1
|
Kazemi M, Aghamaali MR, Madani R, Emami T, Golchinfar F. Evaluating the Immunogenicity of Recombinant VP1 Protein from the Foot-and-Mouth Disease Virus Encapsulated in Nanoliposome in Guinea Pig Animal Model. Vet Immunol Immunopathol 2022; 253:110497. [DOI: 10.1016/j.vetimm.2022.110497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 08/08/2022] [Accepted: 09/22/2022] [Indexed: 10/14/2022]
|
2
|
Bolaños-Martínez OC, Rosales-Mendoza S. The potential of plant-made vaccines to fight picornavirus. Expert Rev Vaccines 2020; 19:599-610. [PMID: 32609047 DOI: 10.1080/14760584.2020.1791090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
INTRODUCTION Several Picornaviruses are pathogens that generate serious problems for human and animal health worldwide. Vaccination is an attractive approach to fight against picornaviruses. In this regard, the development of low-cost vaccines is a priority to ensure coverage; especially in developing and low-income countries. In this context, plant-made vaccines are a convenient technology since plant cells are low-cost bioreactors capable of producing complex antigens that preserve their antigenic determinants; moreover, they can serve as biocapsules to achieve oral delivery. AREAS COVERED In the present review the advances in the development of plant-made vaccines against picornaviruses are summarized and placed in perspective. The main diseases that have been targeted using this approach include Poliovirus, Food and mouth disease virus, Hepatitis A virus, and Enterovirus 71. EXPERT OPINION Several vaccine candidates against picornavirus have been characterized at the preclinical level; with many of them capable of inducing humoral and cellular responses that led to neutralization of pathogens when evaluated in vitro and test animal challenge assays. Plant-made vaccines are a promise to fight picornaviruses; especially in the developing world where limited resources hamper vaccination coverage. A critical analysis of the road ahead for this technology is provided.
Collapse
Affiliation(s)
- Omayra C Bolaños-Martínez
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Circuito Escolar, Ciudad Universitaria , Ciudad de México, Mexico.,Laboratorio de Biofarmacéuticos Recombinantes, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí , San Luis Potosí, Mexico Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí , San Luis Potosí, Mexico
| | - Sergio Rosales-Mendoza
- Laboratorio de Biofarmacéuticos Recombinantes, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí , San Luis Potosí, Mexico Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí , San Luis Potosí, Mexico
| |
Collapse
|
3
|
Takeyama N, Kiyono H, Yuki Y. Plant-based vaccines for animals and humans: recent advances in technology and clinical trials. THERAPEUTIC ADVANCES IN VACCINES 2015; 3:139-54. [PMID: 26668752 DOI: 10.1177/2051013615613272] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
It has been about 30 years since the first plant engineering technology was established. Although the concept of plant-based pharmaceuticals or vaccines motivates us to develop practicable commercial products using plant engineering, there are some difficulties in reaching the final goal: to manufacture an approved product. At present, the only plant-made vaccine approved by the United States Department of Agriculture is a Newcastle disease vaccine for poultry that is produced in suspension-cultured tobacco cells. The progress toward commercialization of plant-based vaccines takes much effort and time, but several candidate vaccines for use in humans and animals are in clinical trials. This review discusses plant engineering technologies and regulations relevant to the development of plant-based vaccines and provides an overview of human and animal vaccines currently under clinical trials.
Collapse
Affiliation(s)
- Natsumi Takeyama
- Division of Mucosal Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Hiroshi Kiyono
- Division of Mucosal Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yoshikazu Yuki
- Division of Mucosal Immunology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| |
Collapse
|
4
|
Liew PS, Hair-Bejo M. Farming of Plant-Based Veterinary Vaccines and Their Applications for Disease Prevention in Animals. Adv Virol 2015; 2015:936940. [PMID: 26351454 PMCID: PMC4550766 DOI: 10.1155/2015/936940] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 07/26/2015] [Indexed: 12/21/2022] Open
Abstract
Plants have been studied for the production of pharmaceutical compounds for more than two decades now. Ever since the plant-made poultry vaccine against Newcastle disease virus made a breakthrough and went all the way to obtain regulatory approval, research to use plants for expression and delivery of vaccine proteins for animals was intensified. Indeed, in view of the high production costs of veterinary vaccines, plants represent attractive biofactories and offer many promising advantages in the production of recombinant vaccine proteins. Furthermore, the possibility of conducting immunogenicity and challenge studies in target animals has greatly exaggerated the progress. Although there are no edible plant-produced animal vaccines in the market, plant-based vaccine technology has great potentials. In this review, development, uses, and advantages of plant-based recombinant protein production in various expression platforms are discussed. In addition, examples of plant-based veterinary vaccines showing strong indication in terms of efficacy in animal disease prevention are also described.
Collapse
Affiliation(s)
- Pit Sze Liew
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 Serdang, Malaysia
| | - Mohd Hair-Bejo
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 Serdang, Malaysia
| |
Collapse
|
5
|
Saeed A, Kanwal S, Arshad M, Ali M, Shaikh RS, Abubakar M. Foot-and-mouth disease: overview of motives of disease spread and efficacy of available vaccines. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2015; 57:10. [PMID: 26290730 PMCID: PMC4540294 DOI: 10.1186/s40781-015-0042-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 01/16/2015] [Indexed: 11/22/2022]
Abstract
Control and prevention of foot and mouth disease (FMD) by vaccination remains unsatisfactory in endemic countries. Indeed, consistent and new FMD epidemics in previously disease-free countries have precipitated the need for a worldwide control strategy. Outbreaks in vaccinated animals require that a new and safe vaccine be developed against foot and mouth virus (FMDV). FMDV can be eradicated worldwide based on previous scientific information about its spread using existing and modern control strategies.
Collapse
Affiliation(s)
- Ali Saeed
- Instituteof Molecular Biology and Biotechnology, Bahauddin Zakariya, University, Multan, Pakistan
| | - Sehrish Kanwal
- Instituteof Molecular Biology and Biotechnology, Bahauddin Zakariya, University, Multan, Pakistan
| | - Memoona Arshad
- National Institute for Biotechnology and Genetic Engineering, (NIBGE), Faisalabad, Pakistan
| | - Muhammad Ali
- Instituteof Molecular Biology and Biotechnology, Bahauddin Zakariya, University, Multan, Pakistan
| | - Rehan Sadiq Shaikh
- Instituteof Molecular Biology and Biotechnology, Bahauddin Zakariya, University, Multan, Pakistan
| | | |
Collapse
|
6
|
Ling HY, Pelosi A, Walmsley AM. Current status of plant-made vaccines for veterinary purposes. Expert Rev Vaccines 2014; 9:971-82. [DOI: 10.1586/erv.10.87] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
7
|
Scotti N, Rybicki EP. Virus-like particles produced in plants as potential vaccines. Expert Rev Vaccines 2014; 12:211-24. [DOI: 10.1586/erv.12.147] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
8
|
Guan ZJ, Guo B, Huo YL, Guan ZP, Dai JK, Wei YH. Recent advances and safety issues of transgenic plant-derived vaccines. Appl Microbiol Biotechnol 2013; 97:2817-40. [PMID: 23447052 PMCID: PMC7080054 DOI: 10.1007/s00253-012-4566-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 10/30/2012] [Accepted: 11/01/2012] [Indexed: 01/08/2023]
Abstract
Transgenic plant-derived vaccines comprise a new type of bioreactor that combines plant genetic engineering technology with an organism's immunological response. This combination can be considered as a bioreactor that is produced by introducing foreign genes into plants that elicit special immunogenicity when introduced into animals or human beings. In comparison with traditional vaccines, plant vaccines have some significant advantages, such as low cost, greater safety, and greater effectiveness. In a number of recent studies, antigen-specific proteins have been successfully expressed in various plant tissues and have even been tested in animals and human beings. Therefore, edible vaccines of transgenic plants have a bright future. This review begins with a discussion of the immune mechanism and expression systems for transgenic plant vaccines. Then, current advances in different transgenic plant vaccines will be analyzed, including vaccines against pathogenic viruses, bacteria, and eukaryotic parasites. In view of the low expression levels for antigens in plants, high-level expression strategies of foreign protein in transgenic plants are recommended. Finally, the existing safety problems in transgenic plant vaccines were put forward will be discussed along with a number of appropriate solutions that will hopefully lead to future clinical application of edible plant vaccines.
