1
|
Dai S, Zhuo M, Song L, Chen X, Yu Y, Zang G, Tang Z. Lentiviral vector encoding ubiquitinated hepatitis B core antigen induces potent cellular immune responses and therapeutic immunity in HBV transgenic mice. Immunobiology 2016; 221:813-21. [PMID: 26874581 DOI: 10.1016/j.imbio.2016.01.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 01/30/2016] [Accepted: 01/31/2016] [Indexed: 12/23/2022]
Abstract
Predominant T helper cell type 1 (Th1) immune responses accompanied by boosted HBV-specific cytotoxic T lymphocyte (CTL) activity are essential for the clearance of hepatitis B virus (HBV) in chronic hepatitis B (CHB) patients. Ubiquitin (Ub) serves as a signal for the target protein to be recognized and degraded through the ubiquitin-proteasome system (UPS). Ubiquitinated hepatitis B core antigen (Ub-HBcAg) has been proved to be efficiently degraded into the peptides, which can be presented by major histocompatibility complex (MHC) class I resulting in stimulating cell-mediated responses. In the present study, lentiviral vectors encoding Ub-HBcAg (LV-Ub-HBcAg) were designed and constructed as a therapeutic vaccine for immunotherapy. HBcAg-specific cellular immune responses and anti-viral effects induced by LV-Ub-HBcAg were evaluated in HBV transgenic mice. We demonstrated that immunization with LV-Ub-HBcAg promoted the secretion of cytokines interleukin-2 (IL-2), interferon-γ (IFN-γ) and tumor necrosis factor-α (TNF-α), generated remarkably high percentages of IFN-γ-secreting CD8(+) T cells and CD4(+) T cells, and enhanced HBcAg-specific CTL activity in HBV transgenic mice. More importantly, vaccination with LV-Ub-HBcAg could efficiently decreased the levels of serum hepatitis B surface antigen (HBsAg), HBV DNA and the expression of HBsAg and HBcAg in liver tissues of HBV transgenic mice. In addition, LV-Ub-HBcAg could upregulate the expression of T cell-specific T-box transcription factor (T-bet) and downregulate the expression of GATA-binding protein 3 (GATA-3) in spleen T lymphocytes. The therapeutic vaccine LV-Ub-HBcAg could break immune tolerance, and induce potent HBcAg specific cellular immune responses and therapeutic effects in HBV transgenic mice.
Collapse
Affiliation(s)
- Shenglan Dai
- Department of Infectious Disease, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233,China
| | - Meng Zhuo
- Department of Infectious Disease, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233,China
| | - Linlin Song
- Department of Infectious Disease, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233,China
| | - Xiaohua Chen
- Department of Infectious Disease, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233,China
| | - Yongsheng Yu
- Department of Infectious Disease, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233,China
| | - Guoqing Zang
- Department of Infectious Disease, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233,China.
| | - Zhenghao Tang
- Department of Infectious Disease, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233,China.
| |
Collapse
|
2
|
Abstract
Basic science advances in cancer immunotherapy have resulted in various treatments that have recently shown success in the clinic. Many of these therapies require the insertion of genes into cells to directly kill them or to redirect the host's cells to induce potent immune responses. Other analogous therapies work by modifying effector cells for improved targeting and enhanced killing of tumor cells. Initial studies done using γ-retroviruses were promising, but safety concerns centered on the potential for insertional mutagenesis have highlighted the desire to develop other options for gene delivery. Lentiviral vectors (LVs) have been identified as potentially more effective and safer alternative delivery vehicles. LVs are now in use in clinical trials for many different types of inherited and acquired disorders, including cancer. This review will discuss current knowledge of LVs and the applications of this viral vector-based delivery vehicle to cancer immunotherapy.
