1
|
Moschonas EH, Annas EM, Zamudio-Flores J, Jarvis JM, Lajud N, Bondi CO, Kline AE. Pediatric Traumatic Brain Injury: Models, Therapeutics, and Outcomes. ADVANCES IN NEUROBIOLOGY 2024; 42:147-163. [PMID: 39432041 DOI: 10.1007/978-3-031-69832-3_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Pediatric traumatic brain injury (TBI) is a significant healthcare issue, but potential treatments are absent despite robust investigation in several clinical trials. Factors attributed to clinical TBI, such as heterogeneity of injury and single-dose pharmacological treatments as well as timing of administration, may be reasons for the negative studies. Preclinical models of TBI can reduce some of the impediments by highlighting differences in injury depending on injury severity and location and by conducting dose response studies, thus providing better therapeutic targets and pharmacological profiles for clinical use. In this chapter, there were sufficient reports to make comparisons between the models in terms of pathophysiology, behavioral dysfunction, and the efficacy of therapeutic interventions. The models used to date include controlled cortical impact (CCI), weight drop, fluid percussion, and abusive head trauma. Several therapeutics were identified after CCI injury but none in the other models, which underscores the need for studies evaluating the therapies reported after CCI injury as well as novel potential approaches.
Collapse
Affiliation(s)
- Eleni H Moschonas
- Department of Physical Medicine & Rehabilitation, and Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ellen M Annas
- Department of Physical Medicine & Rehabilitation, and Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jonathan Zamudio-Flores
- Centro de Investigación Biomédica de Michoacán - Instituto Mexicano del Seguro Social, Morelia, Mexico
| | - Jessica M Jarvis
- Department of Physical Medicine & Rehabilitation, and Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Naima Lajud
- Instituto de Investigaciones sobre los Recursos Naturales - Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacan, Mexico
| | - Corina O Bondi
- Departments of Physical Medicine & Rehabilitation and Neurobiology, Center for Neuroscience, and Safar Center for Resuscitation Research, John G. Rangos Research Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Anthony E Kline
- Departments of Physical Medicine & Rehabilitation, Critical Care Medicine, and Psychology, and Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, John G. Rangos Research Center, Pittsburgh, PA, USA.
| |
Collapse
|
2
|
Panchenko PE, Hippauf L, Konsman JP, Badaut J. Do astrocytes act as immune cells after pediatric TBI? Neurobiol Dis 2023; 185:106231. [PMID: 37468048 PMCID: PMC10530000 DOI: 10.1016/j.nbd.2023.106231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/28/2023] [Accepted: 07/15/2023] [Indexed: 07/21/2023] Open
Abstract
Astrocytes are in contact with the vasculature, neurons, oligodendrocytes and microglia, forming a local network with various functions critical for brain homeostasis. One of the primary responders to brain injury are astrocytes as they detect neuronal and vascular damage, change their phenotype with morphological, proteomic and transcriptomic transformations for an adaptive response. The role of astrocytic responses in brain dysfunction is not fully elucidated in adult, and even less described in the developing brain. Children are vulnerable to traumatic brain injury (TBI), which represents a leading cause of death and disability in the pediatric population. Pediatric brain trauma, even with mild severity, can lead to long-term health complications, such as cognitive impairments, emotional disorders and social dysfunction later in life. To date, the underlying pathophysiology is still not fully understood. In this review, we focus on the astrocytic response in pediatric TBI and propose a potential immune role of the astrocyte in response to trauma. We discuss the contribution of astrocytes in the local inflammatory cascades and secretion of various immunomodulatory factors involved in the recruitment of local microglial cells and peripheral immune cells through cerebral blood vessels. Taken together, we propose that early changes in the astrocytic phenotype can alter normal development of the brain, with long-term consequences on neurological outcomes, as described in preclinical models and patients.
Collapse
Affiliation(s)
| | - Lea Hippauf
- CNRS UMR 5536 RMSB-University of Bordeaux, Bordeaux, France
| | | | - Jerome Badaut
- CNRS UMR 5536 RMSB-University of Bordeaux, Bordeaux, France; Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA.
| |
Collapse
|
3
|
Traumatic Brain Injury: An Age-Dependent View of Post-Traumatic Neuroinflammation and Its Treatment. Pharmaceutics 2021; 13:pharmaceutics13101624. [PMID: 34683918 PMCID: PMC8537402 DOI: 10.3390/pharmaceutics13101624] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/24/2021] [Accepted: 09/26/2021] [Indexed: 12/14/2022] Open
Abstract
Traumatic brain injury (TBI) is a leading cause of death and disability all over the world. TBI leads to (1) an inflammatory response, (2) white matter injuries and (3) neurodegenerative pathologies in the long term. In humans, TBI occurs most often in children and adolescents or in the elderly, and it is well known that immune responses and the neuroregenerative capacities of the brain, among other factors, vary over a lifetime. Thus, age-at-injury can influence the consequences of TBI. Furthermore, age-at-injury also influences the pharmacological effects of drugs. However, the post-TBI inflammatory, neuronal and functional consequences have been mostly studied in experimental young adult animal models. The specificity and the mechanisms underlying the consequences of TBI and pharmacological responses are poorly understood in extreme ages. In this review, we detail the variations of these age-dependent inflammatory responses and consequences after TBI, from an experimental point of view. We investigate the evolution of microglial, astrocyte and other immune cells responses, and the consequences in terms of neuronal death and functional deficits in neonates, juvenile, adolescent and aged male animals, following a single TBI. We also describe the pharmacological responses to anti-inflammatory or neuroprotective agents, highlighting the need for an age-specific approach to the development of therapies of TBI.
Collapse
|
4
|
McCunn P, Xu X, Moszczynski A, Li A, Brown A, Bartha R. Neurite orientation dispersion and density imaging in a rodent model of acute mild traumatic brain injury. J Neuroimaging 2021; 31:879-892. [PMID: 34473386 DOI: 10.1111/jon.12917] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/24/2021] [Accepted: 07/27/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND AND PURPOSE Identification of changesin brain microstructure following mild traumatic brain injury (mTBI) could be instrumental in understanding the underlying pathophysiology. The purpose of this study was to apply neurite orientation dispersion and density imaging (NODDI) to a rodent model of mTBI to determine whether microstructural changes could be detected immediately following injury. METHODS Fifteen adult male Wistar rats were scanned on a Bruker 9.4 Tesla small animal MRI using a multi-shell acquisition (30 b = 1000 s/mm2 and 60 b = 2000 s/mm2 ). Nine animals experienced a single closed head controlled cortical impact followed by NODDI from 1 to 4 h post injury. Region of interest analysis focused on the corpus callosum and hippocampus. A mixed analysis of variance (ANOVA) was used to determine statistically significant interactions in neurite density index (NDI), orientation dispersion index (ODI), fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity. Follow up repeated-measures ANOVAs were used to determine individual changes over time. RESULTS NDI showed a significant increase in the hippocampus and corpus callosum following injury, while ODI showed increases in the corpus callosum. No significant changes were observed in the sham control animals. No changes were found in FA, MD, AD, or RD. Histological analysis revealed increased glial fibrillary acidic protein staining relative to controls in both the hippocampus and corpus callosum, with evidence of activated astrocytes in these regions. CONCLUSIONS Changes in NODDI metrics were detected as early as 1 h following mTBI. No changes were detected with conventional diffusion tensor imaging (DTI) metrics, suggesting that NODDI provides greater sensitivity to microstructural changes than conventional DTI.
Collapse
Affiliation(s)
- Patrick McCunn
- Robarts Research Institute, University of Western Ontario, London, Ontario, Canada.,Department of Medical Biophysics, University of Western Ontario, London, Ontario, Canada
| | - Xiaoyun Xu
- Robarts Research Institute, University of Western Ontario, London, Ontario, Canada
| | | | - Alex Li
- Robarts Research Institute, University of Western Ontario, London, Ontario, Canada.,Department of Medical Biophysics, University of Western Ontario, London, Ontario, Canada.,Departments of Psychiatry and Medical Imaging, University of Western Ontario, London, Ontario, Canada
| | - Arthur Brown
- Robarts Research Institute, University of Western Ontario, London, Ontario, Canada.,Department of Neuroscience, University of Western Ontario, London, Ontario, Canada
| | - Robert Bartha
- Robarts Research Institute, University of Western Ontario, London, Ontario, Canada.,Department of Medical Biophysics, University of Western Ontario, London, Ontario, Canada.,Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
5
|
Lengel D, Sevilla C, Romm ZL, Huh JW, Raghupathi R. Stem Cell Therapy for Pediatric Traumatic Brain Injury. Front Neurol 2020; 11:601286. [PMID: 33343501 PMCID: PMC7738475 DOI: 10.3389/fneur.2020.601286] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/10/2020] [Indexed: 12/11/2022] Open
Abstract
There has been a growing interest in the potential of stem cell transplantation as therapy for pediatric brain injuries. Studies in pre-clinical models of pediatric brain injury such as Traumatic Brain Injury (TBI) and neonatal hypoxia-ischemia (HI) have contributed to our understanding of the roles of endogenous stem cells in repair processes and functional recovery following brain injury, and the effects of exogenous stem cell transplantation on recovery from brain injury. Although only a handful of studies have evaluated these effects in models of pediatric TBI, many studies have evaluated stem cell transplantation therapy in models of neonatal HI which has a considerable overlap of injury pathology with pediatric TBI. In this review, we have summarized data on the effects of stem cell treatments on histopathological and functional outcomes in models of pediatric brain injury. Importantly, we have outlined evidence supporting the potential for stem cell transplantation to mitigate pathology of pediatric TBI including neuroinflammation and white matter injury, and challenges that will need to be addressed to incorporate these therapies to improve functional outcomes following pediatric TBI.
Collapse
Affiliation(s)
- Dana Lengel
- Graduate Program in Neuroscience, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Cruz Sevilla
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Zoe L Romm
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Jimmy W Huh
- Department of Anesthesiology and Critical Care, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Ramesh Raghupathi
- Graduate Program in Neuroscience, Drexel University College of Medicine, Philadelphia, PA, United States.,Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, United States
| |
Collapse
|
6
|
Underwood E, Redell JB, Zhao J, Moore AN, Dash PK. A method for assessing tissue respiration in anatomically defined brain regions. Sci Rep 2020; 10:13179. [PMID: 32764697 PMCID: PMC7413397 DOI: 10.1038/s41598-020-69867-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 07/16/2020] [Indexed: 12/28/2022] Open
Abstract
The survival and function of brain cells requires uninterrupted ATP synthesis. Different brain structures subserve distinct neurological functions, and therefore have different energy production/consumption requirements. Typically, mitochondrial function is assessed following their isolation from relatively large amounts of starting tissue, making it difficult to ascertain energy production/failure in small anatomical locations. In order to overcome this limitation, we have developed and optimized a method to measure mitochondrial function in brain tissue biopsy punches excised from anatomically defined brain structures, including white matter tracts. We describe the procedures for maintaining tissue viability prior to performing the biopsy punches, as well as provide guidance for optimizing punch size and the drug doses needed to assess various aspects of mitochondrial respiration. We demonstrate that our method can be used to measure mitochondrial respiration in anatomically defined subfields within the rat hippocampus. Using this method, we present experimental results which show that a mild traumatic brain injury (mTBI, often referred to as concussion) causes differential mitochondrial responses within these hippocampal subfields and the corpus callosum, novel findings that would have been difficult to obtain using traditional mitochondrial isolation methods. Our method is easy to implement and will be of interest to researchers working in the field of brain bioenergetics and brain diseases.
