1
|
Zhang H, Tang M, Li D, Xu M, Ao Y, Lin L. Applications and advances in molecular diagnostics: revolutionizing non-tuberculous mycobacteria species and subspecies identification. Front Public Health 2024; 12:1410672. [PMID: 38962772 PMCID: PMC11220129 DOI: 10.3389/fpubh.2024.1410672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 06/10/2024] [Indexed: 07/05/2024] Open
Abstract
Non-tuberculous mycobacteria (NTM) infections pose a significant public health challenge worldwide, affecting individuals across a wide spectrum of immune statuses. Recent epidemiological studies indicate rising incidence rates in both immunocompromised and immunocompetent populations, underscoring the need for enhanced diagnostic and therapeutic approaches. NTM infections often present with symptoms similar to those of tuberculosis, yet with less specificity, increasing the risk of misdiagnosis and potentially adverse outcomes for patients. Consequently, rapid and accurate identification of the pathogen is crucial for precise diagnosis and treatment. Traditional detection methods, notably microbiological culture, are hampered by lengthy incubation periods and a limited capacity to differentiate closely related NTM subtypes, thereby delaying diagnosis and the initiation of targeted therapies. Emerging diagnostic technologies offer new possibilities for the swift detection and accurate identification of NTM infections, playing a critical role in early diagnosis and providing more accurate and comprehensive information. This review delineates the current molecular methodologies for NTM species and subspecies identification. We critically assess the limitations and challenges inherent in these technologies for diagnosing NTM and explore potential future directions for their advancement. It aims to provide valuable insights into advancing the application of molecular diagnostic techniques in NTM infection identification.
Collapse
Affiliation(s)
- Haiyang Zhang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Maoting Tang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Deyuan Li
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Min Xu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Yusen Ao
- Department of Pediatrics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Liangkang Lin
- Department of Pediatrics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
2
|
Wen Y, Xie Y, Wang C, Hua L, Zhang L, Chen P, Li H. Determination of the two-compartment model parameters of exhaled HCN by fast negative photoionization mass spectrometry. Talanta 2024; 271:125710. [PMID: 38295448 DOI: 10.1016/j.talanta.2024.125710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 02/02/2024]
Abstract
Breath exhaled hydrogen cyanide (HCN) has been identified to be associated with several respiratory diseases. Accurately distinguishing the concentration and release rate of different HCN sources is of great value in clinical research. However, there are still significant challenges due to the high adsorption and low concentration characteristics of exhaled HCN. In this study, a two-compartment kinetic model method based on negative photoionization mass spectrometry was developed to simultaneously determine the kinetic parameters including concentrations and release rates in the airways and alveoli. The influences of the sampling line diameter, length, and temperature on the response time of the sampling system were studied and optimized, achieving a response time of 0.2 s. The negative influence of oral cavity-released HCN was reduced by employing a strategy based on anatomical lung volume calculation. The calibration for HCN in the dynamic range of 0.5-100 ppbv and limit of detection (LOD) at 0.3 ppbv were achieved. Subsequently, the experiments of smoking, short-term passive smoking, and intake of bitter almonds were performed to examine the influences of endogenous and exogenous factors on the dynamic parameters of the model method. The results indicate that compared with steady-state concentration measurements, the kinetic parameters obtained using this model method can accurately and significantly reflect the changes in different HCN sources, highlighting its potential for HCN-related disease research.
Collapse
Affiliation(s)
- Yuxuan Wen
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, People's Republic of China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, People's Republic of China; Liaoning Key Laboratory for Mass Spectrometry Technology and Instrumentation, Dalian 116023, People's Republic of China; Dalian Key Laboratory for Online Analytical Instrumentation, 457 Zhongshan Road, Dalian, 116023, People's Republic of China
| | - Yuanyuan Xie
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, People's Republic of China; Liaoning Key Laboratory for Mass Spectrometry Technology and Instrumentation, Dalian 116023, People's Republic of China; Dalian Key Laboratory for Online Analytical Instrumentation, 457 Zhongshan Road, Dalian, 116023, People's Republic of China
| | - Chen Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, People's Republic of China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, People's Republic of China; Liaoning Key Laboratory for Mass Spectrometry Technology and Instrumentation, Dalian 116023, People's Republic of China; Dalian Key Laboratory for Online Analytical Instrumentation, 457 Zhongshan Road, Dalian, 116023, People's Republic of China
| | - Lei Hua
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, People's Republic of China; Liaoning Key Laboratory for Mass Spectrometry Technology and Instrumentation, Dalian 116023, People's Republic of China; Dalian Key Laboratory for Online Analytical Instrumentation, 457 Zhongshan Road, Dalian, 116023, People's Republic of China
| | - Lichuan Zhang
- Affiliated Zhongshan Hospital of Dalian University, Dalian, People's Republic of China
| | - Ping Chen
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, People's Republic of China; Liaoning Key Laboratory for Mass Spectrometry Technology and Instrumentation, Dalian 116023, People's Republic of China; Dalian Key Laboratory for Online Analytical Instrumentation, 457 Zhongshan Road, Dalian, 116023, People's Republic of China.
| | - Haiyang Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, People's Republic of China; Liaoning Key Laboratory for Mass Spectrometry Technology and Instrumentation, Dalian 116023, People's Republic of China; Dalian Key Laboratory for Online Analytical Instrumentation, 457 Zhongshan Road, Dalian, 116023, People's Republic of China.
| |
Collapse
|
3
|
Żuchowska K, Filipiak W. Modern approaches for detection of volatile organic compounds in metabolic studies focusing on pathogenic bacteria: Current state of the art. J Pharm Anal 2024; 14:100898. [PMID: 38634063 PMCID: PMC11022102 DOI: 10.1016/j.jpha.2023.11.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/03/2023] [Accepted: 11/15/2023] [Indexed: 04/19/2024] Open
Abstract
Pathogenic microorganisms produce numerous metabolites, including volatile organic compounds (VOCs). Monitoring these metabolites in biological matrices (e.g., urine, blood, or breath) can reveal the presence of specific microorganisms, enabling the early diagnosis of infections and the timely implementation of targeted therapy. However, complex matrices only contain trace levels of VOCs, and their constituent components can hinder determination of these compounds. Therefore, modern analytical techniques enabling the non-invasive identification and precise quantification of microbial VOCs are needed. In this paper, we discuss bacterial VOC analysis under in vitro conditions, in animal models and disease diagnosis in humans, including techniques for offline and online analysis in clinical settings. We also consider the advantages and limitations of novel microextraction techniques used to prepare biological samples for VOC analysis, in addition to reviewing current clinical studies on bacterial volatilomes that address inter-species interactions, the kinetics of VOC metabolism, and species- and drug-resistance specificity.
Collapse
Affiliation(s)
- Karolina Żuchowska
- Department of Pharmacodynamics and Molecular Pharmacology, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-089 Bydgoszcz, Poland
| | - Wojciech Filipiak
- Department of Pharmacodynamics and Molecular Pharmacology, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-089 Bydgoszcz, Poland
| |
Collapse
|
4
|
Atto B, Anteneh Y, Bialasiewicz S, Binks MJ, Hashemi M, Hill J, Thornton RB, Westaway J, Marsh RL. The Respiratory Microbiome in Paediatric Chronic Wet Cough: What Is Known and Future Directions. J Clin Med 2023; 13:171. [PMID: 38202177 PMCID: PMC10779485 DOI: 10.3390/jcm13010171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/13/2023] [Accepted: 12/17/2023] [Indexed: 01/12/2024] Open
Abstract
Chronic wet cough for longer than 4 weeks is a hallmark of chronic suppurative lung diseases (CSLD), including protracted bacterial bronchitis (PBB), and bronchiectasis in children. Severe lower respiratory infection early in life is a major risk factor of PBB and paediatric bronchiectasis. In these conditions, failure to clear an underlying endobronchial infection is hypothesised to drive ongoing inflammation and progressive tissue damage that culminates in irreversible bronchiectasis. Historically, the microbiology of paediatric chronic wet cough has been defined by culture-based studies focused on the detection and eradication of specific bacterial pathogens. Various 'omics technologies now allow for a more nuanced investigation of respiratory pathobiology and are enabling development of endotype-based models of care. Recent years have seen substantial advances in defining respiratory endotypes among adults with CSLD; however, less is understood about diseases affecting children. In this review, we explore the current understanding of the airway microbiome among children with chronic wet cough related to the PBB-bronchiectasis diagnostic continuum. We explore concepts emerging from the gut-lung axis and multi-omic studies that are expected to influence PBB and bronchiectasis endotyping efforts. We also consider how our evolving understanding of the airway microbiome is translating to new approaches in chronic wet cough diagnostics and treatments.
Collapse
Affiliation(s)
- Brianna Atto
- School of Health Sciences, University of Tasmania, Launceston, TAS 7248, Australia;
| | - Yitayal Anteneh
- Child and Maternal Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, NT 0811, Australia; (Y.A.); (M.J.B.); (J.W.)
| | - Seweryn Bialasiewicz
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia;
| | - Michael J. Binks
- Child and Maternal Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, NT 0811, Australia; (Y.A.); (M.J.B.); (J.W.)
- SAHMRI Women and Kids, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
| | - Mostafa Hashemi
- Department of Chemical and Biological Engineering, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada; (M.H.); (J.H.)
| | - Jane Hill
- Department of Chemical and Biological Engineering, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada; (M.H.); (J.H.)
- Spire Health Technology, PBC, Seattle, WA 98195, USA
| | - Ruth B. Thornton
- Centre for Child Health Research, University of Western Australia, Perth, WA 6009, Australia;
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, Perth, WA 6009, Australia
| | - Jacob Westaway
- Child and Maternal Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, NT 0811, Australia; (Y.A.); (M.J.B.); (J.W.)
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Cairns, QLD 4811, Australia
| | - Robyn L. Marsh
- School of Health Sciences, University of Tasmania, Launceston, TAS 7248, Australia;
- Child and Maternal Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, NT 0811, Australia; (Y.A.); (M.J.B.); (J.W.)
| |
Collapse
|
5
|
Smith D, Španěl P, Demarais N, Langford VS, McEwan MJ. Recent developments and applications of selected ion flow tube mass spectrometry (SIFT-MS). MASS SPECTROMETRY REVIEWS 2023:e21835. [PMID: 36776107 DOI: 10.1002/mas.21835] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/09/2022] [Accepted: 12/12/2022] [Indexed: 06/18/2023]
Abstract
Selected ion flow tube mass spectrometry (SIFT-MS) is now recognized as the most versatile analytical technique for the identification and quantification of trace gases down to the parts-per-trillion by volume, pptv, range. This statement is supported by the wide reach of its applications, from real-time analysis, obviating sample collection of very humid exhaled breath, to its adoption in industrial scenarios for air quality monitoring. This review touches on the recent extensions to the underpinning ion chemistry kinetics library and the alternative challenge of using nitrogen carrier gas instead of helium. The addition of reagent anions in the Voice200 series of SIFT-MS instruments has enhanced the analytical capability, thus allowing analyses of volatile trace compounds in humid air that cannot be analyzed using reagent cations alone, as clarified by outlining the anion chemistry involved. Case studies are reviewed of breath analysis and bacterial culture volatile organic compound (VOC), emissions, environmental applications such as air, water, and soil analysis, workplace safety such as transport container fumigants, airborne contamination in semiconductor fabrication, food flavor and spoilage, drugs contamination and VOC emissions from packaging to demonstrate the stated qualities and uniqueness of the new generation SIFT-MS instrumentation. Finally, some advancements that can be made to improve the analytical capability and reach of SIFT-MS are mentioned.
