1
|
Li S, Dan X, Chen H, Li T, Liu B, Ju Y, Li Y, Lei L, Fan X. Developing fibrin-based biomaterials/scaffolds in tissue engineering. Bioact Mater 2024; 40:597-623. [PMID: 39239261 PMCID: PMC11375146 DOI: 10.1016/j.bioactmat.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 09/07/2024] Open
Abstract
Tissue engineering technology has advanced rapidly in recent years, offering opportunities to construct biologically active tissues or organ substitutes to repair or even enhance the functions of diseased tissues and organs. Tissue-engineered scaffolds rebuild the extracellular microenvironment by mimicking the extracellular matrix. Fibrin-based scaffolds possess numerous advantages, including hemostasis, high biocompatibility, and good degradability. Fibrin scaffolds provide an initial matrix that facilitates cell migration, differentiation, proliferation, and adhesion, and also play a critical role in cell-matrix interactions. Fibrin scaffolds are now widely recognized as a key component in tissue engineering, where they can facilitate tissue and organ defect repair. This review introduces the properties of fibrin, including its composition, structure, and biology. In addition, the modification and cross-linking modes of fibrin are discussed, along with various forms commonly used in tissue engineering. We also describe the biofunctionalization of fibrin. This review provides a detailed overview of the use and applications of fibrin in skin, bone, and nervous tissues, and provides novel insights into future research directions for clinical treatment.
Collapse
Affiliation(s)
- Songjie Li
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Xin Dan
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Han Chen
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Tong Li
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Bo Liu
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Yikun Ju
- Department of Plastic and Aesthetic (Burn) Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Yang Li
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Lanjie Lei
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Xing Fan
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| |
Collapse
|
2
|
Liu M, Wu A, Liu J, Zhao Y, Dong X, Sun T, Shi Q, Wang H. TPP-Based Microfluidic Chip Design and Fabrication Method for Optimized Nerve Cells Directed Growth. CYBORG AND BIONIC SYSTEMS 2024; 5:0095. [PMID: 38725973 PMCID: PMC11079595 DOI: 10.34133/cbsystems.0095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/12/2024] [Indexed: 05/12/2024] Open
Abstract
Microfluidic chips offer high customizability and excellent biocompatibility, holding important promise for the precise control of biological growth at the microscale. However, the microfluidic chips employed in the studies of regulating cell growth are typically fabricated through 2D photolithography. This approach partially restricts the diversity of cell growth platform designs and manufacturing efficiency. This paper presents a method for designing and manufacturing neural cell culture microfluidic chips (NCMC) using two-photon polymerization (TPP), where the discrete and directional cell growth is optimized through studying the associated geometric parameters of on-chip microchannels. This study involves simulations and discussions regarding the effects of different hatching distances on the mold surface topography and printing time in the Describe print preview module, which determines the appropriate printing accuracy corresponding to the desired mold structure. With the assistance of the 3D maskless lithography system, micron-level rapid printing of target molds with different dimensions were achieved. For NCMC with different geometric parameters, COMSOL software was used to simulate the local flow velocity and shear stress characteristics within the microchannels. SH-SY5Y cells were selected for directional differentiation experiments on NCMC with different geometric parameters. The results demonstrate that the TPP-based manufacturing method efficiently constructs neural microfluidic chips with high precision, optimizing the discrete and directional cell growth. We anticipate that our method for designing and manufacturing NCMC will hold great promise in construction and application of microscale 3D drug models.
Collapse
Affiliation(s)
- Menghua Liu
- Intelligent Robotics Institute, School of Mechatronical Engineering,
Beijing Institute of Technology, Beijing 100081, China
| | - Anping Wu
- Intelligent Robotics Institute, School of Mechatronical Engineering,
Beijing Institute of Technology, Beijing 100081, China
| | - Jiaxin Liu
- Intelligent Robotics Institute, School of Mechatronical Engineering,
Beijing Institute of Technology, Beijing 100081, China
| | - Yanfeng Zhao
- Intelligent Robotics Institute, School of Mechatronical Engineering,
Beijing Institute of Technology, Beijing 100081, China
| | - Xinyi Dong
- Intelligent Robotics Institute, School of Mechatronical Engineering,
Beijing Institute of Technology, Beijing 100081, China
| | - Tao Sun
- School of Medical Technology,
Beijing Institute of Technology, Beijing 100081, China
| | - Qing Shi
- Beijing Advanced Innovation Center for Intelligent Robots and Systems,
Beijing Institute of Technology, Beijing 100081, China
| | - Huaping Wang
- Key Laboratory of Biomimetic Robots and Systems (Beijing Institute of Technology), Ministry of Education, Beijing 100081, China
| |
Collapse
|
3
|
Zhang Y, Su B, Tian Y, Yu Z, Wu X, Ding J, Wu C, Wei D, Yin H, Sun J, Fan H. Magnetic manipulation of Fe 3O 4@BaTiO 3 nanochains to regulate extracellular topographical and electrical cues. Acta Biomater 2023; 168:470-483. [PMID: 37495167 DOI: 10.1016/j.actbio.2023.07.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 07/14/2023] [Accepted: 07/19/2023] [Indexed: 07/28/2023]
Abstract
Magnetic fields play an essential role in material science and biomedical engineering. Magnetic-responsive materials can be arranged orderly in matrix to realize the construction of an aligned scaffold under magnetic induction. However, a single topological cue is insufficient to activate neural tissue regeneration, demanding more cues to promote regeneration synergistically, such as electrical stimulation and a biomimetic matrix. Herein, we propose one-dimensional (1D) magnetoelectric Fe3O4@BaTiO3 nanochains with controllable lengths under the regulation of a magnetic field. These nanochains can be oriented in the biomimetic hydrogel under magnetic guidance and induce the hydrogel microfiber to align along the direction of the nanochains, which is beneficial for cell-oriented outgrowth. This aligned hydrogel enabled wireless electrical stimulation mediated by magnetoelectric nanochains under magnetic stimulation, thereby activating the voltage-gated ion channel. Consequently, topological and electrical cues in this multifunctional biomimetic hydrogel synergistically enhanced the expression of neural functional proteins, facilitating synapse remodeling and neural regeneration. Predictably, the construction of multifunctional hydrogels based on low-cost and facile synthesis of magnetoelectric nanochains is an emerging patient-friendly and effective therapeutic strategy for neural or other tissue regeneration. STATEMENT OF SIGNIFICANCE: A facile and controllable magnetic strategy is established to manipulate 1D nanomaterial growth, matrix topography, and wireless electrical stimulation of cells. First, the magnetic-assisted interface co-assembly was used to control the length of Fe3O4@BaTiO3 nanochains with enhanced magnetoelectric effect. Then, the motion of the magnetic-induced nanochains guided the orientation of nanofibers in a 3D biomimetic hydrogel matrix. Finally, wireless electrical signals and topological cues in the biomimetic matrix synergistically promoted orderly aligned cell outgrowth and membrane depolarization by Ca2+ influx, thus enhancing nerve cell synaptic plasticity and functional expression. Consequently, this work provides a conceptual strategy from material design to extracellular matrix signal manipulation and synergistic induction of tissue regeneration.