Collapse
Affiliation(s)
- Erica Underwood
- Department of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, 77030, USA
| | - John B Redell
- Department of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, 77030, USA
| | - Jing Zhao
- Department of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, 77030, USA
| | - Anthony N Moore
- Department of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, 77030, USA
| | - Pramod K Dash
- Department of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, 77030, USA.
| |
Collapse
|
7
|
Zhou R, Li Y, Cavanaugh JM, Zhang L. Investigate the Variations of the Head and Brain Response in a Rodent Head Impact Acceleration Model by Finite Element Modeling. Front Bioeng Biotechnol 2020; 8:172. [PMID: 32258009 PMCID: PMC7093345 DOI: 10.3389/fbioe.2020.00172] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 02/20/2020] [Indexed: 11/13/2022] Open
Abstract
Diffuse axonal injury (DAI) is a severe form of traumatic brain injury and often induced by blunt trauma. The closed head impact acceleration (IA) model is the most widely used rodent DAI model. However, this model results in large variations of injury severity. Recently, the impact device/system was modified to improve the consistency of the impact energy, but variations of the head kinematics and subsequent brain injuries were still observed. This study was aimed to utilize a Finite Element (FE) model of a rat head/body and simulation to investigate the potential biomechanical factors influencing the impact energy transfer to the head. A detailed FE rat head model containing detailed skull and brain anatomy was developed based on the MRI, microCT and atlas data. The model consists of over 722,000 elements, of which 310,000 are in the brain. The white matter structures consisting of highly aligned axonal fibers were simulated with transversely isotropic material. The rat body was modeled to provide a realistic boundary at the spine-medulla junction. Rodent experiments including dynamic cortical deformation, brain-skull displacement, and IA kinematics were simulated to validate the FE model. The model was then applied to simulate the rat IA experiments. Parametric studies were conducted to investigate the effect of the helmet inclination angles (0°-5°) and skull stiffness (varied 20%) on the resulting head kinematics and maximum principal strain in the brain. The inclination angle of the helmet at 5° could vary head linear acceleration by 8-31%. The change in head rotational velocity was inversely related to the change in linear acceleration. Varying skull stiffness resulted in changes in head linear acceleration by 3% but with no effect on rotational velocity. The brain strain in the corpus callosum was only affected by head rotation while the strain in the brainstem was influenced by the combined head kinematics, local skull deformation, and head-neck position. Validated FE models of rat impact head injury can assist in exploring various biomechanical factors influencing the head impact response and internal brain response. Identification of these variables may help explain the variability of injury severity observed among experiments and across different labs.
Collapse
Affiliation(s)
| | | | | | - Liying Zhang
- Department of Biomedical Engineering, Wayne State University, Detroit, MI, United States
| |
Collapse
|
8
|
Chen K, Gu H, Zhu L, Feng DF. A New Model of Repetitive Traumatic Brain Injury in Mice. Front Neurosci 2020; 13:1417. [PMID: 32038131 PMCID: PMC6985558 DOI: 10.3389/fnins.2019.01417] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 12/16/2019] [Indexed: 12/14/2022] Open
Abstract
Repetitive traumatic brain injury (rTBI) is a major health care concern that causes substantial neurological impairment. To better understand rTBI, we introduced a new model of rTBI in mice induced by sudden rotation in the coronal plane combined with lateral translation delivered twice at an interval of 24 h. By routine histology, histological examination of Prussian blue-stained sections revealed the presence of microbleed in the corpus callosum and brain stem. Amyloid precursor protein (β-APP) and neurofilament heavy-chain (NF-200) immunohistochemistry demonstrated axonal injury following rTBI. Swelling, waving, and enlargement axons were observed in the corpus callosum and brain stem 24 h after injury by Bielschowsky staining. Ultrastructural studies by electron microscopy provided further insights into the existence and progression of axonal injury. rTBI led to widespread astrogliosis and microgliosis in white matter, as well as significantly increased levels of tumor necrosis factor (TNF)-α and interleukin (IL)-1β. rTBI mice showed a significantly increased loss of righting reflex (LRR) duration within each time point compared with that of sham animals, which was under 15 min. rTBI mice exhibited depression-like behavior at 1 month. rTBI mice also demonstrated deficits in MWM testing. These results suggested that this model might be suitable for investigating rTBI pathophysiology and evaluating preclinical candidate therapeutics.
Collapse
Affiliation(s)
- Kui Chen
- Department of Neurosurgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Institute of Traumatic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hao Gu
- Department of Neurosurgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Institute of Traumatic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liang Zhu
- Department of Neurosurgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Institute of Traumatic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dong-Fu Feng
- Department of Neurosurgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Institute of Traumatic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
9
|
Bodnar CN, Roberts KN, Higgins EK, Bachstetter AD. A Systematic Review of Closed Head Injury Models of Mild Traumatic Brain Injury in Mice and Rats. J Neurotrauma 2019; 36:1683-1706. [PMID: 30661454 PMCID: PMC6555186 DOI: 10.1089/neu.2018.6127] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Mild TBI (mTBI) is a significant health concern. Animal models of mTBI are essential for understanding mechanisms, and pathological outcomes, as well as to test therapeutic interventions. A variety of closed head models of mTBI that incorporate different aspects (i.e., biomechanics) of the mTBI have been reported. The aim of the current review was to compile a comprehensive list of the closed head mTBI rodent models, along with the common data elements, and outcomes, with the goal to summarize the current state of the field. Publications were identified from a search of PubMed and Web of Science and screened for eligibility following PRISMA guidelines. Articles were included that were closed head injuries in which the authors classified the injury as mild in rats or mice. Injury model and animal-specific common data elements, as well as behavioral and histological outcomes, were collected and compiled from a total of 402 articles. Our results outline the wide variety of methods used to model mTBI. We also discovered that female rodents and both young and aged animals are under-represented in experimental mTBI studies. Our findings will aid in providing context comparing the injury models and provide a starting point for the selection of the most appropriate model of mTBI to address a specific hypothesis. We believe this review will be a useful starting place for determining what has been done and what knowledge is missing in the field to reduce the burden of mTBI.
Collapse
Affiliation(s)
- Colleen N. Bodnar
- Department of Neuroscience, University of Kentucky, Lexington, Kentucky
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky
| | - Kelly N. Roberts
- Department of Neuroscience, University of Kentucky, Lexington, Kentucky
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky
| | - Emma K. Higgins
- Department of Neuroscience, University of Kentucky, Lexington, Kentucky
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky
| | - Adam D. Bachstetter
- Department of Neuroscience, University of Kentucky, Lexington, Kentucky
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
10
|
Activation of the nuclear factor erythroid 2-related factor 2-antioxidant response element signal in rats with diffuse axonal injury. Neuroreport 2019; 30:389-396. [DOI: 10.1097/wnr.0000000000001210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
Huh JW, Raghupathi R. Therapeutic strategies to target acute and long-term sequelae of pediatric traumatic brain injury. Neuropharmacology 2018; 145:153-159. [PMID: 29933010 DOI: 10.1016/j.neuropharm.2018.06.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 06/08/2018] [Accepted: 06/19/2018] [Indexed: 12/15/2022]
Abstract
Pediatric traumatic brain injury (TBI) remains one of the leading causes of morbidity and mortality in children. Experimental and clinical studies demonstrate that the developmental age, the type of injury (diffuse vs. focal) and sex may play important roles in the response of the developing brain to a traumatic injury. Advancements in acute neurosurgical interventions and neurocritical care have improved and led to a decrease in mortality rates over the past decades. However, survivors are left with life-long behavioral deficits underscoring the need to better define the cellular mechanisms underlying these functional changes. A better understanding of these mechanisms some of which begin in the acute post-traumatic period may likely lead to targeted treatment strategies. Key considerations in designing pre-clinical experiments to test therapeutic strategies in pediatric TBI include the use of age-appropriate and pathologically-relevant models, functional outcomes that are tested as animals age into adolescence and beyond, sex as a biological variable and the recognition that doses and dosing strategies that have been demonstrated to be effective in animal models of adult TBI may not be effective in the developing brain. This article is part of the Special Issue entitled "Novel Treatments for Traumatic Brain Injury".
Collapse
Affiliation(s)
- Jimmy W Huh
- Department of Anesthesiology and Critical Care, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Ramesh Raghupathi
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
12
|
Zhao S, Wang X, Gao X, Chen J. Delayed and progressive damages to juvenile mice after moderate traumatic brain injury. Sci Rep 2018; 8:7339. [PMID: 29743575 PMCID: PMC5943589 DOI: 10.1038/s41598-018-25475-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 03/22/2018] [Indexed: 11/09/2022] Open
Abstract
Symptoms are commonly more severe in pediatric traumatic brain injury (TBI) patients than in young adult TBI patients. To understand the mechanism, juvenile mice received a controlled cortical impact (CCI) injury at moderate level. Tissue lesion and cell death were measured and compared to our previous reports on brain injury in the young adult mice that received same level of impact using same injury device. Tissue lesion and cell death in the cortex was much less in the juvenile mouse brain in the first few hours after injury. However, once the injury occurred, it developed more rapidly, lasted much longer, and eventually led to exaggerated cell death and a 32.7% larger tissue lesion cavity in the cortex of juvenile mouse brain than of young adult mouse brain. Moreover, we found significant cell death in the thalamus of juvenile brains at 72 h, which was not commonly seen in the young adult mice. In summary, cell death in juvenile mice was delayed, lasted longer, and finally resulted in more severe brain injury than in the young adult mice. The results suggest that pediatric TBI patients may have a longer therapeutic window, but they also need longer intensive clinical care after injury.
