1
|
Zhang X, Wu S, Feng T, Yan Y, Wu S, Chen Y, Wang Y, Wang Q, Hu N, Wang L. Visualized sensing of erythritol using a simple enzyme-free catechol-based hydrogel film. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:1686-1696. [PMID: 38421030 DOI: 10.1039/d3ay02131a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Based on the versatile properties of bio-derived materials, non-enzymatic assays in combination with electronic devices have attracted increasing interest. Here, we report a novel enzyme-free visualization approach for the detection of erythritol, which is a zero-calorie natural sweetener and serves as an ideal sucrose substitute for diabetics or overweight people who need sugar control. The recognition element of the electrochemical biosensor was constructed by catechol modification on a chitosan-based hydrogel film. The signal transduction was achieved by the competitive binding assay of sweeteners. The results show that 2-fluorophenylboronic acid (FPBA) can form a cyclic boronate ester with the ortho-hydroxyls of both reduced catechol and oxidized quinone, impeding the electron transfer and leading to redox signal attenuation. The addition of sweeteners caused a competitive reaction resulting in bonding between the 1,2-diols and FPBA moieties, and in the recovery of the redox signals. Importantly, the pattern of redox signal changes of catechol can be detected optically, as the oxidized quinone state is darker in color than the reduced catechol state. Using a simple cell phone imaging application, we demonstrate that erythritol can be distinguished from other sweeteners in real samples using the oxidized catechol-Chit0/agarose hydrogel film. Thus, we envision that this method could allow diabetics and people who need to control their sugar intake to detect whether the product contains only erythritol in the field or at home. In addition, this work further illustrates the potential of bio-derived materials for performing redox-based functions and enzyme-free visualization assays.
Collapse
Affiliation(s)
- Xinyue Zhang
- College of Resources and Environment Engineering, Wuhan University of Science and Technology, Wuhan 430081, China.
| | - Si Wu
- College of Resources and Environment Engineering, Wuhan University of Science and Technology, Wuhan 430081, China.
- Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Tao Feng
- College of Resources and Environment Engineering, Wuhan University of Science and Technology, Wuhan 430081, China.
- Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Yuanhao Yan
- College of Resources and Environment Engineering, Wuhan University of Science and Technology, Wuhan 430081, China.
| | - Shijing Wu
- College of Resources and Environment Engineering, Wuhan University of Science and Technology, Wuhan 430081, China.
| | - Yinyu Chen
- College of Resources and Environment Engineering, Wuhan University of Science and Technology, Wuhan 430081, China.
| | - Yu Wang
- College of Resources and Environment Engineering, Wuhan University of Science and Technology, Wuhan 430081, China.
| | - Qingmiao Wang
- College of Resources and Environment Engineering, Wuhan University of Science and Technology, Wuhan 430081, China.
| | - Ning Hu
- College of Resources and Environment Engineering, Wuhan University of Science and Technology, Wuhan 430081, China.
| | - Li Wang
- College of Resources and Environment Engineering, Wuhan University of Science and Technology, Wuhan 430081, China.
| |
Collapse
|
2
|
Atkinson JT, Chavez MS, Niman CM, El-Naggar MY. Living electronics: A catalogue of engineered living electronic components. Microb Biotechnol 2023; 16:507-533. [PMID: 36519191 PMCID: PMC9948233 DOI: 10.1111/1751-7915.14171] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 09/26/2022] [Accepted: 11/01/2022] [Indexed: 12/23/2022] Open
Abstract
Biology leverages a range of electrical phenomena to extract and store energy, control molecular reactions and enable multicellular communication. Microbes, in particular, have evolved genetically encoded machinery enabling them to utilize the abundant redox-active molecules and minerals available on Earth, which in turn drive global-scale biogeochemical cycles. Recently, the microbial machinery enabling these redox reactions have been leveraged for interfacing cells and biomolecules with electrical circuits for biotechnological applications. Synthetic biology is allowing for the use of these machinery as components of engineered living materials with tuneable electrical properties. Herein, we review the state of such living electronic components including wires, capacitors, transistors, diodes, optoelectronic components, spin filters, sensors, logic processors, bioactuators, information storage media and methods for assembling these components into living electronic circuits.
