1
|
Romeo G, Chiacchio U, Corsaro A, Merino P. Chemical Synthesis of Heterocyclic−Sugar Nucleoside Analogues. Chem Rev 2010; 110:3337-70. [PMID: 20232792 DOI: 10.1021/cr800464r] [Citation(s) in RCA: 183] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Giovanni Romeo
- Dipartimento Farmaco-Chimico, Università di Messina, Via SS Annunziata, 98168 Messina, Italy, Dipartimento di Scienze Chimiche, Università di Catania, Viale Andrea Doria 6, 95125 Catania, Italy, and Laboratorio de Sintesis Asimetrica, Departamento de Quimica Organica, Instituto de Ciencia de Materiales de Aragon, Universidad de Zaragoza, CSIC, E-50009 Zaragoza, Aragon, Spain, Pedro Merino:
| | - Ugo Chiacchio
- Dipartimento Farmaco-Chimico, Università di Messina, Via SS Annunziata, 98168 Messina, Italy, Dipartimento di Scienze Chimiche, Università di Catania, Viale Andrea Doria 6, 95125 Catania, Italy, and Laboratorio de Sintesis Asimetrica, Departamento de Quimica Organica, Instituto de Ciencia de Materiales de Aragon, Universidad de Zaragoza, CSIC, E-50009 Zaragoza, Aragon, Spain, Pedro Merino:
| | - Antonino Corsaro
- Dipartimento Farmaco-Chimico, Università di Messina, Via SS Annunziata, 98168 Messina, Italy, Dipartimento di Scienze Chimiche, Università di Catania, Viale Andrea Doria 6, 95125 Catania, Italy, and Laboratorio de Sintesis Asimetrica, Departamento de Quimica Organica, Instituto de Ciencia de Materiales de Aragon, Universidad de Zaragoza, CSIC, E-50009 Zaragoza, Aragon, Spain, Pedro Merino:
| | - Pedro Merino
- Dipartimento Farmaco-Chimico, Università di Messina, Via SS Annunziata, 98168 Messina, Italy, Dipartimento di Scienze Chimiche, Università di Catania, Viale Andrea Doria 6, 95125 Catania, Italy, and Laboratorio de Sintesis Asimetrica, Departamento de Quimica Organica, Instituto de Ciencia de Materiales de Aragon, Universidad de Zaragoza, CSIC, E-50009 Zaragoza, Aragon, Spain, Pedro Merino:
| |
Collapse
|
2
|
Lack of pharmacokinetic interaction between amdoxovir and reduced- and standard-dose zidovudine in HIV-1-infected individuals. Antimicrob Agents Chemother 2009; 54:1248-55. [PMID: 20038617 DOI: 10.1128/aac.01209-09] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Amdoxovir (AMDX) inhibits HIV-1 containing the M184V/I mutation and is rapidly absorbed and deaminated to its active metabolite, beta-D-dioxolane guanosine (DXG). DXG is synergistic with zidovudine (ZDV) in HIV-1-infected primary human lymphocytes. A recent in silico pharmacokinetic (PK)/enzyme kinetic study suggested that ZDV at 200 mg twice a day (b.i.d.) may reduce toxicity without compromising efficacy relative to the standard 300-mg b.i.d. dose. Therefore, an intense PK clinical study was conducted using AMDX/placebo, with or without ZDV, in 24 subjects randomized to receive oral AMDX at 500 mg b.i.d., AMDX at 500 mg plus ZDV at 200 or 300 mg b.i.d., or ZDV at 200 or 300 mg b.i.d. for 10 days. Full plasma PK profiles were collected on days 1 and 10, and complete urine sampling was performed on day 9. Plasma and urine concentrations of AMDX, DXG, ZDV, and ZDV-5'-O-glucuronide (GZDV) were measured using a validated liquid chromatography-tandem mass spectrometry method. Data were analyzed using noncompartmental methods, and multiple comparisons were performed on the log-transformed parameters, at steady state. Coadministration of AMDX with ZDV did not significantly change either of the plasma PK parameters or percent recovery in the urine of AMDX, DXG, or ZDV/GZDV. Larger studies with AMDX/ZDV, with a longer duration, are warranted.