Collapse
Affiliation(s)
- Shu Zhao
- Spinal Cord and Brain Injury Research Group, Stark Neuroscience Research Institute, Department of Neurosurgery, Indiana University, 320W 15th street, Indianapolis, IN, 46202, United States
| | - Xiaoting Wang
- Spinal Cord and Brain Injury Research Group, Stark Neuroscience Research Institute, Department of Neurosurgery, Indiana University, 320W 15th street, Indianapolis, IN, 46202, United States
| | - Xiang Gao
- Spinal Cord and Brain Injury Research Group, Stark Neuroscience Research Institute, Department of Neurosurgery, Indiana University, 320W 15th street, Indianapolis, IN, 46202, United States
| | - Jinhui Chen
- Spinal Cord and Brain Injury Research Group, Stark Neuroscience Research Institute, Department of Neurosurgery, Indiana University, 320W 15th street, Indianapolis, IN, 46202, United States.
| |
Collapse
|
13
|
Facilitated acquisition of the classically conditioned eyeblink response in active duty military expressing posttraumatic stress disorder symptoms. Behav Brain Res 2018; 339:106-113. [DOI: 10.1016/j.bbr.2017.11.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 10/17/2017] [Accepted: 11/12/2017] [Indexed: 11/18/2022]
|
14
|
Carron SF, Yan EB, Alwis DS, Rajan R. Differential susceptibility of cortical and subcortical inhibitory neurons and astrocytes in the long term following diffuse traumatic brain injury. J Comp Neurol 2016; 524:3530-3560. [PMID: 27072754 DOI: 10.1002/cne.24014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Revised: 04/01/2016] [Accepted: 04/04/2016] [Indexed: 02/02/2023]
Abstract
Long-term diffuse traumatic brain injury (dTBI) causes neuronal hyperexcitation in supragranular layers in sensory cortex, likely through reduced inhibition. Other forms of TBI affect inhibitory interneurons in subcortical areas but it is unknown if this occurs in cortex, or in any brain area in dTBI. We investigated dTBI effects on inhibitory neurons and astrocytes in somatosensory and motor cortex, and hippocampus, 8 weeks post-TBI. Brains were labeled with antibodies against calbindin (CB), parvalbumin (PV), calretinin (CR) and neuropeptide Y (NPY), and somatostatin (SOM) and glial fibrillary acidic protein (GFAP), a marker for astrogliosis during neurodegeneration. Despite persistent behavioral deficits in rotarod performance up to the time of brain extraction (TBI = 73.13 ± 5.23% mean ± SEM, Sham = 92.29 ± 5.56%, P < 0.01), motor cortex showed only a significant increase, in NPY neurons in supragranular layers (mean cells/mm2 ± SEM, Sham = 16 ± 0.971, TBI = 25 ± 1.51, P = 0.001). In somatosensory cortex, only CR+ neurons showed changes, being decreased in supragranular (TBI = 19 ± 1.18, Sham = 25 ± 1.10, P < 0.01) and increased in infragranular (TBI = 28 ± 1.35, Sham = 24 ± 1.07, P < 0.05) layers. Heterogeneous changes were seen in hippocampal staining: CB+ decreased in dentate gyrus (TBI = 2 ± 0.382, Sham = 4 ± 0.383, P < 0.01), PV+ increased in CA1 (TBI = 39 ± 1.26, Sham = 33 ± 1.69, P < 0.05) and CA2/3 (TBI = 26 ± 2.10, Sham = 20 ± 1.49, P < 0.05), and CR+ decreased in CA1 (TBI = 10 ± 1.02, Sham = 14 ± 1.14, P < 0.05). Astrogliosis significantly increased in corpus callosum (TBI = 6.7 ± 0.69, Sham = 2.5 ± 0.38; P = 0.007). While dTBI effects on inhibitory neurons appear region- and type-specific, a common feature in all cases of decrease was that changes occurred in dendrite targeting interneurons involved in neuronal integration. J. Comp. Neurol. 524:3530-3560, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Simone F Carron
- Department of Physiology, Monash University, Melbourne, VIC, Australia
| | - Edwin B Yan
- Department of Physiology, Monash University, Melbourne, VIC, Australia
| | - Dasuni S Alwis
- Department of Physiology, Monash University, Melbourne, VIC, Australia
| | - Ramesh Rajan
- Department of Physiology, Monash University, Melbourne, VIC, Australia.
| |
Collapse
|
15
|
Hellewell SC, Ziebell JM, Lifshitz J, Morganti-Kossmann MC. Impact Acceleration Model of Diffuse Traumatic Brain Injury. Methods Mol Biol 2016; 1462:253-266. [PMID: 27604723 DOI: 10.1007/978-1-4939-3816-2_15] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The impact acceleration (I/A) model of traumatic brain injury (TBI) was developed to reliably induce diffuse traumatic axonal injury in rats in the absence of skull fractures and parenchymal focal lesions. This model replicates a pathophysiology that is commonly observed in humans with diffuse axonal injury (DAI) caused by acceleration-deceleration forces. Such injuries are typical consequences of motor vehicle accidents and falls, which do not necessarily require a direct impact to the closed skull. There are several desirable characteristics of the I/A model, including the extensive axonal injury produced in the absence of a focal contusion, the suitability for secondary insult modeling, and the adaptability for mild/moderate injury through alteration of height and/or weight. Furthermore, the trauma device is inexpensive and readily manufactured in any laboratory, and the induction of injury is rapid (~45 min per animal from weighing to post-injury recovery) allowing multiple animal experiments per day. In this chapter, we describe in detail the methodology and materials required to produce the rat model of I/A in the laboratory. We also review current adaptations to the model to alter injury severity, discuss frequent complications and technical issues encountered using this model, and provide recommendations to ensure technically sound injury induction.
Collapse
Affiliation(s)
- Sarah C Hellewell
- Canadian Military and Veterans' Clinical Rehabilitation Research Program, Faculty of Rehabilitation Medicine, University of Alberta, 3-48, Corbett Hall, Edmonton, AB, Canada, T6G 2G4.
| | - Jenna M Ziebell
- Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, USA
- Department of Child Health, University of Arizona College of Medicine - Phoenix, Phoenix, AZ, USA
| | - Jonathan Lifshitz
- Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, USA
- Department of Child Health, University of Arizona College of Medicine - Phoenix, Phoenix, AZ, USA
- Phoenix VA Healthcare System, Phoenix, AZ, USA
- Neuroscience Program, Department of Psychology, Arizona State University, Tempe, AZ, USA
| | - M Cristina Morganti-Kossmann
- Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, USA
- Neuroscience Program, Department of Psychology, Arizona State University, Tempe, AZ, USA
- Department of Epidemiology and Preventive Medicine, Monash University and Australian New Zealand Intensive Care Research Centre, Melbourne, VIC, Australia
| |
Collapse
|
16
|
Abstract
Due to a high incidence of traumatic brain injury (TBI) in children and adolescents, age-specific studies are necessary to fully understand the long-term consequences of injuries to the immature brain. Preclinical and translational research can help elucidate the vulnerabilities of the developing brain to insult, and provide model systems to formulate and evaluate potential treatments aimed at minimizing the adverse effects of TBI. Several experimental TBI models have therefore been scaled down from adult rodents for use in juvenile animals. The following chapter discusses these adapted models for pediatric TBI, and the importance of age equivalence across species during model development and interpretation. Many neurodevelopmental processes are ongoing throughout childhood and adolescence, such that neuropathological mechanisms secondary to a brain insult, including oxidative stress, metabolic dysfunction and inflammation, may be influenced by the age at the time of insult. The long-term evaluation of clinically relevant functional outcomes is imperative to better understand the persistence and evolution of behavioral deficits over time after injury to the developing brain. Strategies to modify or protect against the chronic consequences of pediatric TBI, by supporting the trajectory of normal brain development, have the potential to improve quality of life for brain-injured children.
Collapse
Affiliation(s)
- Bridgette D Semple
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Jaclyn Carlson
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Linda J Noble-Haeusslein
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA.
- Department of Physical Therapy and Rehabilitation Science, University of California School of Medicine, 513 Parnassus Ave., HSE 814, San Francisco, CA, 94143, USA.
| |
Collapse
|
17
|
Iron Deposition Is Positively Related to Cognitive Impairment in Patients with Chronic Mild Traumatic Brain Injury: Assessment with Susceptibility Weighted Imaging. BIOMED RESEARCH INTERNATIONAL 2015; 2015:470676. [PMID: 26798636 PMCID: PMC4698517 DOI: 10.1155/2015/470676] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 10/21/2015] [Indexed: 01/17/2023]
Abstract
Background. This study aimed to evaluate the usability of SWI in assessment of brain iron to detect cognitive dysfunction in patients with chronic mild traumatic brain injury (mTBI). Methods. 39 patients with mTBI and 37 normal controls were given the Mini-Mental State Examination (MMSE) and underwent SWI scanning at least 6 months after injury. Angle radian values were calculated with phase images. The angle radian values were compared between groups using analysis of covariance, and their association with MMSE scores was analyzed using Spearman correlations. Results. Significantly higher angle radian values (p < 0.05) were found in the head of the caudate nucleus, the lenticular nucleus, the hippocampus, the thalamus, the right substantia nigra, the red nucleus, and the splenium of the corpus callosum (SCC) in the mTBI group, compared to the control group. MMSE scores were negatively correlated with angle radian values in the right substantia nigra (r = −0.685, p < 0.001). Conclusions. Patients with chronic mTBI might have abnormally high accumulations of iron, and their MMSE scores are negatively associated with angle radian values in the right substantia nigra, suggesting a role of SWI in the assessment of cognitive impairments of these patients.
Collapse
|
18
|
Lin BF, Kuo CY, Wen LL, Chen CM, Chang YF, Wong CS, Cherng CH, Chuang MY, Wu ZF. Rosiglitazone attenuates cerebral vasospasm and provides neuroprotection in an experimental rat model of subarachnoid hemorrhage. Neurocrit Care 2015; 21:316-31. [PMID: 25022803 DOI: 10.1007/s12028-014-0010-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Glutamate and oxidative stress play important roles after subarachnoid hemorrhage (SAH). The ability to modulate glutamate transporter 1 (GLT-1) and the antioxidative effect of rosiglitazone have been demonstrated. We investigated the neuroprotective effect of rosiglitazone after SAH. METHODS SAH was induced by double blood injection. The rats were randomly divided into sham, SAH + vehicle, and SAH + rosiglitazone groups and treated with dimethyl sulfoxide, dimethyl sulfoxide, and 6 mg/kg of rosiglitazone, respectively, at 2 and 12 h after SAH induction and then daily for 6 days. Cerebrospinal fluid dialysates were collected 30 min before SAH induction and then daily for 7 days for glutamate measurement. Mortality, body weight, and neurological scores were also measured daily. On day 7 after SAH, the wall thickness and the perimeter of the basilar artery (BA), neuron variability, GLT-1 levels, glial fibrillary acidic protein (GFAP) expression and activity, and malondialdehyde, superoxide dismutase, and catalase activities were also evaluated. RESULTS Rosiglitazone improved survival (relative risk = 0.325) and neurological functions and reduced neuronal degeneration (5.7 ± 0.8 vs. 10.0 ± 0.9; P < 0.001) compared with the SAH + vehicle group. Rosiglitazone also lowered glutamate levels by 43.5-fold and upregulated GLT-1 expression by 1.5-fold and astrocyte activity by 1.8-fold compared with the SAH + vehicle group. The increase in BA wall thickness was significantly attenuated by rosiglitazone, whereas the perimeter of the BA was increased. In addition, rosiglitazone abated the 1.9-fold increase in malondialdehyde levels and the 1.6-fold increase in catalase activity after SAH. CONCLUSION Rosiglitazone reduced SAH mortality, neurological deficits, body weight loss, GFAP loss, and cerebral vasospasm by preventing the neurotoxicity induced by glutamate and oxidative stress.