Collapse
Affiliation(s)
- Yusheng Zhang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Borui Su
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Yuan Tian
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Zhuoting Yu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Xiaoyang Wu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Jie Ding
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Chengheng Wu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China; Institute of Regulatory Science for Medical Devices, Sichuan University, Chengdu 610064, Sichuan, China
| | - Dan Wei
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China.
| | - Huabin Yin
- James Watt School of Engineering, University of Glasgow, Glasgow G12 8LT, UK
| | - Jin Sun
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Hongsong Fan
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China.
| |
Collapse
|
4
|
Yao C, Qiu Z, Li X, Zhu H, Li D, He J. Electrohydrodynamic Printing of Microfibrous Architectures with Cell-Scale Spacing for Improved Cellular Migration and Neurite Outgrowth. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207331. [PMID: 36775926 DOI: 10.1002/smll.202207331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/25/2023] [Indexed: 05/11/2023]
Abstract
Electrohydrodynamic (EHD) printing provides unparalleled opportunities in fabricating microfibrous architectures to direct cellular orientation. However, it faces great challenges in depositing orderly microfibers with cell-scale spacing due to inherent fiber-fiber electrostatic interactions. Here a finite element method is established to analyze the electrostatic forces induced on the EHD-printed microfibers and the relationship between the fiber diameter and spacing for parallel deposition of EHD-printed microfibers is revealed theoretically and experimentally. It is found that uniform fiber arrangement can be achieved when the fiber spacing is five times larger than the fiber diameter. This finding enables the successful printing of parallel fibrous architectures with a fiber diameter of 4.9 ± 0.1 µm and a cell-scale fiber spacing of 25.6 ± 1.9 µm. The resultant microfibrous architectures exhibit unique capability to direct cellular alignment and enhance cellular density and migration as the fiber spacing decreases from 100 to 25 µm. The EHD-printed parallel microfibers with cell-scale spacing are found to improve the outgrowth length of neurites and accelerate the migration of Schwann cells from Dorsal Root Ganglion spheres, which facilitate the formation of densely-arranged and highly-aligned cellular constructs. The presented method is promising to produce biomimetic microfibrous architectures for functional nerve regeneration.
Collapse
Affiliation(s)
- Cong Yao
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
- NMPA Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Zhennan Qiu
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
- NMPA Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Xiao Li
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
- NMPA Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Hui Zhu
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
- NMPA Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Dichen Li
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
- NMPA Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Jiankang He
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
- NMPA Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| |
Collapse
|
5
|
Tian L, Ma J, Li W, Zhang X, Gao X. Microfiber Fabricated via Microfluidic Spinning toward Tissue Engineering Applications. Macromol Biosci 2023; 23:e2200429. [PMID: 36543751 DOI: 10.1002/mabi.202200429] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/02/2022] [Indexed: 12/24/2022]
Abstract
Microfibers, a type of long, thin, and flexible material, can be assembled into functional 3D structures by folding, binding, and weaving. As a novel spinning method, combining microfluidic technology and wet spinning, microfluidic spinning technology can precisely control the size, morphology, structure, and composition of the microfibers. Particularly, the process is mild and rapid, which is suitable for preparing microfibers using biocompatible materials and without affecting the viability of cells encapsulated. Furthermore, owing to the controllability of microfluidic spinning, microfibers with well-defined structures (such as hollow structures) will contribute to the exchange of nutrients or guide cell orientation. Thus, this method is often used to fabricate microfibers as cell scaffolds for cell encapsulation or adhesion and can be further applied to biomimetic fibrous tissues. In this review, the focus is on different fiber structures prepared by microfluidic spinning technology, including solid, hollow, and heterogeneous structures, generated from three essential elements: spinning platform, fiber composition, and solidification methods. Furthermore, the application of microfibers is described with different structures in tissue engineering, such as blood vessels, skeletal muscle, bone, nerves, and lung bronchi. Finally, the challenges and future development prospects of microfluidic spinning technology in tissue engineering applications are discussed.
