1
|
Liao J, Timoshenko AB, Cordova DJ, Astudillo Potes MD, Gaihre B, Liu X, Elder BD, Lu L, Tilton M. Propelling Minimally Invasive Tissue Regeneration With Next-Era Injectable Pre-Formed Scaffolds. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2400700. [PMID: 38842622 DOI: 10.1002/adma.202400700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 05/12/2024] [Indexed: 06/07/2024]
Abstract
The growing aging population, with its associated chronic diseases, underscores the urgency for effective tissue regeneration strategies. Biomaterials play a pivotal role in the realm of tissue reconstruction and regeneration, with a distinct shift toward minimally invasive (MI) treatments. This transition, fueled by engineered biomaterials, steers away from invasive surgical procedures to embrace approaches offering reduced trauma, accelerated recovery, and cost-effectiveness. In the realm of MI tissue repair and cargo delivery, various techniques are explored. While in situ polymerization is prominent, it is not without its challenges. This narrative review explores diverse biomaterials, fabrication methods, and biofunctionalization for injectable pre-formed scaffolds, focusing on their unique advantages. The injectable pre-formed scaffolds, exhibiting compressibility, controlled injection, and maintained mechanical integrity, emerge as promising alternative solutions to in situ polymerization challenges. The conclusion of this review emphasizes the importance of interdisciplinary design facilitated by synergizing fields of materials science, advanced 3D biomanufacturing, mechanobiological studies, and innovative approaches for effective MI tissue regeneration.
Collapse
Affiliation(s)
- Junhan Liao
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Anastasia B Timoshenko
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Domenic J Cordova
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | | | - Bipin Gaihre
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, USA
| | - Xifeng Liu
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, USA
| | - Benjamin D Elder
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, 55905, USA
| | - Lichun Lu
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, USA
| | - Maryam Tilton
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| |
Collapse
|
2
|
Tilton M, Camilleri ET, Astudillo Potes MD, Gaihre B, Liu X, Lucien F, Elder BD, Lu L. Visible light-induced 3D bioprinted injectable scaffold for minimally invasive tissue regeneration. BIOMATERIALS ADVANCES 2023; 153:213539. [PMID: 37429047 PMCID: PMC10528590 DOI: 10.1016/j.bioadv.2023.213539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/20/2023] [Accepted: 06/25/2023] [Indexed: 07/12/2023]
Abstract
Pre-formed hydrogel scaffolds have emerged as favorable vehicles for tissue regeneration, promoting minimally invasive treatment of native tissue. However, due to the high degree of swelling and inherently poor mechanical properties, development of complex structural hydrogel scaffolds at different dimensional scales has been a continuous challenge. Herein, we take a novel approach at the intersections of engineering design and bio-ink chemistry to develop injectable pre-formed structural hydrogel scaffolds fabricated via visible light (VL) induced digital light processing (DLP). In this study, we first determined the minimum concentration of poly(ethylene glycol) diacrylate (PEGDA) to be added to the gelatin methacrylate (GelMA) bio-ink in order to achieve scalable and high printing-fidelity with desired cell adhesion, viability, spreading, and osteogenic differentiation characteristics. Despite the advantages of hybrid GelMA-PEGDA bio-ink in improving scalability and printing-fidelity, compressibility, shape-recovery, and injectability of the 3D bioprinted scaffolds were compromised. To restore these needed characteristics for minimally invasive tissue regeneration applications, we performed topological optimization to design highly compressible and injectable pre-formed (i.e., 3D bioprinted) microarchitectural scaffolds. The designed injectable pre-formed microarchitectural scaffolds showed a great capacity to retain the viability of the encapsulated cells (>72 % after 10 cycles of injection). Lastly, ex ovo chicken chorioallantoic membrane (CAM) studies revealed that the optimized injectable pre-formed hybrid hydrogel scaffold is biocompatible and supports angiogenic growth.
Collapse
Affiliation(s)
- Maryam Tilton
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA; Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA.
| | - Emily T Camilleri
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA; Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Maria D Astudillo Potes
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA; Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Bipin Gaihre
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA; Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Xifeng Liu
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA; Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Fabrice Lucien
- Department of Urology, Mayo Clinic, Rochester, MN 55905, USA
| | - Benjamin D Elder
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA; Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Lichun Lu
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA; Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
3
|
Design of Injectable Bioartificial Hydrogels by Green Chemistry for Mini-Invasive Applications in the Biomedical or Aesthetic Medicine Fields. Gels 2023; 9:gels9010059. [PMID: 36661825 PMCID: PMC9858130 DOI: 10.3390/gels9010059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
Bioartificial hydrogels are hydrophilic systems extensively studied for regenerative medicine due to the synergic combination of features of synthetic and natural polymers. Injectability is another crucial property for hydrogel mini-invasive administration. This work aimed at engineering injectable bioartificial in situ cross-linkable hydrogels by implementing green and eco-friendly approaches. Specifically, the versatile poly(ether urethane) (PEU) chemistry was exploited for the development of an amphiphilic PEU, while hyaluronic acid was selected as natural component. Both polymers were functionalized to expose thiol and catechol groups through green water-based carbodiimide-mediated grafting reactions. Functionalization was optimized to maximize grafting yield while preserving group functionality. Then, polymer miscibility was studied at the macro-, micro-, and nano-scale, suggesting the formation of hydrogen bonds among polymeric chains. All hydrogels could be injected through G21 and G18 needles in a wide temperature range (4-25 °C) and underwent sol-to-gel transition at 37 °C. The addition of an oxidizing agent to polymer solutions did not improve the gelation kinetics, while it negatively affected hydrogel stability in an aqueous environment, suggesting the occurrence of oxidation-triggered polymer degradation. In the future, the bioartificial hydrogels developed herein could find application in the biomedical and aesthetic medicine fields as injectable formulations for therapeutic agent delivery.
