1
|
Brennig S, Lachmann N, Buchegger T, Hetzel M, Schambach A, Moritz T. Chemoprotection of murine hematopoietic cells by combined gene transfer of cytidine deaminase (CDD) and multidrug resistance 1 gene (MDR1). JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2015; 34:148. [PMID: 26651614 PMCID: PMC4676838 DOI: 10.1186/s13046-015-0260-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 11/16/2015] [Indexed: 01/23/2023]
Abstract
Background Hematologic toxicity represents a major side effect of cytotoxic chemotherapy frequently preventing adequately dosed chemotherapy application and impeding therapeutic success. Transgenic (over)expression of chemotherapy resistance (CTX-R) genes in hematopoietic stem- and progenitor cells represents a potential strategy to overcome this problem. To apply this concept in the context of acute myeloid leukemia and myelodysplasia, we have investigated the overexpression of the multidrug resistance 1 (MDR1) and the cytidine deaminase (CDD) gene conferring resistance to anthracyclines and cytarabine (Ara-C), the two most important drugs in the treatment of these diseases. Methods State-of-the-art, third generation, self-inactivating (SIN) lentiviral vectors were utilized to overexpress a human CDD-cDNA and a codon-optimized human MDR1-cDNA corrected for cryptic splice sites from a spleen focus forming virus derived internal promoter. Studies were performed in myeloid 32D cells as well as primary lineage marker negative (lin−) murine bone marrow cells and flow cytometric analysis of suspension cultures and clonogenic analysis of vector transduced cells following cytotoxic drug challenge were utilized as read outs. Results Efficient chemoprotection of CDD and MDR1 transduced hematopoietic 32D as well as primary lin− cells was proven in the context of Ara-C and anthracycline application. Both, CTX-R transduced 32D as well as primary hematopoietic cells displayed marked resistance at concentrations 5–20 times the LD50 of non-transduced control cells. Moreover, simultaneous CDD/MDR1 gene transfer resulted in similar protection levels even when combined Ara-C anthracycline treatment was applied. Furthermore, significant enrichment of transduced cells was observed upon cytotoxic drug administration. Conclusions Our data demonstrate efficient chemoprotection as well as enrichment of transduced cells in hematopoietic cell lines as well as primary murine hematopoietic progenitor cells following Ara-C and/or anthracycline application, arguing for the efficacy as well as feasibility of our approach and warranting further evaluation of this concept. Electronic supplementary material The online version of this article (doi:10.1186/s13046-015-0260-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sebastian Brennig
- Reprogramming and Gene Therapy Group, REBIRTH Cluster-of Excellence, Hannover Medical School, Carl-Neuberg-Str.1, Hannover, D-30625, Germany.,Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Nico Lachmann
- Reprogramming and Gene Therapy Group, REBIRTH Cluster-of Excellence, Hannover Medical School, Carl-Neuberg-Str.1, Hannover, D-30625, Germany.,Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.,JRG Translational Hematology of Congenital Diseases, REBIRTH Cluster-of Excellence, Hannover Medical School, Hannover, Germany
| | - Theresa Buchegger
- Reprogramming and Gene Therapy Group, REBIRTH Cluster-of Excellence, Hannover Medical School, Carl-Neuberg-Str.1, Hannover, D-30625, Germany.,Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Miriam Hetzel
- Reprogramming and Gene Therapy Group, REBIRTH Cluster-of Excellence, Hannover Medical School, Carl-Neuberg-Str.1, Hannover, D-30625, Germany.,Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.,Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, USA
| | - Thomas Moritz
- Reprogramming and Gene Therapy Group, REBIRTH Cluster-of Excellence, Hannover Medical School, Carl-Neuberg-Str.1, Hannover, D-30625, Germany. .,Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
2
|
Mathias TJ, Natarajan K, Shukla S, Doshi KA, Singh ZN, Ambudkar SV, Baer MR. The FLT3 and PDGFR inhibitor crenolanib is a substrate of the multidrug resistance protein ABCB1 but does not inhibit transport function at pharmacologically relevant concentrations. Invest New Drugs 2015; 33:300-9. [PMID: 25597754 DOI: 10.1007/s10637-015-0205-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 01/05/2015] [Indexed: 11/24/2022]
Abstract
