1
|
Sun S, Qin J, Zhuang Y, Cai P, Yu X, Wang H, Mo X, Wu J, El-Newehy M, Abdulhameed MM, Fan M, Qian W, Sun B. Development of MgO-loaded PLA/dECM antibacterial nanofibrous membranes for enhanced gingival regeneration. Biomater Sci 2025; 13:3354-3366. [PMID: 40354093 DOI: 10.1039/d4bm01346h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
Clinically, gingival tissue repair is challenging due to the complex oral microbial environment and inflammation. The development of gingival membranes using tissue engineering techniques offers a promising solution to this issue. This study focuses on developing a nanofibrous gingival membrane, combining polylactic acid (PLA), decellularized extracellular matrix (dECM), and magnesium oxide (MgO) nanoparticles. Electrospinning was used to fabricate membranes with varying ratios of PLA, dECM, and MgO, and their mechanical, antibacterial, and cell-proliferation properties were evaluated. NIH-3T3 and rat gingival fibroblast (RGF) cells were cultured on the membranes to assess biocompatibility. A rat model with gingival defects was used to test in vivo tissue regeneration. It was indicated that the antibacterial nanofibrous membranes with MgO showed enhanced antibacterial effects and reduced inflammation, and promoted gingival tissue repair.
Collapse
Affiliation(s)
- Shu Sun
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
| | - Jing Qin
- Shanghai Xuhui District Dental Center, Shanghai 200032, China.
| | - Yifu Zhuang
- Orthopaedic Traumatology, Trauma Center, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 201620, China
| | - Pengfei Cai
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
| | - Xiao Yu
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
| | - Hongsheng Wang
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
| | - Xiumei Mo
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
| | - Jinglei Wu
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
| | - Mohamed El-Newehy
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Meera Moydeen Abdulhameed
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Mingyue Fan
- Shanghai Xuhui District Dental Center, Shanghai 200032, China.
| | - Wenhao Qian
- Shanghai Xuhui District Dental Center, Shanghai 200032, China.
| | - Binbin Sun
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
| |
Collapse
|
2
|
Li Y, Wu J, Ye P, Cai Y, Shao M, Zhang T, Guo Y, Zeng S, Pathak JL. Decellularized Extracellular Matrix Scaffolds: Recent Advances and Emerging Strategies in Bone Tissue Engineering. ACS Biomater Sci Eng 2024; 10:7372-7385. [PMID: 39492720 DOI: 10.1021/acsbiomaterials.4c01764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
Bone tissue engineering (BTE) is a complex biological process involving the repair of bone tissue with proper neuronal network and vasculature as well as bone surrounding soft tissue. Synthetic biomaterials used for BTE should be biocompatible, support bone tissue regeneration, and eventually be degraded in situ and replaced with the newly generated bone tissue. Recently, various forms of bone graft materials such as hydrogel, nanofiber scaffolds, and 3D printed composite scaffolds have been developed for BTE application. Decellularized extracellular matrix (DECM), a kind of natural biological material obtained from specific tissues and organs, has certain advantages over synthetic and exogenous biomaterial-derived bone grafts. Moreover, DECM can be developed from a wide range of biological sources and possesses strong molding abilities, natural 3D structures, and bioactive factors. Although DECM has shown robust osteogenic, proangiogenic, immunomodulatory, and bone defect healing potential, the rapid degradation and limited mechanical properties should be improved for bench-to-bed translation in BTE. This review summarizes the recent advances in DECM-based BTE and discusses emerging strategies of DECM-based BTE.