Collapse
|
4
|
Agrawal P, Nikhade P, Chandak M, Ikhar A, Bhonde R. Dentin Matrix Metalloproteinases: A Futuristic Approach Toward Dentin Repair and Regeneration. Cureus 2022; 14:e27946. [PMID: 36120221 PMCID: PMC9464706 DOI: 10.7759/cureus.27946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 08/12/2022] [Indexed: 11/05/2022] Open
Abstract
Matrix metalloproteinases (MMPs) have been linked to modulating healing during the production of tertiary dentin, as well as the liberation of physiologically active molecules and the control of developmental processes. Although efforts to protect dentin have mostly centered on preventing these proteases from doing their jobs, their role is actually much more intricate and crucial for dentin healing than anticipated. The role of MMPs as bioactive dentin matrix components involved in dentin production, repair, and regeneration is examined in the current review. The mechanical characteristics of dentin, especially those of reparative and reactionary dentin, and the established functions of MMPs in dentin production are given particular attention. Because they are essential parts of the dentin matrix, MMPs should be regarded as leading applicants for dentin regeneration.
Collapse
|
5
|
A novel visible light-curing chitosan-based hydrogel membrane for Guided Tissue Regeneration. Colloids Surf B Biointerfaces 2022; 218:112760. [DOI: 10.1016/j.colsurfb.2022.112760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 08/02/2022] [Accepted: 08/04/2022] [Indexed: 11/21/2022]
|
6
|
Sharifi S, Sharifi H, Akbari A, Chodosh J. Systematic optimization of visible light-induced crosslinking conditions of gelatin methacryloyl (GelMA). Sci Rep 2021; 11:23276. [PMID: 34857867 PMCID: PMC8640009 DOI: 10.1038/s41598-021-02830-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 11/18/2021] [Indexed: 11/09/2022] Open
Abstract
Gelatin methacryloyl (GelMA) is one of the most widely used photo-crosslinkable biopolymers in tissue engineering. In in presence of an appropriate photoinitiator, the light activation triggers the crosslinking process, which provides shape fidelity and stability at physiological temperature. Although ultraviolet (UV) has been extensively explored for photo-crosslinking, its application has been linked to numerous biosafety concerns, originated from UV phototoxicity. Eosin Y, in combination with TEOA and VC, is a biosafe photoinitiation system that can be activated via visible light instead of UV and bypasses those biosafety concerns; however, the crosslinking system needs fine-tuning and optimization. In order to systematically optimize the crosslinking conditions, we herein independently varied the concentrations of Eosin Y [(EY)], triethanolamine (TEOA), vinyl caprolactam (VC), GelMA precursor, and crosslinking times and assessed the effect of those parameters on the properties the hydrogel. Our data showed that except EY, which exhibited an optimal concentration (~ 0.05 mM), increasing [TEOA], [VA], [GelMA], or crosslinking time improved mechanical (tensile strength/modulus and compressive modulus), adhesion (lap shear strength), swelling, biodegradation properties of the hydrogel. However, increasing the concentrations of crosslinking reagents ([TEOA], [VA], [GelMA]) reduced cell viability in 3-dimensional (3D) cell culture. This study enabled us to optimize the crosslinking conditions to improve the properties of the GelMA hydrogel and to generate a library of hydrogels with defined properties essential for different biomedical applications.
Collapse
Affiliation(s)
- Sina Sharifi
- Disruptive Technology Laboratory, Department of Ophthalmology, Harvard Medical School, Massachusetts Eye and Ear and Schepens Eye Research Institute, Boston, MA, USA.
| | - Hannah Sharifi
- Disruptive Technology Laboratory, Department of Ophthalmology, Harvard Medical School, Massachusetts Eye and Ear and Schepens Eye Research Institute, Boston, MA, USA
| | - Ali Akbari
- Solid Tumor Research Center, Research Institute for Cellular and Molecular Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - James Chodosh
- Disruptive Technology Laboratory, Department of Ophthalmology, Harvard Medical School, Massachusetts Eye and Ear and Schepens Eye Research Institute, Boston, MA, USA
| |
Collapse
|
7
|
Farino Reyes CJ, Pradhan S, Slater JH. The Influence of Ligand Density and Degradability on Hydrogel Induced Breast Cancer Dormancy and Reactivation. Adv Healthc Mater 2021; 10:e2002227. [PMID: 33929776 PMCID: PMC8555704 DOI: 10.1002/adhm.202002227] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/26/2021] [Indexed: 01/07/2023]
Abstract
The role of hydrogel properties in regulating the phenotype of triple negative metastatic breast cancer is investigated using four cell lines: the MDA-MB-231 parental line and three organotropic sublines BoM-1833 (bone-tropic), LM2-4175 (lung-tropic), and BrM2a-831 (brain-tropic). Each line is encapsulated and cultured for 15 days in three poly(ethylene glycol) (PEG)-based hydrogel formulations composed of proteolytically degradable PEG, integrin-ligating RGDS, and the non-degradable crosslinker N-vinyl pyrrolidone. Dormancy-associated metrics including viable cell density, proliferation, metabolism, apoptosis, chemoresistance, phosphorylated-ERK and -p38, and morphological characteristics are quantified. A multimetric classification approach is implemented to categorize each hydrogel-induced phenotype as: 1) growth, 2) balanced tumor dormancy, 3) balanced cellular dormancy, or 4) restricted survival, cellular dormancy. Hydrogels with high adhesivity and degradability promote growth. Hydrogels with no adhesivity, but high degradability, induce restricted survival, cellular dormancy in the parental line and balanced cellular dormancy in the organotropic lines. Hydrogels with reduced adhesivity and degradability induce balanced cellular dormancy in the parental and lung-tropic lines and balanced tumor mass dormancy in bone- and brain-tropic lines. The ability to induce escape from dormancy via dynamic incorporation of RGDS is also presented. These results demonstrate that ECM properties and organ-tropism synergistically regulate cancer cell phenotype and dormancy.