Collapse
Affiliation(s)
- Robyn Aa Oldham
- Department of Medical Biophysics, University of Toronto, 27 King's College Circle, Toronto, ON M5S, Canada
| | | | | |
Collapse
|
3
|
Dai S, Zhuo M, Song L, Chen X, Yu Y, Tang Z, Zang G. Dendritic cell-based vaccination with lentiviral vectors encoding ubiquitinated hepatitis B core antigen enhances hepatitis B virus-specific immune responses in vivo. Acta Biochim Biophys Sin (Shanghai) 2015; 47:870-9. [PMID: 26373843 DOI: 10.1093/abbs/gmv093] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 06/30/2015] [Indexed: 12/27/2022] Open
Abstract
The activity of hepatitis B virus (HBV)-specific cytotoxic T lymphocytes (CTLs) plays a predominant role in the clearance of HBV. Dendritic cells (DCs) are key antigen-presenting cells and play an important role in the initiation of immune responses. We previously verified that lentiviral vector encoding ubiquitinated hepatitis B core antigen (LV-Ub-HBcAg) effectively transduced DCs to induce maturation, and the mature DCs efficiently induced T cell polarization to Th1 and generated HBcAg-specific CTLs ex vivo. In this study, HBV-specific immune responses of LV-Ub-HBcAg in BALB/c mice (H-2Kd) were evaluated. It was shown that direct injection of LV-Ub-HBcAg increased the production of cytokines IL-2 and IFN-γ, elicited strong antibody responses, and remarkably generated a high percentage of IFN-γ+CD8+ T cells with HBV-specific CTL responses in BALB/c mice. In addition, direct injection of LV-Ub-HBcAg induced potent anti-HBV immune responses, similar to those elicited by in vitro-transduced DCs. In conclusion, the DC-based therapeutic vaccine LV-Ub-HBcAg elicited specific antibody immune responses and induced robust specific CTL activity in vivo.
Collapse
Affiliation(s)
- Shenglan Dai
- Department of Infectious Disease, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Meng Zhuo
- Department of Infectious Disease, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Linlin Song
- Department of Infectious Disease, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Xiaohua Chen
- Department of Infectious Disease, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Yongsheng Yu
- Department of Infectious Disease, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Zhenghao Tang
- Department of Infectious Disease, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Guoqing Zang
- Department of Infectious Disease, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| |
Collapse
|
4
|
Mossoba ME, Medin JA. Cancer immunotherapy using virally transduced dendritic cells: animal studies and human clinical trials. Expert Rev Vaccines 2014; 5:717-32. [PMID: 17181444 DOI: 10.1586/14760584.5.5.717] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The immune system uses a process known as 'immunosurveillance' to help prevent the outgrowth of tumors. In cancer immunotherapy, a major goal is for immunity against tumor-associated antigens to be generated or strengthened in patients. To achieve this goal, several approaches have been tested, including the use of highly potent antigen-presenting cells called dendritic cells (DCs), which can activate T cells efficiently. Presentation of peptides derived from tumor antigens on the surface of DCs can stimulate strong antitumor immunity. Using recombinant viral vectors encoding tumor-associated antigens, DCs can be engineered efficiently to express sustained levels of tumor-antigen peptides. This review discusses the effectiveness of virally transduced DCs in treating tumors and generating antigen-specific T-cell responses. It covers mouse and nonhuman primate studies, preclinical in vitro human cell experiments and clinical trials.
Collapse
Affiliation(s)
- Miriam E Mossoba
- Department of Medical Biophysics, University of Toronto, 67 College Street, Room 426, Toronto, Ontario, M5G 2MI, Canada.
