1
|
Ribeiro BF, da Cruz BC, de Sousa BM, Correia PD, David N, Rocha C, Almeida RD, Ribeiro da Cunha M, Marques Baptista AA, Vieira SI. Cell therapies for spinal cord injury: a review of the clinical trials and cell-type therapeutic potential. Brain 2023; 146:2672-2693. [PMID: 36848323 DOI: 10.1093/brain/awad047] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 12/23/2022] [Accepted: 01/29/2023] [Indexed: 03/01/2023] Open
Abstract
Spinal cord injury (SCI) is an as yet untreatable neuropathology that causes severe dysfunction and disability. Cell-based therapies hold neuroregenerative and neuroprotective potential, but, although being studied in SCI patients for more than two decades, long-term efficacy and safety remain unproven, and which cell types result in higher neurological and functional recovery remains under debate. In a comprehensive scoping review of 142 reports and registries of SCI cell-based clinical trials, we addressed the current therapeutical trends and critically analysed the strengths and limitations of the studies. Schwann cells, olfactory ensheathing cells (OECs), macrophages and various types of stem cells have been tested, as well as combinations of these and other cells. A comparative analysis between the reported outcomes of each cell type was performed, according to gold-standard efficacy outcome measures like the ASIA impairment scale, motor and sensory scores. Most of the trials were in the early phases of clinical development (phase I/II), involved patients with complete chronic injuries of traumatic aetiology and did not display a randomized comparative control arm. Bone marrow stem cells and OECs were the most commonly tested cells, while open surgery and injection were the main methods of delivering cells into the spinal cord or submeningeal spaces. Transplantation of support cells, such as OECs and Schwann cells, resulted in the highest ASIA Impairment Scale (AIS) grade conversion rates (improvements in ∼40% of transplanted patients), which surpassed the spontaneous improvement rate expected for complete chronic SCI patients within 1 year post-injury (5-20%). Some stem cells, such as peripheral blood-isolated and neural stem cells, offer potential for improving patient recovery. Complementary treatments, particularly post-transplantation rehabilitation regimes, may contribute highly to neurological and functional recovery. However, unbiased comparisons between the tested therapies are difficult to draw, given the great heterogeneity of the design and outcome measures used in the SCI cell-based clinical trials and how these are reported. It is therefore crucial to standardize these trials when aiming for higher value clinical evidence-based conclusions.
Collapse
Affiliation(s)
- Beatriz F Ribeiro
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Bruna C da Cruz
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Bárbara M de Sousa
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Patrícia D Correia
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Nuno David
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Camila Rocha
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Ramiro D Almeida
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Maria Ribeiro da Cunha
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
- Spinal Cord Injury Rehabilitation Unit, Centro de Reabilitação do Norte (CRN), Centro Hospitalar de Vila Nova de Gaia e Espinho (CHVNG/E), 4400-129 Vila Nova de Gaia, Portugal
| | - António A Marques Baptista
- Department of Neurosurgery, Centro Hospitalar de Vila Nova de Gaia e Espinho (CHVNG/E), 4400-129 Vila Nova de Gaia, Portugal
| | - Sandra I Vieira
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
2
|
McCaughey-Chapman A, Connor B. Cell reprogramming for oligodendrocytes: A review of protocols and their applications to disease modeling and cell-based remyelination therapies. J Neurosci Res 2023; 101:1000-1028. [PMID: 36749877 DOI: 10.1002/jnr.25173] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 02/09/2023]
Abstract
Oligodendrocytes are a type of glial cells that produce a lipid-rich membrane called myelin. Myelin assembles into a sheath and lines neuronal axons in the brain and spinal cord to insulate them. This not only increases the speed and efficiency of nerve signal transduction but also protects the axons from damage and degradation, which could trigger neuronal cell death. Demyelination, which is caused by a loss of myelin and oligodendrocytes, is a prominent feature of many neurological conditions, including Multiple sclerosis (MS), spinal cord injuries (SCI), and leukodystrophies. Demyelination is followed by a time of remyelination mediated by the recruitment of endogenous oligodendrocyte precursor cells, their migration to the injury site, and differentiation into myelin-producing oligodendrocytes. Unfortunately, endogenous remyelination is not sufficient to overcome demyelination, which explains why there are to date no regenerative-based treatments for MS, SCI, or leukodystrophies. To better understand the role of oligodendrocytes and develop cell-based remyelination therapies, human oligodendrocytes have been derived from somatic cells using cell reprogramming. This review will detail the different cell reprogramming methods that have been developed to generate human oligodendrocytes and their applications to disease modeling and cell-based remyelination therapies. Recent developments in the field have seen the derivation of brain organoids from pluripotent stem cells, and protocols have been devised to incorporate oligodendrocytes within the organoids, which will also be reviewed.
Collapse
Affiliation(s)
- Amy McCaughey-Chapman
- Department of Pharmacology and Clinical Pharmacology, Centre for Brain Research, School of Medical Science, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Bronwen Connor
- Department of Pharmacology and Clinical Pharmacology, Centre for Brain Research, School of Medical Science, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
3
|
Hall A, Fortino T, Spruance V, Niceforo A, Harrop JS, Phelps PE, Priest CA, Zholudeva LV, Lane MA. Cell transplantation to repair the injured spinal cord. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2022; 166:79-158. [PMID: 36424097 PMCID: PMC10008620 DOI: 10.1016/bs.irn.2022.09.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Adam Hall
- Drexel University, Philadelphia, PA, United States; Marion Murray Spinal Cord Research Center, Drexel University, Philadelphia, PA, United States
| | - Tara Fortino
- Drexel University, Philadelphia, PA, United States; Marion Murray Spinal Cord Research Center, Drexel University, Philadelphia, PA, United States
| | - Victoria Spruance
- Drexel University, Philadelphia, PA, United States; Marion Murray Spinal Cord Research Center, Drexel University, Philadelphia, PA, United States; Division of Kidney, Urologic, & Hematologic Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Alessia Niceforo
- Drexel University, Philadelphia, PA, United States; Marion Murray Spinal Cord Research Center, Drexel University, Philadelphia, PA, United States
| | - James S Harrop
- Department of Neurological and Orthopedic Surgery, Thomas Jefferson University, Philadelphia, PA, United States
| | - Patricia E Phelps
- Department of Integrative Biology & Physiology, UCLA, Los Angeles, CA, United States
| | | | - Lyandysha V Zholudeva
- Drexel University, Philadelphia, PA, United States; Marion Murray Spinal Cord Research Center, Drexel University, Philadelphia, PA, United States; Gladstone Institutes, San Francisco, CA, United States
| | - Michael A Lane
- Drexel University, Philadelphia, PA, United States; Marion Murray Spinal Cord Research Center, Drexel University, Philadelphia, PA, United States.
| |
Collapse
|
4
|
Olmsted ZT, Paluh JL. Stem Cell Neurodevelopmental Solutions for Restorative Treatments of the Human Trunk and Spine. Front Cell Neurosci 2021; 15:667590. [PMID: 33981202 PMCID: PMC8107236 DOI: 10.3389/fncel.2021.667590] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 03/29/2021] [Indexed: 12/21/2022] Open
Abstract
The ability to reliably repair spinal cord injuries (SCI) will be one of the greatest human achievements realized in regenerative medicine. Until recently, the cellular path to this goal has been challenging. However, as detailed developmental principles are revealed in mouse and human models, their application in the stem cell community brings trunk and spine embryology into efforts to advance human regenerative medicine. New models of posterior embryo development identify neuromesodermal progenitors (NMPs) as a major bifurcation point in generating the spinal cord and somites and is leading to production of cell types with the full range of axial identities critical for repair of trunk and spine disorders. This is coupled with organoid technologies including assembloids, circuitoids, and gastruloids. We describe a paradigm for applying developmental principles towards the goal of cell-based restorative therapies to enable reproducible and effective near-term clinical interventions.
Collapse
|
5
|
Xu N, Xu T, Mirasol R, Holmberg L, Vincent PH, Li X, Falk A, Benedikz E, Rotstein E, Seiger Å, Åkesson E, Falci S, Sundström E. Transplantation of Human Neural Precursor Cells Reverses Syrinx Growth in a Rat Model of Post-Traumatic Syringomyelia. Neurotherapeutics 2021; 18:1257-1272. [PMID: 33469829 PMCID: PMC8423938 DOI: 10.1007/s13311-020-00987-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/03/2020] [Indexed: 01/01/2023] Open
Abstract
Posttraumatic syringomyelia (PTS) is a serious condition of progressive expansion of spinal cord cysts, affecting patients with spinal cord injury years after injury. To evaluate neural cell therapy to prevent cyst expansion and potentially replace lost neurons, we developed a rat model of PTS. We combined contusive trauma with subarachnoid injections of blood, causing tethering of the spinal cord to the surrounding vertebrae, resulting in chronically expanding cysts. The cysts were usually located rostral to the injury, extracanalicular, lined by astrocytes. T2*-weighted magnetic resonance imaging (MRI) showed hyperintense fluid-filled cysts but also hypointense signals from debris and iron-laden macrophages/microglia. Two types of human neural stem/progenitor cells-fetal neural precursor cells (hNPCs) and neuroepithelial-like stem cells (hNESCs) derived from induced pluripotent stem cells-were transplanted to PTS cysts. Cells transplanted into cysts 10 weeks after injury survived at least 10 weeks, migrated into the surrounding parenchyma, but did not differentiate during this period. The cysts were partially obliterated by the cells, and cyst walls often merged with thin layers of cells in between. Cyst volume measurements with MRI showed that the volumes continued to expand in sham-transplanted rats by 102%, while the cyst expansion was effectively prevented by hNPCs and hNESCs transplantation, reducing the cyst volumes by 18.8% and 46.8%, respectively. The volume reductions far exceeded the volume of the added human cells. Thus, in an animal model closely mimicking the clinical situation, we provide proof-of-principle that transplantation of human neural stem/progenitor cells can be used as treatment for PTS.