Background Crenolanib (crenolanib besylate, 4-piperidinamine, 1-[2-[5-[(3-methyl-3-oxetanyl)methoxy]-1H-benzimidazol-1-yl]-8-quinolinyl]-, monobenzenesulfonate) is a potent and specific type I inhibitor of fms-like tyrosine kinase 3 (FLT3) that targets the active kinase conformation and is effective against FLT3 with internal tandem duplication (ITD) with point mutations induced by, and conferring resistance to, type II FLT3 inhibitors in acute myeloid leukemia (AML) cells. Crenolanib is also an inhibitor of platelet-derived growth factor receptor alpha and beta and is in clinical trials in both gastrointestinal stromal tumors and gliomas. Methods We tested crenolanib interactions with the multidrug resistance-associated ATP-binding cassette proteins ABCB1 (P-glycoprotein), ABCG2 (breast cancer resistance protein) and ABCC1 (multidrug resistance-associated protein 1), which are expressed on AML cells and other cancer cells and are important components of the blood-brain barrier. Results We found that crenolanib is a substrate of ABCB1, as evidenced by approximate five-fold resistance of ABCB1-overexpressing cells to crenolanib, reversal of this resistance by the ABCB1-specific inhibitor PSC-833 and stimulation of ABCB1 ATPase activity by crenolanib. In contrast, crenolanib was not a substrate of ABCG2 or ABCC1. Additionally, it did not inhibit substrate transport by ABCB1, ABCG2 or ABCC1, at pharmacologically relevant concentrations. Finally, incubation of the FLT3-ITD AML cell lines MV4-11 and MOLM-14 with crenolanib at a pharmacologically relevant concentration of 500 nM did not induce upregulation of ABCB1 cell surface expression. Conclusions Thus ABCB1 expression confers resistance to crenolanib and likely limits crenolanib penetration of the central nervous system, but crenolanib at therapeutic concentrations should not alter cellular exposure to ABC protein substrate chemotherapy drugs.
Collapse
Affiliation(s)
- Trevor J Mathias
- University of Maryland Greenebaum Cancer Center, 22 South Greene Street, Baltimore, MD, 21201, USA
| | | | | | | | | | | | | |
Collapse
|
3
|
Bhullar J, Natarajan K, Shukla S, Mathias TJ, Sadowska M, Ambudkar SV, Baer MR. The FLT3 inhibitor quizartinib inhibits ABCG2 at pharmacologically relevant concentrations, with implications for both chemosensitization and adverse drug interactions. PLoS One 2013; 8:e71266. [PMID: 23967177 PMCID: PMC3743865 DOI: 10.1371/journal.pone.0071266] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 06/27/2013] [Indexed: 11/19/2022] Open
Abstract
The oral second-generation bis-aryl urea fms-like tyrosine kinase 3 (FLT3) inhibitor quizartinib (AC220) has favorable kinase selectivity and pharmacokinetics. It inhibits mutant and wild-type FLT3 in vivo at 0.1 and 0.5 µM, respectively, and has shown favorable activity and tolerability in phase I and II trials in acute myeloid leukemia, with QT prolongation as the dose-limiting toxicity. Co-administration with chemotherapy is planned. We characterized interactions of quizartinib with the ATP-binding cassette (ABC) proteins ABCB1 (P-glycoprotein) and ABCG2 (breast cancer resistance protein). Its effects on uptake of fluorescent substrates and apoptosis were measured by flow cytometry, binding to ABCB1 and ABCG2 drug-binding sites by effects on [¹²⁵I]iodoarylazidoprazosin ([¹²⁵I]-IAAP) photolabeling and ATPase activity, and cell viability by the WST-1 colorimetric assay. Quizartinib inhibited transport of fluorescent ABCG2 and ABCB1 substrates in ABCG2- and ABCB1-overexpressing cells in a concentration-dependent manner, from 0.1 to 5 µM and from 0.5 to 10 µM, respectively, and inhibited [¹²⁵I]-IAAP photolabeling of ABCG2 and ABCB1 with IC₅₀ values of 0.07 and 3.3 µM, respectively. Quizartinib at higher concentrations decreased ABCG2, but not ABCB1, ATPase activity. Co-incubation with quizartinib at 0.1 to 1 µM sensitized ABCG2-overexpressing K562/ABCG2 and 8226/MR20 cells to ABCG2 substrate chemotherapy drugs in a concentration-dependent manner in cell viability and apoptosis assays. Additionally, quizartinib increased cellular uptake of the ABCG2 substrate fluoroquinolone antibiotic ciprofloxacin, which also prolongs the QT interval, in a concentration-dependent manner, predicting altered ciprofloxacin pharmacokinetics and pharmacodynamics when co-administered with quizartinib. Thus quizartinib inhibits ABCG2 at pharmacologically relevant concentrations, with implications for both chemosensitization and adverse drug interactions. These interactions should be considered in the design of treatment regimens combining quizartinib and chemotherapy drugs and in choice of concomitant medications to be administered with quizartinib.