| | | |
Collapse
|
5
|
Minocycline inhibits D-amphetamine-elicited action potential bursts in a central snail neuron. Neuroscience 2012; 223:412-28. [PMID: 22742907 DOI: 10.1016/j.neuroscience.2012.06.046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 06/19/2012] [Indexed: 11/21/2022]
Abstract
Minocycline is a second-generation tetracycline that has been reported to have powerful neuroprotective properties. In our previous studies, we found that d-amphetamine (AMPH) elicited action potential bursts in an identifiable RP4 neuron of the African snail, Achatina fulica Ferussac. This study sought to determine the effects of minocycline on the AMPH-elicited action potential pattern changes in the central snail neuron, using the two-electrode voltage clamping method. Extracellular application of AMPH at 300 μM elicited action potential bursts in the RP4 neuron. Minocycline dose-dependently (300-900 μM) inhibited the action potential bursts elicited by AMPH. The inhibitory effects of minocycline on AMPH-elicited action potential bursts were restored by forskolin (50 μM), an adenylate cyclase activator, and by dibutyryl cAMP (N(6),2'-O-Dibutyryladenosine 3',5'-cyclic monophosphate; 1mM), a membrane-permeable cAMP analog. Co-administration of forskolin (50 μM) plus tetraethylammonium chloride (TEA; 5mM) or co-administration of TEA (5mM) plus dibutyryl cAMP (1mM) also elicited action potential bursts, which were prevented and inhibited by minocycline. In addition, minocycline prevented and inhibited forskolin (100 μM)-elicited action potential bursts. Notably, TEA (50mM)-elicited action potential bursts in the RP4 neuron were not affected by minocycline. Minocycline did not affect steady-state outward currents of the RP4 neuron. However, minocycline did decrease the AMPH-elicited steady-state current changes. Similarly, minocycline decreased the effects of forskolin-elicited steady-state current changes. Pretreatment with H89 (N-[2-(p-Bromocinnamylamino)ethyl]-5-isoquinolinesulfonamide dihydrochloride; 10 μM), a protein kinase A inhibitor, inhibited AMPH-elicited action potential bursts and decreased AMPH-elicited steady-state current changes. These results suggest that the cAMP-protein kinase A signaling pathway and the steady-state current are involved in the inhibitory effects of minocycline upon AMPH-elicited action potential bursts.
Collapse
|
6
|
Markov OO, Mironova NL, Maslov MA, Petukhov IA, Morozova NG, Vlassov VV, Zenkova MA. Novel cationic liposomes provide highly efficient delivery of DNA and RNA into dendritic cell progenitors and their immature offsets. J Control Release 2012; 160:200-10. [DOI: 10.1016/j.jconrel.2011.11.034] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Revised: 11/25/2011] [Accepted: 11/27/2011] [Indexed: 12/11/2022]
|
7
|
Arce F, Breckpot K, Collins M, Escors D. Targeting lentiviral vectors for cancer immunotherapy. CURRENT CANCER THERAPY REVIEWS 2011; 7:248-260. [PMID: 22983382 DOI: 10.2174/157339411797642605] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Delivery of tumour-associated antigens (TAA) in a way that induces effective, specific immunity is a challenge in anti-cancer vaccine design. Circumventing tumour-induced tolerogenic mechanisms in vivo is also critical for effective immunotherapy. Effective immune responses are induced by professional antigen presenting cells, in particular dendritic cells (DC). This requires presentation of the antigen to both CD4(+) and CD8(+) T cells in the context of strong co-stimulatory signals. Lentiviral vectors have been tested as vehicles, for both ex vivo and in vivo delivery of TAA and/or activation signals to DC, and have been demonstrated to induce potent T cell mediated immune responses that can control tumour growth. This review will focus on the use of lentiviral vectors for in vivo gene delivery to DC, introducing strategies to target DC, either targeting cell entry or gene expression to improve safety of the lentiviral vaccine or targeting dendritic cell activation pathways to enhance performance of the lentiviral vaccine. In conclusion, this review highlights the potential of lentiviral vectors as a generally applicable 'off-the-shelf' anti-cancer immunotherapeutic.
Collapse
Affiliation(s)
- Frederick Arce
- Division of Infection and Immunity, Medical School of the Royal Free and University College London, 46 Cleveland Street, London W1T 4JF, United Kingdom
| | | | | | | |
Collapse
|
8
|
Hu B, Tai A, Wang P. Immunization delivered by lentiviral vectors for cancer and infectious diseases. Immunol Rev 2011; 239:45-61. [PMID: 21198664 DOI: 10.1111/j.1600-065x.2010.00967.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The increasing level of understanding of the lentivirus biology has been instrumental in shaping the design strategy of creating therapeutic lentiviral delivery vectors. As a result, lentiviral vectors have become one of the most powerful gene transfer vehicles. They are widely used for therapeutic purposes as well as in studies of basic biology, due to their unique characteristics. Lentiviral vectors have been successfully employed to mediate durable and efficient antigen expression and presentation in dendritic cells both in vitro and in vivo, leading to the activation of cellular immunity and humoral responses. This capability makes the lentiviral vector an ideal choice for immunizations that target a wide range of cancers and infectious diseases. Further advances into optimizing the vector system and understanding the relationship between the immune system and diseases pathogenesis will only augment the potential benefits and utility of lentiviral vaccines for human health.
