1
|
Chatterjee S, Biswas S, Sourav S, Rath J, Akhil S, Mishra N. Strategies To Achieve Long-Term Stability in Lead Halide Perovskite Nanocrystals and Its Optoelectronic Applications. J Phys Chem Lett 2024; 15:10118-10137. [PMID: 39332015 DOI: 10.1021/acs.jpclett.4c02240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2024]
Abstract
The lead halide perovskite (LHP) nanocrystals (NCs) research area is flourishing due to their exceptional properties and great potential for a wide range of applications in optoelectronics and photovoltaics. Yet, despite the momentum in the field, perovskite devices are not yet ready for commercialization due to degradation caused by intrinsic phase transitions and external factors such as moisture, temperature, and ultraviolet (UV) light. To attain long-term stability, we analyze the origin of instabilities and describe different strategies such as surface modification, encapsulation, and doping for long-term viability. We also assess how these stabilizing strategies have been utilized to obtain optoelectronic devices with long-term stability. This Mini-Review also outlines the future direction of each strategy for producing highly efficient and ultrastable LHP NCs for sustainable applications.
Collapse
Affiliation(s)
- Shovon Chatterjee
- Institute of Chemical Technology-Indian Oil Odisha Campus Bhubaneswar IIT Kharagpur Extension Centre, Samantapuri Mouza, Gajapati Nagar, Bhubaneswar, Odisha 751013, India
| | - Subarna Biswas
- Institute of Chemical Technology-Indian Oil Odisha Campus Bhubaneswar IIT Kharagpur Extension Centre, Samantapuri Mouza, Gajapati Nagar, Bhubaneswar, Odisha 751013, India
| | - Smruti Sourav
- Institute of Chemical Technology-Indian Oil Odisha Campus Bhubaneswar IIT Kharagpur Extension Centre, Samantapuri Mouza, Gajapati Nagar, Bhubaneswar, Odisha 751013, India
| | - Jyotisman Rath
- Institute of Chemical Technology-Indian Oil Odisha Campus Bhubaneswar IIT Kharagpur Extension Centre, Samantapuri Mouza, Gajapati Nagar, Bhubaneswar, Odisha 751013, India
| | - Syed Akhil
- LUMINOUS! Centre of Excellence for Semiconductor Lighting and Displays, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798
| | - Nimai Mishra
- Institute of Chemical Technology-Indian Oil Odisha Campus Bhubaneswar IIT Kharagpur Extension Centre, Samantapuri Mouza, Gajapati Nagar, Bhubaneswar, Odisha 751013, India
| |
Collapse
|
2
|
Rahimi S, Eskandari M, Fathi D. New nanostructure perovskite-based light-emitting diode with superior light extraction efficiency enhancement. Sci Rep 2024; 14:5500. [PMID: 38448629 PMCID: PMC10918065 DOI: 10.1038/s41598-024-55951-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 02/29/2024] [Indexed: 03/08/2024] Open
Abstract
The external quantum efficiency (EQE) of a perovskite-based light-emitting diode (PELED) is a key indicator, comprising the internal quantum efficiency (IQE) and light extraction efficiency (LEE). Currently, enhancing EQE faces a major challenge in optimizing LEE. This study introduces an innovative structure to boost LEE, exploring various influencing parameters. The transition from a planar to a domical architecture leverages factors like the waveguiding effect, resulting in a remarkable tenfold increase in LEE, from 6 to 59%. Additionally, investigations into factors affecting LEE, such as altering dipole orientation, material-substrate contact angle, and layer thickness, reveal the potential for further improvement. The optimized structure attains an impressive LEE value of 74%.