Collapse
Affiliation(s)
- Ning Xu
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
- Center for Reproductive Medicine, and Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Tingting Xu
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
- Division of Neurogeriatrics, Karolinska Institutet, BioClinicum J10:30, Karolinska University Hospital, S17164, Solna, Sweden
| | - Raymond Mirasol
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
- National Institute of Neurological Disorders and Stroke, Stroke Branch, National Institutes of Health, Bethesda, MD, USA
| | - Lena Holmberg
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Per Henrik Vincent
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Xiaofei Li
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Anna Falk
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Eirikur Benedikz
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
- TEK-Innovation, Faculty of Engineering, University of Southern Denmark, DK-5000, Odense, Denmark
| | - Emilia Rotstein
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, S-14186, Stockholm, Sweden
| | - Åke Seiger
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Elisabet Åkesson
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
- Stockholms Sjukhem Foundation, Box 12230, S-10226, Stockholm, Sweden
| | - Scott Falci
- Department of Neurosurgery, Craig Hospital, 3425 S. Clarkson St, Englewood, CO, 80110, USA
| | - Erik Sundström
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.
- Division of Neurogeriatrics, Karolinska Institutet, BioClinicum J9:20, Karolinska University Hospital, S17164, Solna, Sweden.
| |
Collapse
|
6
|
Kleindienst A, Laut FM, Roeckelein V, Buchfelder M, Dodoo-Schittko F. Treatment of posttraumatic syringomyelia: evidence from a systematic review. Acta Neurochir (Wien) 2020; 162:2541-2556. [PMID: 32820376 PMCID: PMC7496040 DOI: 10.1007/s00701-020-04529-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 08/04/2020] [Indexed: 01/29/2023]
Abstract
Background Following spinal cord injury (SCI), the routine use of magnetic resonance imaging (MRI) resulted in an incremental diagnosis of posttraumatic syringomyelia (PTS). However, facing four decades of preferred surgical treatment of PTS, no clear consensus on the recommended treatment exists. We review the literature on PTS regarding therapeutic strategies, outcomes, and complications. Methods We performed a systematic bibliographic search on (“spinal cord injuries” [Mesh] AND “syringomyelia” [Mesh]). English language literature published between 1980 and 2020 was gathered, and case reports and articles examining syrinx due to other causes were excluded. The type of study, interval injury to symptoms, severity and level of injury, therapeutic procedure, duration of follow-up, complications, and outcome were recorded. Results Forty-three observational studies including 1803 individuals met the eligibility criteria. The time interval from SCI to the diagnosis of PTS varied between 42 and 264 months. Eighty-nine percent of patients were treated surgically (n = 1605) with a complication rate of 26%. Symptoms improved in 43% of patients postoperatively and in 2% treated conservatively. Stable disease was documented in 50% of patients postoperatively and in 88% treated conservatively. The percentage of deterioration was similar (surgery 16%, 0.8% dead; conservative 10%). Detailed analysis of surgical outcome with regard to symptoms revealed that pain, motor, and sensory function could be improved in 43 to 55% of patients while motor function deteriorated in around 25%. The preferred methods of surgery were arachnoid lysis (48%) and syrinx drainage (31%). Conclusion Even diagnosing PTS early in its evolution with MRI, to date, no satisfactory standard treatment exists, and the present literature review shows similar outcomes, regardless of the treatment modality. Therefore, PTS remains a neurosurgical challenge. Additional research is required using appropriate study designs for improving treatment options.
Collapse
Affiliation(s)
- Andrea Kleindienst
- Department of Neurosurgery, Friedrich-Alexander-University Erlangen-Nurnberg, Erlangen, Germany
- Department of Spine Surgery, Krankenhaus Rummelsberg, Schwarzenbruck, Germany
| | | | - Verena Roeckelein
- Department of Spine Surgery, Krankenhaus Rummelsberg, Schwarzenbruck, Germany
| | - Michael Buchfelder
- Department of Spine Surgery, Krankenhaus Rummelsberg, Schwarzenbruck, Germany
| | - Frank Dodoo-Schittko
- Institute of Social Medicine and Health Systems Research, Otto von Guericke University Magdeburg, Magdeburg, Germany
| |
Collapse
|
7
|
Fischer I, Dulin JN, Lane MA. Transplanting neural progenitor cells to restore connectivity after spinal cord injury. Nat Rev Neurosci 2020; 21:366-383. [PMID: 32518349 PMCID: PMC8384139 DOI: 10.1038/s41583-020-0314-2] [Citation(s) in RCA: 155] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2020] [Indexed: 12/12/2022]
Abstract
Spinal cord injury remains a scientific and therapeutic challenge with great cost to individuals and society. The goal of research in this field is to find a means of restoring lost function. Recently we have seen considerable progress in understanding the injury process and the capacity of CNS neurons to regenerate, as well as innovations in stem cell biology. This presents an opportunity to develop effective transplantation strategies to provide new neural cells to promote the formation of new neuronal networks and functional connectivity. Past and ongoing clinical studies have demonstrated the safety of cell therapy, and preclinical research has used models of spinal cord injury to better elucidate the underlying mechanisms through which donor cells interact with the host and thus increase long-term efficacy. While a variety of cell therapies have been explored, we focus here on the use of neural progenitor cells obtained or derived from different sources to promote connectivity in sensory, motor and autonomic systems.
Collapse
Affiliation(s)
- Itzhak Fischer
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, USA.
| | - Jennifer N Dulin
- Department of Biology, Texas A&M University, College Station, TX, USA
| | - Michael A Lane
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, USA
| |
Collapse
|
8
|
Wang P, Wang H, Ma K, Wang S, Yang C, Mu N, Yang F, Feng H, Chen T. Novel cytokine-loaded PCL-PEG scaffold composites for spinal cord injury repair. RSC Adv 2020; 10:6306-6314. [PMID: 35495987 PMCID: PMC9049693 DOI: 10.1039/c9ra10385f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 01/20/2020] [Indexed: 12/14/2022] Open
Abstract
Severe spinal cord injury (SCI) always leads to permanent sensory and motor dysfunction. However, the therapeutic effects of current treatment methods, including high dose methylprednisolone, surgical interventions and rehabilitative care, are far from satisfactory. In recent years, cellular, molecular, tissue engineering and rehabilitative training have shown promising results in animal models. Poly-ε-caprolacton (PCL) - based hydrogel composite system has been considered as a promising strategy to direct the axon growth and mimic the properties of natural extracellular matrix. In this study, we found the addition of the fibroblast growth factor 2 (FGF2) and epidermal growth factor (EGF) to the hydrogel induces the production of axon growth-supportive substrates. The addition of the glial-derived neurotrophic factor (GDNF) to the hydrogel further induces axon directional growth. This "five-in-one" composite scaffold, referred to as PCL/PEG/FGF2/EGF/GDNF, improved the locomotor function in rats 8 weeks after spinal cord injury (SCI) after implantation in transected spinal cord. Furthermore, histological assessment indicated that the designed composite scaffold guided the neuronal regeneration and promoted the production of axon growth-supportive substrates, providing a favorable biological microenvironment. Our novel composite scaffold provides a promising therapeutic method for SCI.
Collapse
Affiliation(s)
- Pangbo Wang
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University) Chongqing 400038 China
| | - Hufei Wang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics & Chemistry, Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Kang Ma
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University) Chongqing 400038 China
| | - Shi Wang
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University) Chongqing 400038 China
| | - Chuanyan Yang
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University) Chongqing 400038 China
| | - Ning Mu
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University) Chongqing 400038 China
| | - Fei Yang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics & Chemistry, Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Hua Feng
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University) Chongqing 400038 China
| | - Tunan Chen
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University) Chongqing 400038 China
| |
Collapse
|
9
|
Zholudeva LV, Lane MA. Choosing the right cell for spinal cord repair. J Neurosci Res 2018; 97:109-111. [PMID: 30383302 DOI: 10.1002/jnr.24351] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 10/09/2018] [Accepted: 10/10/2018] [Indexed: 12/30/2022]
Affiliation(s)
- Lyandysha V Zholudeva
- Department of Neurobiology and Anatomy, College of Medicine, Drexel University, Philadelphia, Pennsylvania.,The Spinal Cord Research Center, College of Medicine, Drexel University, Philadelphia, Pennsylvania
| | - Michael A Lane
- Department of Neurobiology and Anatomy, College of Medicine, Drexel University, Philadelphia, Pennsylvania.,The Spinal Cord Research Center, College of Medicine, Drexel University, Philadelphia, Pennsylvania
| |
Collapse
|
10
|
Zholudeva LV, Iyer N, Qiang L, Spruance VM, Randelman ML, White NW, Bezdudnaya T, Fischer I, Sakiyama-Elbert SE, Lane MA. Transplantation of Neural Progenitors and V2a Interneurons after Spinal Cord Injury. J Neurotrauma 2018; 35:2883-2903. [PMID: 29873284 DOI: 10.1089/neu.2017.5439] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
There is growing interest in the use of neural precursor cells to treat spinal cord injury (SCI). Despite extensive pre-clinical research, it remains unclear as to which donor neuron phenotypes are available for transplantation, whether the same populations exist across different sources of donor tissue (e.g., developing tissue vs. cultured cells), and whether donor cells retain their phenotype once transplanted into the hostile internal milieu of the injured adult spinal cord. In addition, while functional improvements have been reported after neural precursor transplantation post-SCI, the extent of recovery is limited and variable. The present work begins to address these issues by harnessing ventrally derived excitatory pre-motor V2a spinal interneurons (SpINs) to repair the phrenic motor circuit after cervical SCI. Recent studies have demonstrated that Chx10-positive V2a SpINs contribute to anatomical plasticity within the phrenic circuitry after cervical SCI, thus identifying them as a therapeutic candidate. Building upon this discovery, the present work tests the hypothesis that transplantation of neural progenitor cells (NPCs) enriched with V2a INs can contribute to neural networks that promote repair and enhance respiratory plasticity after cervical SCI. Cultured NPCs (neuronal and glial restricted progenitor cells) isolated from E13.5 Green fluorescent protein rats were aggregated with TdTomato-mouse embryonic stem cell-derived V2a INs in vitro, then transplanted into the injured cervical (C3-4) spinal cord. Donor cells survive, differentiate and integrate with the host spinal cord. Functional diaphragm electromyography indicated recovery 1 month following treatment in transplant recipients. Animals that received donor cells enriched with V2a INs showed significantly greater functional improvement than animals that received NPCs alone. The results from this study offer insight into the neuronal phenotypes that might be effective for (re)establishing neuronal circuits in the injured adult central nervous system.