Collapse
Affiliation(s)
- David Smith
- J. Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Prague, Czechia
| | - Patrik Španěl
- J. Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Prague, Czechia
| | | | | | - Murray J McEwan
- Syft Technologies Limited, Christchurch, New Zealand
- Department of Chemistry, University of Canterbury, Christchurch, New Zealand
| |
Collapse
|
6
|
Gholizadeh A, Black K, Kipen H, Laumbach R, Gow A, Weisel C, Javanmard M. Detection of respiratory inflammation biomarkers in non-processed exhaled breath condensate samples using reduced graphene oxide. RSC Adv 2022; 12:35627-35638. [PMID: 36545081 PMCID: PMC9745889 DOI: 10.1039/d2ra05764f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/15/2022] [Indexed: 12/15/2022] Open
Abstract
In this work, we studied several important parameters regarding the standardization of a portable sensor of nitrite, a key biomarker of inflammation in the respiratory tract in untreated EBC samples. The storage of the EBC samples and electrical properties of both EBC samples and the sensor as main standardization parameters were investigated. The sensor performance was performed using differential pulse voltammetry (DPV) in a standard nitrite solution and untreated EBC samples. The storage effect was monitored by comparing sensor data of fresh and stored samples for one month at -80 °C. Results show, on average, a 20 percent reduction of peak current for stored solutions. The sensor's performance was compared with a previous EBC nitrite sensor and chemiluminescence method. The results demonstrate a good correlation between the present sensor and chemiluminescence for low nitrite concentrations in untreated EBC samples. The electrical behavior of the sensor and electrical variation between EBC samples were characterized using methods such as noise analysis, electrochemical impedance spectroscopy (EIS), electrical impedance (EI), and voltage shift. Data show that reduced graphene oxide (rGO) has lower electrical noise and a higher electron transfer rate regarding nitrite detection. Also, a voltage shift can be applied to calibrate the data based on the electrical variation between different EBC samples. This result makes it easy to calibrate the electrical difference between EBC samples and have a more reproducible portable chip design without using bulky EI instruments. This work helps detect nitrite in untreated and pure EBC samples and evaluates critical analytical EBC properties essential for developing portable and on-site point-of-care sensors.
Collapse
Affiliation(s)
- Azam Gholizadeh
- Department of Electrical and Computer Engineering, Rutgers UniversityPiscatawayNJ 08854USA
| | - Kathleen Black
- Environmental Occupational Health Sciences Institute, Rutgers UniversityPiscatawayNJ 08854USA
| | - Howard Kipen
- Environmental Occupational Health Sciences Institute, Rutgers UniversityPiscatawayNJ 08854USA
| | - Robert Laumbach
- Environmental Occupational Health Sciences Institute, Rutgers UniversityPiscatawayNJ 08854USA
| | - Andrew Gow
- Ernest Mario School of Pharmacy, Rutgers UniversityPiscatawayNJ 08854USA
| | - Clifford Weisel
- Environmental Occupational Health Sciences Institute, Rutgers UniversityPiscatawayNJ 08854USA
| | - Mehdi Javanmard
- Department of Electrical and Computer Engineering, Rutgers UniversityPiscatawayNJ 08854USA
| |
Collapse
|
7
|
Mass spectrometry for breath analysis. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
8
|
Pseudomonas aeruginosa Production of Hydrogen Cyanide Leads to Airborne Control of Staphylococcus aureus Growth in Biofilm and In Vivo Lung Environments. mBio 2022; 13:e0215422. [PMID: 36129311 DOI: 10.1128/mbio.02154-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Diverse bacterial volatile compounds alter bacterial stress responses and physiology, but their contribution to population dynamics in polymicrobial communities is not well known. In this study, we showed that airborne volatile hydrogen cyanide (HCN) produced by a wide range of Pseudomonas aeruginosa clinical strains leads to at-a-distance in vitro inhibition of the growth of a wide array of Staphylococcus aureus strains. We determined that low-oxygen environments not only enhance P. aeruginosa HCN production but also increase S. aureus sensitivity to HCN, which impacts P. aeruginosa-S. aureus competition in microaerobic in vitro mixed biofilms as well as in an in vitro cystic fibrosis lung sputum medium. Consistently, we demonstrated that production of HCN by P. aeruginosa controls S. aureus growth in a mouse model of airways coinfected by P. aeruginosa and S. aureus. Our study therefore demonstrates that P. aeruginosa HCN contributes to local and distant airborne competition against S. aureus and potentially other HCN-sensitive bacteria in contexts relevant to cystic fibrosis and other polymicrobial infectious diseases. IMPORTANCE Airborne volatile compounds produced by bacteria are often only considered attractive or repulsive scents, but they also directly contribute to bacterial physiology. Here, we showed that volatile hydrogen cyanide (HCN) released by a wide range of Pseudomonas aeruginosa strains controls Staphylococcus aureus growth in low-oxygen in vitro biofilms or aggregates and in vivo lung environments. These results are of pathophysiological relevance, since lungs of cystic fibrosis patients are known to present microaerobic areas and to be commonly associated with the presence of S. aureus and P. aeruginosa in polymicrobial communities. Our study therefore provides insights into how a bacterial volatile compound can contribute to the exclusion of S. aureus and other HCN-sensitive competitors from P. aeruginosa ecological niches. It opens new perspectives for the management or monitoring of P. aeruginosa infections in lower-lung airway infections and other polymicrobial disease contexts.
Collapse
|
9
|
Barucha A, Mauch RM, Duckstein F, Zagoya C, Mainz JG. The potential of volatile organic compound analysis for pathogen detection and disease monitoring in patients with cystic fibrosis. Expert Rev Respir Med 2022; 16:723-735. [PMID: 35853615 DOI: 10.1080/17476348.2022.2104249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Airway infection with pathogens and its associated pulmonary exacerbations (PEX) are the major causes of morbidity and premature death in cystic fibrosis (CF). Preventing or postponing chronic infections requires early diagnosis. However, limitations of conventional microbiology-based methods can hamper identification of exacerbations and specific pathogen detection. Analyzing volatile organic compounds (VOCs) in breath samples may be an interesting tool in this regard, as VOC-biomarkers can characterize specific airway infections in CF. AREAS COVERED We address the current achievements in VOC-analysis and discuss studies assessing VOC-biomarkers and fingerprints, i.e. a combination of multiple VOCs, in breath samples aiming at pathogen and PEX detection in people with CF (pwCF). We aim to provide bases for further research in this interesting field. EXPERT OPINION Overall, VOC-based analysis is a promising tool for diagnosis of infection and inflammation with potential to monitor disease progression in pwCF. Advantages over conventional diagnostic methods, including easy and non-invasive sampling procedures, may help to drive prompt, suitable therapeutic approaches in the future. Our review shall encourage further research, including validation of VOC-based methods. Specifically, longitudinal validation under standardized conditions is of interest in order to ensure repeatability and enable inclusion in CF diagnostic routine.
Collapse
Affiliation(s)
- Anton Barucha
- Cystic Fibrosis Center for Children and Adults, Brandenburg Medical School (MHB) University, Klinikum Westbrandenburg, Brandenburg an der Havel, Germany
| | - Renan M Mauch
- Center for Investigation in Pediatrics, School of Medical Sciences, University of Campinas, Campinas, São Paulo, Brazil
| | - Franziska Duckstein
- Cystic Fibrosis Center for Children and Adults, Brandenburg Medical School (MHB) University, Klinikum Westbrandenburg, Brandenburg an der Havel, Germany
| | - Carlos Zagoya
- Cystic Fibrosis Center for Children and Adults, Brandenburg Medical School (MHB) University, Klinikum Westbrandenburg, Brandenburg an der Havel, Germany
| | - Jochen G Mainz
- Cystic Fibrosis Center for Children and Adults, Brandenburg Medical School (MHB) University, Klinikum Westbrandenburg, Brandenburg an der Havel, Germany.,Faculty of Health Sciences, joint Faculty of the Brandenburg University of Technology Cottbus-Senftenberg, the Brandenburg Medical School Theodor Fontane and the University of Potsdam, Germany
| |
Collapse
|
10
|
Rothbart N, Stanley V, Koczulla R, Jarosch I, Holz O, Schmalz K, Hübers HW. Millimeter-wave gas spectroscopy for breath analysis of COPD patients in comparison to GC-MS. J Breath Res 2022; 16. [PMID: 35688126 DOI: 10.1088/1752-7163/ac77aa] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 06/10/2022] [Indexed: 01/12/2023]
Abstract
The analysis of human breath is a very active area of research, driven by the vision of a fast, easy, and non-invasive tool for medical diagnoses at the point of care. Millimeter-wave gas spectroscopy (MMWGS) is a novel, well-suited technique for this application as it provides high sensitivity, specificity and selectivity. Most of all, it offers the perspective of compact low-cost systems to be used in doctors' offices or hospitals. In this work, we demonstrate the analysis of breath samples acquired in a medical environment using MMWGS and evaluate validity, reliability, as well as limitations and perspectives of the method. To this end, we investigated 28 duplicate samples from chronic obstructive lung disease patients and compared the results to gas chromatography-mass spectrometry (GC-MS). The quantification of the data was conducted using a calibration-free fit model, which describes the data precisely and delivers absolute quantities. For ethanol, acetone, and acetonitrile, the results agree well with the GC-MS measurements and are as reliable as GC-MS. The duplicate samples deviate from the mean values by only 6% to 18%. Detection limits of MMWGS depend strongly on the molecular species. For example, acetonitrile can be traced down to 1.8 × 10-12mol by the MMWGS system, which is comparable to the GC-MS system. We observed correlations of abundances between formaldehyde and acetaldehyde as well as between acetonitrile and acetaldehyde, which demonstrates the potential of MMWGS for breath research.
Collapse
Affiliation(s)
- Nick Rothbart
- Institute of Optical Sensor Systems, German Aerospace Center (DLR), Berlin, Germany.,Department of Physics, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Victoria Stanley
- Institute of Optical Sensor Systems, German Aerospace Center (DLR), Berlin, Germany.,Department of Physics, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Rembert Koczulla
- Schön Klinik Berchtesgadener Land, Research Institute for Pulmonary Rehabilitation, Schönau am Königssee, Germany.,Philipps-University of Marburg, Department of Pulmonary Rehabilitation, Member of the German Center for Lung Research (DZL), Marburg, Germany
| | - Inga Jarosch
- Schön Klinik Berchtesgadener Land, Research Institute for Pulmonary Rehabilitation, Schönau am Königssee, Germany.,Philipps-University of Marburg, Department of Pulmonary Rehabilitation, Member of the German Center for Lung Research (DZL), Marburg, Germany
| | - Olaf Holz
- Fraunhofer ITEM, German Center for Lung Research (BREATH, DZL), Clinical Airway Research, Hannover, Germany
| | - Klaus Schmalz
- IHP-Leibniz-Institut für Innovative Mikroelektronik, Frankfurt (Oder), Germany
| | - Heinz-Wilhelm Hübers
- Institute of Optical Sensor Systems, German Aerospace Center (DLR), Berlin, Germany.,Department of Physics, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
11
|
Zuhra K, Szabo C. The two faces of cyanide: an environmental toxin and a potential novel mammalian gasotransmitter. FEBS J 2022; 289:2481-2515. [PMID: 34297873 PMCID: PMC9291117 DOI: 10.1111/febs.16135] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/15/2021] [Accepted: 07/22/2021] [Indexed: 12/16/2022]
Abstract
Cyanide is traditionally viewed as a cytotoxic agent, with its primary mode of action being the inhibition of mitochondrial Complex IV (cytochrome c oxidase). However, recent studies demonstrate that the effect of cyanide on Complex IV in various mammalian cells is biphasic: in lower concentrations (nanomolar to low micromolar) cyanide stimulates Complex IV activity, increases ATP production and accelerates cell proliferation, while at higher concentrations (high micromolar to low millimolar) it produces the previously known ('classic') toxic effects. The first part of the article describes the cytotoxic actions of cyanide in the context of environmental toxicology, and highlights pathophysiological conditions (e.g., cystic fibrosis with Pseudomonas colonization) where bacterially produced cyanide exerts deleterious effects to the host. The second part of the article summarizes the mammalian sources of cyanide production and overviews the emerging concept that mammalian cells may produce cyanide, in low concentrations, to serve biological regulatory roles. Cyanide fulfills many of the general criteria as a 'classical' mammalian gasotransmitter and shares some common features with the current members of this class: nitric oxide, carbon monoxide, and hydrogen sulfide.