Collapse
Affiliation(s)
- Zheng-jun Guan
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Science, Northwest University, Xi’an, 710069 People’s Republic of China
- Department of Life Sciences, Yuncheng University, Yuncheng, Shanxi 044000 China
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093 China
| | - Bin Guo
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Science, Northwest University, Xi’an, 710069 People’s Republic of China
| | - Yan-lin Huo
- Centre of Biological and Chemical Exiperiment, Yuncheng University, Yuncheng, Shanxi 044000 China
| | - Zheng-ping Guan
- Department of Animal Science and Technology, Nanjing Agriculture University, Nanjing, Jiangshu 210095 China
| | - Jia-kun Dai
- Enzyme Engineering Institute of Shaanxi, Academy of Sciences, Xi’an, Shaanxi 710600 People’s Republic of China
| | - Ya-hui Wei
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Science, Northwest University, Xi’an, 710069 People’s Republic of China
| |
Collapse
|
9
|
Miller T, Fanton M, Nickelson S, Mason H, Webb S. Safety and immunogenicity of bacterial and tobacco plant cell line derived recombinant native and mutant Escherichia coli heat-labile toxin in chickens. Avian Pathol 2012; 41:441-9. [PMID: 22928883 DOI: 10.1080/03079457.2012.709606] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The safety and immunogenicity of the mammalian mucosal adjuvants, Escherichia coli wild-type heat-labile holotoxin (LT) and E. coli mutant LT (LTA-K63/LTB), were examined in 1-day-old chicks and 10-day-old to 21-day-old broilers. Biologically active, E. coli recombinant wild-type LT and recombinant LTA-K63/LTB produced in a transgenic Nicotiana tabacum (NT-1) tobacco cell line (SLT102) were tested for safety and antigenicity following various routes of administration. Safety was assessed by clinical signs, body weight gain, gross organ pathology and wet organ weight, and histopathology. Antigenicity was assessed using LT-B-specific serum IgG enzyme-linked immunosorbent assay. Parenteral administration of E. coli recombinant wild-type LT did not have any discernible effect on bird health and was well tolerated at levels up to 400 µg per dose. Recombinant, SLT102-derived mutant LT derived from SLT102 cells retained in vitro ganglioside binding and was safe and antigenic following repeated mucosal administration to birds. The highest systemic LT-B-specific IgG titres were detected in birds that received three on-feed doses of SLT102-derived mutant LT. Among the various SLT102-derived mutant LT preparations tested, whole, wet cells or whole cell lysates were the most antigenic. These results demonstrate for the first time that E. coli-derived recombinant, wild-type LT holotoxin is well tolerated following multiple administrations to young birds at body weight doses previously reported to be enteropathogenic and toxic in mammalian species. Moreover, these data also demonstrate the feasibility of using recombinant wild-type and mutant LT produced in transgenic NT-1 tobacco cells as safe and potent vaccine adjuvants in poultry.
Collapse
Affiliation(s)
- Tim Miller
- Benchmark BioLabs, Inc., Lincoln, NE 68528-1574, USA.
| | | | | | | | | |
Collapse
|
10
|
Wang Y, Shen Q, Jiang Y, Song Y, Fang L, Xiao S, Chen H. Immunogenicity of foot-and-mouth disease virus structural polyprotein P1 expressed in transgenic rice. J Virol Methods 2012; 181:12-7. [DOI: 10.1016/j.jviromet.2012.01.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 12/23/2011] [Accepted: 01/09/2012] [Indexed: 11/25/2022]
|
11
|
Sathish K, Sriraman R, Subramanian BM, Rao NH, Balaji K, Narasu ML, Srinivasan VA. Plant expressed EtMIC2 is an effective immunogen in conferring protection against chicken coccidiosis. Vaccine 2011; 29:9201-8. [PMID: 21986219 DOI: 10.1016/j.vaccine.2011.09.117] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Revised: 09/24/2011] [Accepted: 09/27/2011] [Indexed: 10/16/2022]
Abstract
Coccidiosis is an economically important disease affecting poultry industry and remains one of the major problems globally. Developing a cost effective sub-unit vaccine may help mitigate loss in the industry. Here, we report expressing one of the microneme proteins, EtMIC2 from Eimeria tenella in tobacco using Agrobacterium-mediated transient expression. The ability of plant expressed recombinant EtMIC2 in eliciting both humoral and cell-mediated immune responses were measured in the immunized birds. The protective efficacy in the vaccinated birds against a homologous challenge was also evaluated. Birds immunized with plant expressed EtMIC2 showed good sero-conversion, reduced oocyst output and increased weight gain when compared to control birds. Our data indicate that use of plant expressed recombinant EtMIC2 in birds was safe and had the potential in imparting partial protection in chickens against homologous challenge.
Collapse
MESH Headings
- Animals
- Antibodies, Protozoan/blood
- Antibodies, Protozoan/immunology
- Antigens, Protozoan/genetics
- Antigens, Protozoan/immunology
- Chickens/immunology
- Cloning, Molecular
- Coccidiosis/immunology
- Coccidiosis/prevention & control
- Coccidiosis/veterinary
- Eimeria tenella/immunology
- Immunity, Cellular
- Immunity, Humoral
- Immunization/veterinary
- Interferon-gamma/immunology
- Oocysts
- Plants, Genetically Modified/genetics
- Plants, Genetically Modified/immunology
- Poultry Diseases/immunology
- Poultry Diseases/prevention & control
- Protozoan Vaccines/immunology
- Recombinant Proteins/genetics
- Recombinant Proteins/immunology
- Nicotiana/genetics
- Nicotiana/immunology
- Vaccines, Subunit/immunology
- Weight Gain
Collapse
Affiliation(s)
- K Sathish
- Research & Development Centre, Indian Immunologicals Limited, Rakshapuram, Gachibowli, Hyderabad 500032, Andhra Pradesh, India
| | | | | | | | | | | | | |
Collapse
|
12
|
The development of a high-yield recombinant protein bioreactor through RNAi induced knockdown of ATP/ADP transporter in Solanum tuberosum. J Biotechnol 2011; 156:59-66. [PMID: 21864587 DOI: 10.1016/j.jbiotec.2011.08.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2011] [Revised: 07/31/2011] [Accepted: 08/08/2011] [Indexed: 11/20/2022]
Abstract
There is an increased need for high-yield protein production platforms to meet growing demand. Tuber-based production in Solanum tuberosum offers several advantages, including high biomass yield, although protein concentration is typically low. In this work, we investigated the question whether minor interruption of starch biosynthesis can have a positive effect on tuber protein content and/or tuber biomass, as previous work suggested that partial obstruction of starch synthesis had variable effects on tuber yield. To this end, we used a RNAi approach to knock down ATP/ADP transporter and obtained a large number of transgenic lines for screening of lines with improved tuber protein content and/or tuber biomass. The initial screening was based on tuber biomass because of its relative simplicity. We identified a line, riAATP1-10, with minor (less than 15%) reduction in starch, that had a nearly 30% increase in biomass compared to wild-type, producing both more and larger tubers with altered morphological features compared to wild-type. riAATP1-10 tubers have a higher concentration of soluble protein compared to wild-type tubers, with nearly 50% more soluble protein. We assessed the suitability of this line as a new bioreactor by expressing a human scFv, reaching over 0.5% of total soluble protein, a 2-fold increase over the highest accumulating line in a wild-type background. Together with increased biomass and increased levels in total protein content, foreign protein expression in riAATP1-10 line would translate into a nearly 4-fold increase in recombinant protein yield per plant. Our results indicate that riAATP1-10 line provides an improved expression system for production of foreign proteins.