Collapse
Affiliation(s)
- Lyandysha V Zholudeva
- 1 Department of Neurobiology and Anatomy, College of Medicine, Drexel University, Philadelphia, Pennsylvania.,2 Spinal Cord Research Center, College of Medicine, Drexel University, Philadelphia, Pennsylvania
| | - Nisha Iyer
- 3 Wisconsin Institute for Discovery, University of Wisconsin, Madison, Wisconsin
| | - Liang Qiang
- 1 Department of Neurobiology and Anatomy, College of Medicine, Drexel University, Philadelphia, Pennsylvania.,2 Spinal Cord Research Center, College of Medicine, Drexel University, Philadelphia, Pennsylvania
| | - Victoria M Spruance
- 1 Department of Neurobiology and Anatomy, College of Medicine, Drexel University, Philadelphia, Pennsylvania.,2 Spinal Cord Research Center, College of Medicine, Drexel University, Philadelphia, Pennsylvania
| | - Margo L Randelman
- 1 Department of Neurobiology and Anatomy, College of Medicine, Drexel University, Philadelphia, Pennsylvania.,2 Spinal Cord Research Center, College of Medicine, Drexel University, Philadelphia, Pennsylvania
| | - Nicholas W White
- 4 Department of Biomedical Engineering, University of Texas, Austin, Texas
| | - Tatiana Bezdudnaya
- 1 Department of Neurobiology and Anatomy, College of Medicine, Drexel University, Philadelphia, Pennsylvania.,2 Spinal Cord Research Center, College of Medicine, Drexel University, Philadelphia, Pennsylvania
| | - Itzhak Fischer
- 1 Department of Neurobiology and Anatomy, College of Medicine, Drexel University, Philadelphia, Pennsylvania.,2 Spinal Cord Research Center, College of Medicine, Drexel University, Philadelphia, Pennsylvania
| | | | - Michael A Lane
- 1 Department of Neurobiology and Anatomy, College of Medicine, Drexel University, Philadelphia, Pennsylvania.,2 Spinal Cord Research Center, College of Medicine, Drexel University, Philadelphia, Pennsylvania
| |
Collapse
|
11
|
Cortical AAV-CNTF Gene Therapy Combined with Intraspinal Mesenchymal Precursor Cell Transplantation Promotes Functional and Morphological Outcomes after Spinal Cord Injury in Adult Rats. Neural Plast 2018; 2018:9828725. [PMID: 30245710 PMCID: PMC6139201 DOI: 10.1155/2018/9828725] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 04/18/2018] [Accepted: 05/21/2018] [Indexed: 12/11/2022] Open
Abstract
Ciliary neurotrophic factor (CNTF) promotes survival and enhances long-distance regeneration of injured axons in parts of the adult CNS. Here we tested whether CNTF gene therapy targeting corticospinal neurons (CSN) in motor-related regions of the cerebral cortex promotes plasticity and regrowth of axons projecting into the female adult F344 rat spinal cord after moderate thoracic (T10) contusion injury (SCI). Cortical neurons were transduced with a bicistronic adeno-associated viral vector (AAV1) expressing a secretory form of CNTF coupled to mCHERRY (AAV-CNTFmCherry) or with control AAV only (AAV-GFP) two weeks prior to SCI. In some animals, viable or nonviable F344 rat mesenchymal precursor cells (rMPCs) were injected into the lesion site two weeks after SCI to modulate the inhibitory environment. Treatment with AAV-CNTFmCherry, as well as with AAV-CNTFmCherry combined with rMPCs, yielded functional improvements over AAV-GFP alone, as assessed by open-field and Ladderwalk analyses. Cyst size was significantly reduced in the AAV-CNTFmCherry plus viable rMPC treatment group. Cortical injections of biotinylated dextran amine (BDA) revealed more BDA-stained axons rostral and alongside cysts in the AAV-CNTFmCherry versus AAV-GFP groups. After AAV-CNTFmCherry treatments, many sprouting mCherry-immunopositive axons were seen rostral to the SCI, and axons were also occasionally found caudal to the injury site. These data suggest that CNTF has the potential to enhance corticospinal repair by transducing parent CNS populations.
Collapse
|
12
|
Spruance VM, Zholudeva LV, Hormigo KM, Randelman ML, Bezdudnaya T, Marchenko V, Lane MA. Integration of Transplanted Neural Precursors with the Injured Cervical Spinal Cord. J Neurotrauma 2018; 35:1781-1799. [PMID: 29295654 PMCID: PMC6033309 DOI: 10.1089/neu.2017.5451] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Cervical spinal cord injuries (SCI) result in devastating functional consequences, including respiratory dysfunction. This is largely attributed to the disruption of phrenic pathways, which control the diaphragm. Recent work has identified spinal interneurons as possible contributors to respiratory neuroplasticity. The present work investigated whether transplantation of developing spinal cord tissue, inherently rich in interneuronal progenitors, could provide a population of new neurons and growth-permissive substrate to facilitate plasticity and formation of novel relay circuits to restore input to the partially denervated phrenic motor circuit. One week after a lateralized, C3/4 contusion injury, adult Sprague-Dawley rats received allografts of dissociated, developing spinal cord tissue (from rats at gestational days 13-14). Neuroanatomical tracing and terminal electrophysiology was performed on the graft recipients 1 month later. Experiments using pseudorabies virus (a retrograde, transynaptic tracer) revealed connections from donor neurons onto host phrenic circuitry and from host, cervical interneurons onto donor neurons. Anatomical characterization of donor neurons revealed phenotypic heterogeneity, though donor-host connectivity appeared selective. Despite the consistent presence of cholinergic interneurons within donor tissue, transneuronal tracing revealed minimal connectivity with host phrenic circuitry. Phrenic nerve recordings revealed changes in burst amplitude after application of a glutamatergic, but not serotonergic antagonist to the transplant, suggesting a degree of functional connectivity between donor neurons and host phrenic circuitry that is regulated by glutamatergic input. Importantly, however, anatomical and functional results were variable across animals, and future studies will explore ways to refine donor cell populations and entrain consistent connectivity.
Collapse
Affiliation(s)
- Victoria M Spruance
- Department of Neurobiology and Anatomy, Spinal Cord Research Center, Drexel University College of Medicine , Philadelphia, Pennsylvania
| | - Lyandysha V Zholudeva
- Department of Neurobiology and Anatomy, Spinal Cord Research Center, Drexel University College of Medicine , Philadelphia, Pennsylvania
| | - Kristiina M Hormigo
- Department of Neurobiology and Anatomy, Spinal Cord Research Center, Drexel University College of Medicine , Philadelphia, Pennsylvania
| | - Margo L Randelman
- Department of Neurobiology and Anatomy, Spinal Cord Research Center, Drexel University College of Medicine , Philadelphia, Pennsylvania
| | - Tatiana Bezdudnaya
- Department of Neurobiology and Anatomy, Spinal Cord Research Center, Drexel University College of Medicine , Philadelphia, Pennsylvania
| | - Vitaliy Marchenko
- Department of Neurobiology and Anatomy, Spinal Cord Research Center, Drexel University College of Medicine , Philadelphia, Pennsylvania
| | - Michael A Lane
- Department of Neurobiology and Anatomy, Spinal Cord Research Center, Drexel University College of Medicine , Philadelphia, Pennsylvania
| |
Collapse
|
13
|
Abstract
Cell transplant-mediated tissue repair of the damaged spinal cord is being tested in several clinical trials. The current candidates are neural stem cells, stromal cells, and autologous Schwann cells (aSC). Due to their peripheral origin and limited penetration of astrocytic regions, aSC are transplanted intralesionally as compared to neural stem cells that are transplanted into intact spinal cord. Injections into either location can cause iatrogenic injury, and thus technical precision is important in the therapeutic risk-benefit equation. In this chapter, we discuss how we bridged from transplant studies in large animals to human application for two Phase 1 aSC transplant studies, one subacute and one chronic. Preclinical SC transplant studies conducted at the University of Miami in 2009-2012 in rodents, minipigs, and primates supported a successful Investigational New Drug (IND) submission for a Phase 1 trial in subacute complete spinal cord injury (SCI). Our studies optimized the safety and efficiency of intralesional cell delivery for subacute human SCI and led to the development of new simpler techniques for cell delivery into subjects with chronic SCI. Key parameters of delivery methodology include precision localization of the injury site, stereotaxic devices to control needle trajectory, method of entry into the spinal cord, spinal cord motion reduction, the volume and density of the cell suspension, rate of delivery, and control of shear stresses on cells.
Collapse
|
14
|
Cell Therapy as a New Approach to the Treatment of Posttraumatic Syringomyelia. World Neurosurg 2017; 107:1047.e5-1047.e8. [PMID: 28804041 DOI: 10.1016/j.wneu.2017.08.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Revised: 07/30/2017] [Accepted: 08/01/2017] [Indexed: 02/06/2023]
Abstract
BACKGROUND Cell transplantation with autologous bone marrow-derived mesenchymal stromal cells (MSCs) seems to be a therapeutic promise for patients with established spinal cord injury, achieving improvement in their quality of life, but there is no experience with the application of this type of cell therapy in patients suffering posttraumatic syringomyelia. OBJECTIVE To study the possible utility of cell therapy with autologous MSCs in posttraumatic syringomyelia. METHODS A 40-year-old man with complete paraplegia since 1991 as a consequence of a Th4 vertebral fracture showed a great posttraumatic syringomyelia that extended up to C2 vertebral level, without signs of recent worsening. Autologous MSCs (150 × 106) were injected into the syrinx, without drainage or aspiration. RESULTS One year after cell therapy, syrinx was reduced without collapse of cervical spinal cord. During the course of follow-up, clear clinical improvement was observed, mainly in sphincter dysfunction. CONCLUSIONS Injection of MSCs in the syrinx of posttraumatic syringomyelia is safe and is associated with clinical and neuroimaging improvement. The possibility of cell therapy as a new approach to posttraumatic syringomyelia, or even for idiopathic syringomyelia, is an open door that requires further study.