Collapse
|
3
|
Fromentin E, Asif G, Obikhod A, Hurwitz SJ, Schinazi RF. Simultaneous quantification of 9-(beta-D-1,3-dioxolan-4-yl)guanine, Amdoxovir and Zidovudine in human plasma by liquid chromatography-tandem mass spectrometric assay. J Chromatogr B Analyt Technol Biomed Life Sci 2009; 877:3482-8. [PMID: 19740712 DOI: 10.1016/j.jchromb.2009.08.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2009] [Revised: 06/16/2009] [Accepted: 08/11/2009] [Indexed: 11/25/2022]
Abstract
A sensitive method was developed and validated for simultaneous measurement of an investigational antiviral nucleoside, Amdoxovir (DAPD), its deaminated metabolite 9-(beta-D-1,3-dioxolan-4-yl)guanine (DXG), and Zidovudine (ZDV) in human plasma. This method employed high-performance liquid chromatography-tandem mass spectrometry with electrospray ionization. DXG and DAPD separation with sufficient resolution was necessary since they differ in only one mass to charge ratio, which increases the risk of overlapping MS/MS signals. However, the new method was observed to have functional sensitivity and specificity without interference. Samples were purified by ultrafiltration after protein precipitation with methanol. The total run time was 29 min. A linear calibration range from 2 to 3000 ng mL(-1) and 2 to 5000 ng mL(-1) was achieved for DAPD and DXG, and ZDV, respectively. Precisions and accuracies were both +/-15% (+/-20% for the lower limit of quantification) and recoveries were higher than 90%. Matrix effects/ion suppressions were also investigated. The analytes were chemically stable under all relevant conditions and the method was successfully applied for the analysis of plasma samples from HIV-infected persons treated with combinations of DAPD and ZDV.
Collapse
Affiliation(s)
- Emilie Fromentin
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, and Veterans Affairs Medical Center, Decatur, GA 30033, USA
| | | | | | | | | |
Collapse
|
4
|
Liang Y, Sharon A, Grier JP, Rapp KL, Schinazi RF, Chu CK. 5'-O-Aliphatic and amino acid ester prodrugs of (-)-beta-D-(2R,4R)-dioxolane-thymine (DOT): synthesis, anti-HIV activity, cytotoxicity and stability studies. Bioorg Med Chem 2008; 17:1404-9. [PMID: 19153047 DOI: 10.1016/j.bmc.2008.10.078] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2008] [Revised: 10/29/2008] [Accepted: 10/31/2008] [Indexed: 11/25/2022]
Abstract
A series of (-)-beta-D-(2R,4R)-dioxolane-thymine-5'-O-aliphatic acid esters as well as amino acid esters were synthesized as prodrugs of (-)-beta-D-(2R,4R)-dioxolane-thymine (DOT). The compounds were evaluated for anti-HIV activity against HIV-1(LAI) in human peripheral blood mononuclear (PBM) cells as well as for their cytotoxicity in PBM, CEM and Vero cells. Improved anti-HIV potency in vitro was observed for the compound 2-4 (5'-O-aliphatic acid esters) without increase in cytotoxicity in comparison to the parent drug. Chemical and enzymatic hydrolysis of the prodrugs was also studied, in which the prodrugs exhibited good chemical stability with the half-lives from 3 h to 54 h at pH 2.0 and 7.4 phosphate buffer. However, the prodrugs were relatively labile to porcine esterase with the half-lives from 12.3 to 48.0 min.