Collapse
|
13
|
Rodriguez LL, Gay CG. Development of vaccines toward the global control and eradication of foot-and-mouth disease. Expert Rev Vaccines 2011; 10:377-87. [PMID: 21434805 DOI: 10.1586/erv.11.4] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Foot-and-mouth disease (FMD) is one of the most economically and socially devastating diseases affecting animal agriculture throughout the world. Although mortality is usually low in adult animals, millions of animals have been killed in efforts to rapidly control and eradicate FMD. The causing virus, FMD virus (FMDV), is a highly variable RNA virus occurring in seven serotypes (A, O, C, Asia 1, Sat 1, Sat 2 and Sat 3) and a large number of subtypes. FMDV is one of the most infectious agents known, affecting cloven-hoofed animals with significant variations in infectivity and virus transmission. Although inactivated FMD vaccines have been available for decades, there is little or no cross-protection across serotypes and subtypes, requiring vaccines that are matched to circulating field strains. Current inactivated vaccines require growth of virulent virus, posing a threat of escape from manufacturing sites, have limited shelf life and require re-vaccination every 4-12 months. These vaccines have aided in the eradication of FMD from Europe and the control of clinical disease in many parts of the world, albeit at a very high cost. However, FMDV persists in endemic regions impacting millions of people dependent on livestock for food and their livelihood. Usually associated with developing countries that lack the resources to control it, FMD is a global problem and the World Organization for Animal Health and the United Nations' Food Agriculture Organization have called for its global control and eradication. One of the main limitations to FMDV eradication is the lack of vaccines designed for this purpose, vaccines that not only protect against clinical signs but that can actually prevent infection and effectively interrupt the natural transmission cycle. These vaccines should be safely and inexpensively produced, be easy to deliver, and also be capable of inducing lifelong immunity against multiple serotypes and subtypes. Furthermore, there is a need for better integrated strategies that fit the specific needs of endemic regions. Availability of these critical components will greatly enhance the chances for the global control and eradication of FMDV.
Collapse
Affiliation(s)
- Luis L Rodriguez
- Agricultural Research Service, United States Department of Agriculture, Foreign Animal Disease Research Unit, Orient Point, New York, NY, USA.
| | | |
Collapse
|
14
|
ZHANG SZ, ZHANG GL, RONG TZ, PAN L, ZHOU P, ZHANG YG. Transformation of Two VP1 Genes of O- and Asia 1-Type Foot-and-Mouth Disease Virus into Maize. ACTA ACUST UNITED AC 2011. [DOI: 10.1016/s1671-2927(11)60048-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
15
|
Abstract
Potato breeding programmes worldwide are undergoing a period of rapid change. In order to be successful, breeders must adapt and incorporate the newest up-to-date techniques as they become available. Recent advances in biotechnology make it possible to develop and cultivate more and more sophisticated transgenic crops with multiple modified traits. Gene transfer methods can be used for a wide range of fundamental studies, contributing to a better understanding of the mechanisms of plant/pathogen interactions and the metabolic pathways in plants. Transgenic potato plants are being generated worldwide to investigate the impact of transgene expression on parameters as complex as yield. Historically, potato was one of the first successfully transformed crop plants. Nowadays, transgenic potatoes have been introduced into the food chain of people and animals in several countries. Some of the genetic modifications give potato plants increased resistance to biotic and abiotic environmental factors, while others lead to improved nutritional value, or cause the plants to produce proteins of the immune system of humans or animals or substances that may be used as vaccines in humans or veterinary medicine. The trend today is towards the generation of crops with output traits, e.g. modified starch or carotenoids, or the production of pharmaceuticals in tubers, whereas the early targets were input traits, e.g. herbicide resistance, pest or virus resistance. This review provides a summary of examples illustrating the versatility and applicability of transgenic biology in potato improvement.
Collapse
Affiliation(s)
| | - Z. Polgar
- 1 University of Pannonia Potato Research Centre, Centre of Agricultural Sciences Keszthely Hungary
| |
Collapse
|
16
|
Chen YS, Hung YC, Lin WH, Huang GS. Assessment of gold nanoparticles as a size-dependent vaccine carrier for enhancing the antibody response against synthetic foot-and-mouth disease virus peptide. NANOTECHNOLOGY 2010; 21:195101. [PMID: 20400818 DOI: 10.1088/0957-4484/21/19/195101] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
To assess the ability of gold nanoparticles (GNPs) to act as a size-dependent carrier, a synthetic peptide resembling foot-and-mouth disease virus (FMDV) protein was conjugated to GNPs ranging from 2 to 50 nm in diameter (2, 5, 8, 12, 17, 37, and 50 nm). An extra cysteine was added to the C-terminus of the FMDV peptide (pFMDV) to ensure maximal conjugation to the GNPs, which have a high affinity for sulfhydryl groups. The resultant pFMDV-GNP conjugates were then injected into BALB/c mice. Immunization with pFMDV-keyhole limpet hemocyanin (pFMDV-KLH) conjugate was also performed as a control. Blood was obtained from the mice after 4, 6, 8, and 10 weeks and antibody titers against both pFMDV and the carriers were measured. For the pFMDV-GNP immunization, specific antibodies against the synthetic peptide were detected in the sera of mice injected with 2, 5, 8, 12, and 17 nm pFMDV-GNP conjugates. Maximal antibody binding was noted for GNPs of diameter 8-17 nm. The pFMDV-GNPs induced a three-fold increase in the antibody response compared to the response to pFMDV-KLH. However, sera from either immunized mouse group did not exhibit an antibody response to GNPs, while the sera from pFMDV-KLH-immunized mice presented high levels of binding activity against KLH. Additionally, the uptake of pFMDV-GNP in the spleen was examined by inductively coupled plasma mass spectroscopy (ICP-MS) and transmission electron microscopy (TEM). The quantity of GNPs that accumulated in the spleen correlated to the magnitude of the immune response induced by pFMDV-GNP. In conclusion, we demonstrated the size-dependent immunogenic properties of pFMDV-GNP conjugates. Furthermore, we established that GNPs ranging from 8 to 17 nm in diameter may be ideal for eliciting a focused antibody response against a synthetic pFMDV peptide.