Collapse
|
15
|
Cell transplantation therapy for spinal cord injury. Nat Neurosci 2017; 20:637-647. [DOI: 10.1038/nn.4541] [Citation(s) in RCA: 435] [Impact Index Per Article: 54.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 02/22/2017] [Indexed: 02/07/2023]
|
16
|
Lane MA, Lepore AC, Fischer I. Improving the therapeutic efficacy of neural progenitor cell transplantation following spinal cord injury. Expert Rev Neurother 2016; 17:433-440. [PMID: 27927055 DOI: 10.1080/14737175.2017.1270206] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION There have been a wide range of preclinical studies testing cellular therapies to repair the injured spinal cord, yet they remain a challenge to translate because of inconsistencies in efficacy, limited number of patients with acute/subacute SCI and the high costs of clinical trials. Area covered: This paper focusses on the therapeutic potential of neural precursor cells (NPCs) because they can provide the cellular components capable of promoting repair and enhancing functional improvement following spinal cord injury (SCI). The authors discuss the challenges of NPC transplantation with respect to different populations of NPCs of glial and neuronal lineages, the timing of treatment relative to acute and chronic injury, and the progress in ongoing clinical trials. Expert commentary: Preclinical research will continue to elucidate mechanisms of recovery associated with NPC transplants, including increasing the partnership with related fields such as spinal atrophies and multiple sclerosis. The clinical trials landscape will grow and include both acute and chronic SCI with increased partnership and strengthened communication between biotechnology, government and academia. There will also be growing effort to develop better biomarkers, imaging and outcome measures for detailed assessment of neurological function and measures of quality of life.
Collapse
Affiliation(s)
- Michael A Lane
- a Department of Neurobiology & Anatomy, Spinal Cord Research Center , Drexel University , Philadelphia , PA , USA
| | - Angelo C Lepore
- b Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience , Sidney Kimmel Medical College at Thomas Jefferson University , Philadelphia , PA , USA
| | - Itzhak Fischer
- a Department of Neurobiology & Anatomy, Spinal Cord Research Center , Drexel University , Philadelphia , PA , USA
| |
Collapse
|
17
|
Neural Stem Cell Therapy and Rehabilitation in the Central Nervous System: Emerging Partnerships. Phys Ther 2016; 96:734-42. [PMID: 26847015 PMCID: PMC6281018 DOI: 10.2522/ptj.20150063] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 01/27/2016] [Indexed: 12/17/2022]
Abstract
The goal of regenerative medicine is to restore function through therapy at levels such as the gene, cell, tissue, or organ. For many disorders, however, regenerative medicine approaches in isolation may not be optimally effective. Rehabilitation is a promising adjunct therapy given the beneficial impact that physical activity and other training modalities can offer. Accordingly, "regenerative rehabilitation" is an emerging concentration of study, with the specific goal of improving positive functional outcomes by enhancing tissue restoration following injury. This article focuses on one emerging example of regenerative rehabilitation-namely, the integration of clinically based protocols with stem cell technologies following central nervous system injury. For the purposes of this review, the state of stem cell technologies for the central nervous system is summarized, and a rationale for a synergistic benefit of carefully orchestrated rehabilitation protocols in conjunction with cellular therapies is provided. An overview of practical steps to increase the involvement of physical therapy in regenerative rehabilitation research also is provided.
Collapse
|
18
|
Shields CB, Zhang YP, Shields LBE. Post-traumatic syringomyelia: CSF hydrodynamic changes following spinal cord injury are the driving force in the development of PTSM. HANDBOOK OF CLINICAL NEUROLOGY 2013; 109:355-67. [PMID: 23098724 DOI: 10.1016/b978-0-444-52137-8.00022-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
Post-traumatic syringomyelia (PTSM) is a disorder that occurs infrequently following spinal cord injury (SCI), characterized by progressive neurological deterioration resulting from syrinx expansion originating in proximity to the traumatic epicenter. Several pathogenetic factors are associated with this disorder, however, the precise mechanism of the development of PTSM is controversial. Combined anatomical alterations and molecular changes following trauma to the spinal cord and arachnoid participate in the development of this condition. These factors include narrowing or obstruction of the subarachnoid space (SAS), central canal occlusion, myelomalacia, and alterations in intramedullary water permeability. If a patient sustains a SCI with delayed progressive deterioration in neurological function, in association with the MRI appearance of syringomyelia (SM), the diagnosis of PTSM is straightforward. The treatment of PTSM has not undergone any significant changes recently. The surgical treatment of PTSM consists of reconstructing the SAS or shunting fluid away from the syrinx to other locations. The advantages and disadvantages of each procedure will be discussed. With greater understanding of the mechanisms contributing to the development of SM, including advanced diagnostic methods and further advances in the development of artificial dural and shunting tubing, future therapies of PTSM will be more effective and long-lasting. Incorporation of alterations of AQP4 expression provides an intriguing possibility for future treatment of PTSM.
Collapse
|
19
|
Choi D, Gladwin K. Olfactory ensheathing cells: Part II--source of cells and application to patients. World Neurosurg 2013; 83:251-6. [PMID: 23891878 DOI: 10.1016/j.wneu.2013.07.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Revised: 01/22/2013] [Accepted: 07/18/2013] [Indexed: 10/26/2022]
Abstract
OBJECTIVE To assess clinical methods of sourcing human olfactory ensheathing cells (OECs), and the results of present day clinical studies in OEC transplantation. METHODS Review of literature. RESULTS Present clinical studies of OEC transplantation have demonstrated the feasibility and safety of the technique, and no significant complications have occurred from harvest of the olfactory mucosa to culture OECs. These reported studies have not been designed to determine whether clinical outcome is improved by transplantation. CONCLUSIONS OEC transplantation strategies need to be studied further. At present clinical models for testing OECs vary in methodology and quality, and until high-quality, well-designed, and sufficiently powered studies have been performed, the true effect of OEC treatment for patients will remain unclear.
Collapse
Affiliation(s)
- David Choi
- Department of Brain, Repair and Rehabilitation, Institute of Neurology, University College London, Queen Square, London, United Kingdom; National Hospital for Neurology and Neurosurgery, Queen Square, London, United Kingdom.
| | - Karen Gladwin
- Department of Brain, Repair and Rehabilitation, Institute of Neurology, University College London, Queen Square, London, United Kingdom
| |
Collapse
|
20
|
van Gorp S, Leerink M, Kakinohana O, Platoshyn O, Santucci C, Galik J, Joosten EA, Hruska-Plochan M, Goldberg D, Marsala S, Johe K, Ciacci JD, Marsala M. Amelioration of motor/sensory dysfunction and spasticity in a rat model of acute lumbar spinal cord injury by human neural stem cell transplantation. Stem Cell Res Ther 2013; 4:57. [PMID: 23710605 PMCID: PMC3706882 DOI: 10.1186/scrt209] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 04/25/2013] [Indexed: 12/15/2022] Open
Abstract
Introduction Intraspinal grafting of human neural stem cells represents a promising approach to promote recovery of function after spinal trauma. Such a treatment may serve to: I) provide trophic support to improve survival of host neurons; II) improve the structural integrity of the spinal parenchyma by reducing syringomyelia and scarring in trauma-injured regions; and III) provide neuronal populations to potentially form relays with host axons, segmental interneurons, and/or α-motoneurons. Here we characterized the effect of intraspinal grafting of clinical grade human fetal spinal cord-derived neural stem cells (HSSC) on the recovery of neurological function in a rat model of acute lumbar (L3) compression injury. Methods Three-month-old female Sprague–Dawley rats received L3 spinal compression injury. Three days post-injury, animals were randomized and received intraspinal injections of either HSSC, media-only, or no injections. All animals were immunosuppressed with tacrolimus, mycophenolate mofetil, and methylprednisolone acetate from the day of cell grafting and survived for eight weeks. Motor and sensory dysfunction were periodically assessed using open field locomotion scoring, thermal/tactile pain/escape thresholds and myogenic motor evoked potentials. The presence of spasticity was measured by gastrocnemius muscle resistance and electromyography response during computer-controlled ankle rotation. At the end-point, gait (CatWalk), ladder climbing, and single frame analyses were also assessed. Syrinx size, spinal cord dimensions, and extent of scarring were measured by magnetic resonance imaging. Differentiation and integration of grafted cells in the host tissue were validated with immunofluorescence staining using human-specific antibodies. Results Intraspinal grafting of HSSC led to a progressive and significant improvement in lower extremity paw placement, amelioration of spasticity, and normalization in thermal and tactile pain/escape thresholds at eight weeks post-grafting. No significant differences were detected in other CatWalk parameters, motor evoked potentials, open field locomotor (Basso, Beattie, and Bresnahan locomotion score (BBB)) score or ladder climbing test. Magnetic resonance imaging volume reconstruction and immunofluorescence analysis of grafted cell survival showed near complete injury-cavity-filling by grafted cells and development of putative GABA-ergic synapses between grafted and host neurons. Conclusions Peri-acute intraspinal grafting of HSSC can represent an effective therapy which ameliorates motor and sensory deficits after traumatic spinal cord injury.
Collapse
|
21
|
Bonner JF, Haas CJ, Fischer I. Preparation of neural stem cells and progenitors: neuronal production and grafting applications. Methods Mol Biol 2013; 1078:65-88. [PMID: 23975822 DOI: 10.1007/978-1-62703-640-5_7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Neural stem cells (NSC) are not only a valuable tool for the study of neural development and function, but an integral component in the development of transplantation strategies for neural disease. NSC can be used to study how neurons acquire distinct phenotypes and how the reciprocal interactions between neurons and glia in the developing nervous system shape the structure and function of the central nervous system (CNS). In addition, neurons prepared from NSC can be used to elucidate the molecular basis of neurological disorders as well as potential treatments. Although NSC can be derived from different species and many sources, including embryonic stem cells, induced pluripotent stem cells, adult CNS, and direct reprogramming of non-neural cells, isolating primary NSC directly from rat fetal tissue is the most common technique for preparation and study of neurons with a wealth of data available for comparison. Regardless of the source material, similar techniques are used to maintain NSC in culture and to differentiate NSC toward mature neural lineages. This chapter will describe specific methods for isolating multipotent NSC and neural precursor cells (NPC) from embryonic rat CNS tissue (mostly spinal cord). In particular, NPC can be separated into neuronal and glial restricted precursors (NRP and GRP, respectively) and used to reliably produce neurons or glial cells both in vitro and following transplantation into the adult CNS. This chapter will describe in detail the methods required for the isolation, propagation, storage, and differentiation of NSC and NPC isolated from rat spinal cords for subsequent in vitro or in vivo studies.
