1
|
Sood Y, Singh K, Mudila H, Lokhande P, Singh L, Kumar D, Kumar A, Mubarak NM, Dehghani MH. Insights into properties, synthesis and emerging applications of polypyrrole-based composites, and future prospective: A review. Heliyon 2024; 10:e33643. [PMID: 39027581 PMCID: PMC11255519 DOI: 10.1016/j.heliyon.2024.e33643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/20/2024] Open
Abstract
Recent advancements in polymer science and engineering underscore the importance of creating sophisticated soft materials characterized by well-defined structures and adaptable properties to meet the demands of emerging applications. The primary objective of polymeric composite technology is to enhance the functional utility of materials for high-end purposes. Both the inherent qualities of the materials and the intricacies of the synthesis process play pivotal roles in advancing their properties and expanding their potential applications. Polypyrrole (PPy)-based composites, owing to their distinctive properties, hold great appeal for a variety of applications. Despite the limitations of PPy in its pure form, these constraints can be effectively overcome through hybridization with other materials. This comprehensive review thoroughly explores the existing literature on PPy and PPy-based composites, providing in-depth insights into their synthesis, properties, and applications. Special attention is given to the advantages of intrinsically conducting polymers (ICPs) and PPy in comparison to other ICPs. The impact of doping anions, additives, and oxidants on the properties of PPy is also thoroughly examined. By delving into these aspects, this overview aims to inspire researchers to delve into the realm of PPy-based composites, encouraging them to explore new avenues for flexible technology applications.
Collapse
Affiliation(s)
- Yuvika Sood
- Department of Chemistry, School of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Kartika Singh
- Department of Chemistry, School of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Harish Mudila
- Department of Chemistry, School of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - P.E. Lokhande
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad Tecnológica Metropolitana, Av. José Pedro Alessandri 1242, Santiago, 7810003, Chile
| | - Lakhveer Singh
- Department of Chemistry, Sardar Patel University, Mandi, Himachal Pradesh, 175001, India
| | - Deepak Kumar
- Department of Chemistry, School of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Anil Kumar
- Department of Chemistry, School of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Nabisab Mujawar Mubarak
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan BE1410, Brunei Darussalam
- Department of Biosciences, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Mohammad Hadi Dehghani
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Center for Solid Waste Research, Institute for Environmental Research, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Satheesh A, Navaneeth P, Suneesh PV, C S, Kandasamy E. Synthesis, characterization and study of electrochemical applicability of novel asymmetrically substituted 1,3-dialkyl-1,2,3-benzotriazolium salts for supercapacitor fabrication. RSC Adv 2023; 13:14737-14746. [PMID: 37197187 PMCID: PMC10184001 DOI: 10.1039/d3ra01958f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 04/27/2023] [Indexed: 05/19/2023] Open
Abstract
Here we report the successful synthesis, fabrication, and testing of novel asymmetrically substituted 1,3-dialkyl-1,2,3-benzotriazolium-based ionic liquids. Their applicability in energy storage is tested as gel polymer electrolytes (ILGPE) immobilized in poly(vinylidene fluoride-co-hexa-fluoropropylene) (PVDF-HFP) copolymer as a solid-state electrolyte in electric double layer capacitors (EDLC). Asymmetrically substituted 1,3-dialkyl-1,2,3-benzotriazolium salts of tetrafluoroborates (BF4-) and hexafluorophosphates (PF6-) are synthesized by anion exchange metathesis reaction using 1,3-dialkyl-1,2,3-benzotriazolium bromide salts. N-Alkylation followed by quaternization reaction results in dialkyl substitution on 1,2,3-benzotriazole. The synthesized ionic liquids were characterized with 1H-NMR, 13C-NMR, and FTIR spectroscopy. Their electrochemical and thermal properties were studied using cyclic voltammetry, impedance spectroscopy, thermogravimetric analysis, and differential scanning calorimetry. The 4.0 V potential windows obtained for asymmetrically substituted 1,3-dialkyl-1,2,3-benzotriazolium salts of BF4- and PF6- are promising electrolytes for energy storage. ILGPE tested with symmetrical EDLC with a wide operating window from 0-6.0 V gave an effective specific capacitance of 8.85 F g-1 at a lower scan rate of 2 mV s-1, the energy density of 2.9 μW h and 11.2 mW g-1 power density. The fabricated supercapacitor was employed for lighting red LED (2 V, 20 mA).