Collapse
Affiliation(s)
- Cindy J Farino Reyes
- Department of Biomedical Engineering, University of Delaware, 590 Avenue 1743, Biomedical Engineering, Newark, DE, 19713, USA
| | - Shantanu Pradhan
- Department of Biomedical Engineering, University of Delaware, 590 Avenue 1743, Biomedical Engineering, Newark, DE, 19713, USA
| | - John H Slater
- Department of Biomedical Engineering, University of Delaware, 590 Avenue 1743, Biomedical Engineering, Newark, DE, 19713, USA
| |
Collapse
|
8
|
Anandakrishnan N, Ye H, Guo Z, Chen Z, Mentkowski KI, Lang JK, Rajabian N, Andreadis ST, Ma Z, Spernyak JA, Lovell JF, Wang D, Xia J, Zhou C, Zhao R. Fast Stereolithography Printing of Large-Scale Biocompatible Hydrogel Models. Adv Healthc Mater 2021; 10:e2002103. [PMID: 33586366 PMCID: PMC8212355 DOI: 10.1002/adhm.202002103] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Indexed: 11/07/2022]
Abstract
Large size cell-laden hydrogel models hold great promise for tissue repair and organ transplantation, but their fabrication using 3D bioprinting is limited by the slow printing speed that can affect the part quality and the biological activity of the encapsulated cells. Here a fast hydrogel stereolithography printing (FLOAT) method is presented that allows the creation of a centimeter-sized, multiscale solid hydrogel model within minutes. Through precisely controlling the photopolymerization condition, low suction force-driven, high-velocity flow of the hydrogel prepolymer is established that supports the continuous replenishment of the prepolymer solution below the curing part and the nonstop part growth. The rapid printing of centimeter-sized hydrogel models using FLOAT is shown to significantly reduce the part deformation and cellular injury caused by the prolonged exposure to the environmental stresses in conventional 3D printing methods. Embedded vessel networks fabricated through multiscale printing allows media perfusion needed to maintain the high cellular viability and metabolic functions in the deep core of the large-sized models. The endothelialization of this vessel network allows the establishment of barrier functions. Together, these studies demonstrate a rapid 3D hydrogel printing method and represent a first step toward the fabrication of large-sized engineered tissue models.
Collapse
Affiliation(s)
- Nanditha Anandakrishnan
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Hang Ye
- Department of Industrial and Systems Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Zipeng Guo
- Department of Industrial and Systems Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Zhaowei Chen
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Kyle I Mentkowski
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
- Department of Medicine, Division of Cardiology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, 14203, USA
| | - Jennifer K Lang
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
- Department of Medicine, Division of Cardiology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, 14203, USA
- VA WNY Healthcare System, Buffalo, NY, 14215, USA
| | - Nika Rajabian
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Stelios T Andreadis
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Zhen Ma
- Department of Biomedical and Chemical Engineering, Syracuse Biomaterials Institute, Syracuse University, Syracuse, NY, 13244, USA
| | - Joseph A Spernyak
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Jonathan F Lovell
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Depeng Wang
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Jun Xia
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Chi Zhou
- Department of Industrial and Systems Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Ruogang Zhao
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| |
Collapse
|
9
|
Zhu H, Yang H, Ma Y, Lu TJ, Xu F, Genin GM, Lin M. Spatiotemporally Controlled Photoresponsive Hydrogels: Design and Predictive Modeling from Processing through Application. ADVANCED FUNCTIONAL MATERIALS 2020; 30:2000639. [PMID: 32802013 PMCID: PMC7418561 DOI: 10.1002/adfm.202000639] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/16/2020] [Indexed: 05/16/2023]
Abstract
Photoresponsive hydrogels (PRHs) are soft materials whose mechanical and chemical properties can be tuned spatially and temporally with relative ease. Both photo-crosslinkable and photodegradable hydrogels find utility in a range of biomedical applications that require tissue-like properties or programmable responses. Progress in engineering with PRHs is facilitated by the development of theoretical tools that enable optimization of their photochemistry, polymer matrices, nanofillers, and architecture. This review brings together models and design principles that enable key applications of PRHs in tissue engineering, drug delivery, and soft robotics, and highlights ongoing challenges in both modeling and application.
Collapse
Affiliation(s)
- Hongyuan Zhu
- The Key Laboratory of Biomedical Information Engineering of Ministry of EducationSchool of Life Science and TechnologyXi'an Jiaotong UniversityXi'an710049P. R. China
- Bioinspired Engineering & Biomechanics Center (BEBC)Xi'an Jiaotong UniversityXi'an710049P. R. China
| | - Haiqian Yang
- Bioinspired Engineering & Biomechanics Center (BEBC)Xi'an Jiaotong UniversityXi'an710049P. R. China
| | - Yufei Ma
- The Key Laboratory of Biomedical Information Engineering of Ministry of EducationSchool of Life Science and TechnologyXi'an Jiaotong UniversityXi'an710049P. R. China
- Bioinspired Engineering & Biomechanics Center (BEBC)Xi'an Jiaotong UniversityXi'an710049P. R. China
| | - Tian Jian Lu
- State Key Laboratory of Mechanics and Control of Mechanical StructuresNanjing University of Aeronautics and AstronauticsNanjing210016P. R. China
- MOE Key Laboratory for Multifunctional Materials and StructuresXi'an Jiaotong UniversityXi'an710049P. R. China
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of EducationSchool of Life Science and TechnologyXi'an Jiaotong UniversityXi'an710049P. R. China
- Bioinspired Engineering & Biomechanics Center (BEBC)Xi'an Jiaotong UniversityXi'an710049P. R. China
| | - Guy M. Genin
- The Key Laboratory of Biomedical Information Engineering of Ministry of EducationSchool of Life Science and TechnologyXi'an Jiaotong UniversityXi'an710049P. R. China
- Bioinspired Engineering & Biomechanics Center (BEBC)Xi'an Jiaotong UniversityXi'an710049P. R. China
- Department of Mechanical Engineering & Materials ScienceWashington University in St. LouisSt. LouisMO63130USA
- NSF Science and Technology Center for Engineering MechanobiologyWashington University in St. LouisSt. LouisMO63130USA
| | - Min Lin
- The Key Laboratory of Biomedical Information Engineering of Ministry of EducationSchool of Life Science and TechnologyXi'an Jiaotong UniversityXi'an710049P. R. China
- Bioinspired Engineering & Biomechanics Center (BEBC)Xi'an Jiaotong UniversityXi'an710049P. R. China
| |
Collapse
|
10
|
Schiller JL, Lai SK. Tuning Barrier Properties of Biological Hydrogels. ACS APPLIED BIO MATERIALS 2020; 3:2875-2890. [DOI: 10.1021/acsabm.0c00187] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
11
|
Tirella A, Mattei G, La Marca M, Ahluwalia A, Tirelli N. Functionalized Enzyme-Responsive Biomaterials to Model Tissue Stiffening in vitro. Front Bioeng Biotechnol 2020; 8:208. [PMID: 32322576 PMCID: PMC7156543 DOI: 10.3389/fbioe.2020.00208] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 03/02/2020] [Indexed: 01/02/2023] Open
Abstract
The mechanical properties of the cellular microenvironment play a crucial role in modulating cell function, and many pathophysiological processes are accompanied by variations in extracellular matrix (ECM) stiffness. Lysyl oxidase (LOx) is one of the enzymes involved in several ECM-stiffening processes. Here, we engineered poly(ethylene glycol) (PEG)-based hydrogels with controlled mechanical properties in the range typical of soft tissues. These hydrogels were functionalized featuring free primary amines, which allows an additional chemical LOx-responsive behavior with increase in crosslinks and hydrogel elastic modulus, mimicking biological ECM-stiffening mechanisms. Hydrogels with elastic moduli in the range of 0.5-4 kPa were obtained after a first photopolymerization step. The increase in elastic modulus of the functionalized and enzyme-responsive hydrogels was also characterized after the second-step enzymatic reaction, recording an increase in hydrogel stiffness up to 0.5 kPa after incubation with LOx. Finally, hydrogel precursors containing HepG2 (bioinks) were used to form three-dimensional (3D) in vitro models to mimic hepatic tissue and test PEG-based hydrogel biocompatibility. Hepatic functional markers were measured up to 7 days of culture, suggesting further use of such 3D models to study cell mechanobiology and response to dynamic variation of hydrogels stiffness. The results show that the functionalized hydrogels presented in this work match the mechanical properties of soft tissues, allow dynamic variations of hydrogel stiffness, and can be used to mimic changes in the microenvironment properties of soft tissues typical of inflammation and pathological changes at early stages (e.g., fibrosis, cancer).