Collapse
Affiliation(s)
- Jasjeet Bhullar
- Greenebaum Cancer Center, University of Maryland, Baltimore, Maryland, United States of America
| | - Karthika Natarajan
- Greenebaum Cancer Center, University of Maryland, Baltimore, Maryland, United States of America
| | - Suneet Shukla
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Trevor J. Mathias
- Greenebaum Cancer Center, University of Maryland, Baltimore, Maryland, United States of America
| | - Mariola Sadowska
- Greenebaum Cancer Center, University of Maryland, Baltimore, Maryland, United States of America
| | - Suresh V. Ambudkar
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Maria R. Baer
- Greenebaum Cancer Center, University of Maryland, Baltimore, Maryland, United States of America
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
4
|
Natarajan K, Bhullar J, Shukla S, Burcu M, Chen ZS, Ambudkar SV, Baer MR. The Pim kinase inhibitor SGI-1776 decreases cell surface expression of P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2) and drug transport by Pim-1-dependent and -independent mechanisms. Biochem Pharmacol 2013; 85:514-24. [PMID: 23261525 PMCID: PMC3821043 DOI: 10.1016/j.bcp.2012.12.006] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 12/07/2012] [Accepted: 12/11/2012] [Indexed: 11/15/2022]
Abstract
Overexpression of the ATP-binding cassette (ABC) drug efflux proteins P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2) on malignant cells is associated with inferior chemotherapy outcomes. Both, ABCB1 and ABCG2, are substrates of the serine/threonine kinase Pim-1; Pim-1 knockdown decreases their cell surface expression, but SGI-1776, the first clinically tested Pim inhibitor, was shown to reverse drug resistance by directly inhibiting ABCB1-mediated transport. We sought to characterize Pim-1-dependent and -independent effects of SGI-1776 on drug resistance. SGI-1776 at the Pim-1-inhibitory and non-cytotoxic concentration of 1 μM decreased the IC(50)s of the ABCG2 and ABCB1 substrate drugs in cytotoxicity assays in resistant cells, with no effect on the IC(50) of non-substrate drug, nor in parental cells. SGI-1776 also increased apoptosis of cells overexpressing ABCG2 or ABCB1 exposed to substrate chemotherapy drugs and decreased their colony formation in the presence of substrate, but not non-substrate, drugs, with no effect on parental cells. SGI-1776 decreased ABCB1 and ABCG2 surface expression on K562/ABCB1 and K562/ABCG2 cells, respectively, with Pim-1 overexpression, but not HL60/VCR and 8226/MR20 cells, with lower-level Pim-1 expression. Finally, SGI-1776 inhibited uptake of ABCG2 and ABCB1 substrates in a concentration-dependent manner irrespective of Pim-1 expression, inhibited ABCB1 and ABCG2 photoaffinity labeling with the transport substrate [(125)I]iodoarylazidoprazosin ([(125)I]IAAP) and stimulated ABCB1 and ABCG2 ATPase activity. Thus SGI-1776 decreases cell surface expression of ABCB1 and ABCG2 and inhibits drug transport by Pim-1-dependent and -independent mechanisms, respectively. Decrease in ABCB1 and ABCG2 cell surface expression mediated by Pim-1 inhibition represents a novel mechanism of chemosensitization.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B
- ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- ATP Binding Cassette Transporter, Subfamily G, Member 2
- ATP-Binding Cassette Transporters/genetics
- ATP-Binding Cassette Transporters/metabolism
- Antineoplastic Agents/pharmacology
- Biological Transport/drug effects
- Breast Neoplasms/metabolism
- Cell Line, Tumor
- Drug Resistance, Neoplasm
- Female
- Gene Expression Regulation, Neoplastic/drug effects
- Gene Knockdown Techniques
- Humans
- Imidazoles/pharmacology
- Molecular Structure
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Protein Kinase Inhibitors/pharmacology
- Proto-Oncogene Proteins c-pim-1/antagonists & inhibitors
- Proto-Oncogene Proteins c-pim-1/genetics
- Proto-Oncogene Proteins c-pim-1/metabolism
- Pyridazines/pharmacology
Collapse
Affiliation(s)
- Karthika Natarajan
- University of Maryland Greenebaum Cancer Center, Baltimore, MD 21201, USA
| | - Jasjeet Bhullar
- University of Maryland Greenebaum Cancer Center, Baltimore, MD 21201, USA
| | - Suneet Shukla