Collapse
Affiliation(s)
- Yuzeng Liang
- Department of Pharmaceutical and Biomedical Sciences, The University of Georgia, College of Pharmacy, Athens, GA 30602, USA
| | | | | | | | | | | |
Collapse
|
5
|
Development of an optimized dose for coformulation of zidovudine with drugs that select for the K65R mutation using a population pharmacokinetic and enzyme kinetic simulation model. Antimicrob Agents Chemother 2008; 52:4241-50. [PMID: 18838591 DOI: 10.1128/aac.00054-08] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
In vitro selection studies and data from large genotype databases from clinical studies have demonstrated that tenofovir disoproxil fumarate and abacavir sulfate select for the K65R mutation in the human immunodeficiency virus type 1 polymerase region. Furthermore, other novel non-thymine nucleoside reverse transcriptase (RT) inhibitors also select for this mutation in vitro. Studies performed in vitro and in humans suggest that viruses containing the K65R mutation remained susceptible to zidovudine (ZDV) and other thymine nucleoside antiretroviral agents. Therefore, ZDV could be coformulated with these agents as a "resistance repellent" agent for the K65R mutation. The approved ZDV oral dose is 300 mg twice a day (b.i.d.) and is commonly associated with bone marrow toxicity thought to be secondary to ZDV-5'-monophosphate (ZDV-MP) accumulation. A simulation study was performed in silico to optimize the ZDV dose for b.i.d. administration with K65R-selecting antiretroviral agents in virtual subjects using the population pharmacokinetic and cellular enzyme kinetic parameters of ZDV. These simulations predicted that a reduction in the ZDV dose from 300 to 200 mg b.i.d. should produce similar amounts of ZDV-5'-triphosphate (ZDV-TP) associated with antiviral efficacy (>97% overlap) and reduced plasma ZDV and cellular amounts of ZDV-MP associated with toxicity. The simulations also predicted reduced peak and trough amounts of cellular ZDV-TP after treatment with 600 mg ZDV once a day (q.d.) rather than 300 or 200 mg ZDV b.i.d., indicating that q.d. dosing with ZDV should be avoided. These in silico predictions suggest that 200 mg ZDV b.i.d. is an efficacious and safe dose that could delay the emergence of the K65R mutation.
Collapse
|
6
|
Menne S, Asif G, Narayanasamy J, Butler SD, George AL, Hurwitz SJ, Schinazi RF, Chu CK, Cote PJ, Gerin JL, Tennant BC. Antiviral effect of orally administered (-)-beta-D-2-aminopurine dioxolane in woodchucks with chronic woodchuck hepatitis virus infection. Antimicrob Agents Chemother 2007; 51:3177-84. [PMID: 17606676 PMCID: PMC2043196 DOI: 10.1128/aac.00325-07] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
(-)-beta-D-2-Aminopurine dioxolane (APD) is a nucleoside prodrug that is efficiently converted to 9-(beta-D-1,3-dioxolan-4-yl)guanine (DXG). DXG has antiviral activity in vitro against hepatitis B virus (HBV) but limited aqueous solubility, making it difficult to administer orally to HBV-infected individuals. APD is more water soluble than DXG and represents a promising prodrug for the delivery of DXG. A placebo-controlled, dose-ranging efficacy and pharmacokinetic study was conducted with woodchucks that were chronically infected with woodchuck hepatitis virus (WHV). APD was efficiently converted to DXG after oral and intravenous administrations of APD, with serum concentrations of DXG being higher following oral administration than following intravenous administration, suggestive of a considerable first-pass intestinal and/or hepatic metabolism. APD administered orally at 1, 3, 10, and 30 mg/kg of body weight per day for 4 weeks produced a dose-dependent antiviral response. Doses of 3 and 10 mg/kg/day reduced serum WHV viremia by 0.4 and 0.7 log(10) copies/ml, respectively. The 30-mg/kg/day dose resulted in a more pronounced, statistically significant decline in serum WHV viremia of 1.9 log(10) copies/ml and was associated with a 1.5-fold reduction in hepatic WHV DNA. Individual woodchucks within the highest APD dose group that had declines in serum WHV surface antigen levels, WHV viremia, and hepatic WHV DNA also had reductions in hepatic WHV RNA. There was a prompt recrudescence of WHV viremia following drug withdrawal. Therefore, oral administration of APD for 4 weeks was safe in the woodchuck model of chronic HBV infection, and the effect on serum WHV viremia was dose dependent.