Collapse
Affiliation(s)
- Karim Zuhra
- Chair of PharmacologySection of MedicineUniversity of FribourgSwitzerland
| | - Csaba Szabo
- Chair of PharmacologySection of MedicineUniversity of FribourgSwitzerland
| |
Collapse
|
12
|
Slade EA, Thorn RMS, Young AE, Reynolds DM. Real-time detection of volatile metabolites enabling species-level discrimination of bacterial biofilms associated with wound infection. J Appl Microbiol 2022; 132:1558-1572. [PMID: 34617369 PMCID: PMC9298000 DOI: 10.1111/jam.15313] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 07/19/2021] [Accepted: 09/13/2021] [Indexed: 01/25/2023]
Abstract
AIMS The main aim of this study was to investigate the real-time detection of volatile metabolites for the species-level discrimination of pathogens associated with clinically relevant wound infection, when grown in a collagen wound biofilm model. METHODS AND RESULTS This work shows that Staphylococcus aureus, Pseudomonas aeruginosa and Streptococcus pyogenes produce a multitude of volatile compounds when grown as biofilms in a collagen-based biofilm model. The real-time detection of these complex volatile profiles using selected ion flow tube mass spectrometry and the use of multivariate statistical analysis on the resulting data can be used to successfully differentiate between the pathogens studied. CONCLUSIONS The range of bacterial volatile compounds detected between the species studied vary and are distinct. Discrimination between bacterial species using real-time detection of volatile metabolites and multivariate statistical analysis was successfully demonstrated. SIGNIFICANCE AND IMPACT OF THE STUDY Development of rapid point-of-care diagnostics for wound infection would improve diagnosis and patient care. Such technological approaches would also facilitate the appropriate use of antimicrobials, minimizing the emergence of antimicrobial resistance. This study further develops the use of volatile metabolite detection as a new diagnostic approach for wound infection.
Collapse
Affiliation(s)
- Elisabeth A. Slade
- Centre for Research in BiosciencesUniversity of the West of EnglandBristolUK
| | - Robin M. S. Thorn
- Centre for Research in BiosciencesUniversity of the West of EnglandBristolUK
| | - Amber E. Young
- Bristol Centre for Surgical ResearchPopulation Health SciencesBristol Medical SchoolUniversity of BristolBristolUK
| | - Darren M. Reynolds
- Centre for Research in BiosciencesUniversity of the West of EnglandBristolUK
| |
Collapse
|
13
|
Fraser-Pitt DJ, Dolan SK, Toledo-Aparicio D, Hunt JG, Smith DW, Lacy-Roberts N, Nupe Hewage PS, Stoyanova TN, Manson E, McClean K, Inglis NF, Mercer DK, O’Neil DA. Cysteamine Inhibits Glycine Utilisation and Disrupts Virulence in Pseudomonas aeruginosa. Front Cell Infect Microbiol 2021; 11:718213. [PMID: 34631600 PMCID: PMC8494450 DOI: 10.3389/fcimb.2021.718213] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/11/2021] [Indexed: 11/13/2022] Open
Abstract
Pseudomonas aeruginosa is a major opportunistic human pathogen which employs a myriad of virulence factors. In people with cystic fibrosis (CF) P. aeruginosa frequently colonises the lungs and becomes a chronic infection that evolves to become less virulent over time, but often adapts to favour persistence in the host with alginate-producing mucoid, slow-growing, and antibiotic resistant phenotypes emerging. Cysteamine is an endogenous aminothiol which has been shown to prevent biofilm formation, reduce phenazine production, and potentiate antibiotic activity against P. aeruginosa, and has been investigated in clinical trials as an adjunct therapy for pulmonary exacerbations of CF. Here we demonstrate (for the first time in a prokaryote) that cysteamine prevents glycine utilisation by P. aeruginosa in common with previously reported activity blocking the glycine cleavage system in human cells. Despite the clear inhibition of glycine metabolism, cysteamine also inhibits hydrogen cyanide (HCN) production by P. aeruginosa, suggesting a direct interference in the regulation of virulence factor synthesis. Cysteamine impaired chemotaxis, lowered pyocyanin, pyoverdine and exopolysaccharide production, and reduced the toxicity of P. aeruginosa secreted factors in a Galleria mellonella infection model. Thus, cysteamine has additional potent anti-virulence properties targeting P. aeruginosa, further supporting its therapeutic potential in CF and other infections.
Collapse
Affiliation(s)
| | - Stephen K. Dolan
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | | | | | | | | | - Piumi Sara Nupe Hewage
- School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen, United Kingdom
| | - Teodora N. Stoyanova
- School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen, United Kingdom
| | - Erin Manson
- College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Kevin McClean
- Proteomics Facility Services, Moredun Research Institute, Penicuik, United Kingdom
| | - Neil F. Inglis
- Proteomics Facility Services, Moredun Research Institute, Penicuik, United Kingdom
| | | | | |
Collapse
|
14
|
Identification of volatile compounds from bacteria by spectrometric methods in medicine diagnostic and other areas: current state and perspectives. Appl Microbiol Biotechnol 2021; 105:6245-6255. [PMID: 34415392 PMCID: PMC8377328 DOI: 10.1007/s00253-021-11469-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 10/25/2022]
Abstract
Diagnosis of bacterial infections until today mostly relies on conventional microbiological methods. The resulting long turnaround times can lead to delayed initiation of adequate antibiotic therapy and prolonged periods of empiric antibiotic therapy (e.g., in intensive care medicine). Therewith, they contribute to the mortality of bacterial infections and the induction of multidrug resistances. The detection of species specific volatile organic compounds (VOCs) emitted by bacteria has been proposed as a possible diagnostic approach with the potential to serve as an innovative point-of-care diagnostic tool with very short turnaround times. A range of spectrometric methods are available which allow the detection and quantification of bacterial VOCs down to a range of part per trillion. This narrative review introduces the application of spectrometric analytical methods for the purpose of detecting VOCs of bacterial origin and their clinical use for diagnosing different infectious conditions over the last decade. KEY POINTS: • Detection of VOCs enables bacterial differentiation in various medical conditions. • Spectrometric methods may function as point-of-care diagnostics in near future.
Collapse
|
15
|
Pseudomonas aeruginosa Volatilome Characteristics and Adaptations in Chronic Cystic Fibrosis Lung Infections. mSphere 2020; 5:5/5/e00843-20. [PMID: 33028687 PMCID: PMC7568651 DOI: 10.1128/msphere.00843-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Pseudomonas aeruginosa is a leading cause of chronic lung infections in cystic fibrosis (CF), which are correlated with lung function decline. Significant clinical efforts are therefore aimed at detecting infections and tracking them for phenotypic changes, such as mucoidy and antibiotic resistance. Both the detection and tracking of lung infections rely on sputum cultures, but due to improvements in CF therapies, sputum production is declining, although risks for lung infections persist. Therefore, we are working toward the development of breath-based diagnostics for CF lung infections. In this study, we characterized of the volatile metabolomes of 81 P. aeruginosa clinical isolates collected from 17 CF patients over a duration of at least 5 years of a chronic lung infection. We found that the volatilome of P. aeruginosa adapts over time and is correlated with infection phenotype changes, suggesting that it may be possible to track chronic CF lung infections with a breath test. Pseudomonas aeruginosa chronic lung infections in individuals with cystic fibrosis (CF) significantly reduce quality of life and increase morbidity and mortality. Tracking these infections is critical for monitoring patient health and informing treatments. We are working toward the development of novel breath-based biomarkers to track chronic P. aeruginosa lung infections in situ. Using comprehensive two-dimensional gas chromatography coupled with time-of-flight mass spectrometry (GC×GC–TOF-MS), we characterized the in vitro volatile metabolomes (“volatilomes”) of 81 P. aeruginosa isolates collected from 17 CF patients over at least a 5-year period of their chronic lung infections. We detected 539 volatiles produced by the P. aeruginosa isolates, 69 of which were core volatiles that were highly conserved. We found that each early infection isolate has a unique volatilome, and as infection progresses, the volatilomes of isolates from the same patient become increasingly dissimilar, to the point that these intrapatient isolates are no more similar to one another than to isolates from other patients. We observed that the size and chemical diversity of P. aeruginosa volatilomes do not change over the course of chronic infections; however, the relative abundances of core hydrocarbons, alcohols, and aldehydes do change and are correlated with changes in phenotypes associated with chronic infections. This study indicates that it may be feasible to track P. aeruginosa chronic lung infections by measuring changes to the infection volatilome and lays the groundwork for exploring the translatability of this approach to direct measurement using patient breath. IMPORTANCEPseudomonas aeruginosa is a leading cause of chronic lung infections in cystic fibrosis (CF), which are correlated with lung function decline. Significant clinical efforts are therefore aimed at detecting infections and tracking them for phenotypic changes, such as mucoidy and antibiotic resistance. Both the detection and tracking of lung infections rely on sputum cultures, but due to improvements in CF therapies, sputum production is declining, although risks for lung infections persist. Therefore, we are working toward the development of breath-based diagnostics for CF lung infections. In this study, we characterized of the volatile metabolomes of 81 P. aeruginosa clinical isolates collected from 17 CF patients over a duration of at least 5 years of a chronic lung infection. We found that the volatilome of P. aeruginosa adapts over time and is correlated with infection phenotype changes, suggesting that it may be possible to track chronic CF lung infections with a breath test.
Collapse
|
16
|
Liessi N, Pedemonte N, Armirotti A, Braccia C. Proteomics and Metabolomics for Cystic Fibrosis Research. Int J Mol Sci 2020; 21:ijms21155439. [PMID: 32751630 PMCID: PMC7432297 DOI: 10.3390/ijms21155439] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 07/18/2020] [Accepted: 07/27/2020] [Indexed: 12/20/2022] Open
Abstract
The aim of this review article is to introduce the reader to the state-of-the-art of the contribution that proteomics and metabolomics sciences are currently providing for cystic fibrosis (CF) research: from the understanding of cystic fibrosis transmembrane conductance regulator (CFTR) biology to biomarker discovery for CF diagnosis. Our work particularly focuses on CFTR post-translational modifications and their role in cellular trafficking as well as on studies that allowed the identification of CFTR molecular interactors. We also show how metabolomics is currently helping biomarker discovery in CF. The most recent advances in these fields are covered by this review, as well as some considerations on possible future scenarios for new applications.
Collapse
Affiliation(s)
- Nara Liessi
- Analytical Chemistry Lab, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy;
| | - Nicoletta Pedemonte
- U.O.C. Genetica Medica, IRCCS Giannina Gaslini, Via Gerolamo Gaslini 5, 16147 Genova, Italy;
| | - Andrea Armirotti
- Analytical Chemistry Lab, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy;
- Correspondence: ; Tel.: +39-010-2896-938
| | - Clarissa Braccia
- D3PharmaChemistry, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy;
| |
Collapse
|
17
|
Hérivaux A, Gonçalves SM, Carvalho A, Cunha C. Microbiota-derived metabolites as diagnostic markers for respiratory fungal infections. J Pharm Biomed Anal 2020; 189:113473. [PMID: 32771720 DOI: 10.1016/j.jpba.2020.113473] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/10/2020] [Accepted: 07/12/2020] [Indexed: 01/05/2023]
Abstract
An emerging body of evidence has highlighted the significant role of the pulmonary microbiota during respiratory infections. The individual microbiome is nowadays recognized to supervise the outcome of the host-pathogen interaction by orchestrating mechanisms of immune regulation, inflammation, metabolism, and other physiological processes. A shift in the normal flora of the respiratory tract is associated with several lung inflammatory disorders including asthma, chronic obstructive pulmonary disease, or cystic fibrosis. These diseases are characterized by a lung microenvironment that becomes permissive to infections caused by the opportunistic fungal pathogen Aspergillus fumigatus. Although the role of the lung microbiota in the pathophysiology of respiratory fungal diseases remains elusive, microbiota-derived components have been proposed as important biomarkers to be considered in the diagnosis of these severe infections. Here, we review this emerging area of research and discuss the potential of microbiota-derived products in the diagnosis of respiratory fungal diseases.