Collapse
Affiliation(s)
- Bo-Feng Lin
- Department of Anesthesiology, Tri-Service General Hospital, National Defense Medical Center, #325, Section 2 Chenggung Road, Neihu 114, Taipei, Taiwan, ROC,
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Cheng JS, Craft R, Yu GQ, Ho K, Wang X, Mohan G, Mangnitsky S, Ponnusamy R, Mucke L. Tau reduction diminishes spatial learning and memory deficits after mild repetitive traumatic brain injury in mice. PLoS One 2014; 9:e115765. [PMID: 25551452 PMCID: PMC4281043 DOI: 10.1371/journal.pone.0115765] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 12/01/2014] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVE Because reduction of the microtubule-associated protein Tau has beneficial effects in mouse models of Alzheimer's disease and epilepsy, we wanted to determine whether this strategy can also improve the outcome of mild traumatic brain injury (TBI). METHODS We adapted a mild frontal impact model of TBI for wildtype C57Bl/6J mice and characterized the behavioral deficits it causes in these animals. The Barnes maze, Y maze, contextual and cued fear conditioning, elevated plus maze, open field, balance beam, and forced swim test were used to assess different behavioral functions. Magnetic resonance imaging (MRI, 7 Tesla) and histological analysis of brain sections were used to look for neuropathological alterations. We also compared the functional effects of this TBI model and of controlled cortical impact in mice with two, one or no Tau alleles. RESULTS Repeated (2-hit), but not single (1-hit), mild frontal impact impaired spatial learning and memory in wildtype mice as determined by testing of mice in the Barnes maze one month after the injury. Locomotor activity, anxiety, depression and fear related behaviors did not differ between injured and sham-injured mice. MRI imaging did not reveal focal injury or mass lesions shortly after the injury. Complete ablation or partial reduction of tau prevented deficits in spatial learning and memory after repeated mild frontal impact. Complete tau ablation also showed a trend towards protection after a single controlled cortical impact. Complete or partial reduction of tau also reduced the level of axonopathy in the corpus callosum after repeated mild frontal impact. INTERPRETATION Tau promotes or enables the development of learning and memory deficits and of axonopathy after mild TBI, and tau reduction counteracts these adverse effects.
Collapse
Affiliation(s)
- Jason S. Cheng
- Gladstone Institute of Neurological Disease, San Francisco, California, United States of America
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California, United States of America
| | - Ryan Craft
- Gladstone Institute of Neurological Disease, San Francisco, California, United States of America
| | - Gui-Qiu Yu
- Gladstone Institute of Neurological Disease, San Francisco, California, United States of America
| | - Kaitlyn Ho
- Gladstone Institute of Neurological Disease, San Francisco, California, United States of America
| | - Xin Wang
- Gladstone Institute of Neurological Disease, San Francisco, California, United States of America
| | - Geetha Mohan
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, United States of America
| | - Sergey Mangnitsky
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, United States of America
| | - Ravikumar Ponnusamy
- Gladstone Institute of Neurological Disease, San Francisco, California, United States of America
| | - Lennart Mucke
- Gladstone Institute of Neurological Disease, San Francisco, California, United States of America
- Department of Neurology, University of California San Francisco, California, United States of America
| |
Collapse
|
20
|
Traumatic brain injury alters long-term hippocampal neuron morphology in juvenile, but not immature, rats. Childs Nerv Syst 2014; 30:1333-42. [PMID: 24881033 DOI: 10.1007/s00381-014-2446-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 05/19/2014] [Indexed: 10/25/2022]
Abstract
PURPOSE Pediatric traumatic brain injury (TBI) represents a prominent yet understudied medical condition that can profoundly impact brain development. As the juvenile injured brain matures in the wake of neuropathological cascades during potentially critical periods, circuit alterations may explain neurological consequences, including cognitive deficits. We hypothesize that experimental brain injury in juvenile rats, with behavioral deficits that resolve, will lead to quantifiable structural changes in hippocampal neurons at chronic time points post-injury. METHODS Controlled cortical impact (CCI), a model of focal TBI with contusion, was used to induce brain injury on post-natal day (PND) 17 juvenile rats. The histological consequence of TBI was quantified in regions of the hippocampus at post-injury day 28 (PID28) on sections stained using a variation of the Golgi-Cox staining method. Individual neuronal morphologies were digitized from the dentate gyrus (DG), CA3, and CA1 regions. RESULTS Soma area in the ipsilateral injured DG and CA3 regions of the hippocampus increased significantly at PID28 in comparison to controls. In CA1, dendritic length and dendritic branching decreased significantly in comparison to controls and the contralateral hemisphere, without change in soma area. To extend the study, we examined neuronal morphology in rats with CCI at PND7. On PID28 after CCI on PND7 rats, CA1 neurons showed no injury-induced change in morphology, potentially indicating an age-dependent morphological response to injury. CONCLUSIONS Long-lasting structural alterations in hippocampal neurons of brain-injured PND17 juvenile animals, but not PND7 immature animals, suggest differential plasticity depending on age-at-injury, with potential consequences for later function.
Collapse
|
21
|
Long-term cognitive correlates of traumatic brain injury across adulthood and interactions with APOE genotype, sex, and age cohorts. J Int Neuropsychol Soc 2014; 20:444-54. [PMID: 24670469 DOI: 10.1017/s1355617714000174] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
There is continuing debate about long-term effects of brain injury. We examined a range of traumatic brain injury (TBI) variables (TBI history, severity, frequency, and age of injury) as predictors of cognitive outcome over 8 years in an adult population, and interactions with apolipoprotein E (APOE) genotype, sex, and age cohorts. Three randomly sampled age cohorts (20-24, 40-44, 60-64 years at baseline; N = 6333) were each evaluated three times over 8 years. TBI variables, based on self-report, were separately modeled as predictors of cognitive performance using linear mixed effects models. TBI predicted longitudinal cognitive decline in all three age groups. APOE ε4 + genotypes in the young and middle-aged groups predicted lower baseline cognitive performance in the context of TBI. Baseline cognitive performance was better for young females than males but this pattern reversed in middle age and old age. The findings suggest TBI history is associated with long-term cognitive impairment and decline across the adult lifespan. A role for APOE genotype was apparent in the younger cohorts but there was no evidence that it is associated with impairment in early old age. The effect of sex and TBI on cognition varied with age cohort, consistent with a proposed neuroprotective role for estrogen.
Collapse
|
22
|
Li N, Yang Y, Glover DP, Zhang J, Saraswati M, Robertson C, Pelled G. Evidence for impaired plasticity after traumatic brain injury in the developing brain. J Neurotrauma 2013; 31:395-403. [PMID: 24050267 DOI: 10.1089/neu.2013.3059] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The robustness of plasticity mechanisms during brain development is essential for synaptic formation and has a beneficial outcome after sensory deprivation. However, the role of plasticity in recovery after acute brain injury in children has not been well defined. Traumatic brain injury (TBI) is the leading cause of death and disability among children, and long-term disability from pediatric TBI can be particularly devastating. We investigated the altered cortical plasticity 2-3 weeks after injury in a pediatric rat model of TBI. Significant decreases in neurophysiological responses across the depth of the noninjured, primary somatosensory cortex (S1) in TBI rats, compared to age-matched controls, were detected with electrophysiological measurements of multi-unit activity (86.4% decrease), local field potential (75.3% decrease), and functional magnetic resonance imaging (77.6% decrease). Because the corpus callosum is a clinically important white matter tract that was shown to be consistently involved in post-traumatic axonal injury, we investigated its anatomical and functional characteristics after TBI. Indeed, corpus callosum abnormalities in TBI rats were detected with diffusion tensor imaging (9.3% decrease in fractional anisotropy) and histopathological analysis (14% myelination volume decreases). Whole-cell patch clamp recordings further revealed that TBI results in significant decreases in spontaneous firing rate (57% decrease) and the potential to induce long-term potentiation in neurons located in layer V of the noninjured S1 by stimulation of the corpus callosum (82% decrease). The results suggest that post-TBI plasticity can translate into inappropriate neuronal connections and dramatic changes in the function of neuronal networks.
Collapse
Affiliation(s)
- Nan Li
- 1 F.M. Kirby Research Center for Functional Brain Imaging , Kennedy Krieger Institute, Baltimore, Maryland
| | | | | | | | | | | | | |
Collapse
|
23
|
Differential effects of FK506 on structural and functional axonal deficits after diffuse brain injury in the immature rat. J Neuropathol Exp Neurol 2013; 71:959-72. [PMID: 23095847 DOI: 10.1097/nen.0b013e31826f5876] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Diffuse axonal injury is a major component of traumatic brain injury in children and correlates with long-term cognitive impairment. Traumatic brain injury in adult rodents has been linked to a decrease in compound action potential (CAP) in the corpus callosum, but information on trauma-associated diffuse axonal injury in immature rodents is limited. We investigated the effects of closed head injury on CAP in the corpus callosum of 17-day-old rats. The injury resulted in CAP deficits of both myelinated and unmyelinated fibers in the corpus callosum between 1 and 14 days postinjury (dpi). These deficits were accompanied by intra-axonal dephosphorylation of the 200-kDa neurofilament subunit (NF200) at 1 and 3 dpi, a decrease in total NF200 at 3 dpi and axonal degeneration at 3 and 7 dpi. Although total phosphatase activity decreased at 1 dpi, calcineurin activity was unchanged. The calcineurin inhibitor, FK506, significantly attenuated the injury-induced NF200 dephosphorylation of NF200 at 3 dpi and axonal degeneration at 3 and 7 dpi but did not affect the decrease in NF200 protein levels or impaired axonal transport. FK506 had no effect on CAP deficits at 3 dpi but exacerbated the deficit in only the myelinated fibers at 7 dpi. Thus, in contrast to adult animals, FK506 treatment did not improve axonal function in brain-injured immature animals, suggesting that calcineurin may not contribute to impaired axonal function.