Collapse
Affiliation(s)
- Joseph F Bonner
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, USA
| | | | | |
Collapse
|
22
|
Abstract
Transplants of cells and tissues to the central nervous system of adult mammals can, under appropriate conditions, survive, integrate, and function. In particular, the grafted cells can sustain functional recovery in animal models of a range of neurodegenerative conditions including genetic and idiopathic neurodegenerative diseases of adulthood and aging, ischemic stroke, and brain and spinal cord trauma. In a restricted subset of such conditions, cell transplantation has progressed to application in humans in early-stage clinical trials. At the present stage of play, there is clear evidence of clinical efficacy of fetal cell transplants in Parkinson disease (notwithstanding a range of technical difficulties still to be fully resolved), and preliminary claims of promising outcomes in several other severe neurodegenerative conditions, including Huntington disease and stroke. Moreover, the experimental literature is increasingly suggesting that the experience and training of the graft recipient materially affects the functional outcome. For example, environmental enrichment, behavioral activity, and specific training can enhance the recovery process to maximize functional recovery. There are even circumstances where the grafted cells have been demonstrated to restore the neural substrate for new learning. Consequently, it is not sufficient to replace lost cells anatomically; rather, for the grafts to be effective, they need to be integrated functionally into the host circuitry, and the host animal requires training and rehabilitation to maximize function of the reconstructed graft-host circuitry. Such observations require reconsideration of the design of the next generation of clinical trials and subsequent service delivery, to include physiotherapists, cognitive therapists, and rehabilitation experts as core members of the transplant team, along with the neurologists and neurosurgeons that have conventionally led the field.
Collapse
Affiliation(s)
- Stephen B Dunnett
- Department of Biosciences, The Brain Repair Group, Cardiff University, Cardiff, Wales, UK.
| |
Collapse
|
23
|
Roper SN, Steindler DA. Stem cells as a potential therapy for epilepsy. Exp Neurol 2012; 244:59-66. [PMID: 22265818 DOI: 10.1016/j.expneurol.2012.01.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Revised: 12/29/2011] [Accepted: 01/04/2012] [Indexed: 12/16/2022]
Abstract
Neural stem cells and neural progenitors (NSC/NPs) hold great promise in neuro-restorative therapy due to their remarkable capacity for self-renewal, plasticity, and ability to integrate into host brain circuitry. Some types of epilepsy would appear to be excellent targets for this type of therapy due to known alterations in local circuitry based on loss or malfunction of specific types of neurons in specific brain structures. Potential sources for NSC/NPs include the embryonic blastocyst, the fetal brain, and adult brain and non-neural tissues. Each of these cell types has potential strengths and weaknesses as candidates for clinical therapeutic agents. This article reviews some of the major types of NSC/NPs and how they have been studied with regard to synaptic integration into host brain circuits. It also reviews how these transplanted cells develop and interact with host brain cells in animal models of epilepsy. The field is still wide open with a number of very promising results but there are also some major challenges that will need to be addressed prior to considering clinical applications for epilepsy.
Collapse
Affiliation(s)
- Steven N Roper
- Department of Neurosurgery and the McKnight Brain Institute, University of Florida, USA.
| | | |
Collapse
|
24
|
Guest J, Benavides F, Padgett K, Mendez E, Tovar D. Technical aspects of spinal cord injections for cell transplantation. Clinical and translational considerations. Brain Res Bull 2011; 84:267-79. [DOI: 10.1016/j.brainresbull.2010.11.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2010] [Revised: 09/20/2010] [Accepted: 11/08/2010] [Indexed: 12/13/2022]
|
25
|
Abstract
INTRODUCTION A large number of different cells including embryonic and adult stem cells have been transplanted into animal models of spinal cord injury, and in many cases these procedures have resulted in modest sensorimotor benefits. In October 2010 the world's first clinical trial using human embryonic stem cells began, using stem cells converted into oligodendrocyte precursor cells. SOURCES OF DATA In this review we examine some of the publically available preclinical evidence that some of these cell types improve outcome in animal models of spinal cord injury. Much evidence is not available for public scrutiny, however, being private commercial property of various stem cell companies. AREAS OF AGREEMENT Transplantation of many different types of stem and progenitor cell enhances spontaneous recovery of function when transplanted acutely after spinal cord injury in animal models. AREAS OF DISAGREEMENT: The common mechanism(s) whereby the generic procedure of cellular transplantation enhances recovery of function are not well understood, although a range of possibilities are usually cited (including preservation of tissue, remyelination, axon sprouting, glial cell replacement). Only in exceptional cases has it been shown that functional recovery depends causally on the survival and differentiation of the transplanted cells. There is no agreement about the optimal cell type for transplantation: candidate stem cells have not yet been compared with each other or with other cell types (e.g. autologous Schwann cells) in a single study. AREAS TIMELY FOR DEVELOPING RESEARCH Transplantation of cells into animals with a long lifespan is important to determine whether or not tumours will eventually form. It will also be important to determine whether long-term survival of cells is required for functional recovery, and if so, how many are optimal.
Collapse
|
26
|
Hejčl A, Jendelová P, Syková E. Experimental reconstruction of the injured spinal cord. Adv Tech Stand Neurosurg 2011:65-95. [PMID: 21997741 DOI: 10.1007/978-3-7091-0673-0_3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Injury to the spinal cord, with its pathological sequelae, results in a permanent neurological deficit. With currently available tools at hand, there is very little that clinicians can do to treat such a condition with the view of helping patients with spinal cord injury (SCI). On the other hand, in the last 20 years experimental research has brought new insights into the pathophysiology of spinal cord injury; we can divide the time course into 3 phases: primary injury (the time of traumatic impact and the period immediately afterwards), the secondary phase (cell death, inflammation, ischemia), and the chronic phase (scarring, demyelination, cyst formation). Increased knowledge about the pathophysiology of SCI can stimulate the development of new therapeutic modalities and approaches, which may be feasible in the future in clinical practice. Some of the most promising experimental therapies include: neurotrophic factors, enzymes and antibodies against inhibitory molecules (such as Nogo), activated macrophages, stem cells and bridging scaffolds. Their common goal is to reconstitute the damaged tissue in order to recover the lost function. In the current review, we focus on some of the recent developments in experimental SCI research.
Collapse
Affiliation(s)
- A Hejčl
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | | | | |
Collapse
|
27
|
Smith GM, Onifer SM. Construction of pathways to promote axon growth within the adult central nervous system. Brain Res Bull 2010; 84:300-5. [PMID: 20554000 DOI: 10.1016/j.brainresbull.2010.05.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2010] [Revised: 05/25/2010] [Accepted: 05/31/2010] [Indexed: 12/12/2022]
Abstract
Inducing significant axon growth or regeneration after spinal cord injury has been difficult, primarily due to the poor growth supportive environment and low intrinsic growth ability of neurons within the CNS. Neurotrophins alone have been shown to readily induce regeneration of sensory axons after dorsal root lesions, however if neurotrophin gradients are expressed within the spinal cord these axons fail to terminate within appropriate target regions. Under such conditions, addition of a "stop" signal reduces growth into deeper dorsal laminae to support more specific targeting. Such neurotrophin gradients alone lose their effectiveness when lesions are within the spinal cord, requiring a combined treatment regime. Construction of pathways using combined treatments support good regeneration when they increase the intrinsic growth properties of neurons, provide a bridge across the lesion site, and supply a growth supportive substrate to induce axon growth out of the bridge and back into the host. Neurotrophin gradients distal to the bridge greatly enhance axon outgrowth. In disorders where neuronal circuits are lost, construction of preformed growth supportive pathways sustain long distance axon growth from a neuronal transplant to distal target locations.
Collapse
Affiliation(s)
- George M Smith
- Department of Physiology, Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, 40536, USA.
| | | |
Collapse
|
28
|
Richardson RM, Singh A, Sun D, Fillmore HL, Dietrich DW, Bullock MR. Stem cell biology in traumatic brain injury: effects of injury and strategies for repair. J Neurosurg 2010; 112:1125-38. [PMID: 19499984 DOI: 10.3171/2009.4.jns081087] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Approximately 350,000 individuals in the US are affected annually by severe and moderate traumatic brain injuries (TBI) that may result in long-term disability. This rate of injury has produced approximately 3.3 million disabled survivors in the US alone. There is currently no specific treatment available for TBI other than supportive care, but aggressive prehospital resuscitation, rapid triage, and intensive care have reduced mortality rates. With the recent demonstration that neurogenesis occurs in all mammals (including man) throughout adult life, albeit at a low rate, the concept of replacing neurons lost after TBI is now becoming a reality. Experimental rodent models have shown that neurogenesis is accelerated after TBI, especially in juveniles. Two approaches have been followed in these rodent models to test possible therapeutic approaches that could enhance neuronal replacement in humans after TBI. The first has been to define and quantify the phenomenon of de novo hippocampal and cortical neurogenesis after TBI and find ways to enhance this (for example by exogenous trophic factor administration). A second approach has been the transplantation of different types of neural progenitor cells after TBI. In this review the authors discuss some of the processes that follow after acute TBI including the changes in the brain microenvironment and the role of trophic factor dynamics with regard to the effects on endogenous neurogenesis and gliagenesis. The authors also discuss strategies to clinically harness the factors influencing these processes and repair strategies using exogenous neural progenitor cell transplantation. Each strategy is discussed with an emphasis on highlighting the progress and limiting factors relevant to the development of clinical trials of cellular replacement therapy for severe TBI in humans.