Collapse
Affiliation(s)
- Saeed Rahimi
- Department of Electrical and Computer Engineering, Tarbiat Modares University (TMU), Tehran, Iran
| | - Mehdi Eskandari
- Nanomaterial Research Group, Academic Center for Education, Culture & Research (ACECR) on TMU, Tehran, Iran
| | - Davood Fathi
- Department of Electrical and Computer Engineering, Tarbiat Modares University (TMU), Tehran, Iran.
| |
Collapse
|
3
|
Kirsch C, Naujoks T, Haizmann P, Frech P, Peisert H, Chassé T, Brütting W, Scheele M. Zwitterionic Carbazole Ligands Enhance the Stability and Performance of Perovskite Nanocrystals in Light-Emitting Diodes. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37367642 DOI: 10.1021/acsami.3c05756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
We introduce a new carbazole-based zwitterionic ligand (DCzGPC) synthesized via Yamaguchi esterification which enhances the efficiency of lead halide perovskite (LHP) nanocrystals (NCs) in light-emitting diodes (LED). A facile ligand exchange of the native ligand shell, monitored by nuclear magnetic resonance (NMR), ultraviolet-visible (UV-vis), and photoluminescence (PL) spectroscopy, enables more stable and efficient LHP NCs. The improved stability is demonstrated in solution and solid-state LEDs, where the NCs exhibit prolonged luminescence lifetimes and improved luminance, respectively. These results represent a promising strategy to enhance the stability of LHP NCs and to tune their optoelectronic properties for further application in LEDs or solar cells.
Collapse
Affiliation(s)
- Christopher Kirsch
- Institut für Physikalische und Theoretische Chemie, Universität Tübingen, 72076 Tübingen, Germany
| | - Tassilo Naujoks
- Institut für Physik, Universität Augsburg, Augsburg 86135, Germany
| | - Philipp Haizmann
- Institut für Physikalische und Theoretische Chemie, Universität Tübingen, 72076 Tübingen, Germany
| | - Philipp Frech
- Institut für Physikalische und Theoretische Chemie, Universität Tübingen, 72076 Tübingen, Germany
| | - Heiko Peisert
- Institut für Physikalische und Theoretische Chemie, Universität Tübingen, 72076 Tübingen, Germany
| | - Thomas Chassé
- Institut für Physikalische und Theoretische Chemie, Universität Tübingen, 72076 Tübingen, Germany
| | | | - Marcus Scheele
- Institut für Physikalische und Theoretische Chemie, Universität Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
4
|
Liu Y, Yang J, Lawrie BJ, Kelley KP, Ziatdinov M, Kalinin SV, Ahmadi M. Disentangling Electronic Transport and Hysteresis at Individual Grain Boundaries in Hybrid Perovskites via Automated Scanning Probe Microscopy. ACS NANO 2023; 17:9647-9657. [PMID: 37155579 DOI: 10.1021/acsnano.3c03363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Underlying the rapidly increasing photovoltaic efficiency and stability of metal halide perovskites (MHPs) is the advancement in the understanding of the microstructure of polycrystalline MHP thin film. Over the past decade, intense efforts have been aimed at understanding the effect of microstructures on MHP properties, including chemical heterogeneity, strain disorder, phase impurity, etc. It has been found that grain and grain boundary (GB) are tightly related to lots of microscale and nanoscale behavior in MHP thin films. Atomic force microscopy (AFM) is widely used to observe grain and boundary structures in topography and subsequently to study the correlative surface potential and conductivity of these structures. For now, most AFM measurements have been performed in imaging mode to study the static behavior; in contrast, AFM spectroscopy mode allows us to investigate the dynamic behavior of materials, e.g., conductivity under sweeping voltage. However, a major limitation of AFM spectroscopy measurements is that they require manual operation by human operators, and as such only limited data can be obtained, hindering systematic investigations of these microstructures. In this work, we designed a workflow combining the conductive AFM measurement with a machine learning (ML) algorithm to systematically investigate grain boundaries in MHPs. The trained ML model can extract GBs locations from the topography image, and the workflow drives the AFM probe to each GB location to perform a current-voltage (IV) curve automatically. Then, we are able to have IV curves at all GB locations, allowing us to systematically understand the property of GBs. Using this method, we discovered that the GB junction points are less conductive, potentially more photoactive, and can play critical roles in MHP stability, while most previous works only focused on the difference between GB and grains.