Collapse
Affiliation(s)
- Lingling Tian
- Materials Genome Institute, Shanghai University, Shanghai, 200444, P. R. China
| | - Jingyun Ma
- Ningbo Institute of Innovation for Combined Medicine and Engineering, Ningbo Medical Center Li Huili Hospital, 57 Xingning Road, Ningbo, Zhejiang, 315100, P. R. China
| | - Wei Li
- Materials Genome Institute, Shanghai University, Shanghai, 200444, P. R. China
| | - Xu Zhang
- CAS Key Laboratory of SSAC, Department of biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Xinghua Gao
- Materials Genome Institute, Shanghai University, Shanghai, 200444, P. R. China
| |
Collapse
|
6
|
Ashammakhi N, GhavamiNejad A, Tutar R, Fricker A, Roy I, Chatzistavrou X, Hoque Apu E, Nguyen KL, Ahsan T, Pountos I, Caterson EJ. Highlights on Advancing Frontiers in Tissue Engineering. TISSUE ENGINEERING. PART B, REVIEWS 2022; 28:633-664. [PMID: 34210148 PMCID: PMC9242713 DOI: 10.1089/ten.teb.2021.0012] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 07/15/2021] [Indexed: 01/05/2023]
Abstract
The field of tissue engineering continues to advance, sometimes in exponential leaps forward, but also sometimes at a rate that does not fulfill the promise that the field imagined a few decades ago. This review is in part a catalog of success in an effort to inform the process of innovation. Tissue engineering has recruited new technologies and developed new methods for engineering tissue constructs that can be used to mitigate or model disease states for study. Key to this antecedent statement is that the scientific effort must be anchored in the needs of a disease state and be working toward a functional product in regenerative medicine. It is this focus on the wildly important ideas coupled with partnered research efforts within both academia and industry that have shown most translational potential. The field continues to thrive and among the most important recent developments are the use of three-dimensional bioprinting, organ-on-a-chip, and induced pluripotent stem cell technologies that warrant special attention. Developments in the aforementioned areas as well as future directions are highlighted in this article. Although several early efforts have not come to fruition, there are good examples of commercial profitability that merit continued investment in tissue engineering. Impact statement Tissue engineering led to the development of new methods for regenerative medicine and disease models. Among the most important recent developments in tissue engineering are the use of three-dimensional bioprinting, organ-on-a-chip, and induced pluripotent stem cell technologies. These technologies and an understanding of them will have impact on the success of tissue engineering and its translation to regenerative medicine. Continued investment in tissue engineering will yield products and therapeutics, with both commercial importance and simultaneous disease mitigation.
Collapse
Affiliation(s)
- Nureddin Ashammakhi
- Department of Bioengineering, Henry Samueli School of Engineering, University of California, Los Angeles, California, USA
- Department of Biomedical Engineering, College of Engineering, Michigan State University, Michigan, USA
| | - Amin GhavamiNejad
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie L. Dan Faculty of Pharmacy, University of Toronto, Toronto, Canada
| | - Rumeysa Tutar
- Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Annabelle Fricker
- Department of Materials Science and Engineering, Faculty of Engineering, University of Sheffield, Sheffield, United Kingdom
| | - Ipsita Roy
- Department of Materials Science and Engineering, Faculty of Engineering, University of Sheffield, Sheffield, United Kingdom
- Faculty of Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Xanthippi Chatzistavrou
- Department of Chemical Engineering and Material Science, College of Engineering, Michigan State University, East Lansing, Michigan, USA
| | - Ehsanul Hoque Apu
- Department of Bioengineering, Henry Samueli School of Engineering, University of California, Los Angeles, California, USA
| | - Kim-Lien Nguyen
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, California, USA
- Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, and VA Greater Los Angeles Healthcare System, Los Angeles, California, USA
| | - Taby Ahsan
- RoosterBio, Inc., Frederick, Maryland, USA
| | - Ippokratis Pountos
- Academic Department of Trauma and Orthopaedics, University of Leeds, Leeds, United Kingdom
| | - Edward J. Caterson
- Division of Plastic Surgery, Department of Surgery, Nemours/Alfred I. du Pont Hospital for Children, Wilmington, Delaware, USA
| |
Collapse
|
7
|
Chen Y, Hao Y, Mensah A, Lv P, Wei Q. Bio-inspired hydrogels with fibrous structure: A review on design and biomedical applications. BIOMATERIALS ADVANCES 2022; 136:212799. [PMID: 35929334 DOI: 10.1016/j.bioadv.2022.212799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/06/2022] [Accepted: 04/08/2022] [Indexed: 10/18/2022]
Abstract
Numerous tissues in the human body have fibrous structures, including the extracellular matrix, muscles, and heart, which perform critical biological functions and have exceptional mechanical strength. Due to their high-water content, softness, biocompatibility and elastic nature, hydrogels resemble biological tissues. Traditional hydrogels, on the other hand, have weak mechanical properties and lack tissue-like fibrous structures, limiting their potential applications. Thus, bio-inspired hydrogels with fibrous architectures have piqued the curiosity of biomedical researchers. Here, we review fabrication strategies for fibrous hydrogels and their recent progress in the biomedical fields of wound dressings, drug delivery, tissue engineering scaffolds and bioadhesives. Challenges and future perspectives are also discussed.
Collapse
Affiliation(s)
- Yajun Chen
- Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi, People's Republic of China
| | - Yi Hao
- Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi, People's Republic of China
| | - Alfred Mensah
- Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi, People's Republic of China
| | - Pengfei Lv
- Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi, People's Republic of China
| | - Qufu Wei
- Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi, People's Republic of China.
| |
Collapse
|
8
|
Ma X, Wang M, Ran Y, Wu Y, Wang J, Gao F, Liu Z, Xi J, Ye L, Feng Z. Design and Fabrication of Polymeric Hydrogel Carrier for Nerve Repair. Polymers (Basel) 2022; 14:polym14081549. [PMID: 35458307 PMCID: PMC9031091 DOI: 10.3390/polym14081549] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/23/2022] [Accepted: 04/07/2022] [Indexed: 02/07/2023] Open
Abstract
Nerve regeneration and repair still remain a huge challenge for both central nervous and peripheral nervous system. Although some therapeutic substances, including neuroprotective agents, clinical drugs and stem cells, as well as various growth factors, are found to be effective to promote nerve repair, a carrier system that possesses a sustainable release behavior, in order to ensure high on-site concentration during the whole repair and regeneration process, and high bioavailability is still highly desirable. Hydrogel, as an ideal delivery system, has an excellent loading capacity and sustainable release behavior, as well as tunable physical and chemical properties to adapt to various biomedical scenarios; thus, it is thought to be a suitable carrier system for nerve repair. This paper reviews the structure and classification of hydrogels and summarizes the fabrication and processing methods that can prepare a suitable hydrogel carrier with specific physical and chemical properties. Furthermore, the modulation of the physical and chemical properties of hydrogels is also discussed in detail in order to obtain a better therapeutic effect to promote nerve repair. Finally, the future perspectives of hydrogel microsphere carriers for stroke rehabilitation are highlighted.