Collapse
Affiliation(s)
- Yu-Shiun Chen
- Department of Materials Science and Engineering, National Chiao Tung University, 1001 University Road, EE137, Hsinchu 300, Taiwan, Republic of China
| | | | | | | |
Collapse
|
17
|
Abstract
Plant-derived biologicals for use in animal health are becoming an increasingly important target for research into alternative, improved methods for disease control. Although there are no commercial products on the market yet, the development and testing of oral, plant-based vaccines is now beyond the proof-of-principle stage. Vaccines, such as those developed for porcine transmissible gastroenteritis virus, have the potential to stimulate both mucosal and systemic, as well as, lactogenic immunity as has already been seen in target animal trials. Plants are a promising production system, but they must compete with existing vaccines and protein production platforms. In addition, regulatory hurdles will need to be overcome, and industry and public acceptance of the technology are important in establishing successful products.
Collapse
Affiliation(s)
- R W Hammond
- USDA-ARS, BARC-West, Rm.252, Bldg. 011, Beltsville, MD 20705, USA.
| | | |
Collapse
|
18
|
Tiwari S, Verma PC, Singh PK, Tuli R. Plants as bioreactors for the production of vaccine antigens. Biotechnol Adv 2009; 27:449-67. [PMID: 19356740 PMCID: PMC7126855 DOI: 10.1016/j.biotechadv.2009.03.006] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2008] [Revised: 03/27/2009] [Accepted: 03/31/2009] [Indexed: 12/12/2022]
Abstract
Plants have been identified as promising expression systems for commercial production of vaccine antigens. In phase I clinical trials several plant-derived vaccine antigens have been found to be safe and induce sufficiently high immune response. Thus, transgenic plants, including edible plant parts are suggested as excellent alternatives for the production of vaccines and economic scale-up through cultivation. Improved understanding of plant molecular biology and consequent refinement in the genetic engineering techniques have led to designing approaches for high level expression of vaccine antigens in plants. During the last decade, several efficient plant-based expression systems have been examined and more than 100 recombinant proteins including plant-derived vaccine antigens have been expressed in different plant tissues. Estimates suggest that it may become possible to obtain antigen sufficient for vaccinating millions of individuals from one acre crop by expressing the antigen in seeds of an edible legume, like peanut or soybean. In the near future, a plethora of protein products, developed through ‘naturalized bioreactors’ may reach market. Efforts for further improvements in these technologies need to be directed mainly towards validation and applicability of plant-based standardized mucosal and edible vaccines, regulatory pharmacology, formulations and the development of commercially viable GLP protocols. This article reviews the current status of developments in the area of use of plants for the development of vaccine antigens.
Collapse
Affiliation(s)
| | | | | | - Rakesh Tuli
- Corresponding author. National Botanical Research Institute, Council of Scientific and Industrial Research, Rana Pratap Marg, Lucknow-226001 (U.P.) India. Tel.: +91 522 2205848; fax: +91 522 2205839.
| |
Collapse
|
19
|
Yusibov V, Rabindran S. Recent progress in the development of plant derived vaccines. Expert Rev Vaccines 2008; 7:1173-83. [PMID: 18844592 DOI: 10.1586/14760584.7.8.1173] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Recombinant subunit vaccines have been with us for the last 30 years and they provide us with the unique opportunity to choose from the many available production systems that can be used for recombinant protein expression. Plants have become an attractive production platform for recombinant biopharmaceuticals and vaccines have been at the forefront of this new and expanding industry sector. The particular advantages of plant-based vaccines in terms of cost, safety and scalability are discussed in the light of recent successful clinical trials and the likely impact of plant systems on the vaccine industry is evaluated.
Collapse
Affiliation(s)
- Vidadi Yusibov
- Fraunhofer USA Center for Molecular Biotechnology, 9 Innovation Way, Suite 200, Newark, DE 1971, USA.
| | | |
Collapse
|
20
|
Wang DM, Zhu JB, Peng M, Zhou P. Induction of a protective antibody response to FMDV in mice following oral immunization with transgenic Stylosanthes spp. as a feedstuff additive. Transgenic Res 2008; 17:1163-70. [PMID: 18651235 DOI: 10.1007/s11248-008-9188-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2008] [Accepted: 05/17/2008] [Indexed: 11/29/2022]
Abstract
The expression of antigens in transgenic plants has increasingly been used as an alternative to the classical methodologies for the development of experimental vaccines, and it remains one of the real challenges in this field to use transgenic plant-based vaccines effectively as feedstuff additives. We report herein the development of a new oral immunization system for foot and mouth disease with the structural protein VP1 of the foot and mouth disease virus (FMDV) produced in transgenic Stylosanthes guianensis cv. Reyan II. The transgenic plantlets were identified by polymerase chain reaction (PCR), Southern blotting, and northern blotting; and the production of VP1 protein in transgenic plants was confirmed and quantified by western blotting and enzyme-linked immunosorbent assays (ELISA). Six transformed lines were obtained, and the level of the expressed protein was 0.1-0.5% total soluble protein (TSP). Mice that were orally immunized using studded feedstuff mixed with desiccated powder of the transgenic plants developed a virus-specific immune response to the structural VP1 and intact FMDV particles. To our knowledge, this is the first report of transgenic plants expressing the antigen protein of FMDV as feedstuff additives that has demonstrated the induction of a protective systemic antibody response in animals. These results support the feasibility of producing edible vaccines from transgenic forage plants, and provide proof of the possibility of using plant-based vaccines as feedstuff additives.
Collapse
Affiliation(s)
- Dong Mei Wang
- State Key Laboratory of Tropical Crop Biotechnology, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Science, Haikou 571101, China.
| | | | | | | |
Collapse
|
21
|
Pan L, Zhang Y, Wang Y, Wang B, Wang W, Fang Y, Jiang S, Lv J, Wang W, Sun Y, Xie Q. Foliar extracts from transgenic tomato plants expressing the structural polyprotein, P1-2A, and protease, 3C, from foot-and-mouth disease virus elicit a protective response in guinea pigs. Vet Immunol Immunopathol 2008; 121:83-90. [PMID: 18006078 DOI: 10.1016/j.vetimm.2007.08.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2006] [Revised: 07/25/2007] [Accepted: 08/13/2007] [Indexed: 11/27/2022]
Abstract
The expression of recombinant antigens in transgenic plants is increasingly used as an alternative method of producing experimental immunogens. In this report, we describe the production of transgenic tomato plants that express the structural polyprotein, P1-2A, and protease, 3C, from foot-and-mouth disease (FMDV). P1-2A3C was inserted into the plant binary vector, pBin438, and transformed into tomato plants using Agrobacterium tumefaciens strain, GV3101. The presence of P1-2A3C was confirmed by PCR, transcription was verified by RT-PCR, and recombinant protein expression was confirmed by sandwich-ELISA and Western blot analyses. Guinea pigs immunized intramuscularly with foliar extracts from P1-2A3C-transgenic tomato plants were found to develop a virus-specific antibody response against FMDV. Vaccinated guinea pigs were fully protected against a challenge infection, while guinea pigs injected with untransformed plant extracts failed to elicit an antibody response and were not protected against challenge. These results demonstrate that transgenic tomato plants expressing the FMDV structural polyprotein, P1-2A, and the protease, 3C, can be used as a source of recombinant antigen for vaccine production.