- Laboratory of Cell Biology, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892, USA
| | - Mehmet Burcu
- University of Maryland Greenebaum Cancer Center, Baltimore, MD 21201, USA
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Allied Health Professions, St. John’s University, Queens, NY 11439, USA
| | - Suresh V. Ambudkar
- Laboratory of Cell Biology, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892, USA
| | - Maria R. Baer
- University of Maryland Greenebaum Cancer Center, Baltimore, MD 21201, USA
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
5
|
Sen R, Natarajan K, Bhullar J, Shukla S, Fang HB, Cai L, Chen ZS, Ambudkar SV, Baer MR. The novel BCR-ABL and FLT3 inhibitor ponatinib is a potent inhibitor of the MDR-associated ATP-binding cassette transporter ABCG2. Mol Cancer Ther 2012; 11:2033-44. [PMID: 22778153 PMCID: PMC3683995 DOI: 10.1158/1535-7163.mct-12-0302] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Ponatinib is a novel tyrosine kinase inhibitor with potent activity against BCR-ABL with mutations, including T315I, and also against fms-like tyrosine kinase 3. We tested interactions between ponatinib at pharmacologically relevant concentrations of 50 to 200 nmol/L and the MDR-associated ATP-binding cassette (ABC) proteins ABCB1, ABCC1, and ABCG2. Ponatinib enhanced uptake of substrates of ABCG2 and ABCB1, but not ABCC1, in cells overexpressing these proteins, with a greater effect on ABCG2 than on ABCB1. Ponatinib potently inhibited [(125)I]-IAAP binding to ABCG2 and ABCB1, indicating binding to their drug substrate sites, with IC(50) values of 0.04 and 0.63 μmol/L, respectively. Ponatinib stimulated ABCG2 ATPase activity in a concentration-dependent manner and stimulated ABCB1 ATPase activity at low concentrations, consistent with it being a substrate of both proteins at pharmacologically relevant concentrations. The ponatinib IC(50) values of BCR-ABL-expressing K562 cells transfected with ABCB1 and ABCG2 were approximately the same as and 2-fold higher than that of K562, respectively, consistent with ponatinib being a substrate of both proteins, but inhibiting its own transport, and resistance was also attenuated to a small degree by ponatinib-induced downregulation of ABCB1 and ABCG2 cell-surface expression on resistant K562 cells. Ponatinib at pharmacologically relevant concentrations produced synergistic cytotoxicity with ABCB1 and ABCG2 substrate chemotherapy drugs and enhanced apoptosis induced by these drugs, including daunorubicin, mitoxantrone, topotecan, and flavopiridol, in cells overexpressing these transport proteins. Combinations of ponatinib and chemotherapy drugs warrant further testing.
Collapse
Affiliation(s)
- Rupashree Sen
- University of Maryland Greenebaum Cancer Center, Baltimore, MD
| | | | - Jasjeet Bhullar
- University of Maryland Greenebaum Cancer Center, Baltimore, MD
| | - Suneet Shukla
- Laboratory of Cell Biology, National Cancer Institute, NIH, Bethesda, MD
| | - Hong-Bin Fang
- University of Maryland Greenebaum Cancer Center, Baltimore, MD
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD
| | - Ling Cai
- University of Maryland Greenebaum Cancer Center, Baltimore, MD
| | | | - Suresh V. Ambudkar
- Laboratory of Cell Biology, National Cancer Institute, NIH, Bethesda, MD
| | - Maria R. Baer
- University of Maryland Greenebaum Cancer Center, Baltimore, MD
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD
| |
Collapse
|
6
|
Dohse M, Scharenberg C, Shukla S, Robey RW, Volkmann T, Deeken JF, Brendel C, Ambudkar SV, Neubauer A, Bates SE. Comparison of ATP-binding cassette transporter interactions with the tyrosine kinase inhibitors imatinib, nilotinib, and dasatinib. Drug Metab Dispos 2010; 38:1371-80. [PMID: 20423956 DOI: 10.1124/dmd.109.031302] [Citation(s) in RCA: 172] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Although the development of tyrosine kinase inhibitors (TKIs) to control the unregulated activity of BCR-ABL revolutionized the therapy of chronic myeloid leukemia, resistance to TKIs is a clinical reality. Among the postulated mechanisms of resistance is the overexpression of ATP-binding cassette (ABC) transporters, such as P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2), which mediate reduced intracellular