Collapse
Affiliation(s)
- R Mark Richardson
- Department of Neurological Surgery, University of California San Francisco, California, USA
| | | | | | | | | | | |
Collapse
|
29
|
The use of injectable forms of fibrin and fibronectin to support axonal ingrowth after spinal cord injury. Biomaterials 2010; 31:4447-56. [DOI: 10.1016/j.biomaterials.2010.02.018] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2009] [Accepted: 02/08/2010] [Indexed: 12/11/2022]
|
30
|
Tetzlaff W, Okon EB, Karimi-Abdolrezaee S, Hill CE, Sparling JS, Plemel JR, Plunet WT, Tsai EC, Baptiste D, Smithson LJ, Kawaja MD, Fehlings MG, Kwon BK. A systematic review of cellular transplantation therapies for spinal cord injury. J Neurotrauma 2010; 28:1611-82. [PMID: 20146557 DOI: 10.1089/neu.2009.1177] [Citation(s) in RCA: 404] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Cell transplantation therapies have become a major focus in pre-clinical research as a promising strategy for the treatment of spinal cord injury (SCI). In this article, we systematically review the available pre-clinical literature on the most commonly used cell types in order to assess the body of evidence that may support their translation to human SCI patients. These cell types include Schwann cells, olfactory ensheathing glial cells, embryonic and adult neural stem/progenitor cells, fate-restricted neural/glial precursor cells, and bone-marrow stromal cells. Studies were included for review only if they described the transplantation of the cell substrate into an in-vivo model of traumatic SCI, induced either bluntly or sharply. Using these inclusion criteria, 162 studies were identified and reviewed in detail, emphasizing their behavioral effects (although not limiting the scope of the discussion to behavioral effects alone). Significant differences between cells of the same "type" exist based on the species and age of donor, as well as culture conditions and mode of delivery. Many of these studies used cell transplantations in combination with other strategies. The systematic review makes it very apparent that cells derived from rodent sources have been the most extensively studied, while only 19 studies reported the transplantation of human cells, nine of which utilized bone-marrow stromal cells. Similarly, the vast majority of studies have been conducted in rodent models of injury, and few studies have investigated cell transplantation in larger mammals or primates. With respect to the timing of intervention, nearly all of the studies reviewed were conducted with transplantations occurring subacutely and acutely, while chronic treatments were rare and often failed to yield functional benefits.
Collapse
Affiliation(s)
- Wolfram Tetzlaff
- University of British Columbia, ICORD, Vancouver, British Columbia, Canada.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Ushewokunze SOS, Gan YC, Phillips K, Thacker K, Flint G. Surgical treatment of post-traumatic syringomyelia. Spinal Cord 2010; 48:710-3. [DOI: 10.1038/sc.2010.17] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
32
|
Xu XM, Onifer SM. Transplantation-mediated strategies to promote axonal regeneration following spinal cord injury. Respir Physiol Neurobiol 2009; 169:171-82. [PMID: 19665611 PMCID: PMC2800078 DOI: 10.1016/j.resp.2009.07.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Revised: 07/16/2009] [Accepted: 07/20/2009] [Indexed: 12/19/2022]
Abstract
Devastating central nervous system injuries and diseases continue to occur in spite of the tremendous efforts of various prevention programs. The enormity and annual escalation of healthcare costs due to them require that therapeutic strategies be responsibly developed. The dysfunctions that occur after injury and disease are primarily due to neurotransmission damage. The last two decades of both experimental and clinical research have demonstrated that neural and non-neural tissue and cell transplantation is a viable option for ameliorating dysfunctions to markedly improve quality of life. Moreover, significant progress has been made with tissue and cell transplantation in studies of pathophysiology, plasticity, sprouting, regeneration, and functional recovery. This article will review information about the ability and potential, particularly for traumatic spinal cord injury, that neural and non-neural tissue and cell transplantation has to replace lost neurons and glia, to reconstruct damaged neural circuitry, and to restore neurotransmitters, hormones, neurotrophic factors, and neurotransmission. Donor tissues and cells to be discussed include peripheral nerve, fetal spinal cord and brain, central and peripheral nervous systems' glia, stem cells, those that have been genetically engineered, and non-neural ones. Combinatorial approaches and clinical research are also reviewed.
Collapse
Affiliation(s)
- Xiao-Ming Xu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, United States.
| | | |
Collapse
|
33
|
Abstract
PURPOSE OF REVIEW Transplantation of cells is an urgent clinical need that is increasingly providing an alternative to solid-organ transplants. This review discusses the state-of-the-art in-vivo imaging of cell transplantation with a special focus on recent developments. RECENT FINDINGS Noninvasive imaging modalities, such as magnetic resonance imaging (MRI), nuclear (positron emission tomography and single-photon emission computed tomography), acoustical, and optical imaging can investigate the biodistribution, fate, and functional integration of grafted cells. Especially, multimodal imaging is emerging as an important development to provide complimentary and confirmatory information. SUMMARY The development of noninvasive imaging of transplanted cells has progressed rapidly over the last few years. Translating these techniques into clinical protocols remains the focus of ongoing investigations.
Collapse
|
34
|
Spinal cord injury: plasticity, regeneration and the challenge of translational drug development. Trends Neurosci 2008; 32:41-7. [PMID: 18977039 DOI: 10.1016/j.tins.2008.09.008] [Citation(s) in RCA: 169] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2008] [Revised: 09/12/2008] [Accepted: 09/15/2008] [Indexed: 12/19/2022]
Abstract
Over the past three decades, multiple mechanisms limiting central nervous system regeneration have been identified. Here, we address plasticity arising from spared systems as a particularly important and often unrecognized mechanism that potentially contributes to functional recovery in studies of 'regeneration' after spinal cord injury. We then discuss complexities involved in translating findings from animal models to human clinical trials in spinal cord injury; current strategies might be too limited in scope to yield detectable benefits in the complex and variable arena of human injury. Our animal models are imperfect, and the very variability that we attempt to control in the course of conducting rigorous research might, ironically, limit our ability to identify the most promising therapies in the human arena. Therapeutic candidates are most likely to have a detectable effect in human trials if they elicit benefits in severe contusion and larger animal models and pass the test of independent replication.
Collapse
|
35
|
Knafo S, Choi D. Clinical studies in spinal cord injury: moving towards successful trials. Br J Neurosurg 2008; 22:3-12. [PMID: 18224516 DOI: 10.1080/02688690701593595] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Spinal cord injury is a devastating condition for which there is still no cure. Many new therapies have emerged in the past few decades that have attempted to improve the outcome after injury, with varying levels of supporting experimental and clinical data. Most studies have been preliminary and have lacked control groups, but positive results can often be embraced by clinicians and patients who are faced without an alternative, despite the poor design and bias of many studies. This article is a review of clinical studies in spinal cord injury and discusses guidelines for future clinical trial design.
Collapse
Affiliation(s)
- S Knafo
- Institute of Neurology, University College London, London, UK
| | | |
Collapse
|
36
|
Louro J, Pearse DD. Stem and progenitor cell therapies: recent progress for spinal cord injury repair. Neurol Res 2008; 30:5-16. [PMID: 18387258 DOI: 10.1179/174313208x284070] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mechanical trauma to the spinal cord is often accompanied by irreversible tissue damage, limited endogenous repair and permanent loss of motor, sensory and autonomic function. The implantation of exogenous cells or the stimulation of endogenous cells, to repopulate and replace or to provide a conducive environment for repair, offers a promising therapeutic direction for overcoming the multitude of obstacles facing successful recovery from spinal cord injury. Although relatively new to the scene of cell based therapies for reparative medicine, stem cells and their progenitors have been labeled as the 'cell of the future' for revolutionizing the treatment of CNS injury and neurodegenerative disorders. The following review examines the different types of stem cells and their progenitors, their utility in experimental models of spinal cord injury and explores the outstanding issues that still need to be addressed before they move towards clinical implementation.
Collapse
Affiliation(s)
- J Louro
- The Miami Project to Cure Paralysis, University of Miami School of Medicine, Miami, FL 33136, USA
| | | |
Collapse
|
37
|
Immunological properties of human embryonic stem cell-derived oligodendrocyte progenitor cells. J Neuroimmunol 2007; 192:134-44. [DOI: 10.1016/j.jneuroim.2007.09.030] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2007] [Revised: 09/07/2007] [Accepted: 09/21/2007] [Indexed: 01/14/2023]
|
38
|
O’Toole JE, Eichholz KM, Fessler RG. Minimally Invasive Insertion of Syringosubarachnoid Shunt for Posttraumatic Syringomyelia: Technical Case Report. Oper Neurosurg (Hagerstown) 2007; 61:E331-2; discussion E332. [PMID: 18091225 DOI: 10.1227/01.neu.0000303990.03235.81] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Abstract
Objective:
Symptomatic posttraumatic syringomyelia affects up to 10% of patients with spinal cord injuries and manifests in a delayed manner as progressive sensorimotor changes below the level of the syrinx. Syrinx shunting, and in particular syringosubarachnoid shunting (SSAS), provides neurological improvement or stabilization in at least 50% of these patients. Given the debilitated condition of many of these patients, a minimally invasive approach to the insertion of these devices is desirable. We provide the first report of an SSAS inserted in a minimally invasive fashion through a tubular retractor.
Patients and Methods:
A 27-year-old woman presented 4 years after C6 to C7 fracture dislocation and incomplete spinal cord injury with increasing pain and spasticity below the midthoracic region. Magnetic resonance imaging scan revealed a midthoracic syrinx that had enlarged on serial imaging. SSAS was inserted using a minimally invasive technique via the X-Tube retractor (Medtronic Sofamor Danek, Memphis, TN). Through a 2.5-cm incision, hemilaminotomy was performed, and a midline durotomy and myelotomy were opened for SSAS insertion under microscopic visualization.
Results:
Intraoperative ultrasonography revealed successful syrinx decompression after SSAS insertion. The operative time was 150 minutes and estimated blood loss was less than 100 mL. The patient was mobilized on postoperative Day 1 and was discharged 38.5 hours after surgery with resolution of her preoperative symptoms. Postoperative magnetic resonance imaging scan revealed excellent decompression of the syrinx, and through 1 year of follow-up, the patient has had no recurrence of her syrinx-related symptoms.
Conclusion:
This is the first report of minimal-access insertion of an SSAS. The minimally invasive technique appears to be a safe and effective means of implanting an SSAS. This approach allows for diminished blood loss and early mobilization and transfer to rehabilitation units for these patients.