Collapse
Affiliation(s)
- Joshua T Atkinson
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California, USA
| | - Marko S Chavez
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California, USA
| | - Christina M Niman
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California, USA
| | - Mohamed Y El-Naggar
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California, USA.,Department of Biological Sciences, University of Southern California, Los Angeles, California, USA.,Department of Chemistry, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
3
|
Abd El-Hack ME, El-Saadony MT, Shafi ME, Zabermawi NM, Arif M, Batiha GE, Khafaga AF, Abd El-Hakim YM, Al-Sagheer AA. Antimicrobial and antioxidant properties of chitosan and its derivatives and their applications: A review. Int J Biol Macromol 2020; 164:2726-2744. [DOI: 10.1016/j.ijbiomac.2020.08.153] [Citation(s) in RCA: 173] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/11/2020] [Accepted: 08/19/2020] [Indexed: 12/11/2022]
|
4
|
Liu Y, McGrath JS, Moore JH, Kolling GL, Papin JA, Swami NS. Electrofabricated biomaterial-based capacitor on nanoporous gold for enhanced redox amplification. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.06.127] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
5
|
Wu S, Kim E, Li J, Bentley WE, Shi XW, Payne GF. Catechol-Based Capacitor for Redox-Linked Bioelectronics. ACS APPLIED ELECTRONIC MATERIALS 2019; 1:1337-1347. [PMID: 32090203 PMCID: PMC7034937 DOI: 10.1021/acsaelm.9b00272] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
A common bioelectronics goal is to enable communication between biology and electronics, and success is critically dependent on the communication modality. When a biorelevant modality aligns with instrumentation capabilities, remarkable successes have been observed (e.g., electrodes provide a powerful tool to observe and actuate biology through its ion-based electrical modality). Emerging biological research demonstrates that redox is another biologically relevant modality, and recent research has shown that advanced electrochemical methods enable biodevice communication through this redox modality. Here, we briefly summarize the biological relevance of this redox modality and the use of redox mediators to enable access to this modality through electrochemical measurements. Next, we describe the fabrication of a catechol-chitosan redox capacitor that is redox-active but nonconducting and thus offers a unique set of molecular electronic properties that enhance access to redox-based information. Finally, we cite several recent studies that demonstrate the broad potential for this capacitor to access redox-based biological information. In summary, we envision the redox capacitor will become a vital component in the integrated circuitry of redox-linked bioelectronics.
Collapse
Affiliation(s)
- Si Wu
- School of Resource and Environmental Science, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan 430079, China
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, Maryland 20742, United States
| | - Eunkyoung Kim
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, Maryland 20742, United States
| | - Jinyang Li
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, Maryland 20742, United States
- Fischell Department of Bioengineering and Research, University of Maryland, College Park, Maryland 20742, United States
| | - William E. Bentley
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, Maryland 20742, United States
- Fischell Department of Bioengineering and Research, University of Maryland, College Park, Maryland 20742, United States
| | - Xiao-Wen Shi
- School of Resource and Environmental Science, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan 430079, China
| | - Gregory F. Payne
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
6
|
VanArsdale E, Tsao CY, Liu Y, Chen CY, Payne GF, Bentley WE. Redox-Based Synthetic Biology Enables Electrochemical Detection of the Herbicides Dicamba and Roundup via Rewired Escherichia coli. ACS Sens 2019; 4:1180-1184. [PMID: 30990313 DOI: 10.1021/acssensors.9b00085] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Synthetic biology is typically exploited to endow bacterial cells with new biosynthetic capabilities. It can also serve to create "smart" bacteria such as probiotics that detect and treat disease. Here, we show how minimally rewiring the genetic regulation of bacterial cells can enable their ability to recognize and report on chemical herbicides, including those routinely used to clear weeds from gardens and crops. In so doing, we demonstrate how constructs of synthetic biology, in this case redox-based synthetic biology, can serve as a vector for information flow mediating molecular communication between biochemical systems and microelectronics. We coupled the common genetic reporter, β-galactosidase, with the E. coli superoxide response regulon promoter pSoxS, for detection of the herbicides dicamba and Roundup. Both herbicides activated our genetic construct in a concentration dependent manner. Results indicate robust detection using spectrophotometry, via the Miller assay, and electrochemistry using the enzymatic cleavage of 4-aminophenyl β-d-galactopyranoside into the redox active molecule p-aminophenol. We found that environmental components, in particular, the availability of glucose, are important factors for the cellular detection of dicamba. Importantly, both herbicides were detected at concentrations relevant for aquatic toxicity.