Collapse
Affiliation(s)
- Stephan Menne
- Gastrointestinal Unit, Department of Clinical Sciences, College of Veterinary Medicine, Room C-2005 VMC, Cornell University, Ithaca, NY 14853, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Asif G, Hurwitz SJ, Obikhod A, Delinsky D, Narayanasamy J, Chu CK, McClure HM, Schinazi RF. Pharmacokinetics of the anti-human immunodeficiency virus agent 1-(beta-D-dioxolane)thymine in rhesus monkeys. Antimicrob Agents Chemother 2007; 51:2424-9. [PMID: 17485498 PMCID: PMC1913250 DOI: 10.1128/aac.01498-06] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2006] [Revised: 03/26/2007] [Accepted: 04/30/2007] [Indexed: 11/20/2022] Open
Abstract
Beta-D-dioxolane-thymine (D-DOT) has potent and selective in vitro activity against several clinically important resistant human immunodeficiency virus (HIV) mutants and is in advanced preclinical development. Therefore, the single-dose intravenous and oral pharmacokinetics of D-DOT were studied with three rhesus monkeys. The pharmacokinetic profiles of D-DOT in serum and urine were adequately described by a two-compartment open pharmacokinetic model. D-DOT was rapidly and almost completely absorbed (absorption rate constant = 2.7 h(-1); fraction of oral dose absorbed = 0.82 to 1.06). The average serum beta half-life was 2.16 h. The average central and steady-state volumes of distributions were 0.52 and 1.02 liter/kg of body weight, respectively, and the average systemic and renal clearance values were 0.36 liter/h/kg and 0.18 liter/h/kg. Four or eight percent of administered D-DOT was eliminated in the urine as glucuronide within 8 h after intravenous or oral administration, respectively. D-DOT reached levels in the cerebrospinal fluid in excess of 10 to 20 times the median effective concentration for wild-type HIV and resistant mutants. The potent antiretroviral activity of D-DOT against a lamivudine- and zidovudine-resistant HIV-1 mutant, together with an excellent pharmacokinetic profile for rhesus monkeys, suggest that further development is warranted.
Collapse
Affiliation(s)
- Ghazia Asif
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Asif G, Hurwitz SJ, Shi J, Hernandez-Santiago BI, Schinazi RF. Pharmacokinetics of the antiviral agent beta-D-2'-deoxy-2'-fluoro-2'-C-methylcytidine in rhesus monkeys. Antimicrob Agents Chemother 2007; 51:2877-82. [PMID: 17562805 PMCID: PMC1932527 DOI: 10.1128/aac.00193-07] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
beta-D-2'-Deoxy-2'-fluoro-2'-C-methylcytidine (PSI-6130) is an effective inhibitor of hepatitis C virus (HCV) replication in vitro. The purpose of this study was to evaluate the single-dose pharmacokinetics of PSIota-6130 in rhesus monkeys following intravenous (i.v.) and oral administration. Noncompartmental analysis of the serum data obtained following oral and i.v. administration was performed. Pharmacokinetic studies with rhesus monkeys indicated slow and incomplete absorption with a mean absorption time (MAT) of 4.6 h and an oral bioavailability of 24.0% +/- 14.3% (mean +/- standard deviation), with comparable mean apparent half-lives following i.v. (4.54 +/- 3.98 h) and oral (5.64 +/- 1.13 h) administrations. The average percentages of the total dose recovered unchanged and in deaminated form in the urine were 32.9% +/- 12.6% and 18.9% +/- 6.6% (i.v.) and 6.0% +/- 3.9% and 3.9% +/- 1.0% (oral), respectively. The total bioavailability, taking into account the parent drug and its deaminated metabolite 2'-deoxy-2'-fluoro-2'-C-methyluridine (PSI-6206), was 64% +/- 26%. PSI-6130 was present in the cerebrospinal fluid after oral and i.v. dosing. However, no deamination of radiolabeled PSI-6130 was detected after 8 h of incubation in monkey and human whole blood. An N(4)-modified prodrug of PSI-6130 (PSI-6419) was orally administered to monkeys, but it failed to improve the oral bioavailability of PSI-6130. Further studies are warranted to improve the oral bioavailability and reduce the deamination of PSI-6130 in order to explore the potential of this drug for the treatment of HCV-infected individuals.