Collapse
Affiliation(s)
- John E. O’Toole
- Department of Neurosurgery, Rush University Medical Center, Chicago, Illinois
| | - Kurt M. Eichholz
- Department of Neurosurgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Richard G. Fessler
- Department of Neurosurgery, Northwestern Memorial Hospital, Chicago, Illinois
| |
Collapse
|
39
|
Zhang YP, Shields LBE, Zhang Y, Pei J, Xu XM, Hoskins R, Cai J, Qiu MS, Magnuson DSK, Burke DA, Shields CB. Use of magnetic stimulation to elicit motor evoked potentials, somatosensory evoked potentials, and H-reflexes in non-sedated rodents. J Neurosci Methods 2007; 165:9-17. [PMID: 17628688 DOI: 10.1016/j.jneumeth.2007.05.021] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2006] [Revised: 05/14/2007] [Accepted: 05/17/2007] [Indexed: 11/21/2022]
Abstract
Assessment of locomotor function of rodents may be supplemented using electrophysiological tests which monitor the integrity of ascending and descending tracts as well as the focal circuitry of the spinal cord in non-sedated rodents. Magnetically induced SSEPs (M-SSEPs) were elicited in rats by activating the hindpaw using magnetic stimulation (MS). M-SSEP response latencies were slightly longer than those elicited by electrical stimulation. M-SSEPs were eliminated following selective dorsal column lacerations of the spinal cord, indicating that they were transmitted via this tract. Magnetically induced motor evoked potentials (M-MEPs) were elicited in mice following transcranial MS and recorded from the gastrocnemius muscles. M-MEPs performed on myelin deficient mice demonstrated longer onset latencies and smaller amplitudes than in wild-type mice. Magnetically induced H-reflexes (MH-reflexes) which assess local circuitry in the lumbosacral area of the spinal cord were performed in rats. This response disappeared following an L3 contusion spinal cord injury, however, kainic acid (KA) injection at L3, known to selectively destroy interneurons, caused a shorter latency and an increase in the amplitude of the MH-reflex. M-SSEPs and MH-reflexes in rats and M-MEPs in mice compliment locomotor evaluation in assessing the functional integrity of the spinal cord under normal and pathological conditions in the non-sedated animal.
Collapse
Affiliation(s)
- Yi Ping Zhang
- Kentucky Spinal Cord Injury Research Center, 511 South Floyd Street, Louisville, KY 40202, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Pfeifer K, Vroemen M, Caioni M, Aigner L, Bogdahn U, Weidner N. Autologous adult rodent neural progenitor cell transplantation represents a feasible strategy to promote structural repair in the chronically injured spinal cord. Regen Med 2007; 1:255-66. [PMID: 17465808 DOI: 10.2217/17460751.1.2.255] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Adult neural progenitor cells (NPCs) represent an attractive source for cell-based regenerative strategies in CNS disease. In animal models of spinal cord injury, syngenic adult NPCs, which were isolated from pooled post-mortem CNS tissue and co-transplanted together with fibroblasts, have been shown to promote substantial structural repair. The autologous transplantation of adult NPCs represents a major advantage compared with other sources of neural stem/progenitor cells. However, the feasibility of autologous NPC generation from a single biopsy in a relevant preclinical CNS disease model has yet to be demonstrated. To investigate this matter, adult Wistar rats underwent a cervical spinal cord lesion, which was followed by a minimal subventricular zone aspiration biopsy 2 days later. NPCs were isolated and propagated separately for each animal for the following 8 weeks. Thereafter, they were co-transplanted with simultaneously harvested skin fibroblasts in an autologous fashion into the cervical spinal cord lesion site. A total of 4 weeks later, graft survival, tissue replacement and axonal regeneration were assessed histologically. Animals receiving either allogenic NPCs combined with fibroblasts or autologous pure fibroblast grafts served as control groups. Within 8 weeks after the biopsy more than 3 million NPCs could be generated from a single aspiration biopsy, which displayed a differentiation pattern indistinguishable from syngenic NPC grafts. NPCs within autologous co-grafts readily survived, replaced cystic lesion defects completely and differentiated exclusively into glial phenotypes, thus paralleling previous findings with syngenic NPCs. The delayed transplantation 8 weeks after the spinal cord lesion elicited substantial axonal regeneration. These findings demonstrate that the therapeutic strategy to induce structural repair by transplanting adult autologous NPCs, after the successful propagation from a small brain biopsy into an acute CNS disease model, such as spinal cord injury, is feasible at the preclinical level.
Collapse
Affiliation(s)
- Katharina Pfeifer
- University of Regensburg, Department of Neurology, Regensburg, Germany
| | | | | | | | | | | |
Collapse
|
41
|
Lim PAC, Tow AM. Recovery and Regeneration after Spinal Cord Injury: A Review and Summary of Recent Literature. ANNALS OF THE ACADEMY OF MEDICINE, SINGAPORE 2007. [DOI: 10.47102/annals-acadmedsg.v36n1p49] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Introduction: Spinal cord injury (SCI) often results in significant neurologic dysfunction and disability. An annual incidence of 15 to 40 traumatic SCI cases per million population has been reported worldwide, and a conservative estimate for Singapore would be 23 cases per million. With continued improvements in medical care, an increasing prevalence of SCI patients is expected, with corresponding need for comprehensive rehabilitation services led by specialist rehabilitation physicians.
Methods: A literature search, review, and summary of findings of recent studies relating to factors associated with recovery, as well as interventions for rehabilitation and promotion of healing of the injured spinal cord was performed.
Conclusions: Many SCI patients show improvements in motoric and neurologic level, but those with complete injuries have poor chance of improving American Spinal Injury Association (ASIA) scores. SCI of violent aetiology tends to be more neurologic complete, and those without sacral sparing less likely to improve. Older patients generally do well in activities of daily living. Women have better motor score improvement, although men have better Functional Independence Measure (FIM) scores generally. Electrodiagnostic tests such as somatosensory evoked potentials (SSEPs) and motor evoked potentials (MEPs) can help with prognostication, as can imaging techniques such as magnetic resonance imaging (MRI). Immediate surgery for spinal decompression may improve recovery, but whether routine surgery after SCI improves function remains unclear, as does the timing. Methylprednisolone and similar agents appear to help limit secondary injury processes. Rehabilitation interventions such as functional electrical stimulation (FES) and body-weight supported treadmill ambulation training may be effective, as may neural-controlled prostheses and devices. Substances that promote repair and regeneration of the injured spinal cord such as GM-1, 4-AP, BDNG, GDNF, Nogo and MAG-inhibitors, have been studied. Transplanted tissues and cells, such as blood macrophages, bone marrow transplant with GM-CSF, olfactory ensheathing cells, fetal tissues, stem or progenitor cells, have been reported to produce neurological improvements.
Key words: Prognosis, Regeneration, Rehabilitation, Spinal cord injuries
Collapse
|
42
|
Abstract
The history of spinal cord injuries starts with the ancient Egyptian medical papyrus known as the Edwin Smith Surgical Papyrus. The papyrus written about 2500 B.C.by the physician and architect of the Sakkara pyramids Imhotep, describes "crushed vertebra in his neck" as well as symptoms of neurological deterioration. An ailment not to be treated was the massage to the patients at that time. This fatalistic attitude remained until the end of World War II when the first rehabilitation centre focused on the rehabilitation of spinal cord injured patients was opened. Our knowledge of the pathophysiological processes, both the primary as well as the secondary, has increased tremendously. However, all this knowledge has only led to improved medical care but not to any therapeutic method to restore, even partially, the neurological function. Neuroprotection is defined as measures to counteract secondary injury mechanisms and/or limit the extent of damage caused by self-destructive cellular and tissue processes. The co-existence of several distinctly different injury mechanisms after trauma has provided opportunities to explore a large number of potentially neuroprotective agents in animal experiments such as methylprednisolone sodium succinate. The results of this research have been very discouraging and pharmacological neuroprotection for patients with spinal cord injury has fallen short of the expectations created by the extensive research and promising observations in animal experiments. The focus of research has now, instead, been transformed to the field of neural regeneration. This field includes the discovery of regenerating obstacles in the nerve cell and/or environmental factors but also various regeneration strategies such as bridging the gap at the site of injury as well as transplantation of foetal tissue and stem cells. The purpose of this review is to highlight selected experimental and clinical studies that form the basis for undertaking future challenges in the research field of spinal cord injury. We will focus our discussion on methods either preventing the consequences of secondary injury in the acute period (neuroprotection) and/or various techniques of neural regeneration in the sub-acute and chronic phase and finally expose some thoughts about future avenues within this scientific field.
Collapse
Affiliation(s)
- Leif Anderberg
- Department of clinical science, Neurosurgery, Lund University, Lund, Sweden
| | | | | |
Collapse
|
43
|
Lammertse D, Dungan D, Dreisbach J, Falci S, Flanders A, Marino R, Schwartz E. Neuroimaging in traumatic spinal cord injury: an evidence-based review for clinical practice and research. J Spinal Cord Med 2007; 30:205-14. [PMID: 17684886 PMCID: PMC2031961 DOI: 10.1080/10790268.2007.11753928] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2007] [Accepted: 02/28/2007] [Indexed: 10/21/2022] Open
Abstract
OBJECTIVE To perform an evidence-based review of the literature on neuroimaging techniques utilized in spinal cord injury clinical practice and research. METHODS A search of the medical literature for articles on specific neuroimaging techniques used in SCI resulted in 2,302 published reports. Review at the abstract and full report level yielded 99 clinical and preclinical articles that were evaluated in detail. Sixty nine were clinical research studies subjected to quality of evidence grading. Twenty-three articles were drawn from the pre-clinical animal model literature and used for supportive evidence. Seven review articles were included to add an element of previous syntheses of current thinking on neuroimaging topics to the committee process (the review articles were not graded for quality of evidence). A list of clinical and research questions that might be answered on a variety of neuroimaging topics was created for use in article review. Recommendations on the use of neuroimaging in spinal cord injury treatment and research were made based on the quality of evidence. RESULTS Of the 69 original clinical research articles covering a range of neuroimaging questions, only one was judged to provide Class I evidence, 22 provided Class II evidence, 17 Class III evidence, and 29 Class IV evidence. RECOMMENDATIONS MRI should be used as the imaging modality of choice for evaluation of the spinal cord after injury. CT and plain radiography should be used to assess the bony anatomy of the spine in patients with SCI. MRI may be used to identify the location of spinal cord injury. MRI may be used to demonstrate the degree of spinal cord compression after SCI. MRI findings of parenchymal hemorrhage/ contusion, edema, and spinal cord disruption in acute and subacute SCI may contribute to the understanding of severity of injury and prognosis for neurological improvement. MRI-Diffusion Weighted Imaging may be useful in quantifying the extent of axonal loss after spinal cord injury. Functional MRI may be useful in measuring the anatomic functional/metabolic correlates of sensory-motor activities in persons with SCI. MR Spectroscopy may be used to measure the biochemical characteristics of the brain and spinal cord following SCI. Intraoperative Spinal Sonography may be used to identify spinal and spinal cord anatomy and gross pathology during surgical procedures. Further research in these areas is warranted to improve the strength of evidence supporting the use of neuroimaging modalities. Positron Emission Tomography may be used to assess metabolic activity of CNS tissue (brain and spinal cord) in patients with SCI.