Collapse
Affiliation(s)
- Yongtao Liu
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Jonghee Yang
- Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Benjamin J Lawrie
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Kyle P Kelley
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Maxim Ziatdinov
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
- Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Sergei V Kalinin
- Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Mahshid Ahmadi
- Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| |
Collapse
|
5
|
Otero-Martínez C, Fiuza-Maneiro N, Polavarapu L. Enhancing the Intrinsic and Extrinsic Stability of Halide Perovskite Nanocrystals for Efficient and Durable Optoelectronics. ACS APPLIED MATERIALS & INTERFACES 2022; 14:34291-34302. [PMID: 35471818 PMCID: PMC9353780 DOI: 10.1021/acsami.2c01822] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Over the past few years, metal halide perovskite nanocrystals have been at the forefront of colloidal semiconductor nanomaterial research because of their fascinating properties and potential applications. However, their intrinsic phase instability and chemical degradation under external exposures (high temperature, water, oxygen, and light) are currently limiting the real-world applications of perovskite optoelectronics. To overcome these stability issues, researchers have reported various strategies such as doping and encapsulation. The doping improves the optical and photoactive phase stability, whereas the encapsulation protects the perovskite NCs from external exposures. This perspective discusses the rationale of various strategies to enhance the stability of perovskite NCs and suggests possible future directions for the fabrication of optoelectronic devices with long-term stability while maintaining high efficiency.
Collapse
Affiliation(s)
- Clara Otero-Martínez
- Materials
Chemistry and Physics Group, Department of Physical Chemistry Campus
Universitario As Lagoas, CINBIO, Universidade
de Vigo, Marcosende 36310, Vigo, Spain
| | - Nadesh Fiuza-Maneiro
- Materials
Chemistry and Physics Group, Department of Physical Chemistry Campus
Universitario As Lagoas, CINBIO, Universidade
de Vigo, Marcosende 36310, Vigo, Spain
| | - Lakshminarayana Polavarapu
- Materials
Chemistry and Physics Group, Department of Physical Chemistry Campus
Universitario As Lagoas, CINBIO, Universidade
de Vigo, Marcosende 36310, Vigo, Spain
| |
Collapse
|
6
|
Parveen S, Giri PK. Emerging doping strategies in two-dimensional hybrid perovskite semiconductors for cutting edge optoelectronics applications. NANOSCALE ADVANCES 2022; 4:995-1025. [PMID: 36131773 PMCID: PMC9417862 DOI: 10.1039/d1na00709b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 01/16/2022] [Indexed: 05/08/2023]
Abstract
The past decade has witnessed tremendous progress in metal halide perovskites, particularly in lead (Pb) halide perovskites, because of their extraordinary performance in cutting-edge optoelectronic devices. However, the toxicity of Pb and the environmental stability of the perovskites are two major issues that this field is currently facing. In recent years, 2D layered perovskites have emerged as a promising alternative to the traditional 3D perovskites due to their structural flexibility and higher environmental stability, though they lack the desired level of device efficiency. Doping with target ions can drastically tune the crystal structure, optical properties, charge recombination dynamics, and electronic properties of the 2D perovskite. Although the field of doping in 2D perovskites has seen substantial growth in recent times, no comprehensive review is available on the recent advances in doping of 2D perovskites and its effect on the optoelectronic properties. In this review, we summarize the progress in doping in 2D perovskites based on different doping sites including progress in different synthesis strategies and their impact on crystal structures and various optoelectronic properties. We then highlight the recent achievements in doped 2D perovskites for photovoltaic, LED and other emerging applications. Finally, we conclude with the challenges and the future scope in the doping studies of 2D layered perovskites, which need to be addressed for further developments of next-generation 2D perovskite-based optoelectronic devices.