Collapse
Affiliation(s)
- Yunyang Li
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou 510182, P. R. China
| | - Jingwen Wu
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- Hangzhou CASbios Medical Co., Hangzhou 310000, P. R. China
| | - Peilin Ye
- Department of Bioengineering, Zunyi Medical University, Zhuhai Campus, Zhuhai 519040, P. R. China
| | - Yilin Cai
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou 510182, P. R. China
| | - Mingfei Shao
- Hangzhou CASbios Medical Co., Hangzhou 310000, P. R. China
| | - Tong Zhang
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Yanchuan Guo
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Sujuan Zeng
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou 510182, P. R. China
| | - Janak L Pathak
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou 510182, P. R. China
| |
Collapse
|
3
|
Milton LA, Davern JW, Hipwood L, Chaves JCS, McGovern J, Broszczak D, Hutmacher DW, Meinert C, Toh YC. Liver click dECM hydrogels for engineering hepatic microenvironments. Acta Biomater 2024; 185:144-160. [PMID: 38960110 DOI: 10.1016/j.actbio.2024.06.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 07/05/2024]
Abstract
Decellularized extracellular matrix (dECM) hydrogels provide tissue-specific microenvironments which accommodate physiological cellular phenotypes in 3D in vitro cell cultures. However, their formation hinges on collagen fibrillogenesis, a complex process which limits regulation of physicochemical properties. Hence, achieving reproducible results with dECM hydrogels poses as a challenge. Here, we demonstrate that thiolation of solubilized liver dECM enables rapid formation of covalently crosslinked hydrogels via Michael-type addition, allowing for precise control over mechanical properties and superior organotypic biological activity. Investigation of various decellularization methodologies revealed that treatment of liver tissue with Triton X-100 and ammonium hydroxide resulted in near complete DNA removal with significant retention of the native liver proteome. Chemical functionalization of pepsin-solubilized liver dECMs via 1-ethyl-3(3-dimethylamino)propyl carbodiimide (EDC)/N-hydroxysuccinimide (NHS) coupling of l-Cysteine created thiolated liver dECM (dECM-SH), which rapidly reacted with 4-arm polyethylene glycol (PEG)-maleimide to form optically clear hydrogels under controlled conditions. Importantly, Young's moduli could be precisely tuned between 1 - 7 kPa by varying polymer concentrations, enabling close replication of healthy and fibrotic liver conditions in in vitro cell cultures. Click dECM-SH hydrogels were cytocompatible, supported growth of HepG2 and HepaRG liver cells, and promoted liver-specific functional phenotypes as evidenced by increased metabolic activity, as well CYP1A2 and CYP3A4 activity and excretory function when compared to monolayer culture and collagen-based hydrogels. Our findings demonstrate that click-functionalized dECM hydrogels offer a highly controlled, reproducible alternative to conventional tissue-derived hydrogels for in vitro cell culture applications. STATEMENT OF SIGNIFICANCE: Traditional dECM hydrogels face challenges in reproducibility and mechanical property control due to variable crosslinking processes. We introduce a click hydrogel based on porcine liver decellularized extracellular matrix (dECM) that circumnavigates these challenges. After optimizing liver decellularization for ECM retention, we integrated thiol-functionalized liver dECM with polyethylene-glycol derivatives through Michael-type addition click chemistry, enabling rapid, room-temperature gelation. This offers enhanced control over the hydrogel's mechanical and biochemical properties. The resultant click dECM hydrogels mimic the liver's natural ECM and exhibit greater mechanical tunability and handling ease, facilitating their application in high-throughput and industrial settings. Moreover, these hydrogels significantly improve the function of HepaRG-derived hepatocytes in 3D culture, presenting an advancement for liver tissue cell culture models for drug testing applications.
Collapse
Affiliation(s)
- Laura A Milton
- Faculty of Engineering, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, Australia; Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, Australia; Gelomics Pty Ltd, Brisbane, Australia
| | - Jordan W Davern
- Faculty of Engineering, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, Australia; Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, Australia; Gelomics Pty Ltd, Brisbane, Australia; ARC Training Centre for Cell and Tissue Engineering Technologies, Queensland University of Technology, Brisbane, Australia
| | - Luke Hipwood
- Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, Australia; Gelomics Pty Ltd, Brisbane, Australia; Faculty of Health, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Australia
| | - Juliana C S Chaves
- Cell & Molecular Biology Department, Mental Health Program, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Jacqui McGovern
- Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, Australia; ARC Training Centre for Cell and Tissue Engineering Technologies, Queensland University of Technology, Brisbane, Australia; Max Planck Queensland Centre (MPQC) for the Materials Science of Extracellular Matrices, Queensland University of Technology, Brisbane, Australia
| | - Daniel Broszczak
- Faculty of Health, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Australia
| | - Dietmar W Hutmacher
- Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, Australia; ARC Training Centre for Cell and Tissue Engineering Technologies, Queensland University of Technology, Brisbane, Australia; Max Planck Queensland Centre (MPQC) for the Materials Science of Extracellular Matrices, Queensland University of Technology, Brisbane, Australia; Australian Research Council (ARC) Training Centre for Multiscale 3D Imaging, Modelling and Manufacturing (M3D Innovation), Queensland University of Technology, Brisbane, Australia
| | - Christoph Meinert
- Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, Australia; Gelomics Pty Ltd, Brisbane, Australia.