Collapse
|
7
|
Li J, Wu S, Kim E, Yan K, Liu H, Liu C, Dong H, Qu X, Shi X, Shen J, Bentley WE, Payne GF. Electrobiofabrication: electrically based fabrication with biologically derived materials. Biofabrication 2019; 11:032002. [PMID: 30759423 PMCID: PMC7025432 DOI: 10.1088/1758-5090/ab06ea] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
While conventional material fabrication methods focus on form and strength to achieve function, the fabrication of material systems for emerging life science applications will need to satisfy a more subtle set of requirements. A common goal for biofabrication is to recapitulate complex biological contexts (e.g. tissue) for applications that range from animal-on-a-chip to regenerative medicine. In these cases, the material systems will need to: (i) present appropriate surface functionalities over a hierarchy of length scales (e.g. molecular features that enable cell adhesion and topographical features that guide differentiation); (ii) provide a suite of mechanobiological cues that promote the emergence of native-like tissue form and function; and (iii) organize structure to control cellular ingress and molecular transport, to enable the development of an interconnected cellular community that is engaged in cell signaling. And these requirements are not likely to be static but will vary over time and space, which will require capabilities of the material systems to dynamically respond, adapt, heal and reconfigure. Here, we review recent advances in the use of electrically based fabrication methods to build material systems from biological macromolecules (e.g. chitosan, alginate, collagen and silk). Electrical signals are especially convenient for fabrication because they can be controllably imposed to promote the electrophoresis, alignment, self-assembly and functionalization of macromolecules to generate hierarchically organized material systems. Importantly, this electrically based fabrication with biologically derived materials (i.e. electrobiofabrication) is complementary to existing methods (photolithographic and printing), and enables access to the biotechnology toolbox (e.g. enzymatic-assembly and protein engineering, and gene expression) to offer exquisite control of structure and function. We envision that electrobiofabrication will emerge as an important platform technology for organizing soft matter into dynamic material systems that mimic biology's complexity of structure and versatility of function.
Collapse
Affiliation(s)
- Jinyang Li
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, United States of America
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Shang W, Liu Y, Kim E, Tsao CY, Payne GF, Bentley WE. Selective assembly and functionalization of miniaturized redox capacitor inside microdevices for microbial toxin and mammalian cell cytotoxicity analyses. LAB ON A CHIP 2018; 18:3578-3587. [PMID: 30351330 PMCID: PMC7046091 DOI: 10.1039/c8lc00583d] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
We report a novel strategy for bridging information transfer between electronics and biological systems within microdevices. This strategy relies on our "electrobiofabrication" toolbox that uses electrode-induced signals to assemble biopolymer films at spatially defined sites and then electrochemically "activates" the films for signal processing capabilities. Compared to conventional electrode surface modification approaches, our signal-guided assembly and activation strategy provides on-demand electrode functionalization, and greatly simplifies microfluidic sensor design and fabrication. Specifically, a chitosan film is selectively localized in a microdevice and is covalently modified with phenolic species. The redox active properties of the phenolic species enable the film to transduce molecular to electronic signals (i.e., "molectronic"). The resulting "molectronic" sensors are shown to facilitate the electrochemical analysis in real time of biomolecules, including small molecules and enzymes, to cell-based measurements such as cytotoxicity. We believe this strategy provides an alternative, simple, and promising avenue for connecting electronics to biological systems within microfluidic platforms, and eventually will enrich our abilities to study biology in a variety of contexts.
Collapse
Affiliation(s)
- Wu Shang
- Fischell Department of Bioengineering, University of Maryland, 3102 A. James Clark Hall, College Park, MD 20742, USA.