Collapse
Affiliation(s)
- Annalisa Tirella
- BioEngineered Systems Lab, Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
- North West Centre of Advanced Drug Delivery (NoWCADD), Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Giorgio Mattei
- Department of Information Engineering, University of Pisa, Pisa, Italy
| | | | - Arti Ahluwalia
- Department of Information Engineering, University of Pisa, Pisa, Italy
- Research Centre “E. Piaggio”, University of Pisa, Pisa, Italy
| | - Nicola Tirelli
- North West Centre of Advanced Drug Delivery (NoWCADD), Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
- Laboratory of Polymers and Biomaterials, Fondazione Istituto Italiano di Tecnologia, Genoa, Italy
| |
Collapse
|
12
|
Pradhan S, Slater JH. Fabrication, characterization, and implementation of engineered hydrogels for controlling breast cancer cell phenotype and dormancy. MethodsX 2019; 6:2744-2766. [PMID: 31828024 PMCID: PMC6889770 DOI: 10.1016/j.mex.2019.11.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 11/07/2019] [Indexed: 01/13/2023] Open
Abstract
A better understanding of how microenvironmental factors regulate cancer dormancy is needed for development of new therapeutic strategies to control metastatic recurrence and disease progression. Modeling cancer dormancy using engineered, in vitro platforms is necessary for investigation under well-defined and well-controlled microenvironments. We present methods and protocols to fabricate, characterize, and implement engineered hydrogels with well-defined biochemical and physical properties for control over breast cancer cell phenotype in three-dimensional (3D) culture. Changes in hydrogel adhesivity, crosslink density, and degradability induce a range of phenotypic behaviors in breast cancer cells including: (1) high growth, (2) moderate growth, (3) single cell, restricted survival dormancy, and (4) balanced dormancy. We describe a method of classifying hydrogel formulations that support each of these phenotypic states. We also describe a method to phenotypically switch cancer cells from single cell dormancy to high growth by dynamically modulating ligand density, thereby recapitulating reactivation and metastatic recurrence.
Collapse
Affiliation(s)
- Shantanu Pradhan
- Department of Biomedical Engineering, University of Delaware, Newark, DE, USA
| | - John H Slater
- Department of Biomedical Engineering, University of Delaware, Newark, DE, USA.,Department of Materials Science & Engineering, University of Delaware, Newark, DE, USA.,Delaware Biotechnology Institute, Newark, DE, USA
| |
Collapse
|
13
|
Pradhan S, Slater JH. Tunable hydrogels for controlling phenotypic cancer cell states to model breast cancer dormancy and reactivation. Biomaterials 2019; 215:119177. [PMID: 31176804 PMCID: PMC6592634 DOI: 10.1016/j.biomaterials.2019.04.022] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 04/16/2019] [Accepted: 04/18/2019] [Indexed: 12/14/2022]
Abstract
During metastasis, disseminated tumor cells (DTCs) from the primary tumor infiltrate secondary organs and reside there for varying lengths of time prior to forming new tumors. The time delay between infiltration and active proliferation, known as dormancy, mediates the length of the latency period. DTCs may undergo one of four fates post-infiltration: death, cellular dormancy, dormant micrometastasis, or invasive growth which, is in part, mediated by extracellular matrix (ECM) properties. Recapitulation of these cell states using engineered hydrogels could facilitate the systematic and controlled investigation of the mechanisms by which ECM properties influence DTC fate. Toward this goal, we implemented a set of sixteen hydrogels with systematic variations in chemical (ligand (RGDS) density and enzymatic degradability) and mechanical (elasticity, swelling, mesh size) properties to investigate their influence on the fate of encapsulated metastatic breast cancer cells, MDA-MB-231. Cell viability, apoptosis, proliferation, metabolic activity, and morphological measurements were acquired at five-day intervals over fifteen days in culture. Analysis of the phenotypic metrics indicated the presence of four different cell states that were classified as: (1) high growth, (2) moderate growth, (3) single cell, restricted survival, dormancy, or (4) balanced dormancy. Correlating hydrogel properties with the resultant cancer cell state indicated that ligand (RGDS) density and enzymatic degradability likely had the most influence on cell fate. Furthermore, we demonstrate the ability to reactivate cells from the single cell, dormant state to the high growth state through a dynamic increase in ligand (RGDS) density after forty days in culture. This tunable engineered hydrogel platform offers insight into matrix properties regulating tumor dormancy, and the dormancy-proliferation switch, and may provide future translational benefits toward development of anti-dormancy therapeutic strategies.