Collapse
Affiliation(s)
- Li Pan
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agriculture Science, Xujiaping 11, Lanzhou, Gansu 730046, PR China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Joensuu JJ, Niklander-Teeri V, Brandle JE. Transgenic plants for animal health: plant-made vaccine antigens for animal infectious disease control. PHYTOCHEMISTRY REVIEWS : PROCEEDINGS OF THE PHYTOCHEMICAL SOCIETY OF EUROPE 2008; 7:553-577. [PMID: 32214922 PMCID: PMC7089046 DOI: 10.1007/s11101-008-9088-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2007] [Accepted: 02/05/2008] [Indexed: 05/19/2023]
Abstract
A variety of plant species have been genetically modified to accumulate vaccine antigens for human and animal health and the first vaccine candidates are approaching the market. The regulatory burden for animal vaccines is less than that for human use and this has attracted the attention of researchers and companies, and investment in plant-made vaccines for animal infectious disease control is increasing. The dosage cost of vaccines for animal infectious diseases must be kept to a minimum, especially for non-lethal diseases that diminish animal welfare and growth, so efficient and economic production, storage and delivery are critical for commercialization. It has become clear that transgenic plants are an economic and efficient alternative to fermentation for large-scale production of vaccine antigens. The oral delivery of plant-made vaccines is particularly attractive since the expensive purification step can be avoided further reducing the cost per dose. This review covers the current status of plant-produced vaccines for the prevention of disease in animals and focuses on barriers to the development of such products and methods to overcome them.
Collapse
Affiliation(s)
- J. J. Joensuu
- Department of Applied Biology, University of Helsinki, P.O. Box 27, 00014 Helsinki, Finland
- Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, 1391 Sandford Street, London, ON Canada N5V 4T3
| | - V. Niklander-Teeri
- Department of Applied Biology, University of Helsinki, P.O. Box 27, 00014 Helsinki, Finland
| | - J. E. Brandle
- Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, 1391 Sandford Street, London, ON Canada N5V 4T3
| |
Collapse
|
23
|
Abstract
This review examines the challenges of segregating biopharmed crops expressing pharmaceutical or veterinary agents from mainstream crops, particularly those destined for food or feed use. The strategy of using major food crops as production vehicles for the expression of pharmaceutical or veterinary agents is critically analysed in the light of several recent episodes of contamination of the human food chain by non-approved crop varieties. Commercially viable strategies to limit or avoid biopharming intrusion into the human food chain require the more rigorous segregation of food and non-food varieties of the same crop species via a range of either physical or biological methods. Even more secure segregation is possible by the use of non-food crops, non-crop plants or in vitro plant cultures as production platforms for biopharming. Such platforms already under development range from outdoor-grown Nicotiana spp. to glasshouse-grown Arabidopsis, lotus and moss. Amongst the more effective methods for biocontainment are the plastid expression of transgenes, inducible and transient expression systems, and physical containment of plants or cell cultures. In the current atmosphere of heightened concerns over food safety and biosecurity, the future of biopharming may be largely determined by the extent to which the sector is able to maintain public confidence via a more considered approach to containment and security of its plant production systems.
Collapse
Affiliation(s)
- Denis J Murphy
- Biotechnology Unit, Division of Biological Sciences, University of Glamorgan, Treforest, CF37 1DL, UK.
| |
Collapse
|
24
|
He DM, Qian KX, Shen GF, Li YN, Zhang ZF, Su ZL, Shao HB. Stable expression of foot-and-mouth disease virus protein VP1 fused with cholera toxin B subunit in the potato (Solanum tuberosum). Colloids Surf B Biointerfaces 2006; 55:159-63. [PMID: 17208421 DOI: 10.1016/j.colsurfb.2006.11.043] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2006] [Revised: 11/15/2006] [Accepted: 11/29/2006] [Indexed: 10/23/2022]
Abstract
The expression vector, pBI121CTBVP1, containing the fusion of the foot and mouth disease virus (FMDV) VP1 gene and the cholera toxin B subunit (CTB) gene was constructed by fused PCR and transferred into potato (Solanum tuberosum L.) by Agrobacterium-mediated transformation. Transformed plants were obtained by selecting on kanamycin-resistant medium strictly and regenerated. The transgenic plantlets were identified by PCR, Southern-blot and the production of fused protein was confirmed and quantified by Western-blot and ELISA assays. The results showed that the fused genes were expressed stablely under the control of specific-tuber patatin promoter. The expressed fused proteins have a certain degree of immunogenicity.
Collapse
Affiliation(s)
- Dong-Mei He
- Department of Biotechnology, College of Life Science, Zhejiang University, Hangzhou 310027, China
| | | | | | | | | | | | | |
Collapse
|
25
|
Mullins E, Milbourne D, Petti C, Doyle-Prestwich BM, Meade C. Potato in the age of biotechnology. TRENDS IN PLANT SCIENCE 2006; 11:254-60. [PMID: 16621672 DOI: 10.1016/j.tplants.2006.03.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2005] [Revised: 02/22/2006] [Accepted: 03/23/2006] [Indexed: 05/08/2023]
Abstract
Biotechnology-based tools are now widely used to enhance and expand the traditional remit of potato in food production. By modifying its functionality, the capacity of the potato to produce, for example, therapeutic or industrial compounds is now a reality, and its ability to resist disease can also be radically improved. Two developments have been crucial to expanding the role of potato: the recent advances in the fields of structural and functional potato genomics and the ability to integrate genes of interest into the potato genome. In this review we discuss how both developments have diversified the remit of this crop.
Collapse
Affiliation(s)
- Ewen Mullins
- Plant Biotechnology Unit, Teagasc Crops Research Centre, Oakpark, Carlow, Ireland.
| | | | | | | | | |
Collapse
|
26
|
Twyman RM, Schillberg S, Fischer R. Transgenic plants in the biopharmaceutical market. Expert Opin Emerg Drugs 2006; 10:185-218. [PMID: 15757412 DOI: 10.1517/14728214.10.1.185] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Many of our 'small-molecule-drugs' are natural products from plants, or are synthetic compounds based on molecules found naturally in plants. However, the vast majority of the protein therapeutics (or biopharmaceuticals) we use are from animal or human sources, and are produced commercially in microbial or mammalian bioreactor systems. Over the last few years, it has become clear that plants have great potential for the production of human proteins and other protein-based therapeutic entities. Plants offer the prospect of inexpensive biopharmaceutical production without sacrificing product quality or safety, and following the success of several plant-derived technical proteins, the first therapeutic products are now approaching the market. In this review, the different plant-based production systems are discussed and the merits of transgenic plants are evaluated compared with other platforms. A detailed discussion is provided of the development issues that remain to be addressed before plants become an acceptable mainstream production technology. The many different proteins that have already been produced using plants are described, and a sketch of the current market and the activities of the key players is provided. Despite the currently unclear regulatory framework and general industry inertia, the benefits of plant-derived pharmaceuticals are now bringing the prospect of inexpensive veterinary and human medicines closer than ever before.