Collapse
Affiliation(s)
- Biliang Hu
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089, USA
| | | | | |
Collapse
|
9
|
Virus-receptor mediated transduction of dendritic cells by lentiviruses enveloped with glycoproteins derived from Semliki Forest virus. PLoS One 2011; 6:e21491. [PMID: 21738680 PMCID: PMC3124512 DOI: 10.1371/journal.pone.0021491] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Accepted: 05/30/2011] [Indexed: 11/14/2022] Open
Abstract
Lentiviruses have recently attracted considerable interest for their potential as a genetic modification tool for dendritic cells (DCs). In this study, we explore the ability of lentiviruses enveloped with alphaviral envelope glycoproteins derived from Semliki Forest virus (SFV) to mediate transduction of DCs. We found that SFV glycoprotein (SFV-G)-pseudotyped lentiviruses use C-type lectins (DC-SIGN and L-SIGN) as attachment factors for transduction of DCs. Importantly, SFV-G pseudotypes appear to have enhanced transduction towards C-type lectin-expressing cells when produced under conditions limiting glycosylation to simple high-mannose, N-linked glycans. These results, in addition to the natural DC tropism of SFV-G, offer evidence to support the use of SFV-G-bearing lentiviruses to genetically modify DCs for the study of DC biology and DC-based immunotherapy.
Collapse
|
10
|
Shurin MR, Gregory M, Morris JC, Malyguine AM. Genetically modified dendritic cells in cancer immunotherapy: a better tomorrow? Expert Opin Biol Ther 2011; 10:1539-53. [PMID: 20955111 DOI: 10.1517/14712598.2010.526105] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
IMPORTANCE OF THE FIELD Dendritic cells (DC) are powerful antigen-presenting cells that induce and maintain primary cytotoxic T lymphocyte (CTL) responses directed against tumor antigens. Consequently, there has been much interest in their application as antitumor vaccines. AREAS COVERED IN THIS REVIEW A large number of DC-based vaccine trials targeting a variety of cancers have been conducted; however, the rate of reported clinically significant responses remains low. Modification of DC to express tumor antigens or immunostimulatory molecules through the transfer of genes or mRNA transfection offers a logical alternative with potential advantages over peptide- or protein antigen-loaded DC. In this article, we review the current results and future prospects for genetically modified DC vaccines for the treatment of cancer. WHAT THE READER WILL GAIN Genetically-modified dendritic cell-based vaccines represent a powerful tool for cancer therapy. Numerous preclinical and clinical studies have demonstrated the potential of dendritic cell vaccines alone or in combination with other therapeutic modalities. TAKE HOME MESSAGE Genetically modified DC-based anti-cancer vaccination holds promise, perhaps being best employed in the adjuvant setting with minimal residual disease after primary therapy, or in combination with other antitumor or immune-enhancing therapies.