Collapse
Affiliation(s)
- Anaїs Hérivaux
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Guimarães, Braga, Portugal
| | - Samuel M Gonçalves
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Guimarães, Braga, Portugal
| | - Agostinho Carvalho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Guimarães, Braga, Portugal
| | - Cristina Cunha
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Guimarães, Braga, Portugal.
| |
Collapse
|
18
|
Quantification of volatile metabolites in exhaled breath by selected ion flow tube mass spectrometry, SIFT-MS. CLINICAL MASS SPECTROMETRY 2020; 16:18-24. [DOI: 10.1016/j.clinms.2020.02.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 02/03/2020] [Accepted: 02/09/2020] [Indexed: 12/11/2022]
|
19
|
Elmassry MM, Piechulla B. Volatilomes of Bacterial Infections in Humans. Front Neurosci 2020; 14:257. [PMID: 32269511 PMCID: PMC7111428 DOI: 10.3389/fnins.2020.00257] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 03/09/2020] [Indexed: 02/06/2023] Open
Abstract
Sense of smell in humans has the capacity to detect certain volatiles from bacterial infections. Our olfactory senses were used in ancient medicine to diagnose diseases in patients. As humans are considered holobionts, each person's unique odor consists of volatile organic compounds (VOCs, volatilome) produced not only by the humans themselves but also by their beneficial and pathogenic micro-habitants. In the past decade it has been well documented that microorganisms (fungi and bacteria) are able to emit a broad range of olfactory active VOCs [summarized in the mVOC database (http://bioinformatics.charite.de/mvoc/)]. During microbial infection, the equilibrium between the human and its microbiome is altered, followed by a change in the volatilome. For several decades, physicians have been trying to utilize these changes in smell composition to develop fast and efficient diagnostic tools, particularly because volatiles detection is non-invasive and non-destructive, which would be a breakthrough in many therapies. Within this review, we discuss bacterial infections including gastrointestinal, respiratory or lung, and blood infections, focusing on the pathogens and their known corresponding volatile biomarkers. Furthermore, we cover the potential role of the human microbiota and their volatilome in certain diseases such as neurodegenerative diseases. We also report on discrete mVOCs that affect humans.
Collapse
Affiliation(s)
- Moamen M. Elmassry
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, United States
| | - Birgit Piechulla
- Institute for Biological Sciences, University of Rostock, Rostock, Germany
| |
Collapse
|
20
|
Xie Y, Li Q, Hua L, Chen P, Hu F, Wan N, Li H. Highly selective and sensitive online measurement of trace exhaled HCN by acetone-assisted negative photoionization time-of-flight mass spectrometry with in-source CID. Anal Chim Acta 2020; 1111:31-39. [PMID: 32312394 DOI: 10.1016/j.aca.2020.03.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 03/04/2020] [Accepted: 03/16/2020] [Indexed: 12/11/2022]
Abstract
Exhaled hydrogen cyanide (HCN) has been extensively investigated as a promising biomarker of the presence of Pseudomonas aeruginosa in the airways of patients with cystic fibrosis (CF) disease. Its concentration profile for exhalation can provide useful information for medical disease diagnosis and therapeutic procedures. However, the complexity of breath gas, like high humidity, carbon dioxide (CO2) and trace organic compounds, usually leads to quantitative error, poor selectivity and sensitivity for HCN with some of existing analytical techniques. In this work, acetone-assisted negative photoionization (AANP) based on a vacuum ultraviolet (VUV) lamp with a time-of- flight mass spectrometer (AANP-TOFMS) was firstly proposed for online measurement of trace HCN in human breath. In-source collision-induced dissociation (CID) was adopted for sensitivity improvement and the signal response of the characteristic ion CN- (m/z 26) was improved by about 24-fold. For accurate and reliable analysis of the exhaled HCN, matrix influences in the human breath including humidity and CO2 were investigated, respectively. A Nafion tube was used for online dehumidification of breath samples. Matrix-adapted calibration in the concentration range of 0.5-50 ppbv with satisfactory dynamic linearity and repeatability was obtained. The limit of quantitation (LOQ) for HCN at 0.5 ppbv was achieved in the presence of 100% relative humidity and 4% CO2. Finally, the method was successfully applied for online determination of human mouth- and nose-exhaled HCN, and the nose-exhaled HCN were proved to be reliable for assessing systemic HCN levels for individuals. The results are encouraging and highlight the potential of AANP-TOFMS with in-source CID as a selective, accurate, sensitive and noninvasive technique for determination of the exhaled HCN for CF clinical diagnosis and HCN poisoning assessment.
Collapse
Affiliation(s)
- Yuanyuan Xie
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning, 116023, People's Republic of China
| | - Qingyun Li
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning, 116023, People's Republic of China
| | - Lei Hua
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning, 116023, People's Republic of China.
| | - Ping Chen
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning, 116023, People's Republic of China
| | - Fan Hu
- Henan Province Medical Instrument Testing Institute, 79 Xiongerhe Road, Zhengzhou, 450018, People's Republic of China
| | - Ningbo Wan
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning, 116023, People's Republic of China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, People's Republic of China
| | - Haiyang Li
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning, 116023, People's Republic of China.
| |
Collapse
|
21
|
Slade EA, Thorn RMS, Young A, Reynolds DM. An in vitro collagen perfusion wound biofilm model; with applications for antimicrobial studies and microbial metabolomics. BMC Microbiol 2019; 19:310. [PMID: 31888471 PMCID: PMC6937849 DOI: 10.1186/s12866-019-1682-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 12/11/2019] [Indexed: 12/12/2022] Open
Abstract
Background The majority of in vitro studies of medically relevant biofilms involve the development of biofilm on an inanimate solid surface. However, infection in vivo consists of biofilm growth on, or suspended within, the semi-solid matrix of the tissue, whereby current models do not effectively simulate the nature of the in vivo environment. This paper describes development of an in vitro method for culturing wound associated microorganisms in a system that combines a semi-solid collagen gel matrix with continuous flow of simulated wound fluid. This enables culture of wound associated reproducible steady state biofilms under conditions that more closely simulate the dynamic wound environment. To demonstrate the use of this model the antimicrobial kinetics of ceftazidime, against both mature and developing Pseudomonas aeruginosa biofilms, was assessed. In addition, we have shown the potential application of this model system for investigating microbial metabolomics by employing selected ion flow tube mass spectrometry (SIFT-MS) to monitor ammonia and hydrogen cyanide production by Pseudomonas aeruginosa biofilms in real-time. Results The collagen wound biofilm model facilitates growth of steady-state reproducible Pseudomonas aeruginosa biofilms under wound like conditions. A maximum biofilm density of 1010 cfu slide− 1 was achieved by 30 h of continuous culture and maintained throughout the remainder of the experiment. Treatment with ceftazidime at a clinically relevant dose resulted in a 1.2–1.6 log reduction in biofilm density at 72 h compared to untreated controls. Treatment resulted in loss of complex biofilm architecture and morphological changes to bacterial cells, visualised using confocal microscopy. When monitoring the biofilms using SIFT-MS, ammonia and hydrogen cyanide levels peaked at 12 h at 2273 ppb (±826.4) and 138 ppb (±49.1) respectively and were detectable throughout experimentation. Conclusions The collagen wound biofilm model has been developed to facilitate growth of reproducible biofilms under wound-like conditions. We have successfully used this method to: (1) evaluate antimicrobial efficacy and kinetics, clearly demonstrating the development of antimicrobial tolerance in biofilm cultures; (2) characterise volatile metabolite production by P. aeruginosa biofilms, demonstrating the potential use of this method in metabolomics studies.
Collapse
Affiliation(s)
- Elisabeth A Slade
- Centre for Research in Biosciences, University of the West of England, Bristol, UK
| | - Robin M S Thorn
- Centre for Research in Biosciences, University of the West of England, Bristol, UK
| | - Amber Young
- Scar Free Foundation Centre for Children's Burns Research, Bristol Royal Hospital for Children, Bristol, UK
| | - Darren M Reynolds
- Centre for Research in Biosciences, University of the West of England, Bristol, UK. .,University of the West of England, Frenchay Campus, Coldharbour Lane, Bristol, BS16 1QY, England.
| |
Collapse
|
22
|
Pavlov J, Attygalle AB. Gold Nanoparticles (AuNPs) as Reactive Matrix for Detection of Trace Levels of HCN in Air by Laser Desorption/Ionization Mass Spectrometry (LDI-MS). JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:806-813. [PMID: 30847834 DOI: 10.1007/s13361-018-02131-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 12/28/2018] [Indexed: 06/09/2023]
Abstract
Under direct laser desorption/ionization mass spectrometric conditions, the irradiation of target spots made of gold nanoparticle residues generates a series of peaks at m/z 197, 394, 591… representing Aun- ions (n = 1-3). In contrast, spectra recorded from gold nanoparticles directly mixed with an alkali cyanide exhibited an additional peak at m/z 249, indicating an abundant generation of gaseous [Au(CN)2]- ions upon irradiation. The relative intensity of the m/z 249 peak surged when the amount of cyanide in the mixture was increased. Most remarkably, a peak at m/z 249 was observed even from neat AuNPs upon irradiation, if a nearby spot, which was not irradiated, happened to bear a cyanide sample. We postulated that traces of HCN emanating from the headspace of aqueous cyanide solution during the sample-plate preparation is sufficient to convert gold to AuCN, which is subsequently detected as [Au(CN)2]-. Further experiments demonstrated that the relative intensity of the m/z 249 peak diminishes exponentially as the AuNP spot becomes more distant from the putative HCN source. Eventually, the method was developed as an efficient procedure to detect HCN or alkali cyanides. Using KCN, the detection limits were determined to be below 10 pg of CN- per spot. The method also demonstrated that, upon crushing, the seeds or roots of certain fruits and vegetables such as apple, peach, radish, and cassava, but not carrot, release HCN in amounts detectable by this method. Graphical Abstract.
Collapse
Affiliation(s)
- Julius Pavlov
- Center for Mass Spectrometry, Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, NJ, 07030, USA
| | - Athula B Attygalle
- Center for Mass Spectrometry, Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, NJ, 07030, USA.
| |
Collapse
|
23
|
Kiedrowski MR, Bomberger JM. Viral-Bacterial Co-infections in the Cystic Fibrosis Respiratory Tract. Front Immunol 2018; 9:3067. [PMID: 30619379 PMCID: PMC6306490 DOI: 10.3389/fimmu.2018.03067] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 12/11/2018] [Indexed: 12/15/2022] Open
Abstract
A majority of the morbidity and mortality associated with the genetic disease Cystic Fibrosis (CF) is due to lung disease resulting from chronic respiratory infections. The CF airways become chronically colonized with bacteria in childhood, and over time commensal lung microbes are displaced by bacterial pathogens, leading to a decrease in microbial diversity that correlates with declining patient health. Infection with the pathogen Pseudomonas aeruginosa is a major predictor of morbidity and mortality in CF, with CF individuals often becoming chronically colonized with P. aeruginosa in early adulthood and thereafter having an increased risk of hospitalization. Progression of CF respiratory disease is also influenced by infection with respiratory viruses. Children and adults with CF experience frequent respiratory viral infections with respiratory syncytial virus (RSV), rhinovirus, influenza, parainfluenza, and adenovirus, with RSV and influenza infection linked to the greatest decreases in lung function. Along with directly causing severe respiratory symptoms in CF populations, the impact of respiratory virus infections may be more far-reaching, indirectly promoting bacterial persistence and pathogenesis in the CF respiratory tract. Acquisition of P. aeruginosa in CF patients correlates with seasonal respiratory virus infections, and CF patients colonized with P. aeruginosa experience increased severe exacerbations and declines in lung function during respiratory viral co-infection. In light of such observations, efforts to better understand the impact of viral-bacterial co-infections in the CF airways have been a focus of clinical and basic research in recent years. This review summarizes what has been learned about the interactions between viruses and bacteria in the CF upper and lower respiratory tract and how co-infections impact the health of individuals with CF.
