene Oxide and Gamma (γ-) Sterilization on the Properties of a PLCL Polymer Material in Balloon Implants. ACS OMEGA 2019; 4:21319-21326. [PMID: 31867526 PMCID: PMC6921626 DOI: 10.1021/acsomega.9b02889] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 11/19/2019] [Indexed: 06/10/2023]
Abstract
Poly-l-lactide-co-ε-caprolactone (PLCL) is a unique polymer containing both polylactic acid and poly-ε-caprolactone (PCL) chain units, and thus it has better flexible and biodegradable properties. Based on these unique properties of PLCL, we have developed balloons that are now widely used in treating major medical problems [Biomaterials 2016, 105, 109-116]. One of the most important considerations needed for balloons is to ensure that the material properties remain similar after undergoing ethylene oxide (EtO) or gamma (γ-) sterilization treatments. From the biotechnological point of view, we focused on analyzing the vital molecular properties of the PLCL material after sterilization, such as changes in crystallinity, molecular weight distributions (M w, M n, and polydispersity index), and inherent viscosity (η). Analysis of the data reveals that EtO sterilization does not engender any change in crystallinity, melting temperature (T m), molecular weights, and η of the polymer. On the contrary, γ-radiations induce chain scission and consequential decrease of ∼33 and ∼15% in molecular weights and η values, respectively. Based on our observations, we recommend EtO sterilization instead of γ-radiation for PLCL. This ensures prolonged stability of the polymer against degradation in a biological environment, long-shelf life, and absolute assurance that balloon failures do not occur after implantation.
Collapse
Affiliation(s)
- Moran Haim Zada
- Institute
of Drug Research, Alex Grass Center for Drug Design and Novel Therapeutics,
School of Pharmacy-Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Awanish Kumar
- Institute
of Drug Research, Alex Grass Center for Drug Design and Novel Therapeutics,
School of Pharmacy-Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Omar Elmalak
- Institute
of Drug Research, Alex Grass Center for Drug Design and Novel Therapeutics,
School of Pharmacy-Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Guy Mechrez
- Department
of Food Quality and Safety, Institute for Postharvest and Food Sciences,
Volcani Center, ARO, 68 HaMaccabim Road, Rishon
LeZion 7505101, Israel
| | - Abraham J. Domb
- Institute
of Drug Research, Alex Grass Center for Drug Design and Novel Therapeutics,
School of Pharmacy-Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| |
Collapse
|
14
|
Montanari E, Gonelle-Gispert C, Seebach JD, Knoll MF, Bottino R, Bühler LH. Immunological aspects of allogeneic pancreatic islet transplantation: a comparison between mouse and human. Transpl Int 2019; 32:903-912. [PMID: 31033036 DOI: 10.1111/tri.13445] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 10/29/2018] [Accepted: 04/23/2019] [Indexed: 11/30/2022]
Abstract
Pancreatic islet allotransplantation is a treatment for patients with severe forms of type 1 diabetes. As long-term graft function and survival are not yet optimal, additional studies are warranted in order to continue improving transplant outcomes. The mechanisms of islet graft loss and tolerance induction are often studied in murine diabetes models. Despite numerous islet transplantation studies successfully performed over recent years, translation from experimental mouse models to human clinical application remains elusive. This review aims at critically discussing the strengths and limitations of current mouse models of diabetes and experimental islet transplantation. In particular, we will analyze the causes leading to diabetes and compare the immunological mechanisms responsible for rejection between mouse and human. A better understanding of the experimental mouse models should facilitate translation to human clinical application.