Collapse
Affiliation(s)
- Anjitha Satheesh
- Department of Sciences, Amrita School of Physical Sciences Coimbatore, Amrita Vishwa Vidyapeetham 641112 India
| | - Punnakkal Navaneeth
- Department of Sciences, Amrita School of Physical Sciences Coimbatore, Amrita Vishwa Vidyapeetham 641112 India
- Amrita Biosensor Research Lab, Amrita School of Physical Sciences Coimbatore, Amrita Vishwa Vidyapeetham 641112 India
| | - Punathil Vasu Suneesh
- Department of Sciences, Amrita School of Physical Sciences Coimbatore, Amrita Vishwa Vidyapeetham 641112 India
- Amrita Biosensor Research Lab, Amrita School of Physical Sciences Coimbatore, Amrita Vishwa Vidyapeetham 641112 India
| | - Sarathchandran C
- Department of Sciences, Amrita School of Engineering, Amrita Vishwa Vidyapeetham Chennai India
| | - Elango Kandasamy
- Department of Sciences, Amrita School of Physical Sciences Coimbatore, Amrita Vishwa Vidyapeetham 641112 India
| |
Collapse
|
3
|
Das HT, Barai P, Dutta S, Das N, Das P, Roy M, Alauddin M, Barai HR. Polymer Composites with Quantum Dots as Potential Electrode Materials for Supercapacitors Application: A Review. Polymers (Basel) 2022; 14:1053. [PMID: 35267876 PMCID: PMC8914643 DOI: 10.3390/polym14051053] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/22/2022] [Accepted: 02/25/2022] [Indexed: 02/04/2023] Open
Abstract
Owing to the nanometer size range, Quantum Dots (QDs) have exhibited unique physical and chemical properties which are favourable for different applications. Especially, due to their quantum confinement effect, excellent optoelectronic characteristics is been observed. This considerable progress has not only uplifted the singular usage of QDs, but also encouraged to prepare various hybrid materials to achieve superior efficiency by eliminating certain shortcomings. Such issues can be overcome by compositing QDs with polymers. Via employing polymer composite with QDs (PQDs) for supercapacitor applications, adequate conductivity, stability, excellent energy density, and better specific capacitance is been achieved which we have elaborately discussed in this review. Researchers have already explored various types of polymer nanocomposite with different QDs such as carbonaceous QDs, transition metal oxide/sulphide QDs etc. as electrode material for supercapacitor application. Synthesis, application outcome, benefits, and drawbacks of these are explained to portray a better understanding. From the existing studies it is clearly confirmed that with using PQDs electrical conductivity, electrochemical reactivity, and the charge accumulation on the surface have prominently been improved which effected the fabricated supercapacitor device performance. More comprehensive fundamentals and observations are explained in the current review which indicates their promising scopes in upcoming times.