Collapse
|
24
|
Adelson PD, Fellows-Mayle W, Kochanek PM, Dixon CE. Morris water maze function and histologic characterization of two age-at-injury experimental models of controlled cortical impact in the immature rat. Childs Nerv Syst 2013; 29:43-53. [PMID: 23089934 DOI: 10.1007/s00381-012-1932-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Accepted: 09/23/2012] [Indexed: 10/27/2022]
Abstract
PURPOSE Controlled cortical impact (CCI) is commonly used in adult animals to study focal traumatic brain injury (TBI). Our study aims to further study injury mechanisms in children and variable models of pathology in the developing brain. METHODS Develop a focal injury model of experimental TBI in the immature, postnatal days (PND) 7 and 17 rats that underwent a CCI at varying depths of deflection, 1.5-2.5 mm compared with sham and then tested using the Morris water maze (MWM) beginning on post-injury day (PID) 11. Histopathologic analysis was performed at PID 1 and 28. RESULTS In PND 7, the 1.75- and 2.0-mm deflections (diameter (d) = 3 mm; velocity = 4 m/s; and duration = 500 ms) resulted in significant MWM deficits while the 1.5-mm injury did not produce MWM deficits vs. sham controls. In PND 17, all injury levels resulted in significant MWM deficits vs. sham controls with a graded response; the 1.5-mm deflection (d = 6 mm; velocity = 4 m/s; and duration = 500 ms) produced significantly less deficits as compared WITH the 2.0- and 2.5-mm injuries. Histologically, a graded injury response was also seen in both ages at injury with cortical and more severe injuries, hippocampal damage. Cortical contusion volume increased in most injury severities from PID 1 to 28 in both ages at injury while hippocampal volumes subsequently decreased. CONCLUSIONS CCI in PND 7 and 17 rat results in significant MWM deficits and cortical histopathology providing two different and unique experimental models of TBI in immature rats that may be useful in further investigations into the mechanisms and treatments of pediatric TBI.
Collapse
Affiliation(s)
- P David Adelson
- Barrow Neurological Institute at Phoenix Children's Hospital, 1919 East Thomas Road, Building B, 4th Floor, Phoenix, AZ 85016, USA.
| | | | | | | |
Collapse
|
25
|
Argandoña EG, Bengoetxea H, Bulnes S, Rico-Barrio I, Ortuzar N, Lafuente JV. Effect of intracortical vascular endothelial growth factor infusion and blockade during the critical period in the rat visual cortex. Brain Res 2012; 1473:141-54. [DOI: 10.1016/j.brainres.2012.07.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2011] [Revised: 06/18/2012] [Accepted: 07/06/2012] [Indexed: 12/11/2022]
|
26
|
Temporal profiles of axonal injury following impact acceleration traumatic brain injury in rats--a comparative study with diffusion tensor imaging and morphological analysis. Int J Legal Med 2012; 127:159-67. [PMID: 22573358 DOI: 10.1007/s00414-012-0712-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 04/27/2012] [Indexed: 12/19/2022]
Abstract
Traumatic axonal injury (TAI) plays a major role in the development of neurological impairments after traumatic brain injury (TBI), but it is commonly difficult to evaluate it precisely and early with conventional histological biomarkers, especially when the patients experience short-term survival after TBI. Diffusion tensor imaging (DTI) has shown some promise in detecting TAI, but longitudinal studies on the compromised white matter with DTI at early time points (≤72 h) following impact acceleration TBI are still absent. In the present study, rats were subjected to the Marmarou model and imaged with DTI at 3, 12, 24, and 72 h (n = 5 each) post-injury. Using a region-of-interest-based approach, the regions of interest including the corpus callosum, bilateral external capsule, internal capsule, and pyramidal tract were studied. Two DTI parameters, fraction anisotropy and axial diffusivity, were significantly reduced from 3 to 72 h in each region after trauma, corresponding to the gradient of axonal damage demonstrated by immunohistochemical staining of β-amyloid precursor protein and neurofilament light chain. Remarkably, DTI changes predicted the approximate time in the acute phase following TBI. These results indicate that the temporal profiles of diffusion parameters in DTI may be able to provide a tool for early diagnosis of TAI following impact acceleration TBI.
Collapse
|
27
|
Lopez NE, Krzyzaniak MJ, Blow C, Putnam J, Ortiz-Pomales Y, Hageny AM, Eliceiri B, Coimbra R, Bansal V. Ghrelin prevents disruption of the blood-brain barrier after traumatic brain injury. J Neurotrauma 2011; 29:385-93. [PMID: 21939391 DOI: 10.1089/neu.2011.2053] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Significant effort has been focused on reducing neuronal damage from post-traumatic brain injury (TBI) inflammation and blood-brain barrier (BBB)-mediated edema. The orexigenic hormone ghrelin decreases inflammation in sepsis models, and has recently been shown to be neuroprotective following subarachnoid hemorrhage. We hypothesized that ghrelin modulates cerebral vascular permeability and mediates BBB breakdown following TBI. Using a weight-drop model, TBI was created in three groups of mice: sham, TBI, and TBI/ghrelin. The BBB was investigated by examining its permeability to FITC-dextran and through quantification of perivascualar aquaporin-4 (AQP-4). Finally, we immunoblotted for serum S100B as a marker of brain injury. Compared to sham, TBI caused significant histologic neuronal degeneration, increases in vascular permeability, perivascular expression of AQP-4, and serum levels of S100B. Treatment with ghrelin mitigated these effects; after TBI, ghrelin-treated mice had vascular permeability and perivascular AQP-4 and S100B levels that were similar to sham. Our data suggest that ghrelin prevents BBB disruption after TBI. This is evident by a decrease in vascular permeability that is linked to a decrease in AQP-4. This decrease in vascular permeability may diminish post-TBI brain tissue damage was evident by decreased S100B.
Collapse
Affiliation(s)
- Nicole E Lopez
- Department of Surgery, University of California-San Diego, San Diego, California, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Li Y, Zhang L, Kallakuri S, Zhou R, Cavanaugh JM. Quantitative relationship between axonal injury and mechanical response in a rodent head impact acceleration model. J Neurotrauma 2011; 28:1767-82. [PMID: 21895482 DOI: 10.1089/neu.2010.1687] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
A modified Marmarou impact acceleration model was developed to study the mechanical responses induced by this model and their correlation to traumatic axonal injury (TAI). Traumatic brain injury (TBI) was induced in 31 anesthetized male Sprague-Dawley rats (392±13 g) by a custom-made 450-g impactor from heights of 1.25 m or 2.25 m. An accelerometer and angular rate sensor measured the linear and angular responses of the head, while the impact event was captured by a high-speed video camera. TAI distribution along the rostro-caudal direction, as well as across the left and right hemispheres, was determined using β-amyloid precursor protein (β-APP) immunocytochemistry, and detailed TAI injury maps were constructed for the entire corpus callosum. Peak linear acceleration 1.25 m and 2.25 m impacts were 666±165 g and 907±501 g, respectively. Peak angular velocities were 95±24 rad/sec and 124±48 rad/sec, respectively. Compared to the 2.25-m group, the observed TAI counts in the 1.25-m impact group were significantly lower. Average linear acceleration, peak angular velocity, average angular acceleration, and surface righting time were also significantly different between the two groups. A positive correlation was observed between normalized total TAI counts and average linear acceleration (R(2)=0.612, p<0.05), and time to surface right (R(2)=0.545, p<0.05). Our study suggested that a 2.25-m drop in the Marmarou model may not always result in a severe injury, and TAI level is related to the linear and angular acceleration response of the rat head during impact, not necessarily the drop height.
Collapse
Affiliation(s)
- Yan Li
- Department of Biomedical Engineering, Wayne State University, Detroit, Michigan 48201, USA
| | | | | | | | | |
Collapse
|
29
|
Raz E, Jensen JH, Ge Y, Babb JS, Miles L, Reaume J, Grossman RI, Inglese M. Brain iron quantification in mild traumatic brain injury: a magnetic field correlation study. AJNR Am J Neuroradiol 2011; 32:1851-6. [PMID: 21885717 DOI: 10.3174/ajnr.a2637] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Experimental studies have suggested a role for iron accumulation in the pathology of TBI. Magnetic field correlation MR imaging is sensitive to the presence of non-heme iron. The aims of this study are to 1) assess the presence, if any, and the extent of iron deposition in the deep gray matter and regional white matter of patients with mTBI by using MFC MR imaging; and 2) investigate the association of regional brain iron deposition with cognitive and behavioral performance of patients with mTBI. MATERIALS AND METHODS We prospectively enrolled 28 patients with mTBI. Eighteen healthy subjects served as controls. The subjects were administered the Stroop color word test, the Verbal Fluency Task, and the Post-Concussion Symptoms Scale. The MR imaging protocol (on a 3T imager) consisted of conventional brain imaging and MFC sequences. After the calculation of parametric maps, MFC was measured by using a region of interest approach. MFC values across groups were compared by using analysis of covariance, and the relationship of MFC values and neuropsychological tests were evaluated by using Spearman correlations. RESULTS Compared with controls, patients with mTBI demonstrated significant higher MFC values in the globus pallidus (P = .002) and in the thalamus (P = .036). In patients with mTBI, Stroop test scores were associated with the MFC value in frontal white matter (r = -0.38, P = .043). CONCLUSIONS MFC values were significantly elevated in the thalamus and globus pallidus of patients with mTBI, suggesting increased accumulation of iron. This supports the hypothesis that deep gray matter is a site of injury in mTBI and suggests a possible role for iron accumulation in the pathophysiological events after mTBI.
Collapse
Affiliation(s)
- E Raz
- Department of Radiology, New York University School of Medicine, New York, USA
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Repetitive closed-skull traumatic brain injury in mice causes persistent multifocal axonal injury and microglial reactivity. J Neuropathol Exp Neurol 2011; 70:551-67. [PMID: 21666502 DOI: 10.1097/nen.0b013e31821f891f] [Citation(s) in RCA: 240] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Repetitive mild or "concussive" traumatic brain injury (TBI) can cause substantial neurologic impairment, but the pathological features of this type of injury are not fully understood. We report an experimental model of TBI in which the closed skulls of anesthetized male C57BL/6J mice are struck with an electromagnetically controlled rubber impactor twice with an interval of 24 hours between impacts. The mice had deficits in Morris water maze performance in the first week after injury that only partially resolved 7 weeks later. By routine histology, there was no apparent bleeding, neuronal cell loss, or tissue disruption, and amyloid precursor protein immunohistochemistry demonstrated very few immunoreactive axonal varicosities. In contrast, silver staining revealed extensive abnormalities in the corpus callosum and bilateral external capsule, the ipsilateral cortex and thalamus, and the contralateral hippocampal CA1 stratum radiatum and stratum oriens. Electron microscopy of white matter regions demonstrated axonal cytoskeletal disruption, intra-axonal organelle compaction, and irregularities in axon caliber. Reactive microglia were observed in the same areas as the injured axons by both electron microscopy and Iba1 immunohistochemistry. Quantitative analyses of silver staining and Iba1 immunohistochemistry at multiple time points demonstrated transient cortical and thalamic abnormalities but persistent white matter pathology as late as 7 weeks after injury.Thus, prominent and long-lasting abnormalities in this TBI model were underestimated using conventional approaches. The model may be useful for mechanistic investigations and preclinical assessment of candidate therapeutics.