Collapse
Affiliation(s)
- Elisa Montanari
- Department of Surgery, Geneva University Hospitals and Medical Faculty, Geneva, Switzerland
| | - Carmen Gonelle-Gispert
- Department of Surgery, Geneva University Hospitals and Medical Faculty, Geneva, Switzerland
| | - Jörg D Seebach
- Division of Immunology and Allergy, Geneva University Hospitals and Medical Faculty, Geneva, Switzerland
| | - Michael F Knoll
- Institute of Cellular Therapeutics, Allegheny Health Network, Pittsburgh, PA, USA
| | - Rita Bottino
- Institute of Cellular Therapeutics, Allegheny Health Network, Pittsburgh, PA, USA
| | - Leo H Bühler
- Department of Surgery, Geneva University Hospitals and Medical Faculty, Geneva, Switzerland
| |
Collapse
|
15
|
Salg GA, Giese NA, Schenk M, Hüttner FJ, Felix K, Probst P, Diener MK, Hackert T, Kenngott HG. The emerging field of pancreatic tissue engineering: A systematic review and evidence map of scaffold materials and scaffolding techniques for insulin-secreting cells. J Tissue Eng 2019; 10:2041731419884708. [PMID: 31700597 PMCID: PMC6823987 DOI: 10.1177/2041731419884708] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 10/04/2019] [Indexed: 12/18/2022] Open
Abstract
A bioartificial endocrine pancreas is proposed as a future alternative to current treatment options. Patients with insulin-secretion deficiency might benefit. This is the first systematic review that provides an overview of scaffold materials and techniques for insulin-secreting cells or cells to be differentiated into insulin-secreting cells. An electronic literature survey was conducted in PubMed/MEDLINE and Web of Science, limited to the past 10 years. A total of 197 articles investigating 60 different materials met the inclusion criteria. The extracted data on materials, cell types, study design, and transplantation sites were plotted into two evidence gap maps. Integral parts of the tissue engineering network such as fabrication technique, extracellular matrix, vascularization, immunoprotection, suitable transplantation sites, and the use of stem cells are highlighted. This systematic review provides an evidence-based structure for future studies. Accumulating evidence shows that scaffold-based tissue engineering can enhance the viability and function or differentiation of insulin-secreting cells both in vitro and in vivo.
Collapse
Affiliation(s)
- Gabriel Alexander Salg
- Department of General, Abdominal and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Nathalia A Giese
- Department of General, Abdominal and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Miriam Schenk
- Department of General, Abdominal and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Felix J Hüttner
- Department of General, Abdominal and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Klaus Felix
- Department of General, Abdominal and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Pascal Probst
- Department of General, Abdominal and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Markus K Diener
- Department of General, Abdominal and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Thilo Hackert
- Department of General, Abdominal and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Hannes Götz Kenngott
- Department of General, Abdominal and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
16
|
3D-Models of Insulin-Producing β-Cells: from Primary Islet Cells to Stem Cell-Derived Islets. Stem Cell Rev Rep 2018; 14:177-188. [PMID: 29181780 DOI: 10.1007/s12015-017-9783-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
There is a need for physiologically relevant assay platforms to provide functionally relevant models of diabetes, to accelerate the discovery of new treatment options and boost developments in drug discovery. In this review, we compare several 3D-strategies that have been used to increase the functional relevance of ex vivo human primary pancreatic islets and developments into the generation of stem cell derived pancreatic beta-cells (β-cells). Special attention will be given to recent approaches combining the use of extracellular matrix (ECM) scaffolds with pancreatic molecular memory, which can be used to improve yield and functionality of in vitro stem cell-derived pancreatic models. The ultimate goal is to develop scalable cell-based platforms for diabetes research and drug screening. This article will critically assess key aspects related to in vitro pancreatic 3D-ECM models and highlight the most promising approaches for future research.
Collapse
|
17
|
Lanzalaco S, Armelin E. Poly(N-isopropylacrylamide) and Copolymers: A Review on Recent Progresses in Biomedical Applications. Gels 2017; 3:E36. [PMID: 30920531 PMCID: PMC6318659 DOI: 10.3390/gels3040036] [Citation(s) in RCA: 200] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 09/29/2017] [Accepted: 10/03/2017] [Indexed: 11/16/2022] Open
Abstract
The innate ability of poly(N-isopropylacrylamide) (PNIPAAm) thermo-responsive hydrogel to copolymerize and to graft synthetic polymers and biomolecules, in conjunction with the highly controlled methods of radical polymerization which are now available, have expedited the widespread number of papers published in the last decade-especially in the biomedical field. Therefore, PNIPAAm-based hydrogels are extensively investigated for applications on the controlled delivery of active molecules, in self-healing materials, tissue engineering, regenerative medicine, or in the smart encapsulation of cells. The most promising polymers for biodegradability enhancement of PNIPAAm hydrogels are probably poly(ethylene glycol) (PEG) and/or poly(ε-caprolactone) (PCL), whereas the biocompatibility is mostly achieved with biopolymers. Ultimately, advances in three-dimensional bioprinting technology would contribute to the design of new devices and medical tools with thermal stimuli response needs, fabricated with PNIPAAm hydrogels.