Collapse
Affiliation(s)
- Ghazia Asif
- Veterans Affairs Medical Center, Medical Research 151H, Decatur, GA 30033, USA
| | | | | | | | | |
Collapse
|
9
|
Narayanasamy J, Pullagurla MR, Sharon A, Wang J, Schinazi RF, Chu CK. Synthesis and anti-HIV activity of (-)-beta-D-(2R,4R)-1,3-dioxolane-2,6-diamino purine (DAPD) (amdoxovir) and (-)-beta-D-(2R,4R)-1,3-dioxolane guanosine (DXG) prodrugs. Antiviral Res 2007; 75:198-209. [PMID: 17532483 PMCID: PMC2025703 DOI: 10.1016/j.antiviral.2007.03.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2006] [Revised: 02/01/2007] [Accepted: 03/06/2007] [Indexed: 10/23/2022]
Abstract
Prodrugs of (-)-beta-D-(2R,4R)-1,3-dioxolane-2,6-diamino purine (DAPD), organic salts of DAPD, 5'-L-valyl DAPD and N-1 substituted (-)-beta-D-(2R,4R)-1,3-dioxolane guanosine (DXG) have been synthesized with the objective of finding molecules which might be superior to DAPD and DXG in solubility as well as pharmacologic profiles. Synthesized prodrugs were evaluated for anti-HIV activity against HIV-1(LAI) in primary human lymphocytes (PBM cells) as well as their cytotoxicity in PBM, CEM and Vero cells. DAPD prodrugs, modified at the C6 position of the purine ring, demonstrated several folds of enhanced anti-HIV activity in comparison to the parent compound DAPD without increasing the toxicity. The presence of alkyl amino groups at the C6 position of the purine ring increased the antiviral potency several folds, and the most potent compound (-)-beta-D-(2R,4R)-1,3-dioxolane-2-amino-6-aminoethyl purine (8) was 17 times more potent than that of DAPD. 5'-L-Valyl DAPD 20 and organic acid salts 21-24 also exhibited enhanced anti-HIV activity in comparison to DAPD, while DXG prodrugs 16 and 17 exhibited lower potency than that of DXG or DAPD.
Collapse
|
10
|
Fortin C, Joly V, Yeni P. Emerging reverse transcriptase inhibitors for the treatment of HIV infection in adults. Expert Opin Emerg Drugs 2006; 11:217-30. [PMID: 16634698 DOI: 10.1517/14728214.11.2.217] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A combination of three or more antiretroviral drugs, commonly called 'highly active antiretroviral therapy' (HAART), has become the standard-of-care treatment for HIV-infected patients in the developed world. There are now 21 licensed anti-HIV drugs to choose from when starting a HAART regimen. The currently approved antiretroviral drugs fall into four categories: nucleoside/nucleotide reverse transcriptase inhibitors, non-nucleoside reverse transcriptase inhibitors, protease inhibitors and fusion inhibitors. Novel compounds currently in preclinical or clinical development are either focusing on new viral proteins or the same specific viral elements targeted by the available drugs. When developing new anti-HIV drugs of an already existing class, focus should be held on maximising potency, minimising toxicity, diminishing the risk for resistance development and producing effective drugs for patients who already have resistance to currently available drugs. In addition, pill burden should be ideally reduced to once-daily dosing, thereby enhancing a patient's adherence and reducing treatment costs. The present review focuses on emerging drugs to inhibit the reverse transcriptase of HIV.
Collapse
Affiliation(s)
- Claude Fortin
- Centre Hospitalier de l'Université de Montréal, UHRESS-Département de Microbiologie médicale et Infectiologie, Hôpital Notre-Dame, 1560, rue Sherbrooke Est, Montréal (Québec), H2L 4M1, Canada.
| | | | | |
Collapse
|
11
|
Schinazi RF, Hernandez-Santiago BI, Hurwitz SJ. Pharmacology of current and promising nucleosides for the treatment of human immunodeficiency viruses. Antiviral Res 2006; 71:322-34. [PMID: 16716415 PMCID: PMC7685422 DOI: 10.1016/j.antiviral.2006.03.012] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2006] [Revised: 03/21/2006] [Accepted: 03/23/2006] [Indexed: 11/23/2022]
Abstract
Nucleoside antiretroviral agents are chiral small molecules that have distinct advantages compared to other classes including long intracellular half-lives, low protein binding, sustained antiviral response when a dose is missed, and ease of chemical manufacture. They mimic natural nucleosides and target a unique but complex viral polymerase that is essential for viral replication. They remain the cornerstone of highly active antiretroviral therapy (HAART) and are usually combined with non-nucleoside reverse [corrected] transcriptase and protease inhibitors to provide powerful antiviral responses to prevent or delay the emergence of drug-resistant human immunodeficiency virus (HIV). The pharmacological and virological properties of a selected group of nucleoside analogs are described. Some of the newer nucleoside analogs have a high genetic barrier to resistance development. The lessons learned are that each nucleoside analog should be treated as a unique molecule since any structural modification, including a change in the enantiomeric form, can affect metabolism, pharmacokinetics, efficacy, toxicity and resistance profile.