| | - Yi-Chin Toh
- Faculty of Engineering, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, Australia; Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, Australia; ARC Training Centre for Cell and Tissue Engineering Technologies, Queensland University of Technology, Brisbane, Australia; Max Planck Queensland Centre (MPQC) for the Materials Science of Extracellular Matrices, Queensland University of Technology, Brisbane, Australia; Centre for Microbiome Research, Queensland University of Technology, Brisbane, Australia.
| |
Collapse
|
4
|
Yuan Z, Teh BM, Liu X, Liu Z, Huang J, Hu Y, Guo C, Shen Y. Fabrication and Evaluation of Hyaluronidase-Responsive Scaffolds by Electrospinning with Antibacterial Properties for Tympanic Membrane Repair. ACS Biomater Sci Eng 2024; 10:4400-4410. [PMID: 38917429 DOI: 10.1021/acsbiomaterials.4c00060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Tympanic membrane perforation (TMP) is prevalent in clinical settings. Patients with TMPs often suffer from infections caused by Staphylococcus aureus and Pseudomonas aeruginosa, leading to middle ear and external ear canal infections, which hinder eardrum healing. The objective of this study is to fabricate an enzyme-responsive antibacterial electrospun scaffold using poly(lactic-co-glycolic acid) and hyaluronic acid for the treatment of infected TMPs. The properties of the scaffold were characterized, including morphology, wettability, mechanical properties, degradation properties, antimicrobial properties, and biocompatibility. The results indicated that the fabricated scaffold had a core-shell structure and exhibited excellent mechanical properties, hydrophobicity, degradability, and cytocompatibility. Furthermore, in vitro bacterial tests and ex vivo investigations on eardrum infections suggested that this scaffold possesses hyaluronidase-responsive antibacterial properties. It may rapidly release antibiotics when exposed to the enzyme released by S. aureus and P. aeruginosa. These findings suggest that the scaffold has great potential for repairing TMPs with infections.
Collapse
Affiliation(s)
- Zhechen Yuan
- Department of Otolaryngology Head and Neck Surgery, Ningbo No.2 Hospital, Ningbo 315010, China
- Health Science Center, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Bing Mei Teh
- Department of Otolaryngology Head and Neck Surgery, Monash Health, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton 3800, Victoria, Australia
| | - Xiaoling Liu
- Department of Mechanical, Materials and Manufacturing Engineering, The University of Nottingham Ningbo China, Ningbo 315100, China
| | - Ziqian Liu
- Department of Mechanical, Materials and Manufacturing Engineering, The University of Nottingham Ningbo China, Ningbo 315100, China
| | - Juntao Huang
- Department of Otolaryngology Head and Neck Surgery, Ningbo Medical Center Lihuili Hospital, The Affiliated Lihuili Hospital of Ningbo University, Ningbo 315040, China
| | - Yi Hu
- Department of Otolaryngology Head and Neck Surgery, Ningbo Medical Center Lihuili Hospital, The Affiliated Lihuili Hospital of Ningbo University, Ningbo 315040, China
| | - Chengchen Guo
- School of Engineering, Westlake University, Hangzhou 310030, China
| | - Yi Shen
- Department of Otolaryngology Head and Neck Surgery, Ningbo Medical Center Lihuili Hospital, The Affiliated Lihuili Hospital of Ningbo University, Ningbo 315040, China
| |
Collapse
|
5
|
Zhao LL, Luo JJ, Cui J, Li X, Hu RN, Xie XY, Zhang YJ, Ding W, Ning LJ, Luo JC, Qin TW. Tannic Acid-Modified Decellularized Tendon Scaffold with Antioxidant and Anti-Inflammatory Activities for Tendon Regeneration. ACS APPLIED MATERIALS & INTERFACES 2024; 16:15879-15892. [PMID: 38529805 DOI: 10.1021/acsami.3c19019] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Tendon regeneration is greatly influenced by the oxidant and the inflammatory microenvironment. Persistent inflammation during the tendon repair can cause matrix degradation, tendon adhesion, and excessive accumulation of reactive oxygen species (ROS), while excessive ROS affect extracellular matrix remodeling and tendon integration. Herein, we used tannic acid (TA) to modify a decellularized tendon slice (DTS) to fabricate a functional scaffold (DTS-TA) with antioxidant and anti-inflammatory properties for tendon repair. The characterizations and cytocompatibility of the scaffolds were examined in vitro. The antioxidant and anti-inflammatory activities of the scaffold were evaluated in vitro and further studied in vivo using a subcutaneous implantation model. It was found that the modified DTS combined with TA via hydrogen bonds and covalent bonds, and the hydrophilicity, thermal stability, biodegradability, and mechanical characteristics of the scaffold were significantly improved. Afterward, the results demonstrated that DTS-TA could effectively reduce inflammation by increasing the M2/M1 macrophage ratio and interleukin-4 (IL-4) expression, decreasing the secretion of interleukin-6 (IL-6) and interleukin-1β (IL-1β), as well as scavenging excessive ROS in vitro and in vivo. In summary, DTS modified with TA provides a potential versatile scaffold for tendon regeneration.
Collapse
Affiliation(s)
- Lei-Lei Zhao
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jia-Jiao Luo
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jing Cui
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xuan Li
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ruo-Nan Hu
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xin-Yue Xie
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yan-Jing Zhang
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wei Ding
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Liang-Ju Ning
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jing-Cong Luo
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ting-Wu Qin
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
6
|
Hussain Z, Ullah I, Liu X, Mehmood S, Wang L, Ma F, Ullah S, Lu Z, Wang Z, Pei R. GelMA-catechol coated FeHAp nanorods functionalized nanofibrous reinforced bio-instructive and mechanically robust composite hydrogel scaffold for bone tissue engineering. BIOMATERIALS ADVANCES 2023; 155:213696. [PMID: 37952462 DOI: 10.1016/j.bioadv.2023.213696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/24/2023] [Accepted: 11/05/2023] [Indexed: 11/14/2023]
Abstract
Critical bone defects complicate tissue graft-based surgeries, raising healthcare expenditures and underscoring scaffold-based tissue-engineering strategies to support bone reconstruction. Our study highlighted that the phase-compatible combination of inorganic nanorods, nanofibers, and hydrogels is promising for developing biomimetic and cell-instructive scaffolds since the bone matrix is a porous organic/inorganic composite. In brief, methacrylated gelatin (GelMA) was reacted with dopamine to form catechol-modified GeLMA (GelMA-C). The GelMA-C was nanocoated onto an iron-doped hydroxyapatite (FeHAp) nanorod via metal-catechol network coordination. The modified nanorod (FeHAp@GelMA-C) was loaded onto GelMA-based nanofibers. The nanorods loaded pre-fibers were electrospun onto GelMA solution and photochemically crosslinked to fabricate a fiber-reinforced hydrogel. The structural, mechanical, physicochemical, biocompatibility, swelling properties, osteogenic potential, and bone remodelling potential (using rat femoral defect model) of modified nanorods, simple hydrogel, and nanorod-loaded fiber-reinforced hydrogel were studied. The results supported that the interface interaction between GelMA-C/nanorods, nanorods/nanofibers, nanorods/hydrogels, and nanofiber/hydrogels significantly improved the microstructural and mechanical properties of the scaffold. Compared to pristine hydrogel, the nanorod-loaded fiber-reinforced scaffold better supported cellular responses, osteogenic differentiation, matrix mineralization, and accelerated bone regeneration. The nanorod-loaded fiber-reinforced hydrogel proved more biomimetic and cell-instructive for guided bone reconstruction.