Collapse
Affiliation(s)
- Shantanu Pradhan
- Department of Biomedical Engineering, University of Delaware, 150 Academy Street, 161 Colburn Lab, Newark, DE, 19716, USA
| | - John H Slater
- Department of Biomedical Engineering, University of Delaware, 150 Academy Street, 161 Colburn Lab, Newark, DE, 19716, USA.
| |
Collapse
|
14
|
Debroy D, Liu J, Li-Oakey K, Oakey J. Structured Hydrogel Particles With Nanofabricated Interfaces via Controlled Oxygen Inhibition. IEEE Trans Nanobioscience 2019; 18:253-256. [PMID: 30892223 DOI: 10.1109/tnb.2019.2905489] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Hydrogels have been engineered for a variety of biomedical applications, including biosensing, drug delivery, cell delivery, and tissue engineering. The fabrication of hydrogels into nanoscale and microscale particles has been a subject of intense activity and promises to extend their range of applicability. As hydrogels are reduced in size, their interfacial properties represent an increasingly significant contribution to their function and behavior. Hydrogel microparticle-based biosensing and drug delivery platforms, for instance, requires delicate spatial control over the conjugation of biofunctional groups and network architecture, which impacts their mechanical properties and molecular permeability and diffusivity. Here, we demonstrate the ability to tune, with extraordinary precision, the interfacial properties of PEGDA particles generated in a droplet microfluidic device exploiting oxygen-inhibited photopolymerization. We demonstrate the broad utility of these engineered microgels by creating spherical particles with complex but predictable radial crosslinking density gradients. Immunoassays were conducted to examine the network properties of these particles, revealing a high degree of structural tenability, which, in turn, dictates macromolecule encapsulation and release profiles, as well as the presence of radial crosslinking gradients that impact the availability of functional groups.
Collapse
|
15
|
Majer G, Southan A. Adenosine triphosphate diffusion through poly(ethylene glycol) diacrylate hydrogels can be tuned by cross-link density as measured by PFG-NMR. J Chem Phys 2018; 146:225101. [PMID: 29166037 DOI: 10.1063/1.4984979] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The diffusion of small molecules through hydrogels is of great importance for many applications. Especially in biological contexts, the diffusion of nutrients through hydrogel networks defines whether cells can survive inside the hydrogel or not. In this contribution, hydrogels based on poly(ethylene glycol) diacrylate with mesh sizes ranging from ξ = 1.1 to 12.9 nm are prepared using polymers with number-average molecular weights between Mn = 700 and 8000 g/mol. Precise measurements of diffusion coefficients D of adenosine triphosphate (ATP), an important energy carrier in biological systems, in these hydrogels are performed by pulsed field gradient nuclear magnetic resonance. Depending on the mesh size, ξ, and on the polymer volume fraction of the hydrogel after swelling, ϕ, it is possible to tune the relative ATP diffusion coefficient D/D0 in the hydrogels to values between 0.14 and 0.77 compared to the ATP diffusion coefficient D0 in water. The diffusion coefficients of ATP in these hydrogels are compared with predictions of various mathematical expressions developed under different model assumptions. The experimental data are found to be in good agreement with the predictions of a modified obstruction model or the free volume theory in combination with the sieving behavior of the polymer chains. No reasonable agreement was found with the pure hydrodynamic model.
Collapse
Affiliation(s)
- Günter Majer
- Max Planck Institute for Intelligent Systems, Heisenbergstr. 3, 70569 Stuttgart, Germany
| | - Alexander Southan
- Institute of Interfacial Process Engineering and Plasma Technology IGVP, University of Stuttgart, Nobelstr. 12, 70569 Stuttgart, Germany
| |
Collapse
|
16
|
Young DA, Pimentel MB, Lima LD, Custodio AF, Lo WC, Chen SC, Teymour F, Papavasiliou G. Design and characterization of hydrogel nanoparticles with tunable network characteristics for sustained release of a VEGF-mimetic peptide. Biomater Sci 2018; 5:2079-2092. [PMID: 28744527 DOI: 10.1039/c7bm00359e] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Peptides that mimic the bioactivity of growth factors are rapidly emerging as therapeutics for a variety of drug delivery applications including therapeutic neovascularization. Neovascularization requires controlled and sustained delivery of proangiogenic factors to stimulate reperfusion of ischemic tissues. To this end, hydrogel nanoparticles were designed to provide sustained and tunable diffusion-based release of a pro-angiogenic peptide, QK. Inverse phase mini-emulsion polymerization (IPMP) was used to generate crosslinked poly(ethylene) glycol (PEG) hydrogel nanoparticles entrapped with the QK peptide. Peptide release kinetics were tuned through adjustments in nanoparticle crosslink density. This was achieved by altering the mole fraction of the crosslinking agent which allowed for the synthesis of low crosslink density (0.754 mmol cm-3) and high crosslink density (0.810 mmol cm-3) nanoparticles. Nanoparticle tracking analysis revealed narrow particle size distributions and similar particle sizes regardless of crosslink density (225 ± 75 nm and 233 ± 73 nm, for low and high crosslink density nanoparticles, respectively). The zeta potential was found to be -26 mV for blank nanoparticles and +4 mV in the case of QK-loaded nanoparticles. The resulting nanoparticle crosslink density impacted both peptide loading as well as release kinetics. In terms of cumulative fractional release and weight of peptide released per mass of nanoparticle, higher crosslink density nanoparticles resulted in slower peptide release kinetics. The IPMP process preserved the QK secondary structure and its bioactivity as confirmed using circular dichroism spectroscopy and a Matrigel tubulogenesis assay, respectively, with released peptide. The presented nanoparticles hold great potential for use as drug delivery carriers for stimulation of therapeutic neovascularization of ischemic tissues.
Collapse
Affiliation(s)
- Daniel A Young
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, USA.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Chandra A, Singh N. Cell Microenvironment pH Sensing in 3D Microgels Using Fluorescent Carbon Dots. ACS Biomater Sci Eng 2017; 3:3620-3627. [PMID: 33445396 DOI: 10.1021/acsbiomaterials.7b00740] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We report here a 3D cell culture microgel-based system containing carbon dots capable of sensing the pH changes in the cellular microenvironment. We have utilized a simple droplet-based microfluidics methodology for encapsulating cells and fluorescent pH sensitive carbon dots in polyethylene glycol microgels. Since the microfluidics assembly is developed from simple components that can be modified easily to yield microgels of different size, composition, and architecture, it can be utilized to develop complex 3D cell culture scaffolds of desired composition along with spatial control on the polymer composition. The synthesized pH sensitive carbon dots possess green fluorescence emission, which increases as the pH is lowered from neutral to acidic. Since the probe sensitivity to pH change is well within the physiologically relevant range (pH 5.8-7.7), the probe can be used for detecting a lowering of pH as the cells proliferate or undergo various biological processes. We demonstrate that the nanoprobes as well as the process of forming the microgel beads with nanoprobes and mammalian cells is biocompatible, and the cells easily proliferate inside the microgels. The changes in pH as the mammalian cells grow in the microgels is easily monitored via fluorescence microscopy, suggesting that the platform can be used to study time dependent changes in cellular microenvironment pH and can be easily utilized to monitor cellular growth, disease progression, etc.