Collapse
Affiliation(s)
- Himadri Tanaya Das
- Centre of Excellence for Advanced Materials and Applications, Utkal University, Bhubaneswar 751004, Odisha, India;
| | - Paritosh Barai
- Department of Biochemistry and Molecular Biology, Primeasia University, Dhaka 1213, Bangladesh;
| | - Swapnamoy Dutta
- CEITEC BUT, Brno University of Technology, Purkynova 123, 612 00 Brno, Czech Republic;
| | - Nigamananda Das
- Centre of Excellence for Advanced Materials and Applications, Utkal University, Bhubaneswar 751004, Odisha, India;
| | - Payaswini Das
- CSIR-Institute of Minerals and Materials Technology, Bhubaneswar 751013, Odisha, India;
| | - Madhusudan Roy
- Department of Computer Science and Engineering, University of Science and Technology Chittagong, Chattogram 4202, Bangladesh;
| | - Md. Alauddin
- Department of Theoretical and Computational Chemistry, University of Dhaka, Dhaka 1000, Bangladesh;
| | - Hasi Rani Barai
- Department of Mechanical Engineering, Yeungnam University, Gyeongsan 38541, Korea
| |
Collapse
|
4
|
An Overview of the Recent Developments in Carbon Quantum Dots—Promising Nanomaterials for Metal Ion Detection and (Bio)Molecule Sensing. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9060138] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The fluorescent carbon quantum dots (CQDs) represent an emerging subset of carbonaceous nanomaterials, recently becoming a powerful tool for biosensing, bioimaging, and drug and gene delivery. In general, carbon dots are defined as zero-dimensional (0D), spherical-like nanoparticles with <10 nm in size. Their unique chemical, optical, and electronic properties make CQDs versatile materials for a wide spectrum of applications, mainly for the sensing and biomedical purposes. Due to their good biocompatibility, water solubility, and relatively facile modification, these novel materials have attracted tremendous interest in recent years, which is especially important for nanotechnology and nanoscience expertise. The preparation of the biomass-derived CQDs has attracted growing interest recently due to their low-cost, renewable, and green biomass resources, presenting also the variability of possible modification for the enhancement of CQDs’ properties. This review is primarily focused on the recent developments in carbon dots and their application in the sensing of different chemical species within the last five years. Furthermore, special emphasis has been made regarding the green approaches for obtaining CQDs and nanomaterial characterization toward better understanding the mechanisms of photoluminescent behavior and sensing performance. In addition, some of the challenges and future outlooks in CQDs research have been briefly outlined.
Collapse
|
5
|
Yibowei ME, Adekoya JG, Adediran AA, Adekomaya O. Carbon-based nano-filler in polymeric composites for supercapacitor electrode materials: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:26269-26279. [PMID: 33797043 DOI: 10.1007/s11356-021-13589-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 03/17/2021] [Indexed: 06/12/2023]
Abstract
The concept of this paper was to explore the comparative advantage of polymer composite in the formation of a critical part of electrodes, separators, and electrolytes. These parts largely determine the overall performance of new evolving supercapacitors (SC) as against many other existing storage devices. Polymer materials are reputed for their low weight and life-cycle flexibility which makes supercapacitors unique in their functions. In this paper, application and classification of SCs were undertaken to take into consideration the peculiarities of polymer composite suitable for each class of SCs identified in this work. Part of the rationale of this review paper was to bridge the existing gap identified in many storage devices using salient properties inherent in light-weight materials. This paper also discussed the potential threats to SCs, which require further research works. It is expected that this paper would assist other researchers in evolving SCs devoid of low cell voltages, lower energy density, and reduction of production cost.
Collapse
Affiliation(s)
- Moses Ebiowei Yibowei
- Department of Polymer and Textile Technology, Yaba College of Technology, PMB 2011,Yaba, Lagos, Nigeria
| | - Joseph Gbolahan Adekoya
- Institute of Nano-Engineering Research, Department of Chemical, Metallurgical and Materials Engineering, Tshwane University of Technology, Pretoria, South Africa
| | - Adeolu Adesoji Adediran
- Department of Mechanical Engineering, Landmark University, Kwara State, PMB, Omu-Aran, 1001, Nigeria.
| | - Oludaisi Adekomaya
- School of Chemical and Metallurgical Engineering, Faculty of Engineering and Built Environment, University of the Witwatersrand, Johannesburg, South Africa
- Department of Mechanical Engineering, Faculty of Engineering, Olabisi Onabanjo University, Ago-Iwoye, Nigeria
| |
Collapse
|