Collapse
Affiliation(s)
- Xiaoyu Ma
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China; (X.M.); (Z.F.)
| | - Mengjie Wang
- School of Beijing Rehabilitation Medicine, Capital Medical University, Beijing 100044, China;
| | - Yuanyuan Ran
- Department of Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical School, Beijing 100044, China; (Y.R.); (F.G.)
| | - Yusi Wu
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China; (Y.W.); (J.W.)
- NUIST-UoR International Research Institute, Reading Academy, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Jin Wang
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China; (Y.W.); (J.W.)
| | - Fuhai Gao
- Department of Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical School, Beijing 100044, China; (Y.R.); (F.G.)
| | - Zongjian Liu
- Department of Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical School, Beijing 100044, China; (Y.R.); (F.G.)
- Correspondence: (Z.L.); (J.X.); (L.Y.); Tel.: +86-1056981363 (Z.L.); +86-1056981279 (J.X.); +86-1068912650 (L.Y.)
| | - Jianing Xi
- Department of Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical School, Beijing 100044, China; (Y.R.); (F.G.)
- Correspondence: (Z.L.); (J.X.); (L.Y.); Tel.: +86-1056981363 (Z.L.); +86-1056981279 (J.X.); +86-1068912650 (L.Y.)
| | - Lin Ye
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China; (X.M.); (Z.F.)
- Correspondence: (Z.L.); (J.X.); (L.Y.); Tel.: +86-1056981363 (Z.L.); +86-1056981279 (J.X.); +86-1068912650 (L.Y.)
| | - Zengguo Feng
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China; (X.M.); (Z.F.)
| |
Collapse
|
9
|
Wei Z, Sun T, Shimoda S, Chen Z, Chen X, Wang H, Huang Q, Fukuda T, Shi Q. Bio-inspired engineering of a perfusion culture platform for guided three-dimensional nerve cell growth and differentiation. LAB ON A CHIP 2022; 22:1006-1017. [PMID: 35147637 DOI: 10.1039/d1lc01149a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Collagen provides a promising environment for 3D nerve cell culture; however, the function of perfusion culture and cell-growth guidance is difficult to integrate into such an environment to promote cell growth. In this paper, we develop a bio-inspired design method for constructing a perfusion culture platform for guided nerve cell growth and differentiation in collagen. Based on the anatomical structure of peripheral neural tissue, a biomimetic porous structure (BPS) is fabricated by two-photon polymerization of IP-Visio. The micro-capillary effect is then utilized to facilitate the self-assembly of cell encapsulated collagen into the BPS. 3D perfusion culture can be rapidly implemented by inserting the cell-filled BPS into a pipette tip connected with syringe pumps. Furthermore, we investigate the nerve cell behavior in the BPS. 7-channel aligned cellular structures surrounded with a Schwann cell layer can be stably formed after a long-time perfusion culture. Differentiation of PC12 cells and mouse neural stem cells shows 3D neurite outgrowth alignment and elongation in collagen. The calcium activities of differentiated PC12 cells are visualized for confirming the preliminary formation of cell function. These results demonstrate that the proposed bio-inspired 3D cell culture platform with the advantages of miniaturization, structure complexity and perfusion has great potential for future application in the study of nerve regeneration and drug screening.
Collapse
Affiliation(s)
- Zihou Wei
- Key Laboratory of Biomimetic Robots and Systems (Beijing Institute of Technology), Ministry of Education, 100081, People's Republic of China.
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Tao Sun
- Key Laboratory of Biomimetic Robots and Systems (Beijing Institute of Technology), Ministry of Education, 100081, People's Republic of China.
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Shingo Shimoda
- Center of Brain Science (CBS), CBS-TOYOTA Collaboration Center (BTCC), Intelligent Behaviour Control Unit, Riken, Nagoya 463-0003, Japan
| | - Zhe Chen
- Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, China
| | - Xie Chen
- Key Laboratory of Biomimetic Robots and Systems (Beijing Institute of Technology), Ministry of Education, 100081, People's Republic of China.
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Huaping Wang
- Key Laboratory of Biomimetic Robots and Systems (Beijing Institute of Technology), Ministry of Education, 100081, People's Republic of China.
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Qiang Huang
- Key Laboratory of Biomimetic Robots and Systems (Beijing Institute of Technology), Ministry of Education, 100081, People's Republic of China.
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Toshio Fukuda
- Key Laboratory of Biomimetic Robots and Systems (Beijing Institute of Technology), Ministry of Education, 100081, People's Republic of China.
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
- Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, China
| | - Qing Shi
- Key Laboratory of Biomimetic Robots and Systems (Beijing Institute of Technology), Ministry of Education, 100081, People's Republic of China.