Collapse
|
31
|
Prins ML, Giza CC. Repeat traumatic brain injury in the developing brain. Int J Dev Neurosci 2011; 30:185-90. [PMID: 21683132 DOI: 10.1016/j.ijdevneu.2011.05.009] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Revised: 05/10/2011] [Accepted: 05/19/2011] [Indexed: 10/18/2022] Open
Abstract
The Center for Disease Control estimates that there are 1.7 million brain injuries in the US each year with 51% of these injuries occurring during periods of cerebral development. Among this population there is a growing population of individuals with repeat traumatic brain injury (RTBI). While the exact incidence is unknown, estimates range from 5.6 to 36% of the TBI population. This review summarizes the clinical problems/challenges and experimental research models that currently exist. It is intended to reveal the critical areas that need to be addressed so that age-relevant clinical management guidelines can be established to protect this population.
Collapse
Affiliation(s)
- M L Prins
- UCLA David Geffen School of Medicine, Department of Neurosurgery, United States.
| | | |
Collapse
|
32
|
Biomarkers associated with diffuse traumatic axonal injury: exploring pathogenesis, early diagnosis, and prognosis. ACTA ACUST UNITED AC 2011; 69:1610-8. [PMID: 21150538 DOI: 10.1097/ta.0b013e3181f5a9ed] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Diffuse traumatic axonal injury (dTAI) is a significant pathologic feature of traumatic brain injury and is associated with substantial mortality and morbidity. It is still a challenge for clinicians to make an early diagnosis of dTAI and generate accurate prognosis and direct therapeutic decisions because most patients rapidly progress to coma after trauma and because specific neurologic symptoms and focal lesions detectable with current routine imaging techniques are absent. To address these issues, many investigations have sought to identify biomarkers of dTAI. METHODS This article is a review of the pertinent medical literature. RESULTS From the perspective of the pathophysiology of dTAI, we reviewed several biomarkers that are associated with structural damage and biochemical cascades in the secondary injury or repair response to traumatic brain injury. Although some biomarkers are not specific to dTAI, they are nevertheless useful in elucidating its pathogenesis, making early diagnosis possible, predicting outcomes, and providing candidate targets for novel therapeutic strategies. CONCLUSIONS The availability of biomarker data, clinical case histories, and radiologic information can improve our current ability to diagnose and monitor pathogenic conditions and predict outcomes in patients with dTAI.
Collapse
|
33
|
Hellewell SC, Yan EB, Agyapomaa DA, Bye N, Morganti-Kossmann MC. Post-Traumatic Hypoxia Exacerbates Brain Tissue Damage: Analysis of Axonal Injury and Glial Responses. J Neurotrauma 2010; 27:1997-2010. [DOI: 10.1089/neu.2009.1245] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Sarah C. Hellewell
- National Trauma Research Institute, The Alfred Hospital, Melbourne, Victoria, Australia
- Department of Medicine, Monash University, Melbourne, Victoria, Australia
| | - Edwin B. Yan
- National Trauma Research Institute, The Alfred Hospital, Melbourne, Victoria, Australia
- Department of Medicine, Monash University, Melbourne, Victoria, Australia
| | - Doreen A. Agyapomaa
- National Trauma Research Institute, The Alfred Hospital, Melbourne, Victoria, Australia
- Department of Medicine, Monash University, Melbourne, Victoria, Australia
| | - Nicole Bye
- National Trauma Research Institute, The Alfred Hospital, Melbourne, Victoria, Australia
- Department of Medicine, Monash University, Melbourne, Victoria, Australia
| | - M. Cristina Morganti-Kossmann
- National Trauma Research Institute, The Alfred Hospital, Melbourne, Victoria, Australia
- Department of Medicine, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
34
|
Effects of CO2 insufflation on cerebrum during endoscopic thyroidectomy in a porcine model. Surg Endosc 2010; 25:1495-504. [DOI: 10.1007/s00464-010-1425-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Accepted: 09/27/2010] [Indexed: 12/30/2022]
|
35
|
Ibrahim NG, Ralston J, Smith C, Margulies SS. Physiological and pathological responses to head rotations in toddler piglets. J Neurotrauma 2010; 27:1021-35. [PMID: 20560753 PMCID: PMC2943503 DOI: 10.1089/neu.2009.1212] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Closed head injury is the leading cause of death in children less than 4 years of age, and is thought to be caused in part by rotational inertial motion of the brain. Injury patterns associated with inertial rotations are not well understood in the pediatric population. To characterize the physiological and pathological responses of the immature brain to inertial forces and their relationship to neurological development, toddler-age (4-week-old) piglets were subjected to a single non-impact head rotation at either low (31.6 +/- 4.7 rad/sec(2), n = 4) or moderate (61.0 +/- 7.5 rad/sec(2), n = 6) angular acceleration in the axial direction. Graded outcomes were observed for both physiological and histopathological responses such that increasing angular acceleration and velocity produced more severe responses. Unlike low-acceleration rotations, moderate-acceleration rotations produced marked EEG amplitude suppression immediately post-injury, which remained suppressed for the 6-h survival period. In addition, significantly more severe subarachnoid hemorrhage, ischemia, and axonal injury by beta-amyloid precursor protein (beta-APP) were observed in moderate-acceleration animals than low-acceleration animals. When compared to infant-age (5-day-old) animals subjected to similar (54.1 +/- 9.6 rad/sec(2)) acceleration rotations, 4-week-old moderate-acceleration animals sustained similar severities of subarachnoid hemorrhage and axonal injury at 6 h post-injury, despite the larger, softer brain in the older piglets. We conclude that the traditional mechanical engineering approach of scaling by brain mass and stiffness cannot explain the vulnerability of the infant brain to acceleration-deceleration movements, compared with the toddler.
Collapse
Affiliation(s)
- Nicole G. Ibrahim
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jill Ralston
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Colin Smith
- Department of Neuropathology, University of Edinburgh, Edinburgh, United Kingdom
| | - Susan S. Margulies
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
36
|
Wang HC, Duan ZX, Wu FF, Xie L, Zhang H, Ma YB. A New Rat Model for Diffuse Axonal Injury Using a Combination of Linear Acceleration and Angular Acceleration. J Neurotrauma 2010; 27:707-19. [PMID: 20039778 DOI: 10.1089/neu.2009.1071] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Affiliation(s)
- Hong-Cai Wang
- Department of Neurosurgery, NO.3 People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Baoshan District, Shanghai, China
| | - Zhi-Xin Duan
- Department of Neurosurgery, NO.3 People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Baoshan District, Shanghai, China
| | - Fang-Fang Wu
- Department of Neurosurgery, NO.3 People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Baoshan District, Shanghai, China
| | - Le Xie
- National Die & Mould Engineering Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Hong Zhang
- Department of Neurosurgery, NO.3 People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Baoshan District, Shanghai, China
| | - Yan-Bin Ma
- Department of Neurosurgery, NO.3 People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Baoshan District, Shanghai, China
| |
Collapse
|
37
|
Donat CK, Walter B, Deuther-Conrad W, Wenzel B, Nieber K, Bauer R, Brust P. Alterations of cholinergic receptors and the vesicular acetylcholine transporter after lateral fluid percussion injury in newborn piglets. Neuropathol Appl Neurobiol 2010; 36:225-36. [DOI: 10.1111/j.1365-2990.2009.01050.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
38
|
Wang HC, Ma YB. Experimental models of traumatic axonal injury. J Clin Neurosci 2009; 17:157-62. [PMID: 20042337 DOI: 10.1016/j.jocn.2009.07.099] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2009] [Revised: 07/27/2009] [Accepted: 07/28/2009] [Indexed: 10/20/2022]
Abstract
Traumatic brain injury (TBI) is one of the leading causes of death in people under 45 years of age worldwide. Such injury is characterized by a wide spectrum of mechanisms of injury and pathologies. Traumatic axonal injury (TAI), originally described as diffuse axonal injury, is one of the most common pathological features of TBI and is thought to be responsible for the long-lasting neurological impairments following TBI. Since the late 1980s a series of in vivo and in vitro experimental models of TAI have been developed to better understand the complex mechanisms of axonal injury and to define the relationship between mechanical forces and the structural and functional changes of injured axons. These models are designed to mimic as closely as possible the clinical condition of human TAI and have greatly improved our understanding of different aspects of TAI. The present review summarizes the most widely used experimental models of TAI. Focusing in particular on in vivo models, this survey aims to provide a broad overview of current knowledge and controversies in the development and use of the experimental models of TAI.
Collapse
Affiliation(s)
- Hong-Cai Wang
- Department of Neurosurgery, No. 3 People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Baoshan, Shanghai 201900, China
| | | |
Collapse
|
39
|
Potts MB, Rola R, Claus CP, Ferriero DM, Fike JR, Noble-Haeusslein LJ. Glutathione peroxidase overexpression does not rescue impaired neurogenesis in the injured immature brain. J Neurosci Res 2009; 87:1848-57. [PMID: 19170177 PMCID: PMC3306805 DOI: 10.1002/jnr.21996] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Traumatic brain injury (TBI) is a leading cause of disability among young children and is associated with long-term cognitive deficits. These clinical findings have prompted an investigation of the hippocampus in an experimental model of trauma to the developing brain at postnatal day (p21). Previous studies using this model have revealed a progressive loss of neurons in the hippocampus as brain-injured animals mature to young adulthood. Here we determined whether this hippocampal vulnerability is likewise reflected in altered neurogenesis and whether the antioxidant glutathione peroxidase (GPx) modulates neurogenesis during maturation of the injured immature brain. Male transgenic mice that overexpress GPx and wild-type littermates were subjected to controlled cortical impact or sham surgery on p21. At 2 weeks postinjury, the numbers of proliferating cells and immature neurons within the subgranular zone were measured by using Ki-67 and doublecortin, respectively. Bromodeoxyuridine (BrdU) was used to label dividing cells beginning 2 weeks postinjury. Survival (BrdU(+)) and neuronal differentiation (BrdU(+)/NeuN(+)) were then measured 4 weeks later via confocal microscopy. Two-way ANOVA revealed no significant interaction between genotype and injury. Subsequent analysis of the individual effects of injury and genotype, however, showed a significant reduction in subgranular zone proliferation (Ki-67) at 2 weeks postinjury (P = 0.0003) and precursor cell survival (BrdU(+)) at 6 weeks postinjury (P = 0.016) and a trend toward reduced neuronal differentiation (BrdU(+)/NeuN(+)) at 6 weeks postinjury (P = 0.087). Overall, these data demonstrate that traumatic injury to the injured immature brain impairs neurogenesis during maturation and suggest that GPx cannot rescue this reduced neurogenesis.