Collapse
Affiliation(s)
- Anil Chandra
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi-110016, India
| | - Neetu Singh
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi-110016, India.,Department of Biomedical Engineering, All India Institute of Medical Sciences, Ansari Nagar, New Delhi-110029, India
| |
Collapse
|
18
|
Catechol-modified hyaluronic acid: in situ-forming hydrogels by auto-oxidation of catechol or photo-oxidation using visible light. Polym Bull (Berl) 2017. [DOI: 10.1007/s00289-017-1937-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
19
|
Development of a Robotic Arm Based Hydrogel Additive Manufacturing System for In-Situ Printing. APPLIED SCIENCES-BASEL 2017. [DOI: 10.3390/app7010073] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
20
|
Lin TY, Bragg JC, Lin CC. Designing Visible Light-Cured Thiol-Acrylate Hydrogels for Studying the HIPPO Pathway Activation in Hepatocellular Carcinoma Cells. Macromol Biosci 2015; 16:496-507. [PMID: 26709469 DOI: 10.1002/mabi.201500361] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 11/06/2015] [Indexed: 12/25/2022]
Abstract
Various polymerization mechanisms have been developed to prepare peptide-immobilized poly(ethylene glycol) (PEG) hydrogels, a class of biomaterials suitable for studying cell biology in vitro. Here, a visible light mediated thiol-acrylate photopolymerization scheme is reported to synthesize dually degradable PEG-peptide hydrogels with controllable crosslinking and degradability. The influence of immobilized monothiol pendant peptide is systematically evaluated on the crosslinking of these hydrogels. Further, methods are proposed to modulate hydrogel crosslinking, including adjusting concentration of comonomer or altering the design of multifunctional peptide crosslinker. Due to the formation of thioether ester bonds, these hydrogels are hydrolytically degradable. If the dithiol peptide linkers used are susceptible to protease cleavage, these thiol-acrylate hydrogels can be designed to undergo partial proteolysis. The differences between linear and multiarm PEG-acrylate (i.e., PEGDA vs PEG4A) are also evaluated. Finally, the use of the mixed-mode thiol-acrylate PEG4A-peptide hydrogels is explored for in situ encapsulation of hepatocellular carcinoma cells (Huh7). The effects of matrix stiffness and integrin binding motif (e.g., RGDS) on Huh7 cell growth and HIPPO pathway activation are studied using PEG4A-peptide hydrogels. This visible light poly-merized thiol-acrylate hydrogel system represents an alternative to existing light-cured hydrogel platforms and shall be useful in many biomedical applications.
Collapse
Affiliation(s)
- Tsai-Yu Lin
- Department of Biomedical Engineering, Purdue School of Engineering and Technology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202, USA
| | - John C Bragg
- Department of Biomedical Engineering, Purdue School of Engineering and Technology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202, USA
| | - Chien-Chi Lin
- Department of Biomedical Engineering, Purdue School of Engineering and Technology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202, USA
| |
Collapse
|
21
|
Schweller RM, West JL. Encoding Hydrogel Mechanics via Network Cross-Linking Structure. ACS Biomater Sci Eng 2015; 1:335-344. [PMID: 26082943 PMCID: PMC4462992 DOI: 10.1021/acsbiomaterials.5b00064] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 04/07/2015] [Indexed: 12/12/2022]
Abstract
![]()
The
effects of mechanical cues on cell behaviors in 3D remain difficult
to characterize as the ability to tune hydrogel mechanics often requires
changes in the polymer density, potentially altering the material’s
biochemical and physical characteristics. Additionally, with most
PEG diacrylate (PEGDA) hydrogels, forming materials with compressive
moduli less than ∼10 kPa has been virtually impossible. Here,
we present a new method of controlling the mechanical properties of
PEGDA hydrogels independent of polymer chain density through the incorporation
of additional vinyl group moieties that interfere with the cross-linking
of the network. This modification can tune hydrogel mechanics in a
concentration dependent manner from <1 to 17 kPa, a more physiologically
relevant range than previously possible with PEG-based hydrogels,
without altering the hydrogel’s degradation and permeability.
Across this range of mechanical properties, endothelial cells (ECs)
encapsulated within MMP-2/MMP-9 degradable hydrogels with RGDS adhesive
peptides revealed increased cell spreading as hydrogel stiffness decreased
in contrast to behavior typically observed for cells on 2D surfaces.
EC-pericyte cocultures exhibited vessel-like networks within 3 days
in highly compliant hydrogels as compared to a week in stiffer hydrogels.
These vessel networks persisted for at least 4 weeks and deposited
laminin and collagen IV perivascularly. These results indicate that
EC morphogenesis can be regulated using mechanical cues in 3D. Furthermore,
controlling hydrogel compliance independent of density allows for
the attainment of highly compliant mechanical regimes in materials
that can act as customizable cell microenvironments.