Collapse
Affiliation(s)
| | - Jennifer M. Bomberger
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
24
|
Eiserich JP, Ott SP, Kadir T, Morrissey BM, Hayakawa KA, La Merrill MA, Cross CE. Quantitative assessment of cyanide in cystic fibrosis sputum and its oxidative catabolism by hypochlorous acid. Free Radic Biol Med 2018; 129:146-154. [PMID: 30213640 DOI: 10.1016/j.freeradbiomed.2018.09.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 09/07/2018] [Indexed: 02/06/2023]
Abstract
RATIONALE Cystic fibrosis (CF) patients are known to produce cyanide (CN-) although challenges exist in determinations of total levels, the precise bioactive levels, and specificity of its production by CF microflora, especially P. aeruginosa. Our objective was to measure total CN- levels in CF sputa by a simple and novel technique in P. aeruginosa positive and negative adult patients, to review respiratory tract (RT) mechanisms for the production and degradation of CN-, and to interrogate sputa for post-translational protein modification by CN- metabolites. METHODS Sputa CN- concentrations were determined by using a commercially available CN- electrode, measuring levels before and after addition of cobinamide, a compound with extremely high affinity for CN-. Detection of protein carbamoylation was measured by Western blot. MEASUREMENTS AND MAIN RESULTS The commercial CN- electrode was found to overestimate CN- levels in CF sputum in a highly variable manner; cobinamide addition rectified this analytical issue. Although P. aeruginosa positive patients tended to have higher total CN- values, no significant differences in CN- levels were found between positive and negative sputa. The inflammatory oxidant hypochlorous acid (HOCl) was shown to rapidly decompose CN-, forming cyanogen chloride (CNCl) and the carbamoylating species cyanate (NCO-). Carbamoylated proteins were found in CF sputa, analogous to reported findings in asthma. CONCLUSIONS Our studies indicate that CN- is a transient species in the inflamed CF airway due to multiple biosynthetic and metabolic processes. Stable metabolites of CN-, such as cyanate, or carbamoylated proteins, may be suitable biomarkers of overall CN- production in CF airways.
Collapse
Affiliation(s)
- Jason P Eiserich
- Department of Internal Medicine, Division of Pulmonary/Critical Care and Sleep Medicine, University of California, Davis, CA 95616, United States; Department of Physiology and Membrane Biology, University of California, Davis, CA 95616, United States
| | - Sean P Ott
- Department of Internal Medicine, Division of Pulmonary/Critical Care and Sleep Medicine, University of California, Davis, CA 95616, United States
| | - Tamara Kadir
- Department of Internal Medicine, Division of Pulmonary/Critical Care and Sleep Medicine, University of California, Davis, CA 95616, United States
| | - Brian M Morrissey
- Department of Internal Medicine, Division of Pulmonary/Critical Care and Sleep Medicine, University of California, Davis, CA 95616, United States
| | - Keri A Hayakawa
- Department of Internal Medicine, Division of Pulmonary/Critical Care and Sleep Medicine, University of California, Davis, CA 95616, United States
| | - Michele A La Merrill
- Department of Environmental Toxicology, University of California, Davis, CA 95616, United States
| | - Carroll E Cross
- Department of Internal Medicine, Division of Pulmonary/Critical Care and Sleep Medicine, University of California, Davis, CA 95616, United States; Department of Physiology and Membrane Biology, University of California, Davis, CA 95616, United States.
| |
Collapse
|
25
|
Devaraj H, Pook C, Swift S, Aw KC, McDaid AJ. Profiling of headspace volatiles from Escherichia coli cultures using silicone-based sorptive media and thermal desorption GC-MS. J Sep Sci 2018; 41:4133-4141. [PMID: 30156752 DOI: 10.1002/jssc.201800684] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 08/16/2018] [Accepted: 08/19/2018] [Indexed: 11/06/2022]
Abstract
Headspace sorptive extraction technique using silicone based sorptive media coated stir bars is used for the first time here to extract, identify, and quantify heavy volatile organic compounds present in Escherichia coli culture headspace. Detection of infection presence is largely accomplished in laboratories through physical sampling and subsequent growth of cultures for biochemical testing. The use of volatile biomarkers released from pathogens as indicators for pathogenic presence can vastly reduce the time needed whilst improving the success rates for infection detection. To validate this, by using a contactless headspace sorptive extraction technique, the volatile compounds released from E. coli, grown in vitro, have been extracted and identified. Two different sorptive media for extracting these headspace volatiles were compared in this study and the identified volatiles were quantified. The large phase volume and wider retention of this sorptive technique compared to traditional sampling approach enabled preconcentration and collection of wider range of volatiles towards developing an extensive database of such heavy volatiles associated with E. coli. This supplements the existing data of potential bacterial markers and use of internal standards in these tests allows semi-quantitative estimation of these compounds towards the development and optimization of novel pathogen sensing devices.
Collapse
Affiliation(s)
- Harish Devaraj
- Faculty of Engineering, University of Auckland, Auckland, New Zealand
| | - Chris Pook
- School of Sciences, Auckland University of Technology, Auckland, New Zealand
| | - Simon Swift
- Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Kean C Aw
- Faculty of Engineering, University of Auckland, Auckland, New Zealand
| | - Andrew J McDaid
- Faculty of Engineering, University of Auckland, Auckland, New Zealand
| |
Collapse
|
26
|
Breuer O, Caudri D, Akesson L, Ranganathan S, Stick SM, Schultz A. The clinical significance of oropharyngeal cultures in young children with cystic fibrosis. Eur Respir J 2018; 51:13993003.00238-2018. [PMID: 29678944 DOI: 10.1183/13993003.00238-2018] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 04/03/2018] [Indexed: 01/21/2023]
Abstract
In children with cystic fibrosis (CF) the associations between oropharyngeal swabs (OPSs) for detection of Pseudomonas and lung disease have not been evaluated.OPS and bronchoalveolar lavage (BAL) samples were obtained annually in children with CF from 2005 to 2017. OPS test characteristics were calculated using BAL as "gold standard". Results were related to lung inflammation (BAL neutrophil elastase and interleukin-8), structural lung disease (chest computed tomography PRAGMA-CF (Perth-Rotterdam Annotated Grid Morphometric Analysis for CF) scores), respiratory exacerbations and future detection of Pseudomonas on BAL.From 181 patients, 690 paired OPS-BAL cultures were obtained. Prevalence of Pseudomonas in BAL was 7.4%. OPS sensitivity was 23.0% and specificity was 91.4%, reducing the post-test probability for a positive BAL following a negative OPS to 6.3%. Pseudomonas on OPS was not associated with lung inflammation or respiratory exacerbations, but was weakly associated with current PRAGMA-CF %Disease score (p=0.043). Pseudomonas on BAL was associated with positive neutrophil elastase (OR 4.17, 95% CI 2.04-8.53; p<0.001), increased interleukin-8 (p<0.001), increased all baseline PRAGMA computed tomography scores (p<0.001), progression of PRAGMA computed tomography scores (p<0.05) and increased risk of respiratory exacerbations (incidence rate ratio 2.11, 95% CI 1.15-3.87; p=0.017).In children with CF OPSs only marginally change the probability of detecting lower airway Pseudomonas and are not associated with lung disease indices nor exacerbations risk.
Collapse
Affiliation(s)
- Oded Breuer
- Telethon Kids Institute, University of Western Australia, Perth, Australia.,Princess Margaret Hospital for Children, Perth, Australia.,These authors contributed equally to this work
| | - Daan Caudri
- Telethon Kids Institute, University of Western Australia, Perth, Australia.,Princess Margaret Hospital for Children, Perth, Australia.,Dept of Pediatrics/Respiratory Medicine, Erasmus MC, Rotterdam, The Netherlands.,These authors contributed equally to this work
| | - Lauren Akesson
- Telethon Kids Institute, University of Western Australia, Perth, Australia.,Dept of Paediatrics, University of Melbourne, Melbourne, Australia.,Dept of General Medicine, Royal Children's Hospital, Melbourne, Australia
| | - Sarath Ranganathan
- Dept of Paediatrics, University of Melbourne, Melbourne, Australia.,Dept of General Medicine, Royal Children's Hospital, Melbourne, Australia.,Murdoch Children's Research Institute, Parkville, Australia.,Dept of Respiratory and Sleep Medicine, Royal Children's Hospital, Parkville, Australia
| | - Stephen M Stick
- Telethon Kids Institute, University of Western Australia, Perth, Australia.,Princess Margaret Hospital for Children, Perth, Australia
| | - André Schultz
- Telethon Kids Institute, University of Western Australia, Perth, Australia.,Princess Margaret Hospital for Children, Perth, Australia.,School of Paediatric and Child Health, University of Western Australia, Perth, Australia
| | | |
Collapse
|
27
|
Suarez-Cuartin G, Giner J, Merino JL, Rodrigo-Troyano A, Feliu A, Perea L, Sanchez-Reus F, Castillo D, Plaza V, Chalmers JD, Sibila O. Identification of Pseudomonas aeruginosa and airway bacterial colonization by an electronic nose in bronchiectasis. Respir Med 2018; 136:111-117. [PMID: 29501241 DOI: 10.1016/j.rmed.2018.02.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 02/09/2018] [Accepted: 02/11/2018] [Indexed: 01/11/2023]
Abstract
RATIONALE Airway colonization by Potentially Pathogenic Microorganisms (PPM) in bronchiectasis is associated with worse clinical outcomes. The electronic nose is a non-invasive technology capable of distinguishing volatile organic compounds (VOC) in exhaled breath. We aim to explore if an electronic nose can reliably discriminate airway bacterial colonization in patients with bronchiectasis. METHODS Seventy-three clinically stable bronchiectasis patients were included. PPM presence was determined using sputum culture. Exhaled breath was collected in Tedlar bags and VOC breath-prints were detected by the electronic nose Cyranose 320®. Raw data was reduced to three factors with principal component analysis. Univariate ANOVA followed by post-hoc least significant difference test was performed with these factors. Patients were then classified using linear canonical discriminant analysis. Cross-validation accuracy values were defined by the percentage of correctly classified patients. RESULTS Forty-one (56%) patients were colonized with PPM. Pseudomonas aeruginosa (n = 27, 66%) and Haemophilus influenzae (n = 7, 17%) were the most common PPM. VOC breath-prints from colonized and non-colonized patients were significantly different (accuracy of 72%, AUROC 0.75, p < 0.001). VOC breath-prints from Pseudomonas aeruginosa colonized patients were significantly different from those of patients colonized with other PPM (accuracy of 89%, AUROC 0.97, p < 0.001) and non-colonized patients (accuracy 73%, AUROC 0.83, p = 0.007). CONCLUSIONS An electronic nose can accurately identify VOC breath-prints of clinically stable bronchiectasis patients with airway bacterial colonization, especially in those with Pseudomonas aeruginosa.