Collapse
Affiliation(s)
- Daniel Lammertse
- Department of Physical Medicine and Rehabilitation, Univeristy of Colorado Denver Health Science Center, Denver Cororado, USA.
| | | | | | | | | | | | | |
Collapse
|
44
|
Onifer SM, Rabchevsky AG, Scheff SW. Rat Models of Traumatic Spinal Cord Injury to Assess Motor Recovery. ILAR J 2007; 48:385-95. [PMID: 17712224 DOI: 10.1093/ilar.48.4.385] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Devastating motor, sensory, and autonomic dysfunctions render long-term personal hardships to the survivors of traumatic spinal cord injury (SCI). The suffering also extends to the survivors' families and friends, who endure emotional, physical, and financial burdens in providing for necessary surgeries, care, and rehabilitation. After the primary mechanical SCI, there is a complex secondary injury cascade that leads to the progressive death of otherwise potentially viable axons and cells and that impairs endogenous recovery processes. Investigations of possible cures and of ways to alleviate the hardships of traumatic SCI include those of interventions that attenuate or overcome the secondary injury cascade, enhance the endogenous repair mechanisms, regenerate axons, replace lost cells, and rehabilitate. These investigations have led to the creation of laboratory animal models of the different types of traumatic human SCI and components of the secondary injury cascade. However, no particular model completely addresses all aspects of traumatic SCI. In this article, we describe adult rat SCI models and the motor, and in some cases sensory and autonomic, deficits that each produces. Importantly, as researchers in this area move toward clinical trials to alleviate the hardships of traumatic SCI, there is a need for standardized small and large animal SCI models as well as quantitative behavioral and electrophysiological assessments of their outcomes so that investigators testing various interventions can directly compare their results and correlate them with the molecular, biochemical, and histological alterations.
Collapse
Affiliation(s)
- Stephen M Onifer
- Spinal Cord and Brain Injury Research Center, Biomedical and Biological Sciences Research Building, University of Kentucky, 741 South Limestone Street, Lexington, KY 40536-0509, USA.
| | | | | |
Collapse
|
45
|
Abstract
Abstract
OBJECTIVE
To provide a comprehensive review of the treatment trials in the field of spinal cord injury, emphasizing what has been learned about the effectiveness of the agents and strategies tested and the quality of the methodology. The review aims to provide useful information for the improvement of future trials. The review audience includes practitioners, researchers, and consumers.
METHODS
All publications describing organized trials since the 1960s were analyzed in detail, emphasizing randomized, prospective controlled trials and published Phase I and II trials. Trials were categorized into neuroprotection, surgery, regeneration, and rehabilitation trials. Special attention was paid to design, outcome measures, and case selection.
RESULTS
There are 10 randomized prospective control trials in the acute phase that have provided much useful information. Current neurological grading systems are greatly improved, but still have significant shortcomings, and independent, trained, and blinded examiners are mandatory. Other trial designs should be considered, especially those using adaptive randomization. Only methylprednisolone and thyrotropin-releasing hormone have been shown to be effective, but the results of the former are controversial, and studies involving the latter involved too few patients. None of the surgical trials has proven effectiveness. Currently, a multitude of cell-based Phase I trials in several countries are attracting large numbers of patients, but such treatments are unproven in effectiveness and may cause harm. Only a small number are being conducted in a randomized or blinded format. Several consortia have committed to a promise to improve the conduct of trials.
CONCLUSION
A large number of trials in the field of spinal cord injury have been conducted, but with few proven gains for patients. This review reveals several shortcomings in trial design and makes several recommendations for improvement.
Collapse
Affiliation(s)
- Charles H Tator
- Division of Neurosurgery, Toronto Western Hospital, 399 Bathurst Street, Suite 4W-433, Toronto, ON M5T 2S8, Canada.
| |
Collapse
|
46
|
Di Giovanni S. Regeneration following spinal cord injury, from experimental models to humans: where are we? Expert Opin Ther Targets 2006; 10:363-76. [PMID: 16706677 DOI: 10.1517/14728222.10.3.363] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Regeneration in the adult CNS following injury is extremely limited. Traumatic spinal cord injury causes a permanent neurological deficit followed by a very limited recovery due to failed regeneration attempts. In fact, it is now clear that the spinal cord intrinsically has the potential to regenerate, but cellular loss and the presence of an inhibitory environment strongly limit tissue regeneration and functional recovery. The molecular mechanisms responsible for failed regeneration are starting to be unveiled. This gain in knowledge led to the design of therapeutic strategies aimed to limit the tissue scar, to enhance the proregeneration versus the inhibitory environment, and to replace tissue loss, including the use of stem cells. They have been very successful in several animal models, although results are still controversial in humans. Nonetheless, novel experimental approaches hold great promise for use in humans.
Collapse
Affiliation(s)
- Simone Di Giovanni
- Laboratory for NeuroRegeneration and Repair, University of Tuebingen, Hertie-Institute for Clinical Brain Research, D-72076 Tuebingen, Germany.
| |
Collapse
|
47
|
Abstract
The implantation of exogenous cells or tissues has been a popular and successful strategy to overcome physical discontinuity and support axon growth in experimental models of spinal cord injury (SCI). Cellular therapies exhibit a multifarious potential for SCI restoration, providing not only a supportive substrate upon which axons can traverse the injury site, but also reducing progressive tissue damage and scarring, facilitating remyelination repair, and acting as a source for replacing and re-establishing lost neural tissue and its circuitry. The past two decades of research into cell therapies for SCI repair have seen the progressive evolution from whole tissue strategies, such as peripheral nerve grafts, to the use of specific, purified cell types from a diverse range of sources and, recently, to the employment of stem or neural precursor cell populations that have the potential to form a full complement of neural cell types. Although the progression of cell therapies from laboratory to clinical implementation has been slow, human SCI safety and efficacy trials involving several cell types within the US appear to be close at hand.
Collapse
Affiliation(s)
- Damien D Pearse
- University of Miami Miller School of Medicine, The Miami Project to Cure Paralysis, Department of Neurological Surgery, Lois Pope Life Center, 1095 NW 14th Terrace (R-48), Miami, FL 33136, USA.
| | | |
Collapse
|
48
|
Pearse DD, Bunge MB. Designing cell- and gene-based regeneration strategies to repair the injured spinal cord. J Neurotrauma 2006; 23:438-52. [PMID: 16629628 DOI: 10.1089/neu.2006.23.437] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
There is an array of new and promising strategies being developed to improve function after spinal cord injury (SCI). The targeting of a diversity of deleterious processes within the tissue after SCI will necessitate a multi-factorial intervention, such as the combination of cell- and gene-based approaches. To ensure proper development and design of these experiments, many issues need to be addressed. It is the purpose of this review to consider the strategies involved in testing the efficacy of these new combinations to improve axonal regeneration. For cell-based therapy, issues are choosing a SCI model, the time of cell implantation, placement of cells and their subsequent migration, fluid versus solid grafts, use of agents to prevent immune rejection, and tracking of implanted cells. Grafting is also discussed in view of improving function, reducing secondary damage, bridging the injured spinal cord, supporting axonal regrowth, replacing lost neurons, facilitating myelination, and promoting axonal growth from the implant into the cord. The choice of a gene delivery system, gene-based therapies in vivo to provide chemoattractant and guidance cues, altering the intrinsic regenerative capacity of neurons, enhancing endogenous non-neuronal cell functions, and targeting the synthesis of growth inhibitory molecules are also discussed, as well as combining ex vivo gene and cell therapies.
Collapse
Affiliation(s)
- D D Pearse
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Leonard M. Miller School of Medicine, Miami, Florida 33101, USA.
| | | |
Collapse
|
49
|
Abstract
Progress in promoting axonal plasticity and regeneration in animal models of spinal cord injury (SCI) has led to novel prospects for the initiation of human clinical trials in the near future. This review discusses a number of considerations in the path to translating a preclinical candidate from the laboratory to clinical testing. We will also briefly discuss issues associated with the design, performance, analysis, and reporting of human clinical trials in SCI. It is important, for both the medical community and the spinal cord injured community, that objective scientific and medical standards are adopted in the clinical translation of potentially promising, but as yet unproven, therapies for SCI.
Collapse
|
50
|
Guest J, Herrera LP, Qian T. Rapid recovery of segmental neurological function in a tetraplegic patient following transplantation of fetal olfactory bulb-derived cells. Spinal Cord 2006; 44:135-42. [PMID: 16151453 DOI: 10.1038/sj.sc.3101820] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
STUDY DESIGN Case report. OBJECTIVE Report rapid neurological changes in a complete tetraplegic following a cell injection procedure. SETTING Beijing, China. METHODS ASIA/IMSOP neurological scale. Immunostaining of cell cultures. Cellular transplantation to effect functional restoration following spinal cord injury (SCI) has been hypothesized to cause improvements through axonal regeneration, increased plasticity, or axonal remyelination. Several human trials are in preliminary phases. We report a rapid improvement in motor and sensory functions in the segment adjacent to the level of complete SCI within days following cellular transplantation of cultured fetal olfactory bulb-derived cells. The patient was an 18-year-old C3 ASIA A complete tetraplegic 18 months post-injury who had been neurologically stable for more than 6 months. RESULTS Within 48 h of cell transplantation, the patient improved one ASIA motor grade in the left elbow flexors and began to show right wrist extensor function. Descent of the sensory level occurred within 4 days and then the rate of change slowed. He is now a C5 motor and C4 sensory complete tetraplegic. Cellular cultures prepared in the same facility showed viable human cells that labeled for nestin and GFAP. CONCLUSION We hypothesize that improved transmission in intact fibers subserving the zone of partial preservation accounts for these early improvements. We emphasize the need for further independent analysis of the outcomes of this and other preliminary cell transplant studies.
Collapse
Affiliation(s)
- J Guest
- The Department of Neurological Surgery, University of Miami, Lois Pope LIFE Center, Miami, FL 33136, USA
| | | | | |
Collapse
|