Collapse
Affiliation(s)
- Zahid Hussain
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei 230026, PR China; CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou 215123, PR China
| | - Ismat Ullah
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou 215123, PR China
| | - Xingzhu Liu
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou 215123, PR China
| | - Shah Mehmood
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei 230026, PR China; CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou 215123, PR China
| | - Li Wang
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei 230026, PR China; CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou 215123, PR China
| | - Fanshu Ma
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou 215123, PR China
| | - Salim Ullah
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei 230026, PR China; CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou 215123, PR China
| | - Zhongzhong Lu
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei 230026, PR China; CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou 215123, PR China
| | - Zixun Wang
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei 230026, PR China; CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou 215123, PR China
| | - Renjun Pei
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei 230026, PR China; CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou 215123, PR China.
| |
Collapse
|
7
|
Ullah S, Hussain Z, Ullah I, Wang L, Mehmood S, Liu Y, Mansoorianfar M, Liu X, Ma F, Pei R. Mussel bioinspired, silver-coated and insulin-loaded mesoporous polydopamine nanoparticles reinforced hyaluronate-based fibrous hydrogel for potential diabetic wound healing. Int J Biol Macromol 2023; 247:125738. [PMID: 37423444 DOI: 10.1016/j.ijbiomac.2023.125738] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/04/2023] [Accepted: 07/06/2023] [Indexed: 07/11/2023]
Abstract
Diabetes wounds take longer to heal due to extended inflammation, decreased angiogenesis, bacterial infection, and oxidative stress. These factors underscore the need for biocompatible and multifunctional dressings with appropriate physicochemical and swelling properties to accelerate wound healing. Herein, insulin (Ins)-loaded, and silver (Ag) coated mesoporous polydopamine (mPD) nanoparticles were synthesized (Ag@Ins-mPD). The nanoparticles were dispersed into polycaprolactone/methacrylated hyaluronate aldehyde dispersion, electrospun to form nanofibers, and then photochemically crosslinked to form a fibrous hydrogel. The nanoparticle, fibrous hydrogel, and nanoparticle-reinforced fibrous hydrogel were characterized for their morphological, mechanical, physicochemical, swelling, drug-release, antibacterial, antioxidant, and cytocompatibility properties. The diabetic wound reconstruction potential of nanoparticle-reinforced fibrous hydrogel was studied using BALB/c mice. The results indicated that Ins-mPD acted as a reductant to synthesize Ag nanoparticles on their surface, held antibacterial and antioxidant potential, and their mesoporous properties are crucial for insulin loading and sustained release. The nanoparticle-reinforced scaffolds were uniform in architecture, porous, mechanically stable, showed good swelling, and possessed superior antibacterial, and cell-responsive properties. Furthermore, the designed fibrous hydrogel scaffold demonstrated good angiogenic, anti-inflammatory, increased collagen deposition, and faster wound repair capabilities, therefore, it could be used as a potential candidate for diabetic wound treatment.
Collapse
Affiliation(s)
- Salim Ullah
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei 230026, PR China; CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou 215123, PR China
| | - Zahid Hussain
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei 230026, PR China; CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou 215123, PR China
| | - Ismat Ullah
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou 215123, PR China
| | - Li Wang
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei 230026, PR China; CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou 215123, PR China
| | - Shah Mehmood
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei 230026, PR China; CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou 215123, PR China
| | - Yuanshan Liu
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei 230026, PR China; CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou 215123, PR China
| | - Mojtaba Mansoorianfar
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou 215123, PR China
| | - Xingzhu Liu
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou 215123, PR China
| | - Fanshu Ma
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou 215123, PR China
| | - Renjun Pei
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei 230026, PR China; CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou 215123, PR China.