Collapse
Affiliation(s)
- Matthew B Potts
- Department of Neurological Surgery, Brain and Spinal Injury Center, University of California, San Francisco, CA 9414
| | - Radoslaw Rola
- Department of Neurological Surgery, Brain and Spinal Injury Center, University of California, San Francisco, CA 9414
| | - Catherine P Claus
- Department of Neurological Surgery, Brain and Spinal Injury Center, University of California, San Francisco, CA 9414
| | - Donna M Ferriero
- Department of Neurology and Pediatrics, University of California, San Francisco, CA 9414
| | - John R Fike
- Department of Neurological Surgery, Brain and Spinal Injury Center, University of California, San Francisco, CA 9414
| | - Linda J Noble-Haeusslein
- Department of Neurological Surgery, Brain and Spinal Injury Center, University of California, San Francisco, CA 9414
- Department of Physical Therapy and Rehabilitation Science, University of California, San Francisco, CA 9414
| |
Collapse
|
40
|
Impaired axonal transport and neurofilament compaction occur in separate populations of injured axons following diffuse brain injury in the immature rat. Brain Res 2009; 1263:174-82. [PMID: 19368848 DOI: 10.1016/j.brainres.2009.01.021] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2008] [Revised: 01/09/2009] [Accepted: 01/11/2009] [Indexed: 11/20/2022]
Abstract
Diffuse brain injury is a leading cause of mortality in infants and children under 4 years of age and results in cognitive deficits in survivors. The anatomic basis for these behavioral deficits may be traumatic axonal injury (TAI), which manifests as impaired axonal transport (IAT) and neurofilament compaction (NFC), and may occur as a result of glutamate receptor activation. The extent of IAT and NFC was evaluated at 6, 24 and 72 h following non-contusive brain trauma in the 17 day-old rat to examine the causal relationship between these two pathologic entities; in addition, the effect of antagonists to the ionotropic glutamate receptors on TAI was evaluated. At 6 h post-injury, NFC was observed primarily in the cingulum, and appeared as swollen axons and terminal bulbs. By 24 h, swollen axons were additionally present in the corpus callosum and lateral white matter tracts, and appeared to increase in diameter. At 72 h, the extent of axonal swellings exhibiting compacted neurofilaments appeared to decrease, and was accompanied by punctate immunoreactivity within axon tracts suggestive of axonal degeneration. Although NFC was present in the same anatomical locations where axonal accumulation of amyloid precursor protein (APP) has been observed, double-label immunohistochemistry revealed no evidence of colocalization of compacted neurofilament and APP. Pre-injury treatment with either the NMDA receptor antagonist, ifenprodil, or the AMPA receptor antagonist, NBQX, had no significant effect on the extent of TAI, suggesting that excitotoxicity may not be a primary mechanism underlying TAI. Importantly, these data are indicative of the heterogeneity of mechanisms underlying TAI in the traumatically-injured immature brain.
Collapse
|
41
|
Giza CC, Kolb B, Harris NG, Asarnow RF, Prins ML. Hitting a moving target: Basic mechanisms of recovery from acquired developmental brain injury. Dev Neurorehabil 2009; 12:255-68. [PMID: 19956795 PMCID: PMC2772114 DOI: 10.3109/17518420903087558] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Acquired brain injuries represent a major cause of disability in the pediatric population. Understanding responses to developmental acquired brain injuries requires knowledge of the neurobiology of normal development, age-at-injury effects and experience-dependent neuroplasticity. In the developing brain, full recovery cannot be considered as a return to the premorbid baseline, since ongoing maturation means that cerebral functioning in normal individuals will continue to advance. Thus, the recovering immature brain has to 'hit a moving target' to achieve full functional recovery, defined as parity with age-matched uninjured peers. This review will discuss the consequences of developmental injuries such as focal lesions, diffuse hypoxia and traumatic brain injury (TBI). Underlying cellular and physiological mechanisms relevant to age-at-injury effects will be described in considerable detail, including but not limited to alterations in neurotransmission, connectivity/network functioning, the extracellular matrix, response to oxidative stress and changes in cerebral metabolism. Finally, mechanisms of experience-dependent plasticity will be reviewed in conjunction with their effects on neural repair and recovery.
Collapse
Affiliation(s)
- Christopher C Giza
- Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, California 90095, USA.
| | | | | | | | | |
Collapse
|
42
|
Huh JW, Widing AG, Raghupathi R. Midline brain injury in the immature rat induces sustained cognitive deficits, bihemispheric axonal injury and neurodegeneration. Exp Neurol 2008; 213:84-92. [PMID: 18599043 DOI: 10.1016/j.expneurol.2008.05.009] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2008] [Revised: 04/10/2008] [Accepted: 05/03/2008] [Indexed: 12/26/2022]
Abstract
Infants and children less than 4 years old suffer chronic cognitive deficits following mild, moderate or severe diffuse traumatic brain injury (TBI). It has been suggested that the underlying neuropathologic basis for behavioral deficits following severe TBI is acute brain swelling, subarachnoid hemorrhage and axonal injury. To better understand mechanisms of cognitive dysfunction in mild-moderate TBI, a closed head injury model of midline TBI in the immature rat was developed. Following an impact over the midline suture of the intact skull, 17-day-old rats exhibited short apnea times (3-15 s), did not require ventilatory support and suffered no mortality, suggestive of mild TBI. Compared to un-injured rats, brain-injured rats exhibited significant learning deficits over the first week post-injury (p<0.0005), and, significant learning (p<0.005) and memory deficits (p<0.05) in the third post-injury week. Between 6 and 72 h, blood-brain barrier breakdown, extensive traumatic axonal injury in the subcortical white matter and thalamus, and focal areas of neurodegeneration in the cortex and hippocampus were observed in both hemispheres of the injured brain. At 8 to 18 days post-injury, reactive astrocytosis in the cortex, axonal degeneration in the subcortical white matter tracts, and degeneration of neuronal cell bodies and processes in the thalamus of both hemispheres were observed; however, cortical volumes were not different between un-injured and injured rat brains. These data suggest that diffuse TBI in the immature rat can lead to ongoing degeneration of both cell soma and axonal compartments of neurons, which may contribute, in part, to the observed sustained cognitive deficits.
Collapse
Affiliation(s)
- Jimmy W Huh
- Department of Anesthesiology and Critical Care, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
43
|
Dikranian K, Cohen R, Mac Donald C, Pan Y, Brakefield D, Bayly P, Parsadanian A. Mild traumatic brain injury to the infant mouse causes robust white matter axonal degeneration which precedes apoptotic death of cortical and thalamic neurons. Exp Neurol 2008; 211:551-60. [PMID: 18440507 DOI: 10.1016/j.expneurol.2008.03.012] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2008] [Revised: 02/28/2008] [Accepted: 03/01/2008] [Indexed: 10/22/2022]
Abstract
The immature brain in the first several years of childhood is very vulnerable to trauma. Traumatic brain injury (TBI) during this critical period often leads to neuropathological and cognitive impairment. Previous experimental studies in rodent models of infant TBI were mostly concentrated on neuronal degeneration, while axonal injury and its relationship to cell death have attracted much less attention. To address this, we developed a closed controlled head injury model in infant (P7) mice and characterized the temporospatial pattern of axonal degeneration and neuronal cell death in the brain following mild injury. Using amyloid precursor protein (APP) as marker of axonal injury we found that mild head trauma causes robust axonal degeneration in the cingulum/external capsule as early as 30 min post-impact. These levels of axonal injury persisted throughout a 24 h period, but significantly declined by 48 h. During the first 24 h injured axons underwent significant and rapid pathomorphological changes. Initial small axonal swellings evolved into larger spheroids and club-like swellings indicating the early disconnection of axons. Ultrastructural analysis revealed compaction of organelles, axolemmal and cytoskeletal defects. Axonal degeneration was followed by profound apoptotic cell death in the posterior cingulate and retrosplenial cortex and anterior thalamus which peaked between 16 and 24 h post-injury. At early stages post-injury no evidence of excitotoxic neuronal death at the impact site was found. At 48 h apoptotic cell death was reduced and paralleled with the reduction in the number of APP-labeled axonal profiles. Our data suggest that early degenerative response to injury in axons of the cingulum and external capsule may cause disconnection between cortical and thalamic neurons, and lead to their delayed apoptotic death.
Collapse
Affiliation(s)
- K Dikranian
- Department of Anatomy and Neurobiology, Washington University, St. Louis, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Raghupathi R, Huh JW. Diffuse brain injury in the immature rat: evidence for an age-at-injury effect on cognitive function and histopathologic damage. J Neurotrauma 2007; 24:1596-608. [PMID: 17970623 DOI: 10.1089/neu.2007.3790] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Diffuse axonal injury is a significant component of the pathology of moderate-severe pediatric traumatic brain injury in children less than 4 years of age, and is associated with poor cognitive outcome. However, cognitive deficits or gross histopathologic abnormalities are typically not observed following moderate-severe diffuse brain injury in the immature (17-day-old) rat. In order to test whether the age of the immature animal may influence post-traumatic outcome, non-contusive brain trauma was induced in post-natal day (PND) 11 or 17 rats. Brain injury in the PND11 rat, but not in the PND17 rat, was associated with a significant acquisition deficit at 28 days post-injury (p<0.0005 compared with age-matched sham rats, and with brain-injured PND17 rats). All brain-injured animals exhibited a retention deficit in the probe trial (p<0.001), but also demonstrated a significant visual deficit in the visible platform trial (p<0.05 compared to sham animals). Although significantly longer times of apnea and loss of righting reflex were observed in brain-injured PND17 rats compared to PND11 rats (p<0.05), overt cytoarchitectural alterations and reactive gliosis were not observed in the older age group. No focal pathology was observed in the cortex below the impact site in the PND11 rat but by 28 days, the brain-injured PND11 rat exhibited atrophy in multiple brain regions and an enlarged lateral ventricle in the impact hemisphere. Quantitative analysis revealed a time-dependent increase in tissue loss in the injured hemisphere (7-10%) in the younger animals, and a modest extent of tissue loss in the older animals (3-4%). Traumatic axonal injury was observed to similar extents in the white matter and thalamus below the impact site in both brain-injured PND11 and 17 rats. These data demonstrate that non-contusive (diffuse) brain injury of moderate severity in the immature rat is associated with chronic cognitive deficits and long-term histopathologic alterations and suggest that the age-at-injury is an important parameter of behavioral and pathologic outcome following closed head injury in the immature age group.