Collapse
Affiliation(s)
- Sonia Lanzalaco
- Industrial and Digital Innovation Department (DIID), Chemical Engineering, University of Palermo, Viale delle Scienze, Ed. 8, 90128 Palermo, Italy.
| | - Elaine Armelin
- Departament d'Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/d'Eduard Maristany, 10-14, Building I, E-08019 Barcelona, Spain.
- Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Campus Diagonal Besòs (EEBE), C/d'Eduard Maristany 10-14, Edifici IS, 08019 Barcelona, Spain.
| |
Collapse
|
18
|
A Retrievable, Efficacious Polymeric Scaffold for Subcutaneous Transplantation of Rat Pancreatic Islets. Ann Surg 2017; 266:149-157. [PMID: 27429018 DOI: 10.1097/sla.0000000000001919] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVE We aim on developing a polymeric ectopic scaffold in a readily accessible site under the skin. SUMMARY BACKGROUND DATA The liver as transplantation site for pancreatic islets is associated with significant loss of islets. Several extrahepatic sites were tested in experimental animals, but many have practical limitations in the clinical setting and do not have the benefit of easy accessibility. METHODS AND RESULTS Functional survival of rat islets was tested during 7 days of culture in the presence of poly(D,L-lactide-co-ε-caprolactone) (PDLLCL), poly(ethylene oxide terephthalate)/polybutylene terephthalate (PEOT/PBT) block copolymer, and polysulfone. Tissue responses were studied in vivo after subcutaneous implantation in rats. Culture on PEOT/PBT and polysulfone profoundly disturbed function of islets, and induced severe tissue responses in vivo. Modification of their hydrophilicity did not change the suitability of the polymers. PDLLCL was the only polymer that promoted functional survival of rat islets in vitro and was associated with minor tissue reactions after 28 days. Rat islets were transplanted in the PDLLCL scaffold in a diabetic rat model. Before islet seeding, the scaffold was allowed to engraft for 28 days to allow the tissue response to dampen and to allow blood vessel growth into the device. Islet transplantation into the scaffold resulted in normoglycemia within 3 days and for the duration of the study period of 16 weeks. CONCLUSIONS In conclusion, we found that some polymers such as PEOT/PBT and polysulfone interfere with islet function. PDLLCL is a suitable polymer to create an artificial islet transplantation site under the skin and supports islet survival.
Collapse
|
19
|
The Efficacy of a Prevascularized, Retrievable Poly(D,L,-lactide-co-ε-caprolactone) Subcutaneous Scaffold as Transplantation Site for Pancreatic Islets. Transplantation 2017; 101:e112-e119. [PMID: 28207637 DOI: 10.1097/tp.0000000000001663] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND The liver as transplantation site for human pancreatic islets is a harsh microenvironment for islets and it lacks the ability to retrieve the graft. A retrievable, extrahepatic transplantation site that mimics the pancreatic environment is desired. Ideally, this transplantation site should be located subdermal for easy surgical-access but this never resulted in normoglycemia. Here, we describe the design and efficacy of a novel prevascularized, subcutaneously implanted, retrievable poly (D,L-lactide-co-ε-caprolactone) scaffold. METHOD Three dosages of rat islets, that is, 400, 800, and 1200, were implanted in immune compromised mice to test the efficacy (n = 5). Islet transplantation under the kidney capsule served as control (n = 5). The efficacy was determined by nonfasting blood glucose measurements and glucose tolerance tests. RESULTS Transplantation of 800 (n = 5) and 1200 islets (n = 5) into the scaffold reversed diabetes in respectively 80 and 100% of the mice within 6.8 to 18.5 days posttransplant. The marginal dose of 400 islets (n = 5) induced normoglycemia in 20%. The glucose tolerance test showed major improvement of the glucose clearance in the scaffold groups compared to diabetic controls. However, the kidney capsule was slightly more efficacious because all 800 (n = 5) and 1200 islets (n = 5) recipients and 40% of the 400 islets (n = 5) recipients became normoglycemic within 8 days. Removal of the scaffolds or kidney grafts resulted in immediate return to hyperglycemia. Normoglycemia was not achieved with 1200 islets in the unmodified skin group. CONCLUSIONS Our findings demonstrate that the prevascularized poly (D,L-lactide-co-ε-caprolactone) scaffold maintains viability and function of islets in the subcutaneous site.