Collapse
Affiliation(s)
- Guillermo Suarez-Cuartin
- Department of Respiratory Medicine, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain; Institut d'Investigació Biomédica Sant Pau (IIB Sant Pau), Barcelona, Spain
| | - Jordi Giner
- Department of Respiratory Medicine, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain; Institut d'Investigació Biomédica Sant Pau (IIB Sant Pau), Barcelona, Spain
| | - José Luis Merino
- Electronic Systems Group, Universitat de les Illes Balears, Palma de Mallorca, Spain
| | - Ana Rodrigo-Troyano
- Department of Respiratory Medicine, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain; Institut d'Investigació Biomédica Sant Pau (IIB Sant Pau), Barcelona, Spain
| | - Anna Feliu
- Department of Respiratory Medicine, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain; Institut d'Investigació Biomédica Sant Pau (IIB Sant Pau), Barcelona, Spain
| | - Lidia Perea
- Institut d'Investigació Biomédica Sant Pau (IIB Sant Pau), Barcelona, Spain
| | - Ferran Sanchez-Reus
- Institut d'Investigació Biomédica Sant Pau (IIB Sant Pau), Barcelona, Spain; Department of Microbiology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Diego Castillo
- Department of Respiratory Medicine, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain; Institut d'Investigació Biomédica Sant Pau (IIB Sant Pau), Barcelona, Spain
| | - Vicente Plaza
- Department of Respiratory Medicine, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain; Institut d'Investigació Biomédica Sant Pau (IIB Sant Pau), Barcelona, Spain
| | - James D Chalmers
- Scottish Centre for Respiratory Research, University of Dundee, Dundee, UK
| | - Oriol Sibila
- Department of Respiratory Medicine, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain; Institut d'Investigació Biomédica Sant Pau (IIB Sant Pau), Barcelona, Spain.
| |
Collapse
|
28
|
Volatile molecules from bronchoalveolar lavage fluid can 'rule-in' Pseudomonas aeruginosa and 'rule-out' Staphylococcus aureus infections in cystic fibrosis patients. Sci Rep 2018; 8:826. [PMID: 29339749 PMCID: PMC5770459 DOI: 10.1038/s41598-017-18491-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 12/11/2017] [Indexed: 01/02/2023] Open
Abstract
Respiratory infections caused by Pseudomonas aeruginosa and Staphylococcus aureus are the leading cause of morbidity and mortality in cystic fibrosis (CF) patients. The authors aimed to identify volatile biomarkers from bronchoalveolar lavage (BAL) samples that can guide breath biomarker development for pathogen identification. BAL samples (n = 154) from CF patients were analyzed using two-dimensional gas chromatography time-of-flight mass spectrometry. Random Forest was used to select suites of volatiles for identifying P. aeruginosa-positive and S. aureus-positive samples using multiple infection scenarios and validated using test sets. Using nine volatile molecules, we differentiated P. aeruginosa-positive (n = 7) from P. aeruginosa-negative (n = 53) samples with an area under the receiver operating characteristic curve (AUROC) of 0.86 (95% CI 0.71–1.00) and with positive and negative predictive values of 0.67 (95% CI 0.38–0.75) and 0.92 (95% CI 0.88–1.00), respectively. We were also able to discriminate S. aureus-positive (n = 15) from S. aureus-negative (n = 45) samples with an AUROC of 0.88 (95% CI 0.79-1.00) using eight volatiles and with positive and negative predictive values of 0.86 (95% CI 0.61–0.96) and 0.70 (95% CI 0.61–0.75), respectively. Prospective validation of identified biomarkers as screening tools in patient breath may lead to clinical application.
Collapse
|
29
|
Lawal O, Muhamadali H, Ahmed WM, White IR, Nijsen TME, Goodacre R, Fowler SJ. Headspace volatile organic compounds from bacteria implicated in ventilator-associated pneumonia analysed by TD-GC/MS. J Breath Res 2018; 12:026002. [PMID: 28947683 DOI: 10.1088/1752-7163/aa8efc] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Ventilator-associated pneumonia (VAP) is a healthcare-acquired infection arising from the invasion of the lower respiratory tract by opportunistic pathogens in ventilated patients. The current method of diagnosis requires the culture of an airway sample such as bronchoalveolar lavage, which is invasive to obtain and may take up to seven days to identify a causal pathogen, or indeed rule out infection. While awaiting results, patients are administered empirical antibiotics; risks of this approach include lack of effect on the causal pathogen, contribution to the development of antibiotic resistance and downstream effects such as increased length of intensive care stay, cost, morbidity and mortality. Specific biomarkers which could identify causal pathogens in a timely manner are needed as they would allow judicious use of the most appropriate antimicrobial therapy. Volatile organic compound (VOC) analysis in exhaled breath is proposed as an alternative due to its non-invasive nature and its potential to provide rapid diagnosis at the patient's bedside. VOCs in exhaled breath originate from exogenous, endogenous, as well as microbial sources. To identify potential markers, VAP-associated pathogens Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Staphylococcus aureus were cultured in both artificial sputum medium and nutrient broth, and their headspaces were sampled and analysed for VOCs. Previously reported volatile markers were identified in this study, including indole and 1-undecene, alongside compounds that are novel to this investigation, cyclopentanone and 1-hexanol. We further investigated media components (substrates) to identify those that are essential for indole and cyclopentanone production, with potential implications for understanding microbial metabolism in the lung.
Collapse
Affiliation(s)
- Oluwasola Lawal
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
- Philips Research, Royal Philips B.V., Eindhoven, The Netherlands
- School of Chemistry, Manchester Institute of Biotechnology, The University of Manchester, Manchester, United Kingdom
| | - Howbeer Muhamadali
- School of Chemistry, Manchester Institute of Biotechnology, The University of Manchester, Manchester, United Kingdom
| | - Waqar M Ahmed
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Iain R White
- School of Chemistry, Manchester Institute of Biotechnology, The University of Manchester, Manchester, United Kingdom
| | | | - Royston Goodacre
- School of Chemistry, Manchester Institute of Biotechnology, The University of Manchester, Manchester, United Kingdom
| | - Stephen J Fowler
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
- Manchester Academic Health Science Centre, The University of Manchester and University Hospital of South Manchester NHS Foundation Trust, Manchester, United Kingdom
| |
Collapse
|
30
|
Smith D, Španěl P. On the importance of accurate quantification of individual volatile metabolites in exhaled breath. J Breath Res 2017. [PMID: 28635619 DOI: 10.1088/1752-7163/aa7ab5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
It is argued that shortcomings of certain approaches to breath analysis research based on superficial interpretation of non-quantitative data are inadvertently inhibiting the progression of non-invasive breath analysis into clinical practice. The objective of this perspective is to suggest more clinically profitable approaches to breath research. Thus, following a discourse on the challenges and expectations in breath research, a brief indication is given of the analytical techniques currently used for the analysis of very humid exhaled breath. The seminal work that has been carried out using GC-MS revealed that exhaled breath comprises large numbers of trace volatile organic compounds, VOCs. Unfortunately, analysis of these valuable GC-MS data is mostly performed using chemometrics to distinguish the VOC content of breath samples collected from patients and healthy controls, and reliable quantification of the VOCs is rarely deemed necessary. This limited approach ignores the requirements of clinically acceptable biomarkers and misses the opportunity to identify relationships between the concentrations of individual VOCs and certain related physiological or metabolic parameters. Therefore, a plea is made for more effort to be directed towards the positive identification and accurate quantification of individual VOCs in exhaled breath, which are more physiologically meaningful as best exemplified by the quantification of breath nitric oxide, NO. Support for the value of individual VOC quantification is illustrated by the SIFT-MS studies of breath hydrogen cyanide, HCN, a biomarker of Pseudomonas aeruginosa infection, breath acetic acid as an indicator of airways acidification in cystic fibrosis patients, and n-pentane as a breath biomarker of inflammation in idiopathic bowel disease patients. These single VOCs could be used as non-invasive monitors of the efficacy of therapeutic intervention. The increase of breath methanol following the ingestion of a known amount of the sweetener aspartame impressively shows that accurate breath analysis is a reliable indicator of blood concentrations. However, using individual VOCs for specific disease diagnosis does have its problems and it is, perhaps, more appropriate to see their concentrations as proxy markers of general underlying physiological change. We dedicate this perspective to Lars Gustafsson for his seminal work on breath research and especially for his pioneering work on nitric oxide measurements in exhaled breath in asthma, which best shows the utility and value of the quantification of individual breath biomarkers on which this perspective focuses.
Collapse
Affiliation(s)
- David Smith
- Trans Spectra Limited, 9 The Elms, Newcastle under Lyme, United Kingdom
| | | |
Collapse
|
31
|
Ahmed WM, Lawal O, Nijsen TM, Goodacre R, Fowler SJ. Exhaled Volatile Organic Compounds of Infection: A Systematic Review. ACS Infect Dis 2017; 3:695-710. [PMID: 28870074 DOI: 10.1021/acsinfecdis.7b00088] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
With heightened global concern of microbial drug resistance, advanced methods for early and accurate diagnosis of infection are urgently needed. Analysis of exhaled breath volatile organic compounds (VOCs) toward detecting microbial infection potentially allows a highly informative and noninvasive alternative to current genomics and culture-based methods. We performed a systematic review of research literature reporting human and animal exhaled breath VOCs related to microbial infections. In this Review, we find that a wide range of breath sampling and analysis methods are used by researchers, which significantly affects interstudy method comparability. Studies either perform targeted analysis of known VOCs relating to an infection, or non-targeted analysis to obtain a global profile of volatile metabolites. In general, the field of breath analysis is still relatively immature, and there is much to be understood about the metabolic production of breath VOCs, particularly in a host where both commensal microflora as well as pathogenic microorganisms may be manifested in the airways. We anticipate that measures to standardize high throughput sampling and analysis, together with an increase in large scale collaborative international trials, will bring routine breath VOC analysis to improve diagnosis of infection closer to reality.
Collapse
Affiliation(s)
- Waqar M. Ahmed
- Division of Infection, Immunity & Respiratory Medicine, School of Biological Sciences, The University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
- Philips
Research, Royal Philips B.V., High Tech Campus 34, Eindhoven, 5656 AE, The Netherlands
| | - Oluwasola Lawal
- Division of Infection, Immunity & Respiratory Medicine, School of Biological Sciences, The University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
- Philips
Research, Royal Philips B.V., High Tech Campus 34, Eindhoven, 5656 AE, The Netherlands
| | - Tamara M. Nijsen
- Philips
Research, Royal Philips B.V., High Tech Campus 34, Eindhoven, 5656 AE, The Netherlands
| | - Royston Goodacre
- School of
Chemistry, Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
| | - Stephen J. Fowler
- Division of Infection, Immunity & Respiratory Medicine, School of Biological Sciences, The University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
- Manchester
Academic Health Science Centre, University Hospital of South Manchester NHS Foundation Trust, Southmoor Road, Wythenshawe, Manchester, M23 9LT, United Kingdom
| |
Collapse
|
32
|
Ashrafi M, Bates M, Baguneid M, Alonso-Rasgado T, Rautemaa-Richardson R, Bayat A. Volatile organic compound detection as a potential means of diagnosing cutaneous wound infections. Wound Repair Regen 2017; 25:574-590. [DOI: 10.1111/wrr.12563] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 06/22/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Mohammed Ashrafi
- Plastic and Reconstructive Surgery Research; Institute of Inflammation and Repair, Centre for Dermatological Research, University of Manchester, Manchester; United Kingdom
- University Hospital South Manchester NHS Foundation Trust, Wythenshawe Hospital; Manchester United Kingdom
- Bioengineering Group, School of Materials; University of Manchester, Manchester; United Kingdom
| | | | - Mohamed Baguneid
- University Hospital South Manchester NHS Foundation Trust, Wythenshawe Hospital; Manchester United Kingdom
| | - Teresa Alonso-Rasgado
- Bioengineering Group, School of Materials; University of Manchester, Manchester; United Kingdom
| | - Riina Rautemaa-Richardson
- University Hospital South Manchester NHS Foundation Trust, Wythenshawe Hospital; Manchester United Kingdom
- Institute of Inflammation and Repair, Manchester Academic Health Science Centre, University of Manchester; Manchester United Kingdom
| | - Ardeshir Bayat
- Plastic and Reconstructive Surgery Research; Institute of Inflammation and Repair, Centre for Dermatological Research, University of Manchester, Manchester; United Kingdom
- Bioengineering Group, School of Materials; University of Manchester, Manchester; United Kingdom
| |
Collapse
|
33
|
Slade EA, Thorn RMS, Lovering AM, Young A, Reynolds DM. In vitro discrimination of wound-associated bacteria by volatile compound profiling using selected ion flow tube-mass spectrometry. J Appl Microbiol 2017; 123:233-245. [PMID: 28423217 DOI: 10.1111/jam.13473] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Revised: 03/31/2017] [Accepted: 04/12/2017] [Indexed: 01/31/2023]
Abstract
AIMS To determine if bacterial species responsible for clinically relevant wound infection produce specific volatile profiles that would allow their speciation. METHODS AND RESULTS Selected ion flow tube-mass spectrometry (SIFT-MS) in full mass scan mode was used to analyse headspace gases produced by wound-associated bacteria grown in vitro, so as to enable identification of bacterial volatile product ion profiles in the resulting mass spectra. Applying multivariate statistical analysis (hierarchical clustering and principal component analysis) to the resultant mass spectra enabled clear speciation. Moreover, bacterial volatile product ions could be detected from artificially contaminated wound dressing material, although the pattern of product ions detected was influenced by culture conditions. CONCLUSIONS Using selected product ions from the SIFT-MS mass spectra it is possible to discriminate wound-associated bacterial species grown under specific in vitro culture conditions. SIGNIFICANCE AND IMPACT OF THE STUDY The results of this study have shown that wound-associated bacteria can be discriminated using volatile analysis in vitro and that bacterial volatiles can be detected from wound dressing material. This indicates that volatile analysis of wounds or dressing material to identify infecting microbes has potential and warrants further study.