Collapse
Affiliation(s)
- Sumaiya Parveen
- Department of Physics, Indian Institute of Technology Guwahati Guwahati 781039 India
| | - P K Giri
- Department of Physics, Indian Institute of Technology Guwahati Guwahati 781039 India
- Centre for Nanotechnology, Indian Institute of Technology Guwahati Guwahati 781039 India
| |
Collapse
|
7
|
Emery Q, Remec M, Paramasivam G, Janke S, Dagar J, Ulbrich C, Schlatmann R, Stannowski B, Unger E, Khenkin M. Encapsulation and Outdoor Testing of Perovskite Solar Cells: Comparing Industrially Relevant Process with a Simplified Lab Procedure. ACS APPLIED MATERIALS & INTERFACES 2022; 14:5159-5167. [PMID: 35108814 DOI: 10.1021/acsami.1c14720] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Perovskite solar cells (PSCs) have shown great potential for next-generation photovoltaics. One of the main barriers to their commercial use is their poor long-term stability under ambient conditions and, in particular, their sensitivity to moisture and oxygen. Therefore, several encapsulation strategies are being developed in an attempt to improve the stability of PSCs in a humid environment. The lack of common testing procedures makes the comparison of encapsulation strategies challenging. In this paper, we optimized and investigated two common encapsulation strategies: lamination-based glass-glass encapsulation for outdoor operation and commercial use (COM) and a simple glue-based encapsulation mostly utilized for laboratory research purposes (LAB). We compare both approaches and evaluate their effectiveness to impede humidity ingress under three different testing conditions: on-shelf storage at 21 °C and 30% relative humidity (RH) (ISOS-D1), damp heat exposure at 85 °C and 85% RH (ISOS-D3), and outdoor operational stability continuously monitoring device performance for 10 months under maximum power point tracking on a roof-top test site in Berlin, Germany (ISOS-O3). LAB encapsulation of perovskite devices consists of glue and a cover glass and can be performed at ambient temperature, in an inert environment without the need for complex equipment. This glue-based encapsulation procedure allowed PSCs to retain more than 93% of their conversion efficiency after 1566 h of storage in ambient atmosphere and, therefore, is sufficient and suitable as an interim encapsulation for cell transport or short-term experiments outside an inert atmosphere. However, this simple encapsulation does not pass the IEC 61215 damp heat test and hence results in a high probability of fast degradation of the cells under outdoor conditions. The COM encapsulation procedure requires the use of a vacuum laminator and the cells to be able to withstand a short period of air exposure and at least 20 min at elevated temperatures (in our case, 150 °C). This encapsulation method enabled the cells to pass the IEC 61215 damp heat test and even to retain over 95% of their initial efficiency after 1566 h in a damp heat chamber. Above all, passing the damp heat test for COM-encapsulated devices translates to devices fully retaining their initial efficiency for the full duration of the outdoor test (>10 months). To the best of the authors' knowledge, this is one of the longest outdoor stability demonstrations for PSCs published to date. We stress that both encapsulation approaches described in this work are useful for the scientific community as they fulfill different purposes: the COM for the realization of prototypes for long-term real-condition validation and, ultimately, commercialization of perovskite solar cells and the LAB procedure to enable testing and carrying out experiments on perovskite solar cells under noninert conditions.
Collapse
Affiliation(s)
- Quiterie Emery
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 12489 Berlin, Germany
| | - Marko Remec
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 12489 Berlin, Germany
- Faculty of Electrical Engineering, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Gopinath Paramasivam
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 12489 Berlin, Germany
| | - Stefan Janke
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 12489 Berlin, Germany
| | - Janardan Dagar
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 12489 Berlin, Germany
| | - Carolin Ulbrich
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 12489 Berlin, Germany
| | - Rutger Schlatmann
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 12489 Berlin, Germany
| | - Bernd Stannowski
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 12489 Berlin, Germany
| | - Eva Unger
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 12489 Berlin, Germany
| | - Mark Khenkin
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 12489 Berlin, Germany
| |
Collapse
|
8
|
Recent Issues and Configuration Factors in Perovskite-Silicon Tandem Solar Cells towards Large Scaling Production. NANOMATERIALS 2021; 11:nano11123186. [PMID: 34947535 PMCID: PMC8708322 DOI: 10.3390/nano11123186] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 11/13/2021] [Accepted: 11/17/2021] [Indexed: 12/16/2022]
Abstract
The unprecedented development of perovskite-silicon (PSC-Si) tandem solar cells in the last five years has been hindered by several challenges towards industrialization, which require further research. The combination of the low cost of perovskite and legacy silicon solar cells serve as primary drivers for PSC-Si tandem solar cell improvement. For the perovskite top-cell, the utmost concern reported in the literature is perovskite instability. Hence, proposed physical loss mechanisms for intrinsic and extrinsic instability as triggering mechanisms for hysteresis, ion segregation, and trap states, along with the latest proposed mitigation strategies in terms of stability engineering, are discussed. The silicon bottom cell, being a mature technology, is currently facing bottleneck challenges to achieve power conversion efficiencies (PCE) greater than 26.7%, which requires more understanding in the context of light management and passivation technologies. Finally, for large-scale industrialization of the PSC-Si tandem solar cell, the promising silicon wafer thinning, and large-scale film deposition technologies could cause a shift and align with a more affordable and flexible roll-to-roll PSC-Si technology. Therefore, this review aims to provide deliberate guidance on critical fundamental issues and configuration factors in current PSC-Si tandem technologies towards large-scale industrialization. to meet the 2031 PSC-Si Tandem road maps market target.