Collapse
Affiliation(s)
- Michael R Shurin
- Department of Pathology and Immunology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | | | | | | |
Collapse
|
11
|
Lentiviral vectors for induction of self-differentiation and conditional ablation of dendritic cells. Gene Ther 2011; 18:750-64. [PMID: 21412283 PMCID: PMC3155152 DOI: 10.1038/gt.2011.15] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Development of lentiviral vectors (LVs) in the field of immunotherapy and immune regeneration will strongly rely on biosafety of the gene transfer. We demonstrated previously the feasibility of ex vivo genetic programming of mouse bone marrow precursors with LVs encoding granulocyte macrophage colony-stimulating factor (GM-CSF) and interleukin-4 (IL-4), which induced autonomous differentiation of long-lived dendritic cells (DCs), referred to as self-differentiated myeloid-derived antigen-presenting-cells reactive against tumors (SMART-DCs). Here, LV biosafety was enhanced by using a DC-restricted and physiological promoter, the major histocompatibility complex (MHC) II promoter, and including co-expression of the herpes simplex virus-thymidine kinase (sr39HSV-TK) conditional suicide gene. Tricistronic vectors co-expressing sr39HSV-TK, GM-CSF and IL-4 transcriptionally regulated by the MHCII promoter or the ubiquitous cytomegalovirus (CMV) promoter were compared. Despite the different gene transfer effects, such as the kinetics, levels of transgene expression and persistency of integrated vector copies, both vectors induced highly viable SMART-DCs, which persisted for at least 70 days in vivo and could be ablated with the pro-drug Ganciclovir (GCV). SMART-DCs co-expressing the tyrosine-related protein 2 melanoma antigen administered subcutaneously generated antigen-specific, anti-melanoma protective and therapeutic responses in the mouse B16 melanoma model. GCV administration after immunotherapy did not abrogate DC vaccination efficacy. This demonstrates proof-of-principle of genetically programmed DCs that can be ablated pharmacologically.
Collapse
|
12
|
Dendritic cell-directed lentivector vaccine induces antigen-specific immune responses against murine melanoma. Cancer Gene Ther 2011; 18:370-80. [PMID: 21372855 DOI: 10.1038/cgt.2011.13] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Lentivectors are potential vaccine delivery vehicles because they can efficiently transduce a variety of non-dividing cells, including antigen-presenting cells, and do not cause expression of extra viral proteins. To improve safety while retaining efficiency, a dendritic cell (DC)-specific lentivector was constructed by pseudotyping the vector with an engineered viral glycoprotein derived from Sindbis virus. We assessed the level of anti-tumor immunity conferred by this engineered lentivector encoding the melanoma antigen gp100 in a mouse model. Footpad injection of the engineered lentivectors results in the best antigen-specific immune response as compared with subcutaneous and intraperitoneal injections. A single prime vaccination of the engineered lentivectors can elicit a high frequency (up to 10%) of gp100-specific CD8(+) T cells in peripheral blood 3 weeks after the vaccination and this response will be maintained at around 5% for up to 8 weeks. We found that these engineered lentivectors elicited relatively low levels of anti-vector neutralizing antibody responses. Importantly, direct injection of this engineered lentivector inhibited the growth of aggressive B16 murine melanoma. These data suggest that DC-specific lentivectors can be a novel and alternative vaccine carrier with the potential to deliver effective anti-tumor immunity for cancer immunotherapy.
Collapse
|
13
|
Induction of antitumor immunity against mouse carcinoma by baculovirus-infected dendritic cells. Cell Mol Immunol 2010; 7:440-6. [PMID: 20871626 DOI: 10.1038/cmi.2010.48] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
A dendritic cell (DC) vaccine strategy has been developed as a new cancer immunotherapy, but the goal of complete tumor eradication has not yet been achieved. We have previously shown that baculoviruses potently infect DCs and induce antitumor immunity against hepatomas in a mouse model. Baculovirus-infected, bone marrow-derived DCs (BMDCs) display increased surface expression of costimulatory molecules, such as CD80, CD86 and major histocompatibility complex (MHC) classes I and II, and secrete interferons and other proinflammatory cytokines. In this study, we evaluated the induction of antitumor immunity in mice by baculovirus-infected BMDCs against lung cancer and melanoma. After treatment with baculovirus-infected BMDCs, murine lung tumors caused by Lewis lung carcinoma (LLC) cells were significantly reduced in size, and the survival of the mice was improved. In addition, experiments using a melanoma mouse model showed that baculovirus-infected BMDCs inhibited tumor growth and improved survival compared with controls. Serum alanine aminotransferase (ALT), aspartate aminotransferase (AST) and creatinine levels remained normal in baculovirus-infected BMDC-treated mice. Our findings show that baculovirus-infected DCs induce antitumor immunity and pave the way for the use of this technique as an effective tool for DC immunotherapy against malignancies.