Collapse
Affiliation(s)
- Ryan M Schweller
- Department of Biomedical Engineering, Duke University , Room 136 Hudson Hall, Durham, North Carolina 27708, United States
| | - Jennifer L West
- Department of Biomedical Engineering, Duke University , Room 136 Hudson Hall, Durham, North Carolina 27708, United States
| |
Collapse
|
22
|
Zhang X, Xu B, Puperi DS, Yonezawa AL, Wu Y, Tseng H, Cuchiara ML, West JL, Grande-Allen KJ. Integrating valve-inspired design features into poly(ethylene glycol) hydrogel scaffolds for heart valve tissue engineering. Acta Biomater 2015; 14:11-21. [PMID: 25433168 PMCID: PMC4334908 DOI: 10.1016/j.actbio.2014.11.042] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Revised: 11/10/2014] [Accepted: 11/19/2014] [Indexed: 12/31/2022]
Abstract
The development of advanced scaffolds that recapitulate the anisotropic mechanical behavior and biological functions of the extracellular matrix in leaflets would be transformative for heart valve tissue engineering. In this study, anisotropic mechanical properties were established in poly(ethylene glycol) (PEG) hydrogels by crosslinking stripes of 3.4 kDa PEG diacrylate (PEGDA) within 20 kDa PEGDA base hydrogels using a photolithographic patterning method. Varying the stripe width and spacing resulted in a tensile elastic modulus parallel to the stripes that was 4.1-6.8 times greater than that in the perpendicular direction, comparable to the degree of anisotropy between the circumferential and radial orientations in native valve leaflets. Biomimetic PEG-peptide hydrogels were prepared by tethering the cell-adhesive peptide RGDS and incorporating the collagenase-degradable peptide PQ (GGGPQG↓IWGQGK) into the polymer network. The specific amounts of RGDS and PEG-PQ within the resulting hydrogels influenced the elongation, de novo extracellular matrix deposition and hydrogel degradation behavior of encapsulated valvular interstitial cells (VICs). In addition, the morphology and activation of VICs grown atop PEG hydrogels could be modulated by controlling the concentration or micro-patterning profile of PEG-RGDS. These results are promising for the fabrication of PEG-based hydrogels using anatomically and biologically inspired scaffold design features for heart valve tissue engineering.
Collapse
Affiliation(s)
- Xing Zhang
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Bin Xu
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Daniel S Puperi
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Aline L Yonezawa
- Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Yan Wu
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Hubert Tseng
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Maude L Cuchiara
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Jennifer L West
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | | |
Collapse
|
23
|
Yang Q, Wang K, Nie J, Du B, Tang G. Poly(N-vinylpyrrolidinone) Microgels: Preparation, Biocompatibility, and Potential Application as Drug Carriers. Biomacromolecules 2014; 15:2285-93. [DOI: 10.1021/bm5004493] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Qing Yang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science & Engineering, Zhejiang University, Hangzhou 310027, China
| | - Kai Wang
- Department
of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Jingjing Nie
- Department
of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Binyang Du
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science & Engineering, Zhejiang University, Hangzhou 310027, China
| | - Guping Tang
- Department
of Chemistry, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
24
|
Ingavle GC, Gehrke SH, Detamore MS. The bioactivity of agarose-PEGDA interpenetrating network hydrogels with covalently immobilized RGD peptides and physically entrapped aggrecan. Biomaterials 2014; 35:3558-70. [PMID: 24462353 PMCID: PMC3936106 DOI: 10.1016/j.biomaterials.2014.01.002] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 01/01/2014] [Indexed: 10/25/2022]
Abstract
Our previous reports of interpenetrating networks (IPNs) have demonstrated drastic improvements in mechanical performance relative to individual constituent networks while maintaining viability of encapsulated cells. The current study investigated whether covalent linkage of RGD to the poly(ethylene glycol) diacrylate (PEGDA) network could improve upon cell viability and performance of agarose-PEGDA IPNs compared to unmodified IPNs (control) and to IPNs with different concentrations of physically entrapped aggrecan, providing a point of comparison to previous work. The inclusion of RGD or aggrecan generally did not adversely affect mechanical performance, and significantly improved chondrocyte viability and performance. Although both 4 and 100 μg/mL of aggrecan improved cell viability, only 100 μg/mL aggrecan was clearly beneficial to improving biosynthesis, whereas 100 μg/mL of RGD was beneficial to both chondrocyte viability and biosynthesis. Interestingly, clustering of cells within the IPNs with RGD and the higher aggrecan concentration were observed, likely indicating cell migration and/or preferred regional proliferation. This clustering resulted in a clearly visible enhancement of matrix production compared to the other IPNs. With this cell migration, we also observed significant cell proliferation and matrix synthesis beyond the periphery of the IPN, which could have important implications in facilitating integration with surrounding cartilage in vivo. With RGD and aggrecan (at its higher concentration) providing substantial and comparable improvements in cell performance, RGD would be the recommended bioactive signal for this particular IPN formulation and cell source given the significant cost savings and potentially more straightforward regulatory pathway in commercialization.
Collapse
Affiliation(s)
- Ganesh C Ingavle
- Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, KS 66045-7609, USA.
| | - Stevin H Gehrke
- Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, KS 66045-7609, USA.
| | - Michael S Detamore
- Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, KS 66045-7609, USA.
| |
Collapse
|
25
|
Hao Y, Shih H, Muňoz Z, Kemp A, Lin CC. Visible light cured thiol-vinyl hydrogels with tunable degradation for 3D cell culture. Acta Biomater 2014; 10:104-14. [PMID: 24021231 DOI: 10.1016/j.actbio.2013.08.044] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 08/05/2013] [Accepted: 08/29/2013] [Indexed: 10/26/2022]
Abstract
We report here a synthetically simple yet highly tunable and diverse visible light mediated thiol-vinyl gelation system for fabricating cell-instructive hydrogels. Gelation was achieved via a mixed-mode step-and-chain-growth photopolymerization using functionalized 4-arm poly(ethylene glycol) as backbone macromer, eosin-Y as photosensitizer, and di-thiol containing molecule as dual purpose co-initiator/cross-linker. N-vinylpyrrolidone (NVP) was used to accelerate gelation kinetics and to adjust the stiffness of the hydrogels. Visible light (wavelength: 400-700 nm) was used to initiate rapid gelation (gel points: ~20s) that reached completion within a few minutes. The major differences between current thiol-vinyl gelation and prior visible light mediated photopolymerization are that: (1) the co-initiator triethanolamine (TEA) used in the previous systems was replaced with multifunctional thiols and (2) mixed-mode polymerized gels contain less network heterogeneity. The gelation kinetics and gel properties at the same PEG macromer concentration could be tuned by changing the identity of vinyl groups and di-thiol cross-linkers, as well as concentration of cross-linker and NVP. Specifically, acrylate-modified PEG afforded the fastest gelation rate, followed by acrylamide and methacrylate-functionalized PEG. Increasing NVP concentration also accelerated gelation and led to a higher network cross-linking density. Further, increasing di-thiol peptide concentration in the gel formulation increased hydrogel swelling and decreased gel stiffness. Due to the formation of thiol-ether-ester bonds following thiol-acrylate reaction, the gels degraded hydrolytically following a pseudo first order degradation kinetics. Degradation rate was controlled by adjusting thiol or NVP content in the polymer precursor solution. The cytocompatibility and utility of this hydrogel system were evaluated using in situ encapsulation of human mesenchymal stem cells (hMSC). Encapsulated hMSCs remained alive (>90%) throughout the duration of the study and the cells were differentiated down osteogenic lineage with varying degrees by controlling the rate and mode of gel degradation.