Collapse
|
9
|
Klipfel N, Kanda H, Sutanto AA, Mensi M, Igci C, Leifer K, Brooks K, Kinge S, Roldán-Carmona C, Momblona C, Dyson PJ, Nazeeruddin MK. Mechanistic Insights into the Role of the Bis(trifluoromethanesulfonyl)imide Ion in Coevaporated p-i-n Perovskite Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2021; 13:52450-52460. [PMID: 34704729 DOI: 10.1021/acsami.1c10117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Hybrid lead halide perovskites have reached comparable efficiencies to state-of-the-art silicon solar cell technologies. However, a remaining key challenge toward commercialization is the resolution of the perovskite device instability. In this work, we identify for the first time the mobile nature of bis(trifluoromethanesulfonyl)imide (TFSI-), a typical anion extensively employed in p-type dopants for 2,2'7,7'-tetrakis(N,N-di-p-methoxyphenylamine)-9,9'spirofluorene (spiro-OMeTAD). We demonstrate that TFSI- can migrate through the perovskite layer via the grain boundaries and accumulate at the perovskite/electron-transporting layer (ETL) interface. Our findings reveal that the migration of TFSI- enhances the device performance and stability, resulting in highly stable p-i-n cells that retain 90% of their initial performance after 1600 h of continuous testing. Our systematic study, which targeted the effect of the nature of the dopant and its concentration, also shows that TFSI- acts as a dynamic defect-healing agent, which self-passivates the perovskite crystal defects during the migration process and thereby decreases nonradiative recombination pathways.
Collapse
Affiliation(s)
- Nadja Klipfel
- Group for Molecular Engineering of Functional Materials, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL Valais Wallis), Rue de l'Industrie 17, CH-1951 Sion, Switzerland
| | - Hiroyuki Kanda
- Group for Molecular Engineering of Functional Materials, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL Valais Wallis), Rue de l'Industrie 17, CH-1951 Sion, Switzerland
| | - Albertus Adrian Sutanto
- Group for Molecular Engineering of Functional Materials, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL Valais Wallis), Rue de l'Industrie 17, CH-1951 Sion, Switzerland
| | - Mounir Mensi
- Group for Molecular Engineering of Functional Materials, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL Valais Wallis), Rue de l'Industrie 17, CH-1951 Sion, Switzerland
| | - Cansu Igci
- Group for Molecular Engineering of Functional Materials, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL Valais Wallis), Rue de l'Industrie 17, CH-1951 Sion, Switzerland
| | - Klaus Leifer
- Group for Molecular Engineering of Functional Materials, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL Valais Wallis), Rue de l'Industrie 17, CH-1951 Sion, Switzerland
- Department of Materials Science and Engineering, Uppsala University, Box 534, 75121 Uppsala, Sweden
| | - Keith Brooks
- Group for Molecular Engineering of Functional Materials, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL Valais Wallis), Rue de l'Industrie 17, CH-1951 Sion, Switzerland
| | - Sachin Kinge
- Toyota Motor Corporation, Toyota Motor Technical Centre, Advanced Technology Division, Hoge Wei 33, B-1930 Zaventem, Belgium
| | - Cristina Roldán-Carmona
- Group for Molecular Engineering of Functional Materials, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL Valais Wallis), Rue de l'Industrie 17, CH-1951 Sion, Switzerland
| | - Cristina Momblona
- Group for Molecular Engineering of Functional Materials, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL Valais Wallis), Rue de l'Industrie 17, CH-1951 Sion, Switzerland
| | - Paul J Dyson
- Group for Molecular Engineering of Functional Materials, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL Valais Wallis), Rue de l'Industrie 17, CH-1951 Sion, Switzerland