Collapse
Affiliation(s)
- Richard M Twyman
- University of York, Department of Biology, Heslington, York, YO10 5DD, UK.
| | | | | |
Collapse
|
27
|
Huang LK, Liao SC, Chang CC, Liu HJ. Expression of avian reovirus sigmaC protein in transgenic plants. J Virol Methods 2006; 134:217-22. [PMID: 16488486 DOI: 10.1016/j.jviromet.2006.01.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2005] [Revised: 01/12/2006] [Accepted: 01/12/2006] [Indexed: 11/30/2022]
Abstract
Avian reovirus (ARV) structural protein, sigmaC encoded by S1 genome segment, is the prime candidate to become a vaccine against ARV infection. Two plant nuclear expression vectors with expression of sigmaC-encoding gene driven by CaMV 35S promoter and rice actin promoter were constructed, respectively. Agrobacterium containing the S1 expression constructs were used to transform alfalfa, and transformants were selected using hygromysin. The integration of S1 transgene in alfalfa chromosome was confirmed by PCR and histochemical GUS staining. Western blot analysis using antiserum against sigmaC was carried out to determine the expression of sigmaC protein in transgenic alfalfa cells. The highest expression levels of sigmaC protein in the cellular extracts of selected p35S-S1 and pAct1-S1 transgenic alfalfa lines were 0.008% and 0.007% of the total soluble protein, respectively. The transgenic alfalfa cells with expression of sigmaC protein pave the way for the development of edible vaccine.
Collapse
Affiliation(s)
- Liang-Kai Huang
- Institute of Biotechnology, National Cheng Kung University, Tainan 701, Taiwan
| | | | | | | |
Collapse
|
28
|
Kim SA, Liang CM, Cheng IC, Cheng YC, Chiao MT, Tseng CJ, Lee F, Jong MH, Tao MH, Yang NS, Liang SM. DNA vaccination against foot-and-mouth disease via electroporation: study of molecular approaches for enhancing VP1 antigenicity. J Gene Med 2006; 8:1182-91. [PMID: 16927362 DOI: 10.1002/jgm.941] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Foot-and-mouth disease virus (FMDV) affects susceptible livestock animals and causes disastrous economic impact. Immunization with plasmid expressing VP1 that contains the major antigenic epitope(s) of FMDV as cytoplasmic protein (cVP1) failed to elicit full protection against FMDV challenge. MATERIALS AND METHODS In this study, mice were immunized via electroporation with four cDNA expression vectors that were constructed to express VP1 of FMDV, as cytoplasmic (cVP1), secreted (sVP1), membrane-anchored (mVP1) or capsid precursor protein (P1), respectively, to evaluate whether expression of VP1 in specific subcellular compartment(s) would result in better immune responses. RESULTS Electroporation enhanced immune responses to vectors expressing cVP1 or P1 and expedited the immune responses to vectors expressing sVP1 or mVP1. Immunization of mice via electroporation with mVP1 cDNA was better than sVP1 or cVP1 cDNA in eliciting neutralizing antibodies and viral clearance protection. Vaccination with P1 cDNA, nonetheless, yielded the best immune responses and protection among all four cDNAs that we tested. CONCLUSIONS These results suggest that the antigenicity of a VP1 DNA vaccine can be significantly enhanced by altering the cellular localization of the VP1 antigen. Electroporation is a useful tool for enhancing the immune responses of vectors expressing VP1 or P1. By mimicking FMDV more closely than that of transgenic VP1 and eliciting immune responses favorably toward Th2, transgenic P1 may induce more neutralizing antibodies and better protection against FMDV challenge.
Collapse
Affiliation(s)
- Suk-Am Kim
- Institute of BioAgricultural Sciences, Academia Sinica, Taipei, Taiwan, ROC
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
The expression of antigens in transgenic plants has been increasingly used in the development of experimental vaccines, particularly oriented to the development of edible vaccines. Hence, this technology becomes highly suitable to express immunogenic proteins from pathogens. Foot and mouth disease virus, bovine rotavirus and bovine viral diarrhoea virus are considered to be the most important causative agents of economic loss of cattle production in Argentina, and they are thus optimal candidates for alternative means of immunization. Here, we present a review of our results corresponding to the expression of immunogenic proteins from these three viruses in alfalfa transgenic plants, and we discuss the possibility of using them for the development of plant-based vaccines.
Collapse
MESH Headings
- Animals
- Antigens, Viral/genetics
- Antigens, Viral/immunology
- Arabidopsis/genetics
- Arabidopsis/metabolism
- Cattle
- Cattle Diseases/immunology
- Cattle Diseases/prevention & control
- Cattle Diseases/virology
- Diarrhea Viruses, Bovine Viral/genetics
- Diarrhea Viruses, Bovine Viral/immunology
- Foot-and-Mouth Disease Virus/genetics
- Foot-and-Mouth Disease Virus/immunology
- Medicago sativa/genetics
- Medicago sativa/metabolism
- Plants, Genetically Modified/genetics
- Plants, Genetically Modified/metabolism
- Rotavirus/genetics
- Rotavirus/immunology
- Solanum tuberosum/genetics
- Solanum tuberosum/metabolism
- Vaccines, Edible/administration & dosage
- Vaccines, Edible/biosynthesis
- Vaccines, Edible/genetics
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/biosynthesis
- Vaccines, Synthetic/genetics
- Veterinary Medicine/methods
- Viral Proteins/genetics
- Viral Proteins/immunology
- Viral Vaccines/administration & dosage
- Viral Vaccines/biosynthesis
- Viral Vaccines/genetics
Collapse
|
30
|
Dus Santos MJ, Carrillo C, Ardila F, Ríos RD, Franzone P, Piccone ME, Wigdorovitz A, Borca MV. Development of transgenic alfalfa plants containing the foot and mouth disease virus structural polyprotein gene P1 and its utilization as an experimental immunogen. Vaccine 2005; 23:1838-43. [PMID: 15734052 DOI: 10.1016/j.vaccine.2004.11.014] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The use of transgenic plants as vectors for the expression of viral and bacterial antigens has been increasingly tested as an alternative methodology for the production of experimental vaccines. Here, we report the production of transgenic alfalfa plants containing the genes encoding the polyprotein P1 and the protease 3C of foot and mouth disease virus (FMDV). The immunogenicity of the expressed products was tested using a mouse experimental model. Parenterally immunized mice developed a strong antibody response and were completely protected when challenged with the virulent virus. This report demonstrates the possibility of using transgenic plants to express polyprotein P1 and the protease 3C of FMDV and their utilization as effective experimental immunogens.
Collapse
Affiliation(s)
- María J Dus Santos
- Instituto de Virología S. Rivenson C.I.C.V.y A., INTA-Castelar, Hurlingham (1712) Pcia. Buenos Aires, Argentina
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
Transgenic plant-derived vaccines offer a new strategy for the development of safe, inexpensive vaccines against diarrhoeal diseases. In animal and Phase I clinical studies, these vaccines have been safe and immunogenic without the need for a buffer or vehicle other than the plant cell. This review examines some early attempts to develop oral transgenic plant vaccines against enteric infections such as enterotoxigenic Escherichia coli infection, cholera and norovirus infection.