Collapse
Affiliation(s)
- E A Slade
- Faculty of Health and Applied Sciences, University of the West of England Centre for Research in Biosciences, University of the West of England, Bristol, UK
| | - R M S Thorn
- Faculty of Health and Applied Sciences, University of the West of England Centre for Research in Biosciences, University of the West of England, Bristol, UK
| | - A M Lovering
- Antimicrobial Reference Laboratory Southmead Hospital, Westbury-on-Trym, Bristol, UK
| | - A Young
- The Scar Free Foundation Centre for Children's Burns Research, Bristol Royal Hospital for Children, Bristol, UK
| | - D M Reynolds
- Faculty of Health and Applied Sciences, University of the West of England Centre for Research in Biosciences, University of the West of England, Bristol, UK
| |
Collapse
|
34
|
Neerincx AH, Linders YA, Vermeulen L, Belderbos RA, Mandon J, van Mastrigt E, Pijnenburg MW, van Ingen J, Mouton JW, Kluijtmans LA, Wevers R, Harren FJ, Cristescu SM, Merkus PJ. Hydrogen cyanide emission in the lung by Staphylococcus aureus. Eur Respir J 2016; 48:577-9. [DOI: 10.1183/13993003.02093-2015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 04/25/2016] [Indexed: 11/05/2022]
|
35
|
Status of selected ion flow tube MS: accomplishments and challenges in breath analysis and other areas. Bioanalysis 2016; 8:1183-201. [PMID: 27212131 DOI: 10.4155/bio-2016-0038] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
This article reflects our observations of recent accomplishments made using selected ion flow tube MS (SIFT-MS). Only brief descriptions are given of SIFT-MS as an analytical method and of the recent extensions to the underpinning analytical ion chemistry required to realize more robust analyses. The challenge of breath analysis is given special attention because, when achieved, it renders analysis of other air media relatively straightforward. Brief overviews are given of recent SIFT-MS breath analyses by leading research groups, noting the desirability of detection and quantification of single volatile biomarkers rather than reliance on statistical analyses, if breath analysis is to be accepted into clinical practice. A 'strengths, weaknesses, opportunities and threats' analysis of SIFT-MS is made, which should help to increase its utility for trace gas analysis.
Collapse
|
36
|
Smith D, Sovová K, Dryahina K, Doušová T, Dřevínek P, Španěl P. Breath concentration of acetic acid vapour is elevated in patients with cystic fibrosis. J Breath Res 2016; 10:021002. [DOI: 10.1088/1752-7155/10/2/021002] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
37
|
Lund-Palau H, Turnbull AR, Bush A, Bardin E, Cameron L, Soren O, Wierre-Gore N, Alton EWFW, Bundy JG, Connett G, Faust SN, Filloux A, Freemont P, Jones A, Khoo V, Morales S, Murphy R, Pabary R, Simbo A, Schelenz S, Takats Z, Webb J, Williams HD, Davies JC. Pseudomonas aeruginosa infection in cystic fibrosis: pathophysiological mechanisms and therapeutic approaches. Expert Rev Respir Med 2016; 10:685-97. [PMID: 27175979 DOI: 10.1080/17476348.2016.1177460] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Pseudomonas aeruginosa is a remarkably versatile environmental bacterium with an extraordinary capacity to infect the cystic fibrosis (CF) lung. Infection with P. aeruginosa occurs early, and although eradication can be achieved following early detection, chronic infection occurs in over 60% of adults with CF. Chronic infection is associated with accelerated disease progression and increased mortality. Extensive research has revealed complex mechanisms by which P. aeruginosa adapts to and persists within the CF airway. Yet knowledge gaps remain, and prevention and treatment strategies are limited by the lack of sensitive detection methods and by a narrow armoury of antibiotics. Further developments in this field are urgently needed in order to improve morbidity and mortality in people with CF. Here, we summarize current knowledge of pathophysiological mechanisms underlying P. aeruginosa infection in CF. Established treatments are discussed, and an overview is offered of novel detection methods and therapeutic strategies in development.
Collapse
Affiliation(s)
- Helena Lund-Palau
- a Department of Gene Therapy, National Heart and Lung Institute , Imperial College , London , UK
| | - Andrew R Turnbull
- a Department of Gene Therapy, National Heart and Lung Institute , Imperial College , London , UK.,b Department of Respiratory Paediatrics , Royal Brompton and Harefield NHS Foundation Trust , London , UK
| | - Andrew Bush
- b Department of Respiratory Paediatrics , Royal Brompton and Harefield NHS Foundation Trust , London , UK.,c National Heart and Lung Institute, Imperial College , London , UK
| | - Emmanuelle Bardin
- d Biomolecular Medicine, Department of Surgery and Cancer, Faculty of Medicine , Imperial College , London , UK
| | - Loren Cameron
- e Department of Medicine , Imperial College , London , UK
| | - Odel Soren
- f Biological Sciences, Institute for Life Sciences , University of Southampton , Southampton , UK
| | | | - Eric W F W Alton
- a Department of Gene Therapy, National Heart and Lung Institute , Imperial College , London , UK
| | - Jacob G Bundy
- c National Heart and Lung Institute, Imperial College , London , UK
| | - Gary Connett
- g NIHR Wellcome Trust Clinical Research Facility, University Hospital Southampton NHS Foundation Trust , University of Southampton , Southampton , UK
| | - Saul N Faust
- g NIHR Wellcome Trust Clinical Research Facility, University Hospital Southampton NHS Foundation Trust , University of Southampton , Southampton , UK
| | - Alain Filloux
- h Department of Life Sciences , Imperial College , London , UK
| | - Paul Freemont
- e Department of Medicine , Imperial College , London , UK
| | - Andy Jones
- i Department of Respiratory Medicine , Royal Brompton Hospital , London , UK
| | - Valerie Khoo
- c National Heart and Lung Institute, Imperial College , London , UK
| | | | - Ronan Murphy
- a Department of Gene Therapy, National Heart and Lung Institute , Imperial College , London , UK
| | - Rishi Pabary
- a Department of Gene Therapy, National Heart and Lung Institute , Imperial College , London , UK
| | - Ameze Simbo
- a Department of Gene Therapy, National Heart and Lung Institute , Imperial College , London , UK
| | - Silke Schelenz
- k Department of Microbiology , Royal Brompton Hospital , London UK
| | - Zoltan Takats
- d Biomolecular Medicine, Department of Surgery and Cancer, Faculty of Medicine , Imperial College , London , UK
| | - Jeremy Webb
- k Department of Microbiology , Royal Brompton Hospital , London UK
| | - Huw D Williams
- g NIHR Wellcome Trust Clinical Research Facility, University Hospital Southampton NHS Foundation Trust , University of Southampton , Southampton , UK
| | - Jane C Davies
- a Department of Gene Therapy, National Heart and Lung Institute , Imperial College , London , UK.,b Department of Respiratory Paediatrics , Royal Brompton and Harefield NHS Foundation Trust , London , UK
| |
Collapse
|
38
|
Rees CA, Smolinska A, Hill JE. The volatile metabolome of
Klebsiella pneumoniae
in human blood. J Breath Res 2016; 10:027101. [DOI: 10.1088/1752-7155/10/2/027101] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
39
|
Chen W, Roslund K, Fogarty CL, Pussinen PJ, Halonen L, Groop PH, Metsälä M, Lehto M. Detection of hydrogen cyanide from oral anaerobes by cavity ring down spectroscopy. Sci Rep 2016; 6:22577. [PMID: 26940198 PMCID: PMC4778072 DOI: 10.1038/srep22577] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 02/17/2016] [Indexed: 02/07/2023] Open
Abstract
Hydrogen cyanide (HCN) has been recognized as a potential biomarker for non-invasive diagnosis of Pseudomonas aeruginosa infection in the lung. However, the oral cavity is a dominant production site for exhaled HCN and this contribution can mask the HCN generated in the lung. It is thus important to understand the sources of HCN production in the oral cavity. By screening of oral anaerobes for HCN production, we observed that the genus of Porphyromonas, Prevotella and Fusobacterium generated low levels of HCN in vitro. This is the first study to show that oral anaerobes are capable of producing HCN in vitro. Further investigations were conducted on the species of P. gingivalis and we successfully detected HCN production (0.9-10.9 ppb) in the headspace of three P. gingivalis reference strains (ATCC 33277, W50 and OMG 434) and one clinical isolate. From P. gingivalis ATCC 33277 and W50, a strong correlation between HCN and CO2 concentrations (rs = 0.89, p < 0.001) was observed, indicating that the HCN production of P. gingivalis might be connected with the bacterial metabolic activity. These results indicate that our setup could be widely applied to the screening of in vitro HCN production by both aerobic and anaerobic bacteria.
Collapse
Affiliation(s)
- Wen Chen
- Department of Chemistry, University of Helsinki, Finland
| | - Kajsa Roslund
- Department of Chemistry, University of Helsinki, Finland.,Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland.,Abdominal Center Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Research Programs Unit, Diabetes and Obesity, University of Helsinki, Helsinki, Finland
| | - Christopher L Fogarty
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland.,Abdominal Center Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Research Programs Unit, Diabetes and Obesity, University of Helsinki, Helsinki, Finland
| | - Pirkko J Pussinen
- Oral and Maxillofacial Diseases, University of Helsinki and Helsinki University Hospital, Finland
| | - Lauri Halonen
- Department of Chemistry, University of Helsinki, Finland
| | - Per-Henrik Groop
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland.,Abdominal Center Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Research Programs Unit, Diabetes and Obesity, University of Helsinki, Helsinki, Finland
| | - Markus Metsälä
- Department of Chemistry, University of Helsinki, Finland
| | - Markku Lehto
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland.,Abdominal Center Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Research Programs Unit, Diabetes and Obesity, University of Helsinki, Helsinki, Finland
| |
Collapse
|
40
|
Gilchrist FJ, Belcher J, Jones AM, Smith D, Smyth AR, Southern KW, Španěl P, Webb AK, Lenney W. Exhaled breath hydrogen cyanide as a marker of early Pseudomonas aeruginosa infection in children with cystic fibrosis. ERJ Open Res 2015; 1:00044-2015. [PMID: 27730156 PMCID: PMC5005121 DOI: 10.1183/23120541.00044-2015] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 10/02/2015] [Indexed: 11/23/2022] Open
Abstract
Hydrogen cyanide is readily detected in the headspace above Pseudomonas aeruginosa cultures and in the breath of cystic fibrosis (CF) patients with chronic (P. aeruginosa) infection. We investigated if exhaled breath HCN is an early marker of P. aeruginosa infection. 233 children with CF who were free from P. aeruginosa infection were followed for 2 years. Their median (interquartile range) age was 8.0 (5.0-12.2) years. At each study visit, an exhaled breath sample was collected for hydrogen cyanide analysis. In total, 2055 breath samples were analysed. At the end of the study, the hydrogen cyanide concentrations were compared to the results of routine microbiology surveillance. P. aeruginosa was isolated from 71 children during the study with an incidence (95% CI) of 0.19 (0.15-0.23) cases per patient-year. Using a random-effects logistic model, the estimated odds ratio (95% CI) was 3.1 (2.6-3.6), which showed that for a 1- ppbv increase in exhaled breath hydrogen cyanide, we expected a 212% increase in the odds of P. aeruginosa infection. The sensitivity and specificity were estimated at 33% and 99%, respectively. Exhaled breath hydrogen cyanide is a specific biomarker of new P. aeruginosa infection in children with CF. Its low sensitivity means that at present, hydrogen cyanide cannot be used as a screening test for this infection.