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
- Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
10
|
Chen S, Wu C, Zhou T, Wu K, Xin N, Liu X, Qiao Z, Wei D, Sun J, Luo H, Zhou L, Fan H. Aldehyde-methacrylate-hyaluronan profited hydrogel system integrating aligned and viscoelastic cues for neurogenesis. Carbohydr Polym 2022; 278:118961. [PMID: 34973776 DOI: 10.1016/j.carbpol.2021.118961] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/21/2021] [Accepted: 11/28/2021] [Indexed: 02/05/2023]
Abstract
Either oriented architecture or viscoelasticity is pivotal to neurogenesis, thus, native neural extracellular matrix derived-hyaluronan hydrogels with nano-orientation and viscoelasticity recapitulated might be instructive for neurogenesis, however it is still unexploited. Herein, based on aldehyde-methacrylate difunctionalized hyaluronan, by integrating imine kinetic modulation and microfluidic biofabrication, we construct a hydrogel system with orthogonal viscoelasticity and nano-topography. We then find the positive synergy effects of matrix nano-orientation and viscoelasticity not only on neurites outgrowth and elongation of neural cells, but also on neuronal differentiation of stem cells. Moreover, by implanting viscoelastic and nano-aligned hydrogels into lesion sites, we demonstrate the enhanced repair of spinal cord injury, including ameliorated pathological microenvironment, facilitated endogenous neurogenesis and functional axons regeneration as well as motor function restoration. This work supplies universal platform for preparing neuronal inducing hyaluronan-based hydrogels which might serve as promising therapeutic strategies for nerve injury.
Collapse
Affiliation(s)
- Suping Chen
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Chengheng Wu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Ting Zhou
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Kai Wu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Nini Xin
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Xiaoyin Liu
- Department of Neurosurgery, West China Medical School, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Zi Qiao
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Dan Wei
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Jing Sun
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Hongrong Luo
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Liangxue Zhou
- Department of Neurosurgery, West China Medical School, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Hongsong Fan
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China.
| |
Collapse
|
11
|
Tang J, Wu C, Qiao Z, Pi J, Zhang Y, Luo F, Sun J, Fan H. A photoelectric effect integrated scaffold for wireless regulation of nerve cellular behaviors. J Mater Chem B 2022; 10:1601-1611. [PMID: 35171975 DOI: 10.1039/d1tb02402g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Electrical signal is regarded as a key factor to promote nerve cell neurogenesis. However, the usually used exogenous electrical stimulus mode needs additional equipment sources and complicated wirings, which is...
Collapse
Affiliation(s)
- Jiajia Tang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China.
| | - Chengheng Wu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China.
| | - Zi Qiao
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China.
| | - Jinkui Pi
- Core Facilities of West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yusheng Zhang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China.
| | - Fang Luo
- The Center of Gerontology and Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Jing Sun
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China.
| | - Hongsong Fan
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China.
| |
Collapse
|
12
|
Zhuge W, Liu H, Wang W, Wang J. Microfluidic Bioscaffolds for Regenerative Engineering. ENGINEERED REGENERATION 2022. [DOI: 10.1016/j.engreg.2021.12.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
13
|
Khuu N, Kheiri S, Kumacheva E. Structurally anisotropic hydrogels for tissue engineering. TRENDS IN CHEMISTRY 2021. [DOI: 10.1016/j.trechm.2021.09.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
14
|
Wu C, Chen S, Zhou T, Wu K, Qiao Z, Zhang Y, Xin N, Liu X, Wei D, Sun J, Luo H, Zhou L, Fan H. Antioxidative and Conductive Nanoparticles-Embedded Cell Niche for Neural Differentiation and Spinal Cord Injury Repair. ACS APPLIED MATERIALS & INTERFACES 2021; 13:52346-52361. [PMID: 34699166 DOI: 10.1021/acsami.1c14679] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Following spinal cord injury (SCI), the transmission of electrical signals is interrupted, and an oxidative microenvironment is generated, hindering nerve regeneration and functional recovery. The strategies of regulating oxidative pathological microenvironment while restoring endogenous electrical signal transmission hold promise for SCI treatment. However, challenges are still faced in simply fabricating bioactive scaffolds with both antioxidation and conductivity. Herein, aiming to construct an antioxidative and conductive microenvironment for nerve regeneration, the difunctional polypyrrole (PPy) nanoparticles were developed and incorporated into bioactive collagen/hyaluronan hydrogel. Owing to the embedded PPy in hydrogel, the encapsulated bone marrow mesenchymal stem cells (BMSCs) can be protected from oxidative damage, and their neuronal differentiation was promoted by the synergy between conductivity and electrical stimulation, which is proved to be related to PI3K/Akt and the mitogen-activated protein kinase (MAPK) pathway. In SCI rats, the BMSC-laden difunctional hydrogel restored the transmission of bioelectric signals and inhibited secondary damage, thereby facilitating neurogenesis, resulting in prominent nerve regeneration and functional recovery. Overall, taking advantage of a difunctional nanomaterial to meet two essential requirements in SCI repair, this work provides intriguing insights into the design of biomaterials for nerve regeneration and tissue engineering.
Collapse
Affiliation(s)
- Chengheng Wu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Suping Chen
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Ting Zhou
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Kai Wu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Zi Qiao
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Yusheng Zhang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Nini Xin
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Xiaoyin Liu
- Department of Neurosurgery, West China Medical School, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Dan Wei
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Jing Sun
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Hongrong Luo
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Liangxue Zhou
- Department of Neurosurgery, West China Medical School, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Hongsong Fan
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| |
Collapse
|
15
|
Xue W, Shi W, Kong Y, Kuss M, Duan B. Anisotropic scaffolds for peripheral nerve and spinal cord regeneration. Bioact Mater 2021; 6:4141-4160. [PMID: 33997498 PMCID: PMC8099454 DOI: 10.1016/j.bioactmat.2021.04.019] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/05/2021] [Accepted: 04/13/2021] [Indexed: 12/12/2022] Open
Abstract
The treatment of long-gap (>10 mm) peripheral nerve injury (PNI) and spinal cord injury (SCI) remains a continuous challenge due to limited native tissue regeneration capabilities. The current clinical strategy of using autografts for PNI suffers from a source shortage, while the pharmacological treatment for SCI presents dissatisfactory results. Tissue engineering, as an alternative, is a promising approach for regenerating peripheral nerves and spinal cords. Through providing a beneficial environment, a scaffold is the primary element in tissue engineering. In particular, scaffolds with anisotropic structures resembling the native extracellular matrix (ECM) can effectively guide neural outgrowth and reconnection. In this review, the anatomy of peripheral nerves and spinal cords, as well as current clinical treatments for PNI and SCI, is first summarized. An overview of the critical components in peripheral nerve and spinal cord tissue engineering and the current status of regeneration approaches are also discussed. Recent advances in the fabrication of anisotropic surface patterns, aligned fibrous substrates, and 3D hydrogel scaffolds, as well as their in vitro and in vivo effects are highlighted. Finally, we summarize potential mechanisms underlying the anisotropic architectures in orienting axonal and glial cell growth, along with their challenges and prospects.