Collapse
Affiliation(s)
- Carol O Tacket
- Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, MD 21202, USA.
| |
Collapse
|
32
|
Mason HS, Chikwamba R, Santi L, Mahoney RT, Arntzen CJ. Transgenic Plants for Mucosal Vaccines. Mucosal Immunol 2005. [PMCID: PMC7150293 DOI: 10.1016/b978-012491543-5/50062-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
33
|
Wigdorovitz A, Mozgovoj M, Santos MJD, Parreño V, Gómez C, Pérez-Filgueira DM, Trono KG, Ríos RD, Franzone PM, Fernández F, Carrillo C, Babiuk LA, Escribano JM, Borca MV. Protective lactogenic immunity conferred by an edible peptide vaccine to bovine rotavirus produced in transgenic plants. J Gen Virol 2004; 85:1825-1832. [PMID: 15218166 DOI: 10.1099/vir.0.19659-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Vaccines produced in transgenic plants constitute a promising alternative to conventional immunogens, presenting the possibility of stimulating secretory and systemic immunity against enteric pathogens when administered orally. Protection against enteric pathogens affecting newborn animals requires, in most cases, the stimulation of lactogenic immunity. Here, the group presents the development of an experimental immunogen based on expression of an immunorelevant peptide, eBRV4, of the VP4 protein of bovine rotavirus (BRV), which has been described as harbouring at least one neutralizing epitope as well as being responsible for the adsorption of the virus to epithelial cells. The eBRV4 epitope was efficiently expressed in transgenic alfalfa as a translational fusion protein with the highly stable reporter enzyme β-glucuronidase (βGUS), which served as a carrier, stabilized the synthesized peptide and facilitated screening for the higher expression levels in plants. Correlation of expression of the eBRV4 epitope in plants with those presenting the highest βGUS activities was confirmed by a Western blot assay specific for the BRV peptide. The eBRV4 epitope expressed in plants was effective in inducing an anti-rotavirus antibody response in adult female mice when administered either intraperitoneally or orally and, more importantly, suckling mice born from immunized female mice were protected against oral challenge with virulent rotavirus. These results demonstrate the feasibility of inducing lactogenic immunity against an enteric pathogen using an edible vaccine produced in transgenic plants.
Collapse
Affiliation(s)
- Andrés Wigdorovitz
- Consejo Nacional e Investigaciones Científicas y Técnicas (CONICET), Argentina
- Instituto de Virología, CICV, INTA-Castelar, CC77, Morón 1708, Buenos Aires, Argentina
| | - Marina Mozgovoj
- Instituto de Virología, CICV, INTA-Castelar, CC77, Morón 1708, Buenos Aires, Argentina
| | - María J Dus Santos
- Instituto de Virología, CICV, INTA-Castelar, CC77, Morón 1708, Buenos Aires, Argentina
| | - Viviana Parreño
- Instituto de Virología, CICV, INTA-Castelar, CC77, Morón 1708, Buenos Aires, Argentina
| | - Cristina Gómez
- Instituto de Genética 'E. A. Favret', CICA, INTA-Castelar, Buenos Aires, Argentina
| | - Daniel M Pérez-Filgueira
- Departamento de Biotecnología and Centro de Investigación en Sanidad Animal, INIA, Valdeolmos, 28140 Madrid, Spain
- Consejo Nacional e Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Karina G Trono
- Instituto de Virología, CICV, INTA-Castelar, CC77, Morón 1708, Buenos Aires, Argentina
| | - Raúl D Ríos
- Instituto de Genética 'E. A. Favret', CICA, INTA-Castelar, Buenos Aires, Argentina
| | - Pascual M Franzone
- Instituto de Genética 'E. A. Favret', CICA, INTA-Castelar, Buenos Aires, Argentina
| | - Fernando Fernández
- Instituto de Virología, CICV, INTA-Castelar, CC77, Morón 1708, Buenos Aires, Argentina
| | - Consuelo Carrillo
- Instituto de Virología, CICV, INTA-Castelar, CC77, Morón 1708, Buenos Aires, Argentina
| | - Lorne A Babiuk
- University of Saskatchewan, VIDO, Saskatoon, SK, Canada, S7N 5E3
| | - José M Escribano
- Departamento de Biotecnología and Centro de Investigación en Sanidad Animal, INIA, Valdeolmos, 28140 Madrid, Spain
| | - Manuel V Borca
- Consejo Nacional e Investigaciones Científicas y Técnicas (CONICET), Argentina
- Instituto de Virología, CICV, INTA-Castelar, CC77, Morón 1708, Buenos Aires, Argentina
| |
Collapse
|
34
|
Khandelwal A, Renukaradhya GJ, Rajasekhar M, Sita GL, Shaila MS. Systemic and oral immunogenicity of hemagglutinin protein of rinderpest virus expressed by transgenic peanut plants in a mouse model. Virology 2004; 323:284-91. [PMID: 15193924 DOI: 10.1016/j.virol.2004.02.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2002] [Revised: 02/28/2003] [Accepted: 02/23/2004] [Indexed: 10/26/2022]
Abstract
Rinderpest causes a devastating disease, often fatal, in wild and domestic ruminants. It has been eradicated successfully using a live, attenuated vaccine from most part of the world leaving a few foci of disease in parts of Africa, the Middle East, and South Asia. We have developed transgenic peanut (Arachis hypogaea L.) plants expressing hemagglutinin (H) protein of rinderpest virus (RPV), which is antigenically authentic. In this work, we have evaluated the immunogenicity of peanut-expressed H protein using mouse model, administered parenterally as well as orally. Intraperitoneal immunization of mice with the transgenic peanut extract elicited antibody response specific to H. These antibodies neutralized virus infectivity in vitro. Oral immunization of mice with transgenic peanut induced H-specific serum IgG and IgA antibodies. The systemic and oral immunogenicity of plant-derived H in absence of any adjuvant indicates the potential of edible vaccine for rinderpest.
Collapse
Affiliation(s)
- Abha Khandelwal
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | | | | | | | | |
Collapse
|
35
|
Wang JH, Liang CM, Peng JM, Shieh JJ, Jong MH, Lin YL, Sieber M, Liang SM. Induction of immunity in swine by purified recombinant VP1 of foot-and-mouth disease virus. Vaccine 2003; 21:3721-9. [PMID: 12922103 DOI: 10.1016/s0264-410x(03)00363-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
VP1, a capsid protein of foot-and-mouth disease virus (FMDV), contains neutralizing epitopes of the virus. Due to its poor water solubility, recombinant Escherichia coli derived VP1 (rVP1) has previously been used mainly in a denatured form and is not well characterized. Here, using SDS to assist protein refolding and then removing SDS with a detergent removing column, we have successfully purified rVP1 in two aqueous-soluble forms, i.e. monomer and dimer. Studies showed that dimerization occurs by an inter-molecular disulfide bond between two cysteine residues at position 187 of each monomer. Heat treatment revealed that rVP1 dimer exhibited a more thermal-stable conformation than the monomeric form. Both monomeric and dimeric rVP1 reacted with anti-FMDV antibodies. Immunization studies demonstrated that vaccination of swine with either forms of rVP1 was effective in generating immune responses and protecting them from viral challenge.
Collapse
Affiliation(s)
- Jeng-Hwan Wang
- Institute of Bioagricultural Sciences, Academia Sinica, No. 128 Academia Road, Section 2 Nankang, Taipei 11529, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
Plant systems are reviewed with regard to their ability to express and produce subunit vaccines. Examples of different types of expression systems producing a variety of vaccine candidates are illustrated. Many of these subunit vaccines have been purified and shown to elicit an immune response when injected into animal models. This review also includes vaccines that have been administered orally in a non-purified form as a food or feed product. Cases are highlighted which demonstrate that orally delivered plant-based vaccines can elicit immune responses and in some case studies, confer protection. Examples are used to illustrate some of the inherent advantages of a plant-based system, such as cost, ease of scale-up and convenience of delivery. Also, some of the key steps are identified that will be necessary to bring these new vaccines to the market.