| | - Yi Liu
- Institute of Bioscience and Biotechnology Research, University of Maryland, College Park, MD 20742, USA
| | - Eunkyoung Kim
- Institute of Bioscience and Biotechnology Research, University of Maryland, College Park, MD 20742, USA
| | - Chen-Yu Tsao
- Fischell Department of Bioengineering, University of Maryland, 3102 A. James Clark Hall, College Park, MD 20742, USA. and Institute of Bioscience and Biotechnology Research, University of Maryland, College Park, MD 20742, USA
| | - Gregory F Payne
- Fischell Department of Bioengineering, University of Maryland, 3102 A. James Clark Hall, College Park, MD 20742, USA. and Institute of Bioscience and Biotechnology Research, University of Maryland, College Park, MD 20742, USA
| | - William E Bentley
- Fischell Department of Bioengineering, University of Maryland, 3102 A. James Clark Hall, College Park, MD 20742, USA. and Institute of Bioscience and Biotechnology Research, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
9
|
Electrodeposition of a magnetic and redox-active chitosan film for capturing and sensing metabolic active bacteria. Carbohydr Polym 2018; 195:505-514. [DOI: 10.1016/j.carbpol.2018.04.096] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 04/04/2018] [Accepted: 04/25/2018] [Indexed: 01/09/2023]
|
10
|
Liu Y, Wu HC, Bhokisham N, Li J, Hong KL, Quan DN, Tsao CY, Bentley WE, Payne GF. Biofabricating Functional Soft Matter Using Protein Engineering to Enable Enzymatic Assembly. Bioconjug Chem 2018; 29:1809-1822. [PMID: 29745651 PMCID: PMC7045599 DOI: 10.1021/acs.bioconjchem.8b00197] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Biology often provides the inspiration for functional soft matter, but biology can do more: it can provide the raw materials and mechanisms for hierarchical assembly. Biology uses polymers to perform various functions, and biologically derived polymers can serve as sustainable, self-assembling, and high-performance materials platforms for life-science applications. Biology employs enzymes for site-specific reactions that are used to both disassemble and assemble biopolymers both to and from component parts. By exploiting protein engineering methodologies, proteins can be modified to make them more susceptible to biology's native enzymatic activities. They can be engineered with fusion tags that provide (short sequences of amino acids at the C- and/or N- termini) that provide the accessible residues for the assembling enzymes to recognize and react with. This "biobased" fabrication not only allows biology's nanoscale components (i.e., proteins) to be engineered, but also provides the means to organize these components into the hierarchical structures that are prevalent in life.
Collapse
Affiliation(s)
| | - Hsuan-Chen Wu
- Department of Biochemical Science and Technology , National Taiwan University , Taipei City , Taiwan
| | | | | | - Kai-Lin Hong
- Department of Biochemical Science and Technology , National Taiwan University , Taipei City , Taiwan
| | | | | | | | | |
Collapse
|
11
|
Liu Y, Li J, Tschirhart T, Terrell JL, Kim E, Tsao C, Kelly DL, Bentley WE, Payne GF. Connecting Biology to Electronics: Molecular Communication via Redox Modality. Adv Healthc Mater 2017; 6. [PMID: 29045017 DOI: 10.1002/adhm.201700789] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 08/18/2017] [Indexed: 12/13/2022]
Abstract
Biology and electronics are both expert at for accessing, analyzing, and responding to information. Biology uses ions, small molecules, and macromolecules to receive, analyze, store, and transmit information, whereas electronic devices receive input in the form of electromagnetic radiation, process the information using electrons, and then transmit output as electromagnetic waves. Generating the capabilities to connect biology-electronic modalities offers exciting opportunities to shape the future of biosensors, point-of-care medicine, and wearable/implantable devices. Redox reactions offer unique opportunities for bio-device communication that spans the molecular modalities of biology and electrical modality of devices. Here, an approach to search for redox information through an interactive electrochemical probing that is analogous to sonar is adopted. The capabilities of this approach to access global chemical information as well as information of specific redox-active chemical entities are illustrated using recent examples. An example of the use of synthetic biology to recognize external molecular information, process this information through intracellular signal transduction pathways, and generate output responses that can be detected by electrical modalities is also provided. Finally, exciting results in the use of redox reactions to actuate biology are provided to illustrate that synthetic biology offers the potential to guide biological response through electrical cues.