Collapse
Affiliation(s)
- Wen Xue
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, USA
- Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Wen Shi
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, USA
- Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Yunfan Kong
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, USA
- Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Mitchell Kuss
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, USA
- Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Bin Duan
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, USA
- Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Mechanical Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA
| |
Collapse
|
16
|
Wu Z, Xie S, Kang Y, Shan X, Li Q, Cai Z. Biocompatibility evaluation of a 3D-bioprinted alginate-GelMA-bacteria nanocellulose (BNC) scaffold laden with oriented-growth RSC96 cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 129:112393. [PMID: 34579912 DOI: 10.1016/j.msec.2021.112393] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/27/2021] [Accepted: 08/20/2021] [Indexed: 12/18/2022]
Abstract
Peripheral nerve injury can cause various degrees of damage to the morphological structure and physiological function of the peripheral nerve. At present, compared with "gold standard" autologous nerve transplantation, tissue engineering has certain potential for regeneration and growth; however, achieving oriented guidance is still a challenge. In this study, we used 3D bioprinting to construct a nerve scaffold of RSC96 cells wrapped in sodium alginate/gelatin methacrylate (GelMA)/bacterial nanocellulose (BNC) hydrogel. The 5% sodium alginate+5% GelMA+0.3% BNC group had the thinnest lines among all groups after printing, indicating that the inherent shape of the scaffold could be maintained after adding BNC. Physical and chemical property testing (Fourier transform infrared, rheometer, conductivity, and compression modulus) showed that the 5% alginate+5% GelMA+0.3% BNC group had better mechanical and rheological properties. Live/dead cell staining showed that no mass cell death was observed on days 1, 3, 5, and 7 after printing. In the 5% alginate+5% GelMA group, the cells grew and formed linear connections in the scaffold. This phenomenon was more obvious in the 5% alginate+5% GelMA+0.3% BNC group. In the 5% alginate+5% GelMA+0.3% BNC group, S-100β immunofluorescence staining and cytoskeleton staining showed oriented growth. Polymerase chain reaction (PCR) array results showed that mRNA levels of related neurofactors ASCL1, POU3F3, NEUROG1, DLL1, NOTCH1 and ERBB2 in the 5%GelMA+0.3%BNC group were higher than those of other groups. Four weeks after implantation in nude mice, RSC96 cells grew and proliferated well, blood vessels grew, and S-100β immunofluorescence was positive. These results indicate that a 3D-bioprinted sodium alginate/GelMA/BNC composite scaffold can improve cell-oriented growth, adhesion and the expression of related factors. This 3D-bioprinted composite scaffold has good biocompatibility and is expected to become a new type of scaffold material in the field of neural tissue engineering.
Collapse
Affiliation(s)
- Zongxi Wu
- Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China; National Clinical Research Center for Oral Diseases, Beijing, China; National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, China; Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Shang Xie
- Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China; National Clinical Research Center for Oral Diseases, Beijing, China; National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, China; Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Yifan Kang
- Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China; National Clinical Research Center for Oral Diseases, Beijing, China; National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, China; Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Xiaofeng Shan
- Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China; National Clinical Research Center for Oral Diseases, Beijing, China; National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, China; Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Qing Li
- National Clinical Research Center for Oral Diseases, Beijing, China; National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, China; Beijing Key Laboratory of Digital Stomatology, Beijing, China; Center of Digital Dentistry, Peking University School and Hospital of Stomatology, Beijing, China.
| | - Zhigang Cai
- Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China; National Clinical Research Center for Oral Diseases, Beijing, China; National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, China; Beijing Key Laboratory of Digital Stomatology, Beijing, China.
| |
Collapse
|
17
|
Blake C, Massey O, Boyd-Moss M, Firipis K, Rifai A, Franks S, Quigley A, Kapsa R, Nisbet DR, Williams RJ. Replace and repair: Biomimetic bioprinting for effective muscle engineering. APL Bioeng 2021; 5:031502. [PMID: 34258499 PMCID: PMC8270648 DOI: 10.1063/5.0040764] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 05/10/2021] [Indexed: 12/24/2022] Open
Abstract
The debilitating effects of muscle damage, either through ischemic injury or volumetric muscle loss (VML), can have significant impacts on patients, and yet there are few effective treatments. This challenge arises when function is degraded due to significant amounts of skeletal muscle loss, beyond the regenerative ability of endogenous repair mechanisms. Currently available surgical interventions for VML are quite invasive and cannot typically restore function adequately. In response to this, many new bioengineering studies implicate 3D bioprinting as a viable option. Bioprinting for VML repair includes three distinct phases: printing and seeding, growth and maturation, and implantation and application. Although this 3D bioprinting technology has existed for several decades, the advent of more advanced and novel printing techniques has brought us closer to clinical applications. Recent studies have overcome previous limitations in diffusion distance with novel microchannel construct architectures and improved myotubule alignment with highly biomimetic nanostructures. These structures may also enhance angiogenic and nervous ingrowth post-implantation, though further research to improve these parameters has been limited. Inclusion of neural cells has also shown to improve myoblast maturation and development of neuromuscular junctions, bringing us one step closer to functional, implantable skeletal muscle constructs. Given the current state of skeletal muscle 3D bioprinting, the most pressing future avenues of research include furthering our understanding of the physical and biochemical mechanisms of myotube development and expanding our control over macroscopic and microscopic construct structures. Further to this, current investigation needs to be expanded from immunocompromised rodent and murine myoblast models to more clinically applicable human cell lines as we move closer to viable therapeutic implementation.