Collapse
|
26
|
Hao Y, Lin CC. Degradable thiol-acrylate hydrogels as tunable matrices for three-dimensional hepatic culture. J Biomed Mater Res A 2013; 102:3813-27. [DOI: 10.1002/jbm.a.35044] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 11/08/2013] [Accepted: 11/26/2013] [Indexed: 11/12/2022]
Affiliation(s)
- Yiting Hao
- Department of Biomedical Engineering; Purdue School of Engineering and Technology; Indiana University-Purdue University Indianapolis; Indianapolis Indiana 46202
| | - Chien-Chi Lin
- Department of Biomedical Engineering; Purdue School of Engineering and Technology; Indiana University-Purdue University Indianapolis; Indianapolis Indiana 46202
| |
Collapse
|
27
|
Regulation of tissue fibrosis by the biomechanical environment. BIOMED RESEARCH INTERNATIONAL 2013; 2013:101979. [PMID: 23781495 PMCID: PMC3679815 DOI: 10.1155/2013/101979] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 05/10/2013] [Indexed: 12/21/2022]
Abstract
The biomechanical environment plays a fundamental role in embryonic development, tissue maintenance, and pathogenesis. Mechanical forces play particularly important roles in the regulation of connective tissues including not only bone and cartilage but also the interstitial tissues of most organs. In vivo studies have correlated changes in mechanical load to modulation of the extracellular matrix and have indicated that increased mechanical force contributes to the enhanced expression and deposition of extracellular matrix components or fibrosis. Pathological fibrosis contributes to dysfunction of many organ systems. A variety of in vitro models have been utilized to evaluate the effects of mechanical force on extracellular matrix-producing cells. In general, application of mechanical stretch, fluid flow, and compression results in increased expression of extracellular matrix components. More recent studies have indicated that tissue rigidity also provides profibrotic signals to cells. The mechanisms whereby cells detect mechanical signals and transduce them into biochemical responses have received considerable attention. Cell surface receptors for extracellular matrix components and intracellular signaling pathways are instrumental in the mechanotransduction process. Understanding how mechanical signals are transmitted from the microenvironment will identify novel therapeutic targets for fibrosis and other pathological conditions.
Collapse
|
28
|
Donahoe CD, Cohen TL, Li W, Nguyen PK, Fortner JD, Mitra RD, Elbert DL. Ultralow protein adsorbing coatings from clickable PEG nanogel solutions: benefits of attachment under salt-induced phase separation conditions and comparison with PEG/albumin nanogel coatings. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:4128-39. [PMID: 23441808 PMCID: PMC3618222 DOI: 10.1021/la3051115] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Clickable nanogel solutions were synthesized by using the copper catalyzed azide/alkyne cycloaddition (CuAAC) to partially polymerize solutions of azide and alkyne functionalized poly(ethylene glycol) (PEG) monomers. Coatings were fabricated using a second click reaction: a UV thiol-yne attachment of the nanogel solutions to mercaptosilanated glass. Because the CuAAC reaction was effectively halted by the addition of a copper-chelator, we were able to prevent bulk gelation and limit the coating thickness to a single monolayer of nanogels in the absence of the solution reaction. This enabled the inclusion of kosmotropic salts, which caused the PEG to phase-separate and nearly double the nanogel packing density, as confirmed by quartz crystal microbalance with dissipation (QCM-D). Protein adsorption was analyzed by single molecule counting with total internal reflection fluorescence (TIRF) microscopy and cell adhesion assays. Coatings formed from the phase-separated clickable nanogel solutions attached with salt adsorbed significantly less fibrinogen than other 100% PEG coatings tested, as well as poly(L-lysine)-g-PEG (PLL-g-PEG) coatings. However, PEG/albumin nanogel coatings still outperformed the best 100% PEG clickable nanogel coatings. Additional surface cross-linking of the clickable nanogel coating in the presence of copper further reduced levels of fibrinogen adsorption closer to those of PEG/albumin nanogel coatings. However, this step negatively impacted long-term resistance to cell adhesion and dramatically altered the morphology of the coating by atomic force microscopy (AFM). The main benefit of the click strategy is that the partially polymerized solutions are stable almost indefinitely, allowing attachment in the phase-separated state without danger of bulk gelation, and thus producing the best performing 100% PEG coating that we have studied to date.
Collapse
Affiliation(s)
- Casey D. Donahoe
- Department of Biomedical Engineering, Washington University in St. Louis, Campus Box 1097, 1 Brookings Drive, St. Louis, MO 63130, United States
| | - Thomas L. Cohen
- Department of Genetics, Washington University in St. Louis, Campus Box 8510, 4444 Forest Park Boulevard, St. Louis, MO 63108, United States
| | - Wenlu Li
- Department of Energy, Environmental, & Chemical Engineering, Washington University in St. Louis, 1 Brookings Drive, St. Louis, MO 63130, United States
| | - Peter K. Nguyen
- Department of Biomedical Engineering, Washington University in St. Louis, Campus Box 1097, 1 Brookings Drive, St. Louis, MO 63130, United States
| | - John D. Fortner
- Department of Energy, Environmental, & Chemical Engineering, Washington University in St. Louis, 1 Brookings Drive, St. Louis, MO 63130, United States
| | - Robi D. Mitra
- Department of Biomedical Engineering, Washington University in St. Louis, Campus Box 1097, 1 Brookings Drive, St. Louis, MO 63130, United States
- Department of Genetics, Washington University in St. Louis, Campus Box 8510, 4444 Forest Park Boulevard, St. Louis, MO 63108, United States
| | - Donald L. Elbert
- Department of Biomedical Engineering, Washington University in St. Louis, Campus Box 1097, 1 Brookings Drive, St. Louis, MO 63130, United States
| |
Collapse
|