Collapse
Affiliation(s)
- Yi Liu
- Institute for Bioscience and Biotechnology Research and Fischell Department of Bioengineering University of Maryland College Park MD 20742 USA
| | - Jinyang Li
- Institute for Bioscience and Biotechnology Research and Fischell Department of Bioengineering University of Maryland College Park MD 20742 USA
| | - Tanya Tschirhart
- Institute for Bioscience and Biotechnology Research and Fischell Department of Bioengineering University of Maryland College Park MD 20742 USA
| | - Jessica L. Terrell
- Institute for Bioscience and Biotechnology Research and Fischell Department of Bioengineering University of Maryland College Park MD 20742 USA
| | - Eunkyoung Kim
- Institute for Bioscience and Biotechnology Research and Fischell Department of Bioengineering University of Maryland College Park MD 20742 USA
| | - Chen‐Yu Tsao
- Institute for Bioscience and Biotechnology Research and Fischell Department of Bioengineering University of Maryland College Park MD 20742 USA
| | - Deanna L. Kelly
- Maryland Psychiatric Research Center University of Maryland School of Medicine Baltimore MD 21228 USA
| | - William E. Bentley
- Institute for Bioscience and Biotechnology Research and Fischell Department of Bioengineering University of Maryland College Park MD 20742 USA
| | - Gregory F. Payne
- Institute for Bioscience and Biotechnology Research and Fischell Department of Bioengineering University of Maryland College Park MD 20742 USA
| |
Collapse
|
12
|
Maerten C, Jierry L, Schaaf P, Boulmedais F. Review of Electrochemically Triggered Macromolecular Film Buildup Processes and Their Biomedical Applications. ACS APPLIED MATERIALS & INTERFACES 2017; 9:28117-28138. [PMID: 28762716 DOI: 10.1021/acsami.7b06319] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Macromolecular coatings play an important role in many technological areas, ranging from the car industry to biosensors. Among the different coating technologies, electrochemically triggered processes are extremely powerful because they allow in particular spatial confinement of the film buildup up to the micrometer scale on microelectrodes. Here, we review the latest advances in the field of electrochemically triggered macromolecular film buildup processes performed in aqueous solutions. All these processes will be discussed and related to their several applications such as corrosion prevention, biosensors, antimicrobial coatings, drug-release, barrier properties and cell encapsulation. Special emphasis will be put on applications in the rapidly growing field of biosensors. Using polymers or proteins, the electrochemical buildup of the films can result from a local change of macromolecules solubility, self-assembly of polyelectrolytes through electrostatic/ionic interactions or covalent cross-linking between different macromolecules. The assembly process can be in one step or performed step-by-step based on an electrical trigger affecting directly the interacting macromolecules or generating ionic species.
Collapse
Affiliation(s)
- Clément Maerten
- Université de Strasbourg, CNRS, Institut Charles Sadron UPR 22 , 23 rue du Loess, F-67034 Strasbourg Cedex, France
| | - Loïc Jierry
- Université de Strasbourg, CNRS, Institut Charles Sadron UPR 22 , 23 rue du Loess, F-67034 Strasbourg Cedex, France
| | - Pierre Schaaf
- Université de Strasbourg, CNRS, Institut Charles Sadron UPR 22 , 23 rue du Loess, F-67034 Strasbourg Cedex, France
- INSERM, Unité 1121 "Biomaterials and Bioengineering" , 11 rue Humann, F-67085 Strasbourg Cedex, France
- Faculté de Chirurgie Dentaire, Fédération de Médecine Translationnelle de Strasbourg (FMTS), and Fédération des Matériaux et Nanoscience d'Alsace (FMNA), Université de Strasbourg , 8 rue Sainte Elisabeth, F-67000 Strasbourg, France
- University of Strasbourg Institute for Advanced Study , 5 allée du Général Rouvillois, F-67083 Strasbourg, France
| | - Fouzia Boulmedais
- Université de Strasbourg, CNRS, Institut Charles Sadron UPR 22 , 23 rue du Loess, F-67034 Strasbourg Cedex, France
- University of Strasbourg Institute for Advanced Study , 5 allée du Général Rouvillois, F-67083 Strasbourg, France
| |
Collapse
|
13
|
Aljawish A, Chevalot I, Jasniewski J, Scher J, Muniglia L. Enzymatic synthesis of chitosan derivatives and their potential applications. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.molcatb.2014.10.014] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
14
|
Chitosan to Connect Biology to Electronics: Fabricating the Bio-Device Interface and Communicating Across This Interface. Polymers (Basel) 2014. [DOI: 10.3390/polym7010001] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
15
|
Liu Y, Zhang B, Javvaji V, Kim E, Lee ME, Raghavan SR, Wang Q, Payne GF. Tyrosinase-mediated grafting and crosslinking of natural phenols confers functional properties to chitosan. Biochem Eng J 2014. [DOI: 10.1016/j.bej.2013.11.016] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|