| |
Collapse
|
8
|
McLoughlin S, McKenna AR, Fisher JP. Fabrication Strategies for Engineered Thin Membranous Tissues. ACS APPLIED BIO MATERIALS 2023. [PMID: 37314953 DOI: 10.1021/acsabm.3c00133] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Thin membranous tissues (TMTs) are anatomical structures consisting of multiple stratified cell layers, each less than 100 μm in thickness. While these tissues are small in scale, they play critical roles in normal tissue function and healing. Examples of TMTs include the tympanic membrane, cornea, periosteum, and epidermis. Damage to these structures can be caused by trauma or congenital disabilities, resulting in hearing loss, blindness, dysfunctional bone development, and impaired wound repair, respectively. While autologous and allogeneic tissue sources for these membranes exist, they are significantly limited by availability and patient complications. Tissue engineering has therefore become a popular strategy for TMT replacement. However, due to their complex microscale architecture, TMTs are often difficult to replicate in a biomimetic manner. The critical challenge in TMT fabrication is balancing fine resolution with the ability to mimic complex target tissue anatomy. This Review reports existing TMT fabrication strategies, their resolution and material capabilities, cell and tissue response, and the advantages and disadvantages of each technique.
Collapse
Affiliation(s)
- Shannon McLoughlin
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
- Center for Engineering Complex Tissues, University of Maryland, College Park, Maryland 20742, United States
| | - Abigail Ruth McKenna
- Center for Engineering Complex Tissues, University of Maryland, College Park, Maryland 20742, United States
- Department of Biology, University of Maryland, College Park, Maryland 20742, United States
| | - John P Fisher
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
- Center for Engineering Complex Tissues, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
9
|
Shen H, Chen G, Pei R, Wang Q. A special issue focusing on CAS key laboratory of nano-bio interface at Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO). Biomed Mater 2023; 18. [PMID: 36912753 DOI: 10.1088/1748-605x/acbf17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 02/24/2023] [Indexed: 03/14/2023]
Affiliation(s)
- He Shen
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123 Jiangsu, People's Republic of China
| | - Guangcun Chen
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123 Jiangsu, People's Republic of China
| | - Renjun Pei
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123 Jiangsu, People's Republic of China
| | - Qiangbin Wang
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123 Jiangsu, People's Republic of China
| |
Collapse
|
10
|
Hu H, Chen J, Li S, Xu T, Li Y. 3D printing technology and applied materials in eardrum regeneration. JOURNAL OF BIOMATERIALS SCIENCE, POLYMER EDITION 2022; 34:950-985. [PMID: 36373498 DOI: 10.1080/09205063.2022.2147350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Tympanic membrane perforation is a common condition in clinical otolaryngology. Although some eardrum patients can self-heal, a long period of non-healing perforation leads to persistent otitis media, conductive deafness, and poor quality of life. Tympanic membrane repair with autologous materials requires a second incision, and the sampling site may get infected. It is challenging to repair tympanic membranes while maintaining high functionality, safety, affordability, and aesthetics. 3D bioprinting can be used to fabricate tissue patches with materials, factors, and cells in a design manner. This paper reviews 3D printing technology that is being used widely in recent years to construct eardrum stents and the utilized applied materials for tympanic membrane repair. The paper begins with an introduction of the physiological structure of the tympanic membrane, briefly reviews the current clinical method thereafter, highlights the recent 3D printing-related strategies in tympanic membrane repair, describes the materials and cells that might play an important role in 3D printing, and finally provides a perspective of this field.
Collapse
Affiliation(s)
- Haolei Hu
- Department of Otolaryngology, the 988th Hospital of the Joint Support Force of the Chinese People’s Liberation Army, Zhengzhou City 450042, Henan Province, China
| | - Jianwei Chen
- Bio-intelligent Manufacturing and Living Matter Bioprinting Center, Research Institute of Tsinghua University in Shenzhen, Tsinghua University, Shenzhen, 518057, People’s Republic of China
| | - Shuo Li
- Xinxiang Medical College, Xinxiang,453003, Henan Province, China
| | - Tao Xu
- Bio-intelligent Manufacturing and Living Matter Bioprinting Center, Research Institute of Tsinghua University in Shenzhen, Tsinghua University, Shenzhen, 518057, People’s Republic of China
| | - Yi Li
- Department of Otolaryngology, the 988th Hospital of the Joint Support Force of the Chinese People’s Liberation Army, Zhengzhou City 450042, Henan Province, China
| |
Collapse
|
11
|
Electrospun nanofibrous membrane functionalized with dual drug-cyclodextrin inclusion complexes for the potential treatment of otitis externa. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|