| | - Mohammad Khaja Nazeeruddin
- Group for Molecular Engineering of Functional Materials, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL Valais Wallis), Rue de l'Industrie 17, CH-1951 Sion, Switzerland
| |
Collapse
|
10
|
Bellani S, Bartolotta A, Agresti A, Calogero G, Grancini G, Di Carlo A, Kymakis E, Bonaccorso F. Solution-processed two-dimensional materials for next-generation photovoltaics. Chem Soc Rev 2021; 50:11870-11965. [PMID: 34494631 PMCID: PMC8559907 DOI: 10.1039/d1cs00106j] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Indexed: 12/12/2022]
Abstract
In the ever-increasing energy demand scenario, the development of novel photovoltaic (PV) technologies is considered to be one of the key solutions to fulfil the energy request. In this context, graphene and related two-dimensional (2D) materials (GRMs), including nonlayered 2D materials and 2D perovskites, as well as their hybrid systems, are emerging as promising candidates to drive innovation in PV technologies. The mechanical, thermal, and optoelectronic properties of GRMs can be exploited in different active components of solar cells to design next-generation devices. These components include front (transparent) and back conductive electrodes, charge transporting layers, and interconnecting/recombination layers, as well as photoactive layers. The production and processing of GRMs in the liquid phase, coupled with the ability to "on-demand" tune their optoelectronic properties exploiting wet-chemical functionalization, enable their effective integration in advanced PV devices through scalable, reliable, and inexpensive printing/coating processes. Herein, we review the progresses in the use of solution-processed 2D materials in organic solar cells, dye-sensitized solar cells, perovskite solar cells, quantum dot solar cells, and organic-inorganic hybrid solar cells, as well as in tandem systems. We first provide a brief introduction on the properties of 2D materials and their production methods by solution-processing routes. Then, we discuss the functionality of 2D materials for electrodes, photoactive layer components/additives, charge transporting layers, and interconnecting layers through figures of merit, which allow the performance of solar cells to be determined and compared with the state-of-the-art values. We finally outline the roadmap for the further exploitation of solution-processed 2D materials to boost the performance of PV devices.
Collapse
Affiliation(s)
- Sebastiano Bellani
- BeDimensional S.p.A., Via Lungotorrente Secca 30R, 16163 Genova, Italy.
- Istituto Italiano di Tecnologia, Graphene Labs, via Moreogo 30, 16163 Genova, Italy
| | - Antonino Bartolotta
- CNR-IPCF, Istituto per i Processi Chimico-Fisici, Via F. Stagno D'alcontres 37, 98158 Messina, Italy
| | - Antonio Agresti
- CHOSE - Centre for Hybrid and Organic Solar Energy, University of Rome "Tor Vergata", via del Politecnico 1, 00133 Roma, Italy
| | - Giuseppe Calogero
- CNR-IPCF, Istituto per i Processi Chimico-Fisici, Via F. Stagno D'alcontres 37, 98158 Messina, Italy
| | - Giulia Grancini
- University of Pavia and INSTM, Via Taramelli 16, 27100 Pavia, Italy
| | - Aldo Di Carlo
- CHOSE - Centre for Hybrid and Organic Solar Energy, University of Rome "Tor Vergata", via del Politecnico 1, 00133 Roma, Italy
- L.A.S.E. - Laboratory for Advanced Solar Energy, National University of Science and Technology "MISiS", 119049 Leninskiy Prosect 6, Moscow, Russia
| | - Emmanuel Kymakis
- Department of Electrical & Computer Engineering, Hellenic Mediterranean University, Estavromenos 71410 Heraklion, Crete, Greece
| | - Francesco Bonaccorso
- BeDimensional S.p.A., Via Lungotorrente Secca 30R, 16163 Genova, Italy.
- Istituto Italiano di Tecnologia, Graphene Labs, via Moreogo 30, 16163 Genova, Italy
| |
Collapse
|