Collapse
Affiliation(s)
- Raymond F Schinazi
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, and Veterans Affairs Medical Center, Decatur, Georgia 30033, USA.
| | | | | |
Collapse
|
12
|
Mao S, Bouygues M, Welch C, Biba M, Chilenski J, Schinazi RF, Liotta DC. Synthesis of enantiomerically pure D-FDOC, an anti-HIV agent. Bioorg Med Chem Lett 2005; 14:4991-4. [PMID: 15341966 DOI: 10.1016/j.bmcl.2004.07.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2002] [Accepted: 07/07/2004] [Indexed: 10/26/2022]
Abstract
The beta-D-enantiomer of FDOC (2',3'-dideoxy-5-fluoro-oxacytidine) exhibits potent anti-HIV-1 activity. It was obtained in optically pure form by employing a tandem kinetic resolution/chiral salt crystallization protocol. In addition, conditions were developed that allowed the unwanted butyrate ester of the L-enantiomer of FDOC to be racemized. This material could then be recycled in future resolutions.
Collapse
Affiliation(s)
- Shuli Mao
- Department of Chemistry, Emory University, 403 Cherry Logan Emerson Hall, 1521 Dickey Drive, Atlanta, GA 30322, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Kewn S, Wang LH, Hoggard PG, Rousseau F, Hart R, MacNeela JP, Khoo SH, Back DJ. Enzymatic assay for measurement of intracellular DXG triphosphate concentrations in peripheral blood mononuclear cells from human immunodeficiency virus type 1-infected patients. Antimicrob Agents Chemother 2003; 47:255-61. [PMID: 12499199 PMCID: PMC149017 DOI: 10.1128/aac.47.1.255-261.2003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
DXG ([2R-cis]-2-amino-1,9-dihydro-9-[2-[hydroxymethyl]-1,3-dioxolan-4-yl]-6H-purin-6-one) and its prodrug DAPD ([2R-cis]-4-[2,6-diamino-9H-purin-9-yl]-1,3-dioxolane-2-methanol; amdoxovir) are novel 2',3'-dideoxynucleosides (ddNs) displaying activity against human immunodeficiency virus type 1 (HIV-1). In this paper, we describe the development of an enzymatic assay for determining the intracellular active metabolite of DXG and DAPD, DXG triphosphate (DXGTP), in peripheral blood mononuclear cells (PBMCs) from HIV-infected patients. The assay involves inhibition of HIV reverse transcriptase (RT), which normally incorporates radiolabeled deoxynucleoside triphosphates (dNTPs) into a synthetic template primer. DXGTP (0.6 pmol) inhibited control product formation with or without a preincubation step. Inhibition was greatest when the template primer was most diluted. DAPDTP inhibited control product formation only at very high levels (50 pmol) and when a preincubation procedure was used. However, reduced template primer stability in assays using preincubation steps, coupled with potential interference by DAPDTP, led to the current assay method for DXGTP being performed without preincubation. Standard DXGTP inhibition curves were constructed. The presence of PBMC extracts or endogenous dGTP did not interfere with the DXGTP assay. Intracellular DXGTP and dGTP concentrations were determined in PBMCs from HIV-infected patients receiving oral DAPD (500 mg b.i.d.). Peak concentrations of DXGTP were obtained 8 h after dosing and were measurable through 48 h postdose. Levels of endogenous dGTP were also determined over 48 h. No direct relationship was observed between concentrations of DXGTP and dGTP. Quantification of DXGTP concentrations in PBMCs from patients receiving a clinically relevant dose of DAPD is possible with this enzymatic assay.
Collapse
Affiliation(s)
- Stephen Kewn
- Department of Pharmacology & Therapeutics, University of Liverpool, 70 Pembroke Place, Liverpool L69 3GF, United Kingdom.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Siatkosky LL, Shermock KM, Younossi ZM. Investigational pharmacologic treatment for liver disease. Expert Opin Investig Drugs 2002; 11:1281-93. [PMID: 12225249 DOI: 10.1517/13543784.11.9.1281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Liver disease can cause significant morbidity and mortality. Few pharmacological options exist for these diseases, however, new agents are in development and older agents are being evaluated for new indications. Several new nucleoside and nucleotide analogues are being developed to treat hepatitis B virus infection. Pegylated interferons have been developed for hepatitis C infection. Ursodeoxycholic acid has recently been implicated in the treatment of liver disease, including non-alcoholic steatohepatitis and primary sclerosing cholangitis.