drug accumulation. We compared the interactions of the TKIs imatinib, nilotinib, and dasatinib with ABCB1 and ABCG2 in ex vivo and in vitro systems. The TKIs inhibited rhodamine 123 and Hoechst 33342 efflux mediated by endogenous expression of the transporters in murine and human hematopoietic stem cells with potency order nilotinib >> imatinib >> dasatinib. Studies with ABCB1-, ABCG2-, and ABCC1-transfected human embryonic kidney 293 cells verified that nilotinib was the most potent inhibitor of ABCB1 and ABCG2. Cytotoxicity assays in stably transduced K562-ABCG2 and K562-ABCB1 cells confirmed that the TKIs were also substrates for the two transporters. Like imatinib, both nilotinib and dasatinib decreased ABCG2 surface expression in K562-ABCG2 cells. Finally, we found that all TKIs were able to compete labeling of ABCB1 and ABCG2 by the photo-cross-linkable prazosin analog [(125)I]iodoarylazidoprazosin, suggesting interaction at the prazosin-binding site of both proteins. Our experiments support the hypothesis that all three TKIs are substrates of ABC transporters and that, at higher concentrations, TKIs overcome transporter function. Taken together, the results suggest that therapeutic doses of imatinib and nilotinib may diminish the potential of ABCB1 and ABCG2 to limit oral absorption or confer resistance. Clinical data are required to definitively answer the latter question.
Collapse
Affiliation(s)
- Marius Dohse
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Sarkadi B, Homolya L, Szakács G, Váradi A. Human multidrug resistance ABCB and ABCG transporters: participation in a chemoimmunity defense system. Physiol Rev 2006; 86:1179-236. [PMID: 17015488 DOI: 10.1152/physrev.00037.2005] [Citation(s) in RCA: 540] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In this review we give an overview of the physiological functions of a group of ATP binding cassette (ABC) transporter proteins, which were discovered, and still referred to, as multidrug resistance (MDR) transporters. Although they indeed play an important role in cancer drug resistance, their major physiological function is to provide general protection against hydrophobic xenobiotics. With a highly conserved structure, membrane topology, and mechanism of action, these essential transporters are preserved throughout all living systems, from bacteria to human. We describe the general structural and mechanistic features of the human MDR-ABC transporters and introduce some of the basic methods that can be applied for the analysis of their expression, function, regulation, and modulation. We treat in detail the biochemistry, cell biology, and physiology of the ABCB1 (MDR1/P-glycoprotein) and the ABCG2 (MXR/BCRP) proteins and describe emerging information related to additional ABCB- and ABCG-type transporters with a potential role in drug and xenobiotic resistance. Throughout this review we demonstrate and emphasize the general network characteristics of the MDR-ABC transporters, functioning at the cellular and physiological tissue barriers. In addition, we suggest that multidrug transporters are essential parts of an innate defense system, the "chemoimmunity" network, which has a number of features reminiscent of classical immunology.
Collapse
Affiliation(s)
- Balázs Sarkadi
- National Medical Center, Institute of Hematology and Immunology, Membrane Research Group, Budapest, Hungary.
| | | | | | | |
Collapse
|
8
|
Honda T, Dan Y, Koyabu N, Ieiri I, Otsubo K, Higuchi S, Ohtani H, Sawada Y. Polymorphism of MDR1 gene in healthy japanese subjects: a novel SNP with an amino acid substitution (Glu108Lys). Drug Metab Pharmacokinet 2005; 17:479-81. [PMID: 15618700 DOI: 10.2133/dmpk.17.479] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We discovered a novel single nucleotide polymorphism (SNP) at position 325 (G325A) in exon 5 of the multidrug-resistance 1 (MDR1) gene in a study of 37 healthy Japanese subjects. Details are as follows. SNP, 020614Honda001; GENE NAME, human P-glycoprotein (MDR1); ACCESSION NUMBER, M29427; LENGTH, 25 bases; 5'-ATGAATCTGGAGG/AAAGACATGACCA-3'. This SNP is expected to cause an amino acid substitution (Glu108Lys). In this study, one homozygote and one heterozygote for G325A were identified.