Collapse
|
37
|
Khandelwal A, Sita G L, Shaila MS. Expression of hemagglutinin protein of rinderpest virus in transgenic tobacco and immunogenicity of plant-derived protein in a mouse model. Virology 2003; 308:207-15. [PMID: 12706071 DOI: 10.1016/s0042-6822(03)00010-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The use of transgenic plants as a production system for recombinant subunit vaccines has been considered safe and economical compared to cell culture methods. We have exploited this approach to produce rinderpest virus hemagglutinin (H) protein in transgenic tobacco as a model plant for testing the immunogenicity of plant-derived hemagglutinin protein. The transgenic nature of the plants was confirmed by molecular analysis such as gene specific PCR and Southern hybridization using full-length H gene as a probe. The Mendelian pattern of inheritance of the transgene has been demonstrated in T(1) generation. The transgenic plants express the H protein of molecular weight 72 kDa. The plant derived H protein is antigenically authentic as revealed by reactivity with H-specific antibodies as well as convalescent sera. The induction of immune response was tested in mice after intraperitoneal immunization with plant-derived H. High titers of antibodies were induced which were H-specific and they neutralized the infectivity of rinderpest virus.
Collapse
Affiliation(s)
- Abha Khandelwal
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560 012, India
| | | | | |
Collapse
|
38
|
Abstract
Many advances continue to be made in the field of plant-derived vaccines. Plants have been shown capable of expressing a multicomponent vaccine that when orally delivered induces a T-helper cell subset 1 response and enables passive immunization. Furthermore, a plant-derived vaccine has been shown to protect against challenge in the target host. Increased antigen expression levels (up to 4.1% total soluble protein) have been obtained through transformation of the chloroplast genome. In view of these findings, plant-derived vaccines have been proved as valuable commodities to the world's health system; however, before their application, studies need to focus on optimization of immunization strategies and to investigate antigen stability.
Collapse
Key Words
- ctb, cholera toxin b subunit
- etec, enterotoxigenic escherichia coli
- fda, food and drug administration
- fmdv, foot and mouth disease virus
- hbsag, hepatitis b surface antigen
- ltb, heat-labile toxin of etec b subunit
- mv, measles virus
- tgev, transmissible gastroenteritis coronavirus
- tmv, tobacco mosaic virus
- tsp, total soluble protein
Collapse
MESH Headings
- Administration, Oral
- Animals
- Bacterial Vaccines
- Drug Stability
- Gene Expression Regulation, Plant
- Genetic Engineering/methods
- Humans
- Immunity, Mucosal/immunology
- Plants, Genetically Modified/genetics
- Plants, Genetically Modified/immunology
- Plants, Genetically Modified/virology
- Recombinant Fusion Proteins/administration & dosage
- Recombinant Fusion Proteins/biosynthesis
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/immunology
- Transformation, Genetic
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/biosynthesis
- Vaccines, Synthetic/genetics
- Viral Vaccines
Collapse
|
39
|
Martín-Alonso JM, Castañón S, Alonso P, Parra F, Ordás R. Oral immunization using tuber extracts from transgenic potato plants expressing rabbit hemorrhagic disease virus capsid protein. Transgenic Res 2003; 12:127-30. [PMID: 12650532 PMCID: PMC7089254 DOI: 10.1023/a:1022112717331] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Rabbit hemorrhagic disease, which is caused by a calicivirus, is a lethal infection of adult animals that is characterized by acute liver damage and disseminated intravascular coagulation. In this study, we report the production of the major structural protein VP60 of rabbit hemorrhagic disease virus in transgenic tubers of potato plants and its use as an oral immunogen in rabbits.
Collapse
Affiliation(s)
- José M. Martín-Alonso
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Biotecnología de Asturias (CNB-CSIC), Universidad de Oviedo, 33006 Oviedo, Spain
| | - Sonia Castañón
- Departamento de Biología de Organismos y Sistemas, Instituto Universitario de Biotecnología de Asturias (CNB-CSIC), Universidad de Oviedo, 33006 Oviedo, Spain
| | - Pablo Alonso
- Departamento de Biología de Organismos y Sistemas, Instituto Universitario de Biotecnología de Asturias (CNB-CSIC), Universidad de Oviedo, 33006 Oviedo, Spain
| | - Francisco Parra
- Departamento de Biología de Organismos y Sistemas, Instituto Universitario de Biotecnología de Asturias (CNB-CSIC), Universidad de Oviedo, 33006 Oviedo, Spain
| | - Ricardo Ordás
- Departamento de Biología de Organismos y Sistemas, Instituto Universitario de Biotecnología de Asturias (CNB-CSIC), Universidad de Oviedo, 33006 Oviedo, Spain
| |
Collapse
|
40
|
Dus Santos MJ, Wigdorovitz A, Trono K, Ríos RD, Franzone PM, Gil F, Moreno J, Carrillo C, Escribano JM, Borca MV. A novel methodology to develop a foot and mouth disease virus (FMDV) peptide-based vaccine in transgenic plants. Vaccine 2002; 20:1141-7. [PMID: 11803075 DOI: 10.1016/s0264-410x(01)00434-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The expression of antigens in transgenic plants has been increasingly used as an alternative to the classical methodologies for antigen expression in the development of experimental vaccines. However, an important limitation in most cases is the low concentration of the recombinant antigens in the plant tissues, which reduces the possibilities of practical applications. Because the site of insertion of the transferred DNA into the cellular chromosomal DNA is at random, different levels of foreign protein expression in independent transformants is expected. Strategies to allow the evaluation of a high number of the transgenic individuals, usually an expensive and very time consuming process, would permit the selection of those plants presenting the highest levels of recombinant protein expression. Here, we present the development of an experimental immunogen based in the expression of a highly immunogenic epitope from foot and mouth disease virus (FMDV) fused to the glucuronidase (gus A) reporter gene, which allows selection of the transgenic plants by the ss-glucuronidase (ssGUS) enzymatic activity. We produced transgenic plants of alfalfa expressing the immunogenic site between amino acid residues 135-160 of structural protein VP1 (VP135-160), fused to the ssGUS protein. Plants expressing the highest levels of the immunogenic epitope VP135-160, analyzed by Western blot, were efficiently selected based on their levels of ssGUS enzymatic activity. The FMDV epitope expressed in plants was highly immunogenic in mice which developed, after immunization, a strong anti-FMDV antibody response against a synthetic peptide representing the region VP135-160, to native virus VP1, and to purified FMDV particles. Additionally, these mice were completely protected against experimental challenge with the virulent virus. To our knowledge, this constitutes the first report of a peptide-based vaccine produced in transgenic plants that induces a protective immune response when used in experimental hosts. Also, these results demonstrated the possibility of using a novel and simple methodology for obtaining transgenic plants expressing high levels of foreign immunogenic epitopes, which could be directly applied in the development of plant-based vaccines.
Collapse
Affiliation(s)
- María J Dus Santos
- Instituto de Virología, C.I.C.V., INTA-Castelar, CC77, Morón (1708), Pcia. De, Buenos Aires, Argentina.
| | | | | | | | | | | | | | | | | | | |
Collapse
|