Collapse
|
20
|
Foster GA, García AJ. Bio-synthetic materials for immunomodulation of islet transplants. Adv Drug Deliv Rev 2017; 114:266-271. [PMID: 28532691 PMCID: PMC5581997 DOI: 10.1016/j.addr.2017.05.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 05/09/2017] [Accepted: 05/17/2017] [Indexed: 12/17/2022]
Abstract
Clinical islet transplantation is an effective therapy in restoring physiological glycemic control in type 1 diabetics. However, allogeneic islets derived from cadaveric sources elicit immune responses that result in acute and chronic islet destruction. To prevent immune destruction of islets, transplant recipients require lifelong delivery of immunosuppressive drugs, which are associated with debilitating side effects. Biomaterial-based strategies to eliminate the need for immunosuppressive drugs are an emerging therapy for improving islet transplantation. In this context, two main approaches have been used: 1) encapsulation of islets to prevent infiltration and contact of immune cells, and 2) local release of immunomodulatory molecules from biomaterial systems that suppress local immunity. Synthetic biomaterials provide excellent control over material properties, molecule presentation, and therapeutic release, and thus, are an emerging platform for immunomodulation to facilitate islet transplantation. This review highlights various synthetic biomaterial-based strategies for preventing immune rejection of islet allografts.
Collapse
Affiliation(s)
- Greg A Foster
- Woodruff School of Mechanical Engineering and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Andrés J García
- Woodruff School of Mechanical Engineering and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
21
|
Taylor MJ, Tomlins P, Sahota TS. Thermoresponsive Gels. Gels 2017; 3:E4. [PMID: 30920501 PMCID: PMC6318636 DOI: 10.3390/gels3010004] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 12/14/2016] [Accepted: 12/16/2016] [Indexed: 01/08/2023] Open
Abstract
Thermoresponsive gelling materials constructed from natural and synthetic polymers can be used to provide triggered action and therefore customised products such as drug delivery and regenerative medicine types as well as for other industries. Some materials give Arrhenius-type viscosity changes based on coil to globule transitions. Others produce more counterintuitive responses to temperature change because of agglomeration induced by enthalpic or entropic drivers. Extensive covalent crosslinking superimposes complexity of response and the upper and lower critical solution temperatures can translate to critical volume temperatures for these swellable but insoluble gels. Their structure and volume response confer advantages for actuation though they lack robustness. Dynamic covalent bonding has created an intermediate category where shape moulding and self-healing variants are useful for several platforms. Developing synthesis methodology-for example, Reversible Addition Fragmentation chain Transfer (RAFT) and Atomic Transfer Radical Polymerisation (ATRP)-provides an almost infinite range of materials that can be used for many of these gelling systems. For those that self-assemble into micelle systems that can gel, the upper and lower critical solution temperatures (UCST and LCST) are analogous to those for simpler dispersible polymers. However, the tuned hydrophobic-hydrophilic balance plus the introduction of additional pH-sensitivity and, for instance, thermochromic response, open the potential for coupled mechanisms to create complex drug targeting effects at the cellular level.
Collapse
Affiliation(s)
- M Joan Taylor
- INsmart group, School of Pharmacy Faculty of Health & Life Sciences, De Montfort University, Leicester, LE1 9BH, UK.
| | - Paul Tomlins
- INsmart group, School of Pharmacy Faculty of Health & Life Sciences, De Montfort University, Leicester, LE1 9BH, UK.
| | - Tarsem S Sahota
- INsmart group, School of Pharmacy Faculty of Health & Life Sciences, De Montfort University, Leicester, LE1 9BH, UK.
| |
Collapse
|