Collapse
Affiliation(s)
- Tomohiro Honda
- Division of Biopharmaceutics, Department of Medico-Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Sarkadi B, Ozvegy-Laczka C, Német K, Váradi A. ABCG2 -- a transporter for all seasons. FEBS Lett 2004; 567:116-20. [PMID: 15165903 DOI: 10.1016/j.febslet.2004.03.123] [Citation(s) in RCA: 202] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2004] [Accepted: 03/14/2004] [Indexed: 11/30/2022]
Abstract
The human ABCG2 (ABCP/MXR/BCRP) protein is a recently recognized ABC half-transporter, which forms homodimers in the plasma membrane and actively extrudes a wide variety of chemically unrelated compounds from the cells. This protein protects our cells and tissues against various xenobiotics, with a crucial role in the intestine, liver, placenta, and the blood-brain barrier. Moreover, ABCG2 seems to have a key function in stem cell protection/regulation, and also in hypoxic defense mechanisms. Widely occurring single nucleotide polymorphisms in ABCG2 may affect absorption and distribution, altering the effectiveness and toxicity of drugs in large populations. At the clinics, overexpression of ABCG2 in tumor cells confers cancer multidrug resistance to a variety of newly developed anticancer agents. On the other hand, specific substrate mutants of ABCG2 are advocated for use as selectable markers in stem-cell based gene therapy.
Collapse
Affiliation(s)
- Balázs Sarkadi
- National Medical Center, Institute of Haematology and Immunology, Membrane Research Group of the Hungarian Academy of Sciences, Diószegi u. 64, H-1113 Budapest, Hungary.
| | | | | | | |
Collapse
|
10
|
Ujhelly O, Ozvegy C, Várady G, Cervenak J, Homolya L, Grez M, Scheffer G, Roos D, Bates SE, Váradi A, Sarkadi B, Német K. Application of a human multidrug transporter (ABCG2) variant as selectable marker in gene transfer to progenitor cells. Hum Gene Ther 2003; 14:403-12. [PMID: 12659681 DOI: 10.1089/104303403321209005] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Olga Ujhelly
- Institute of Hematology and Immunology, National Medical Center, Hungarian Academy of Sciences, Diószegi u. 64, H-1113 Budapest, Hungary
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Kimchi-Sarfaty C, Arora M, Sandalon Z, Oppenheim A, Gottesman MM. High cloning capacity of in vitro packaged SV40 vectors with no SV40 virus sequences. Hum Gene Ther 2003; 14:167-77. [PMID: 12614568 DOI: 10.1089/104303403321070865] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In vitro packaging of plasmid DNA using recombinant SV40 capsid proteins is a potentially useful procedure that overcomes some restrictions of the other SV40 systems such as the requirement for SV40 sequences and the limitation in size of DNA that can be packaged. The in vitro packaging system uses the four SV40 proteins (VP1, VP2, VP3, and agno) or VP1 only. The ability to confer drug resistance by three ABC transporter genes (MDR 1, MRP 1, or MXR) was determined using the surrogate fluorescent substrates rhodamine-123 or calcein AM and their specific inhibitors, or by using specific antibodies to the transporters to detect cell surface expression by fluorescence-activated cell sorter analysis (FACS). A green fluorescent protein plasmid (EGFP-C1) was also used to monitor gene transfer. The packaged plasmids ranged in size from 4.2 to 17.6 kb, and only slightly affected particle size as determined by electron microscopy. When 9.5 kb and larger plasmids were packaged using all SV40 proteins, MDR1 expression was decreased compared to VP1 alone. The size of the 15.2 kb DNA after packaging was the same as the original DNA. Packaging with SV40 capsid proteins in vitro does not require any SV40 sequences. Using either the MDR1 or the GFP gene we could demonstrate enhanced expression when cells were pretreated with phorbol 12-myristate 13-acetate (PMA) at low concentrations. Interferon-gamma did not alter expression. We conclude that in vitro packaging is more flexible then previously realized, permitting packaging of at least 17 kb plasmid DNA without the requirement for any viral sequences. This system combines efficient gene delivery of the SV40 viral vector with the presumed safety of nonviral vectors.
Collapse
Affiliation(s)
- Chava Kimchi-Sarfaty
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4254, USA
| | | | | | | | | |
Collapse
|
12
|
Affiliation(s)
- Brian P Sorrentino
- Department of Hematology/Oncology, Division of Experimental Hematology, St Jude Children's Research Hospital, Memphis, Tennessee 38105, USA.
| |
Collapse
|