Collapse
|
15
|
Abstract
In 1992, the Food and Drug Administration (FDA) issued new guidelines governing stereoisomerism in new-drug development. The guidelines strongly encourage the development of single isomers and discourage stereoisomeric (eg, racemic) mixtures. As a result, most new chiral drugs are being developed as single enantiomers (ie, single isomers). There are three mechanisms for the identification and development of new single-isomer drugs: chiral switches (CS), chiral metashifts (CM), and new single-isomer chemical entities (NSICEs). In a CS, one of the two enantiomers of an established racemate is developed as a new drug, with the expectation that the single-isomer form has advantages over the racemic parent in terms of efficacy and/or adverse effects. Many new CS drugs are in development, eg, (S)-oxybutynin for urinary incontinence and escitalopram for depression. In a CM, a chiral metabolite of a drug is developed, in single-isomer form, as an agent with advantages over the parent. Among the current CM drugs in development are (+)-norcisapride (safer GI prokinetic agent than the racemic parent cisapride) and (S)-desmethylzopiclone (antianxiety agent, metabolite of the sedative-hypnotic zopiclone). Many NSICEs are in development, eg, rosuvastatin as an antihypercholesterolemic, posaconazole as an antifungal, sitafloxacin as a fluoroquinolone antibacterial, pregabalin as an anticonvulsant, abarelix as an antineoplastic, etc. As in the development of any new drug, not every single-isomer candidate will reach the clinic, but there is no doubt that the move to single-isomer agents is an important step forward in the search for better and safer drugs.
Collapse
Affiliation(s)
- Joseph Gal
- Division of Clinical Pharmacology, University of Colorado School of Medicine, Denver, Colorado, USA
| |
Collapse
|
16
|
Ray AS, Yang Z, Chu CK, Anderson KS. Novel use of a guanosine prodrug approach to convert 2',3'-didehydro-2',3'-dideoxyguanosine into a viable antiviral agent. Antimicrob Agents Chemother 2002; 46:887-91. [PMID: 11850281 PMCID: PMC127498 DOI: 10.1128/aac.46.3.887-891.2002] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transient kinetic studies with human immunodeficiency virus (HIV) type 1 reverse transcriptase suggest that nucleotide analogs containing the 2',3'-didehydro-2',3'-dideoxy ribose ring structure present in D4T (stavudine) triphosphate are among the most effective alternative substrates. For unclear reasons, however, the corresponding purine nucleoside, 2',3'-didehydro-2',3'-dideoxyguanosine (D4G), was found to be inactive in cell culture. We have found that the previously reported lack of activity of D4G is primarily due to solution instability, and in this report we describe a novel use of a guanosine prodrug approach to stabilize the nucleoside. D4G was modified at the 6 position of the purine ring to contain a cyclopropylamino group yielding the prodrug, cyclo-D4G. An evaluation of cyclo-D4G revealed that the prodrug possessed anti-HIV activity. In addition, cyclo-D4G had increased stability, lipophilicity, and solubility, as well as decreased toxicity relative to D4G, suggesting that further study is warranted.
Collapse
Affiliation(s)
- Adrian S Ray
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520-8066, USA
| | | | | | | |
Collapse
|
17
|
Staschke KA, Colacino JM. Drug discovery and development of antiviral agents for the treatment of chronic hepatitis B virus infection. PROGRESS IN DRUG RESEARCH. FORTSCHRITTE DER ARZNEIMITTELFORSCHUNG. PROGRES DES RECHERCHES PHARMACEUTIQUES 2001; Spec No:111-83. [PMID: 11548207 DOI: 10.1007/978-3-0348-7784-8_4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A safe and effective vaccine for hepatitis B virus (HBV) has been available for nearly twenty years and currently campaigns to provide universal vaccination in developing countries are underway. Nevertheless, chronic HBV infection remains a leading cause of chronic hepatitis worldwide and there is a strong need for safe and effective antiviral therapies. Attempts to identify and develop antiviral agents to treat chronic HBV infection remains focused on nucleoside analogs such as 3TC (lamivudine), adefovir dipivoxil, (bis-POMPMEA), and others. However, advances in our understanding of the molecular biology of HBV and the development of new assays for HBV polymerase activity, such as the reconstitution of active HBV polymerase in vitro, should facilitate large screening efforts for non-nucleoside reverse transcriptase inhibitors. Recent advances have furthered our understanding of clinical resistance to lamivudine, have provided new approaches to treatment, and have offered new perspectives on the major challenges to the identification and development of antiviral agents for chronic HBV infection. Here, in an update to our previous review article that appeared in this series [59a], we focus on recent advances that have occurred in the areas of virus structure and replication, in vitro viral polymerase assays, cell culture systems, and animal models.