Collapse
Affiliation(s)
- Ramesh Raghupathi
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, and Department of Anesthesiology and Critical Care, Children's Hospital of Philadelphia, Pennsylvania 19129, USA.
| | | |
Collapse
|
45
|
Gobbel GT, Bonfield C, Carson-Walter EB, Adelson PD. Diffuse alterations in synaptic protein expression following focal traumatic brain injury in the immature rat. Childs Nerv Syst 2007; 23:1171-9. [PMID: 17457592 DOI: 10.1007/s00381-007-0345-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2007] [Indexed: 01/26/2023]
Abstract
INTRODUCTION The mechanisms responsible for cognitive decline after traumatic brain injury (TBI) in pediatric patients are poorly understood. The present study examined the potential role of synaptic alterations in this process by using an animal model of immature head injury to define the impact of TBI on expression of the synaptic protein, synaptophysin. MATERIALS AND METHODS After craniotomy, TBI was induced in postnatal day 17 (PND17) rats using controlled cortical impact delivered to the left hemisphere. NeuN, a neuronal marker, and synaptophysin expression were examined 1 day, 1 week, and 1 month after injury by immunohistochemistry and immunoblotting. RESULTS There were significant decreases in both NeuN and synaptophysin after 1 day and 1 week but not 1 month after injury within the hippocampus and neocortex adjacent to the impact site compared to sham-injured controls. The decrease in synaptophysin and NeuN was also noted in the contralateral hippocampus by 1 day after injury and in the contralateral neocortex by 1 week, indicating that changes in protein expression were not solely localized to the injury site but occurred in more distant regions as well. DISCUSSION In conclusion, the decrease and recovery in synaptophysin parallel the cognitive changes that occur after experimental TBI in the PND17 rat, which suggests that changes in this protein may contribute to cognitive declines after injury. The results also suggest that, in spite of the focal nature of the impact, diffuse alterations in protein expression can occur after immature TBI and may contribute to the subsequent cognitive dysfunction.
Collapse
Affiliation(s)
- G T Gobbel
- Department of Neurological Surgery, University of Pittsburgh, Suite B-400, UPMC Presbyterian, 200 Lothrop Street, Pittsburgh, PA 15213, USA
| | | | | | | |
Collapse
|
46
|
Fijalkowski RJ, Stemper BD, Pintar FA, Yoganandan N, Crowe MJ, Gennarelli TA. New Rat Model for Diffuse Brain Injury Using Coronal Plane Angular Acceleration. J Neurotrauma 2007; 24:1387-98. [PMID: 17711400 DOI: 10.1089/neu.2007.0268] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A new experimental model was developed to induce diffuse brain injury (DBI) in rats through pure coronal plane angular acceleration. An impactor was propelled down a guide tube toward the lateral extension of the helmet fixture. Upon impactor-helmet contact, helmet and head were constrained to rotate in the coronal plane. In the present experimental series, the model was optimized to generate rotational kinematics necessary for concussion. Twenty-six rats were subjected to peak angular accelerations of 368 +/- 30 krad/sec2 (mean +/- standard deviation) with 2.1 +/- 0.5-msec durations. Following rotational loading, unconsciousness was defined as time between reversal agent administration and return of corneal reflex. All experimental rats demonstrated transient unconsciousness lasting 8.8 +/- 3.7 min that was significantly longer than control rats. Macroscopic damage was noted in 51% of experimental animals: 38% subarachnoid hemorrhage, and 15% intraparenchymal lesion. Microscopic analysis indicated no evidence of axonal swellings at sacrifice times of 24, 48, 72, and 96 h. All rats survived rotational loading without skull fracture. Injuries were classified as concussion based on transient unconsciousness, scaled biomechanics, limited macroscopic damage, and minimal histological abnormalities. The experimental methodology remains adjustable, permitting investigation of increasing DBI severities through modulation of model parameters, and inclusion of further functional and histological outcome measures.
Collapse
Affiliation(s)
- Ronald J Fijalkowski
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | | | | | | | | | |
Collapse
|
47
|
Abstract
PURPOSE OF REVIEW This review will update the reader on the most significant recent findings with regards to both the clinical research and basic science of pediatric traumatic brain injury. RECENT FINDINGS The developing brain is not simply a smaller version of the mature brain. Studies have uncovered important distinctions of the younger brain after traumatic brain injury, including an increased propensity for apoptosis, age-dependent parameters for cerebral blood flow and metabolism, development-specific biomarkers, increased likelihood of early posttraumatic seizures, differential sensitivity to commonly used neuroactive medications and altered neuroplasticity during recovery from injury. Specifically, there is strong preclinical evidence for increased neuronal apoptosis in the developing brain being triggered by anesthetics and anticonvulsants, making it paramount that future studies more clearly delineate preferred agents and specific indications for use, incorporating long-term functional outcomes as well as short-term benefits. In addition, the young brain may actually benefit from therapeutic interventions that have been less effective following adult traumatic brain injury, such as decompressive craniectomy and hypothermia. SUMMARY An increasing body of evidence demonstrates the importance of establishing age-dependent guidelines for physiological monitoring, pharmacological intervention, management of intracranial pressure and facilitating recovery of function.
Collapse
Affiliation(s)
- Christopher C Giza
- Division of Neurology, Department of Pediatrics, Mattel Children's Hospital at UCLA, Los Angeles, California, USA.
| | | | | |
Collapse
|
48
|
Huh JW, Widing AG, Raghupathi R. Basic science; repetitive mild non-contusive brain trauma in immature rats exacerbates traumatic axonal injury and axonal calpain activation: a preliminary report. J Neurotrauma 2007; 24:15-27. [PMID: 17263667 DOI: 10.1089/neu.2006.0072] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Infants who experience inflicted brain injury (shaken-impact syndrome) present with subdural hematoma, brain atrophy, and ventriculomegaly, pathologic features that are suggestive of multiple incidences of brain trauma. To develop a clinically relevant model of inflicted brain injury in infants, the skulls of anesthetized 11-day-old rat pups were subjected to one, two, or three successive mild impacts. While skull fractures were not observed, a single impact to the intact skull resulted in petechial hemorrhages in the subcortical white matter, and double or triple impacts led to hemorrhagic tissue tears at 1 day postinjury. Whereas the singly impacted brain did not exhibit overt damage at 7 days, two impacts resulted in an enlarged ventricle and white matter atrophy; three impacts to the brain led to similar pathology albeit at 3 days postinjury. By 7 days, cortical atrophy was observed following three impacts. Reactive astrocytes were visible in the deep cortical layers below the impact site after two impacts, and through all cortical layers after three impacts. Swellings were observed in intact axons in multiple white matter tracts at 1 day following single impact and progressed to axonal disconnections by 3 days. In contrast, double or triple impacts resulted in axonal disconnections by 1 day postinjury; in addition, three impacts led to extensive axonal injury in the dorsolateral thalamus by 3 days. Calpain activation was observed in axons in subcortical white matter tracts in all brain-injured animals at 1 day and increased with the number of impacts. Despite these pathologic alterations, neither one nor two impacts led to acquisition deficits on the Morris water maze. While indicative of the graded nature of the pathologic response, these data suggest that repetitive mild brain injury in the immature rat results in pathologic features similar to those following inflicted brain injuries in infants.
Collapse
Affiliation(s)
- Jimmy W Huh
- Department of Anesthesiology and Critical Care, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | | | |
Collapse
|
49
|
Friess SH, Ichord RN, Owens K, Ralston J, Rizol R, Overall KL, Smith C, Helfaer MA, Margulies SS. Neurobehavioral functional deficits following closed head injury in the neonatal pig. Exp Neurol 2007; 204:234-43. [PMID: 17174304 PMCID: PMC1892165 DOI: 10.1016/j.expneurol.2006.10.010] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2006] [Revised: 09/21/2006] [Accepted: 10/30/2006] [Indexed: 01/22/2023]
Abstract
Neurobehavioral deficits in higher cortical systems have not been described previously in a large animal model of diffuse brain injury. Anesthetized 3-5 day old piglets were subjected to either mild (142 rad/s) or moderate (188 rad/s) rapid non-impact axial rotations of the head. Multiple domains of cortical function were evaluated 5 times during the 12 day post-injury period using tests of neurobehavioral function devised for piglets. There were no observed differences in neurobehavioral outcomes between mild injury pigs (N=8) and instrumented shams (N=4). Moderately injured piglets (N=7) had significantly lower interest in exploring their environment and had higher failure rates in visual-based problem solving compared to instrumented shams (N=5) on days 1 and 4 after injury. Neurobehavioral functional deficits correlated with neuropathologic damage in the neonatal pigs after inertial head injury. Injured axons detected by immunohistochemistry (beta-APP) were absent in mild injury and sham piglets, but were observed in moderately injured piglet brains. In summary, we have developed a quantitative battery of neurobehavioral functional assessments for large animals that correlate with neuropathologic axonal damage and may have wide applications in the fields of cardiac resuscitation, stroke, and hypoxic-ischemic brain injury.
Collapse
Affiliation(s)
- Stuart H Friess
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Aikman J, O'Steen B, Silver X, Torres R, Boslaugh S, Blackband S, Padgett K, Wang KKW, Hayes R, Pineda J. Alpha-II-spectrin after controlled cortical impact in the immature rat brain. Dev Neurosci 2006; 28:457-65. [PMID: 16943668 DOI: 10.1159/000094171] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2005] [Accepted: 04/10/2006] [Indexed: 01/12/2023] Open
Abstract
Proteolytic processing plays an important role in regulating a wide range of important cellular functions, including processing of cytoskeletal proteins. Loss of cytoskeletal proteins such as spectrin is an important characteristic in a variety of acute central nervous system injuries including ischemia, spinal cord injury and traumatic brain injury (TBI). The literature contains extensive information on the proteolytic degradation of alpha-II-spectrin after TBI in the adult brain. By contrast, there is limited knowledge on the characteristics and relevance of these important processes in the immature brain. The present experiments examine TBI-induced proteolytic processing of alpha-II-spectrin after TBI in the immature rat brain. Distinct proteolytic products resulting from the degradation of the cytoskeletal protein alpha-II-spectrin by calpain and caspase 3 were readily detectable in cortical brain parenchyma and cerebrospinal fluid after TBI in immature rats.
Collapse
Affiliation(s)
- J Aikman
- Center for Traumatic Brain Injury Studies, Evelyn F. & William L. McKnight Brain Institute of the University of Florida, Gainesville, FL, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|