Collapse
Affiliation(s)
- Cooper Blake
- Institute of Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Waurn Ponds, VIC 3216, Australia
| | - Oliver Massey
- Institute of Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Waurn Ponds, VIC 3216, Australia
| | | | | | | | - Stephanie Franks
- Laboratory of Advanced Biomaterials, The Australian National University, Canberra, ACT 2601, Australia
| | | | | | | | | |
Collapse
|
18
|
Chen S, Liu A, Wu C, Chen Y, Liu C, Zhang Y, Wu K, Wei D, Sun J, Zhou L, Fan H. Static-Dynamic Profited Viscoelastic Hydrogels for Motor-Clutch-Regulated Neurogenesis. ACS APPLIED MATERIALS & INTERFACES 2021; 13:24463-24476. [PMID: 34024102 DOI: 10.1021/acsami.1c03821] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Viscoelasticity, a time-scale mechanical feature of the native extracellular matrix (ECM), is reported to play crucial roles in plentiful cellular behaviors, whereas its effects on neuronal behavior and the underlying molecular mechanism still remain obscure. Challenges are faced in the biocompatible synthesis of neural ECM-mimicked scaffolds solely controlled with viscoelasticity and due to the lack of suitable models for neurons-viscoelastic matrix interaction. Herein, we report difunctional hyaluronan-collagen hydrogels prepared by a static-dynamic strategy. The hydrogels show aldehyde concentration-dependent viscoelasticity and similar initial elastic modulus, fibrillar morphology, swelling as well as degradability. Utilizing the resulting hydrogels, for the first time, we demonstrate matrix viscoelasticity-dependent neuronal responses, including neurite elongation and expression of neurogenic proteins. Then, a motor-clutch model modified with a tension dissipation component is developed to account for the molecular mechanism for viscoelasticity-sensitive neuronal responses. Moreover, we prove enhanced recovery of rat spinal cord injury by implanting cell-free viscoelastic grafts. As a pioneer finding on neurons-viscoelastic matrix interaction both in vitro and in vivo, this work provides intriguing insights not only into nerve repair but also into neuroscience and tissue engineering.
Collapse
Affiliation(s)
- Suping Chen
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064 Sichuan, China
| | - Amin Liu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064 Sichuan, China
| | - Chengheng Wu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064 Sichuan, China
| | - Yaxing Chen
- Department of Neurosurgery, West China Medical School, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
| | - Chang Liu
- Department of Neurosurgery, West China Medical School, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
| | - Yusheng Zhang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064 Sichuan, China
| | - Kai Wu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064 Sichuan, China
| | - Dan Wei
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064 Sichuan, China
| | - Jing Sun
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064 Sichuan, China
| | - Liangxue Zhou
- Department of Neurosurgery, West China Medical School, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
| | - Hongsong Fan
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064 Sichuan, China
| |
Collapse
|
19
|
De la Vega L, Abelseth L, Sharma R, Triviño-Paredes J, Restan M, Willerth SM. 3D Bioprinting Human‐Induced Pluripotent Stem Cells and Drug‐Releasing Microspheres to Produce Responsive Neural Tissues. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202000077] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Laura De la Vega
- Department of Mechanical Engineering University of Victoria Victoria V8W 2Y2 Canada
| | - Laila Abelseth
- Biomedical Engineering Program University of Victoria Victoria V8W 2Y2 Canada
| | - Ruchi Sharma
- Department of Mechanical Engineering University of Victoria Victoria V8W 2Y2 Canada
| | | | - Milena Restan
- Biomedical Engineering Program University of Victoria Victoria V8W 2Y2 Canada
| | - Stephanie M. Willerth
- Department of Mechanical Engineering University of Victoria Victoria V8W 2Y2 Canada
- Biomedical Engineering Program University of Victoria Victoria V8W 2Y2 Canada
- Division of Medical Sciences University of Victoria Victoria V8W 2Y2 Canada
| |
Collapse
|
20
|
Saeki K, Hiramatsu H, Hori A, Hirai Y, Yamada M, Utoh R, Seki M. Sacrificial Alginate-Assisted Microfluidic Engineering of Cell-Supportive Protein Microfibers for Hydrogel-Based Cell Encapsulation. ACS OMEGA 2020; 5:21641-21650. [PMID: 32905425 PMCID: PMC7469388 DOI: 10.1021/acsomega.0c02385] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 08/04/2020] [Indexed: 05/04/2023]
Abstract
Although many types of technologies for hydrogel-based cell cultivation have recently been developed, strategies to integrate cell-adhesive micrometer-sized supports with bulk-scale hydrogel platforms have not been fully established. Here, we present a highly unique approach to produce cell-adhesive, protein-based microfibers assisted by the sacrificial template of alginate; we applied these fibers as microengineered scaffolds for hydrogel-based cell encapsulation. Two types of microfluidic devices were designed and fabricated: a single-layered device for producing relatively thick (Φ of 10-60 μm) alginate-protein composite fibers with a uniform cross-sectional morphology and a four-layered device for preparing thinner (Φ of ∼4 μm) ones through the formation of patterned microfibers with eight distinct alginate-protein composite regions. Following chemical cross-linking of protein molecules and the subsequent removal of the sacrificial alginate from the double-network matrices, microfibers composed only of cross-linked proteins were obtained. We used gelatin, albumin, and hemoglobin as the protein material, and the gelatin-based cell-adhesive fibers were further encapsulated in hydrogels together with the mammalian cells. We clarified that the thinner fibers were especially effective in promoting cell proliferation, and the shape of the constructs was maintained even after removing the hydrogel matrices. The presented approach offers cells with biocompatible solid supports that enhance cell adhesion and proliferation, paving the way for the next generation of techniques for tissue engineering and multicellular organoid formation.