Collapse
Affiliation(s)
- K A Staschke
- Infectious Diseases Research, Lilly Research Laboratories, Indianapolis, IN, USA
| | | |
Collapse
|
18
|
Furman PA, Jeffrey J, Kiefer LL, Feng JY, Anderson KS, Borroto-Esoda K, Hill E, Copeland WC, Chu CK, Sommadossi JP, Liberman I, Schinazi RF, Painter GR. Mechanism of action of 1-beta-D-2,6-diaminopurine dioxolane, a prodrug of the human immunodeficiency virus type 1 inhibitor 1-beta-D-dioxolane guanosine. Antimicrob Agents Chemother 2001; 45:158-65. [PMID: 11120959 PMCID: PMC90254 DOI: 10.1128/aac.45.1.158-165.2001] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
(-)-beta-D-2,6-Diaminopurine dioxolane (DAPD), is a nucleoside reverse transcriptase (RT) inhibitor with activity against human immunodeficiency virus type 1 (HIV-1). DAPD, which was designed as a water-soluble prodrug, is deaminated by adenosine deaminase to give (-)-beta-D-dioxolane guanine (DXG). By using calf adenosine deaminase a K(m) value of 15 +/- 0.7 microM was determined for DAPD, which was similar to the K(m) value for adenosine. However, the k(cat) for DAPD was 540-fold slower than the k(cat) for adenosine. In CEM cells and peripheral blood mononuclear cells exposed to DAPD or DXG, only the 5'-triphosphate of DXG (DXG-TP) was detected. DXG-TP is a potent alternative substrate inhibitor of HIV-1 RT. Rapid transient kinetic studies show the efficiency of incorporation for DXG-TP to be lower than that measured for the natural substrate, 2'-deoxyguanosine 5'-triphosphate. DXG-TP is a weak inhibitor of human DNA polymerases alpha and beta. Against the large subunit of human DNA polymerase gamma a K(i) value of 4.3 +/- 0.4 microM was determined for DXG-TP. DXG showed little or no cytotoxicity and no mitochondrial toxicity at the concentrations tested.
Collapse
Affiliation(s)
- P A Furman
- Triangle Pharmaceuticals, Durham, North Carolina 27707, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Ying C, De Clercq E, Neyts J. Ribavirin and mycophenolic acid potentiate the activity of guanine- and diaminopurine-based nucleoside analogues against hepatitis B virus. Antiviral Res 2000; 48:117-24. [PMID: 11114413 DOI: 10.1016/s0166-3542(00)00121-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Mycophenolic acid [the active metabolite of the immunosuppressive agent mycophenolate mofetil (MMF)] and ribavirin were found to potentiate the anti-HBV activity of the guanine-based nucleoside analogues penciclovir (PCV), lobucavir (LBV) and 3'-fluorodideoxyguanosine (FLG) and diaminopurine dioxolane (DAPD). Ribavirin and mycophenolic acid are both inhibitors of inosine 5'-monophosphate dehydrogenase and cause a depletion of intracellular dGTP levels. It may be assumed that the 5'-triphosphorylated derivatives of the guanine-based nucleoside analogues, in the presence of reduced levels of dGTP, inhibit more efficiently the priming reaction as well as the reverse transcription and DNA-dependent DNA polymerase activity of the HBV polymerase. This assumption is corroborated by the observation that exogenously added guanosine reversed the potentiating effect of ribavirin and mycophenolic acid on the anti-HBV activity of the guanosine analogues. Our observations may have implications for those (liver) transplant recipients that receive MMF as (part of their) immunosuppressive regimen and that, because of de novo or persistent infection with HBV, need specific anti-HBV therapy.
Collapse
Affiliation(s)
- C Ying
- Rega Institute for Medical Research, K.U. Leuven, Minderbroedersstraat 10, B-3000, Leuven, Belgium
| | | | | |
Collapse
|