Collapse
Affiliation(s)
- Francis J. Gilchrist
- Academic Department of Child Health, University Hospital of North Staffordshire, Stoke on Trent, UK
- Institute of Science and Technology in Medicine, Keele University, Keele, UK
| | - John Belcher
- School of Computing and Mathematics, Keele University, Keele, UK
| | - Andrew M. Jones
- Manchester Adult Cystic Fibrosis Centre, University Hospital of South Manchester, Manchester, UK
| | - David Smith
- Institute of Science and Technology in Medicine, Keele University, Keele, UK
| | - Alan R. Smyth
- Division of Child Health, Obstetrics and Gynaecology, School of Medicine, University of Nottingham, UK
| | - Kevin W. Southern
- Institute of Child Health, Alder Hey Children's Hospital, Liverpool, UK
| | - Patrik Španěl
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - A. Kevin Webb
- Manchester Adult Cystic Fibrosis Centre, University Hospital of South Manchester, Manchester, UK
| | - Warren Lenney
- Academic Department of Child Health, University Hospital of North Staffordshire, Stoke on Trent, UK
- Institute of Science and Technology in Medicine, Keele University, Keele, UK
| |
Collapse
|
41
|
Ramsey KA, Schultz A, Stick SM. Biomarkers in Paediatric Cystic Fibrosis Lung Disease. Paediatr Respir Rev 2015; 16:213-8. [PMID: 26051089 DOI: 10.1016/j.prrv.2015.05.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 05/06/2015] [Indexed: 01/15/2023]
Abstract
Biomarkers in cystic fibrosis are used i. for the measurement of cystic fibrosis transmembrane regulator function in order to diagnose cystic fibrosis, and ii. to assess aspects of lung disease severity (e.g. inflammation, infection). Effective biomarkers can aid disease monitoring and contribute to the development of new therapies. The tests of cystic fibrosis transmembrane regulator function each have unique strengths and weaknesses, and biomarkers of inflammation, infection and tissue destruction have the potential to enhance the management of cystic fibrosis through the early detection of disease processes. The development of biomarkers of cystic fibrosis lung disease, in particular airway inflammation and infection, is influenced by the challenges of obtaining relevant samples from infants and children for whom early detection and treatment of disease might have the greatest long term benefits.
Collapse
Affiliation(s)
- Kathryn A Ramsey
- Telethon Kids Institute, University of Western Australia, Australia; Cystic Fibrosis/Pulmonary Research and Treatment Center, University of North Carolina at Chapel Hill, North Carolina, USA
| | - André Schultz
- Telethon Kids Institute, University of Western Australia, Australia; Princess Margaret Hospital for Children, Western Australia, Australia; School of Paediatric and Child Health, University of Western Australia, Australia
| | - Stephen M Stick
- Telethon Kids Institute, University of Western Australia, Australia; Princess Margaret Hospital for Children, Western Australia, Australia; School of Paediatric and Child Health, University of Western Australia, Australia.
| |
Collapse
|
42
|
Gianella M, Ritchie GAD. Cavity-Enhanced Near-Infrared Laser Absorption Spectrometer for the Measurement of Acetonitrile in Breath. Anal Chem 2015; 87:6881-9. [PMID: 26057704 DOI: 10.1021/acs.analchem.5b01341] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Elevated concentrations of acetonitrile have been found in the exhaled breath of patients with cystic fibrosis1 and may indicate the severity of their condition or the presence of an accompanying bacterial infection of the airways. There is therefore interest in detecting acetonitrile in exhaled breath. For this purpose, a cavity-enhanced laser absorption spectrometer (λ = 1.65 μm) with a preconcentration stage was built and is described here. The spectrometer has a limit of detection of 72 ppbv and 114 ppbv of acetonitrile in nitrogen and breath, respectively, with a measurement duration of just under 5 min. The preconcentration stage, which employs a carbon molecular sieve and an adsorption/thermal desorption cycle, can increase the acetonitrile concentration by up to a factor 93, thus, lowering the overall limit of detection to approximately 1 ppbv. The suitability of the system for acetonitrile measurements in breath is demonstrated with breath samples taken from the authors, which yielded acetonitrile concentrations of 23 ± 3 ppbv and 29 ± 3 ppbv, respectively.
Collapse
Affiliation(s)
- Michele Gianella
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, OX1 3QZ, United Kingdom
| | - Grant A D Ritchie
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, OX1 3QZ, United Kingdom
| |
Collapse
|
43
|
Smith D, Spanel P. Pitfalls in the analysis of volatile breath biomarkers: suggested solutions and SIFT-MS quantification of single metabolites. J Breath Res 2015; 9:022001. [PMID: 25830501 DOI: 10.1088/1752-7155/9/2/022001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The experimental challenges presented by the analysis of trace volatile organic compounds (VOCs) in exhaled breath with the objective of identifying reliable biomarkers are brought into focus. It is stressed that positive identification and accurate quantification of the VOCs are imperative if they are to be considered as discreet biomarkers. Breath sampling procedures are discussed and it is suggested that for accurate quantification on-line real time sampling and analysis is desirable. Whilst recognizing such real time analysis is not always possible and sample collection is often required, objective recognition of the pitfalls involved in this is essential. It is also emphasized that mouth-exhaled breath is always contaminated to some degree by orally generated compounds and so, when possible, analysis of nose-exhaled breath should be performed. Some difficulties in breath analysis are mitigated by the choice of analytical instrumentation used, but no single instrument can provide solutions to all the analytical challenges. Analysis and interpretation of breath analysis data, however acquired, needs to be treated circumspectly. In particular, the excessive use of statistics to treat imperfect mass spectrometry/mobility spectra should be avoided, since it can result in unjustifiable conclusions. It is should be understood that recognition of combinations of VOCs in breath that, for example, apparently describe particular cancer states, will not be taken seriously until they are replicated in other laboratories and clinics. Finally, the inhibiting notion that single biomarkers of infection and disease will not be identified and utilized clinically should be dispelled by the exemplary and widely used single biomarkers NO and H2 and now, as indicated by recent selected ion flow tube mass spectroscopy (SIFT-MS) results, triatomic hydrogen cyanide and perhaps pentane and acetic acid. Hopefully, these discoveries will provide encouragement to research workers to be more open-minded on this important and desirable issue.
Collapse
Affiliation(s)
- David Smith
- Institute for Science and Technology in Medicine, School of Medicine, Keele University, Thornburrow Drive, Hartshill, Stoke-on-Trent ST4 7QB, UK
| | | |
Collapse
|
44
|
Neerincx AH, Mandon J, van Ingen J, Arslanov DD, Mouton JW, Harren FJM, Merkus PJFM, Cristescu SM. Real-time monitoring of hydrogen cyanide (HCN) and ammonia (NH
3
) emitted by
Pseudomonas aeruginosa. J Breath Res 2015; 9:027102. [DOI: 10.1088/1752-7155/9/2/027102] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
45
|
Randviir EP, Banks CE. The latest developments in quantifying cyanide and hydrogen cyanide. Trends Analyt Chem 2015. [DOI: 10.1016/j.trac.2014.08.009] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
46
|
Smith D, Španěl P. SIFT-MS and FA-MS methods for ambient gas phase analysis: developments and applications in the UK. Analyst 2015; 140:2573-91. [DOI: 10.1039/c4an02049a] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The origins of SIFT created to study interstellar chemistry and SIFT-MS developed for ambient gas and exhaled breath analysis and the UK centres in which these techniques are being exploited.
Collapse
Affiliation(s)
- David Smith
- Institute for Science and Technology in Medicine – Keele University
- Guy Hilton Research Centre
- Stoke-on-Trent
- UK
| | - Patrik Španěl
- Institute for Science and Technology in Medicine – Keele University
- Guy Hilton Research Centre
- Stoke-on-Trent
- UK
- J. Heyrovský Institute of Physical Chemistry
| |
Collapse
|
47
|
Joensen O, Paff T, Haarman EG, Skovgaard IM, Jensen PØ, Bjarnsholt T, Nielsen KG. Exhaled breath analysis using electronic nose in cystic fibrosis and primary ciliary dyskinesia patients with chronic pulmonary infections. PLoS One 2014; 9:e115584. [PMID: 25542036 PMCID: PMC4277311 DOI: 10.1371/journal.pone.0115584] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 12/01/2014] [Indexed: 12/23/2022] Open
Abstract
The current diagnostic work-up and monitoring of pulmonary infections may be perceived as invasive, is time consuming and expensive. In this explorative study, we investigated whether or not a non-invasive exhaled breath analysis using an electronic nose would discriminate between cystic fibrosis (CF) and primary ciliary dyskinesia (PCD) with or without various well characterized chronic pulmonary infections. We recruited 64 patients with CF and 21 with PCD based on known chronic infection status. 21 healthy volunteers served as controls. An electronic nose was employed to analyze exhaled breath samples. Principal component reduction and discriminant analysis were used to construct internally cross-validated receiver operator characteristic (ROC) curves. Breath profiles of CF and PCD patients differed significantly from healthy controls p = 0.001 and p = 0.005, respectively. Profiles of CF patients having a chronic P. aeruginosa infection differed significantly from to non-chronically infected CF patients p = 0.044. We confirmed the previously established discriminative power of exhaled breath analysis in separation between healthy subjects and patients with CF or PCD. Furthermore, this method significantly discriminates CF patients suffering from a chronic pulmonary P. aeruginosa (PA) infection from CF patients without a chronic pulmonary infection. Further studies are needed for verification and to investigate the role of electronic nose technology in the very early diagnostic workup of pulmonary infections before the establishment of a chronic infection.
Collapse
Affiliation(s)
- Odin Joensen
- Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Tamara Paff
- Department of Pulmonary Diseases, VU University Medical Center Amsterdam, Amsterdam, The Netherlands
| | - Eric G. Haarman
- Department of Pulmonary Diseases, VU University Medical Center Amsterdam, Amsterdam, The Netherlands
| | - Ib M. Skovgaard
- Department of Mathematical Sciences at Copenhagen University, Copenhagen, Denmark
| | - Peter Ø. Jensen
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
| | - Thomas Bjarnsholt
- Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
| | - Kim G. Nielsen
- Danish Paediatric Pulmonary Service, Rigshospitalet, Copenhagen, Denmark
- * E-mail:
| |
Collapse
|
48
|
Zdor R. Bacterial cyanogenesis: impact on biotic interactions. J Appl Microbiol 2014; 118:267-74. [DOI: 10.1111/jam.12697] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 10/06/2014] [Accepted: 11/14/2014] [Indexed: 11/26/2022]
Affiliation(s)
- R.E. Zdor
- Department of Biology; Andrews University; Berrien Springs MI USA
| |
Collapse
|
49
|
Chen W, Metsälä M, Vaittinen O, Halonen L. Hydrogen cyanide in the headspace of oral fluid and in mouth-exhaled breath. J Breath Res 2014; 8:027108. [DOI: 10.1088/1752-7155/8/2/027108] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
50
|
Smith D, Španěl P, Herbig J, Beauchamp J. Mass spectrometry for real-time quantitative breath analysis. J Breath Res 2014; 8:027101. [PMID: 24682047 DOI: 10.1088/1752-7155/8/2/027101] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|