Collapse
Affiliation(s)
- Kotone Saeki
- Department of Applied Chemistry and
Biotechnology, Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Hisataka Hiramatsu
- Department of Applied Chemistry and
Biotechnology, Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Ayaka Hori
- Department of Applied Chemistry and
Biotechnology, Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Yu Hirai
- Department of Applied Chemistry and
Biotechnology, Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Masumi Yamada
- Department of Applied Chemistry and
Biotechnology, Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Rie Utoh
- Department of Applied Chemistry and
Biotechnology, Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Minoru Seki
- Department of Applied Chemistry and
Biotechnology, Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| |
Collapse
|
21
|
Tang J, Wu C, Chen S, Qiao Z, Borovskikh P, Shchegolkov A, Chen L, Wei D, Sun J, Fan H. Combining Electrospinning and Electrospraying to Prepare a Biomimetic Neural Scaffold with Synergistic Cues of Topography and Electrotransduction. ACS APPLIED BIO MATERIALS 2020; 3:5148-5159. [PMID: 35021691 DOI: 10.1021/acsabm.0c00595] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The nerve tissue consists of aligned fibrous nerve bundles, in which neurons communicate and transmit information through electrical signals. Hence, biocompatibility, oriented fibrous structure, and electrical conductivity are key factors for the biomimetic design of nerve scaffolds. Herein, we built a technical platform to combine electrospinning and electrospraying for preparing a biomimetic scaffold with conductivity and aligned fibrous structure. The highly aligned polycaprolactone (PCL) microfibrous scaffolds with co-sprayed collagen and conductive polypyrrole nanoparticles (PPy NPs) showed good bioactivity, supplying a platform for exploring the effects of topographical guidance, fiber conductivity, and its mediated external electrical signals on neurogenesis. The results revealed that collagen-coated highly aligned PCL microfibrous scaffold induced PC12 cells oriented and elongated along the direction of fibers. In addition, the improved conductivity of PPy-coated aligned fibers and its mediated external electrical stimulation collectively contributed to the functional expression, including elongation, gene expression, and protein expression, of PC12 cells. We further demonstrated the potential mechanism where the fiber conductivity and its mediated external electrical signals resulted in the upregulation of voltage-gated calcium channel, leading to the influx of Ca2+, thereby activating intracellular signaling cascades, ultimately enhancing neurogenesis. This approach provides a strategy to design aligned fibrillary scaffolds with bioactive adhesion domains and electroconductivity for neural regeneration.
Collapse
Affiliation(s)
- Jiajia Tang
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610064, Sichuan, China
| | - Chengheng Wu
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610064, Sichuan, China
| | - Suping Chen
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610064, Sichuan, China
| | - Zi Qiao
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610064, Sichuan, China
| | - Pavel Borovskikh
- School of Business, Economics and Law, Martin-Luther-University Halle-Wittenberg, Universitätsplatz 10, 06108 Halle (Saale), Germany
| | - Alexandr Shchegolkov
- Institute of Technology,Tambov State Technical University, 106 Sovetskaya Street, Tambov 392000, Russia Federation
| | - Lu Chen
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610064, Sichuan, China
| | - Dan Wei
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610064, Sichuan, China
| | - Jing Sun
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610064, Sichuan, China
| | - Hongsong Fan
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610064, Sichuan, China
| |
Collapse
|
22
|
Yu Z, Li H, Xia P, Kong W, Chang Y, Fu C, Wang K, Yang X, Qi Z. Application of fibrin-based hydrogels for nerve protection and regeneration after spinal cord injury. J Biol Eng 2020; 14:22. [PMID: 32774454 PMCID: PMC7397605 DOI: 10.1186/s13036-020-00244-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 07/27/2020] [Indexed: 12/13/2022] Open
Abstract
Traffic accidents, falls, and many other events may cause traumatic spinal cord injuries (SCIs), resulting in nerve cells and extracellular matrix loss in the spinal cord, along with blood loss, inflammation, oxidative stress (OS), and others. The continuous development of neural tissue engineering has attracted increasing attention on the application of fibrin hydrogels in repairing SCIs. Except for excellent biocompatibility, flexibility, and plasticity, fibrin, a component of extracellular matrix (ECM), can be equipped with cells, ECM protein, and various growth factors to promote damage repair. This review will focus on the advantages and disadvantages of fibrin hydrogels from different sources, as well as the various modifications for internal topographical guidance during the polymerization. From the perspective of further improvement of cell function before and after the delivery of stem cell, cytokine, and drug, this review will also evaluate the application of fibrin hydrogels as a carrier to the therapy of nerve repair and regeneration, to mirror the recent development tendency and challenge.
Collapse
Affiliation(s)
- Ziyuan Yu
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Ziqiang Street No. 218, Changchun, TX 130041 PR China
| | - Hongru Li
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Ziqiang Street No. 218, Changchun, TX 130041 PR China
| | - Peng Xia
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Ziqiang Street No. 218, Changchun, TX 130041 PR China
| | - Weijian Kong
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Ziqiang Street No. 218, Changchun, TX 130041 PR China
| | - Yuxin Chang
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Ziqiang Street No. 218, Changchun, TX 130041 PR China
| | - Chuan Fu
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Ziqiang Street No. 218, Changchun, TX 130041 PR China
| | - Kai Wang
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Ziqiang Street No. 218, Changchun, TX 130041 PR China
| | - Xiaoyu Yang
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Ziqiang Street No. 218, Changchun, TX 130041 PR China
| | - Zhiping Qi
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Ziqiang Street No. 218, Changchun, TX 130041 PR China
| |
Collapse
|