Collapse
|
14
|
Wang H, Zhang L, Kung SKP. Emerging applications of lentiviral vectors in dendritic cell-based immunotherapy. Immunotherapy 2010; 2:685-95. [DOI: 10.2217/imt.10.44] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Dendritic cells are professional antigen-presenting cells that initiate, regulate and shape the induction of specific immune responses. The ability to use dendritic cells in the induction of antigen-specific tolerance, antigen-specific immunity or specific differentiation of T-helper subsets holds great promise in dendritic cell-based immunotherapy of various diseases such as cancer, viral infections, allergy, as well as autoimmunity. Replication-incompetent HIV-1-based lentiviral vector is now emerging as a promising delivery system to genetically modify dendritic cells through antigen recognition, costimulatory molecules and/or polarization signals for the manipulation of antigen-specific immunity in vivo. This article discusses some of the recent advances in the uses of lentiviral vectors in dendritic cell-based immunotherapy.
Collapse
Affiliation(s)
- Huiming Wang
- University of Manitoba, Department of Immunology, Room 417 Apotex Center, 750 McDermot Avenue, Winnipeg, Manitoba, R3E 0T5, Canada
| | - Liang Zhang
- University of Manitoba, Department of Immunology, Room 417 Apotex Center, 750 McDermot Avenue, Winnipeg, Manitoba, R3E 0T5, Canada
| | | |
Collapse
|
15
|
Cui J, Lin AL, Liu Q, Sun Q, Gao ZH. Dendritic cells transfected with lentiviral vector-encoding human granulocyte-macrophage colony-stimulating factor augment anti-tumour T-cell response in vitro. Int J Immunogenet 2010; 37:329-36. [PMID: 20518832 DOI: 10.1111/j.1744-313x.2010.00927.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Dendritic cells (DC) are professional antigen-presenting cells that can actively taken up and present tumour-derived proteins to induce a tumour-specific immune response. Granulocyte-macrophage colony-stimulating factor (GM-CSF) plays a pivotal role in the generation, sensitization, maturation and survival of DC. We charged the peripheral blood monocyte cell-derived DC with tumour lysate, and then transfected the DC with lentiviral vector-encoding human GM-CSF (hGM-CSF). The antigen-presenting capacity of the hGM-CSF-transfected DC was tested by means of the mixed lymphocyte reaction and cytotoxic T-lymphocyte assay using wild-type DC as the control. The Lenti-hGM-CSF-transfected DC was able to stimulate the proliferation of naive allogeneic T lymphocytes and to generate tumour-specific cytotoxic T lymphocytes more efficiently than the wild-type DC. This data indicates that Lenti-hGM-CSF-transfected DC could potentially be used as an effective clinical approach for cancer immunotherapy.
Collapse
Affiliation(s)
- J Cui
- Department of Pathology, Qian-Fo-Shan Hospital of Shandong Province, Medical College of Shandong University, Shandong Province, Jinan, China
| | | | | | | | | |
Collapse
|
16
|
Pincha M, Sundarasetty BS, Stripecke R. Lentiviral vectors for immunization: an inflammatory field. Expert Rev Vaccines 2010; 9:309-21. [PMID: 20218859 DOI: 10.1586/erv.10.9] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Lentiviruses are retroviruses that are able to transduce both dividing and nondividing cells. Dendritic cells are key players in the innate and adaptive immune responses, and are natural targets for lentiviruses. Lentiviral vectors (LVs) have recently reached the clinical gene therapy arena, prompting their use as clinical vaccines. In recent years, LVs have emerged as a robust and practical experimental platform for gene delivery and rational genetic reprogramming of dendritic cells. Here, we present the status quo of the LV system for protective or therapeutic vaccine development. This vector system has been extensively evaluated for ex vivo and in vivo (immuno)gene delivery. Improvements of the LV design in order to further grant a higher biosafety profile for vaccine development are presented.
Collapse
Affiliation(s)
- Mudita Pincha
- Department of Hematology, Hemostaseology, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany.
| | | | | |
Collapse
|
17
|
HIV-1 lentiviral vector immunogenicity is mediated by Toll-like receptor 3 (TLR3) and TLR7. J Virol 2010; 84:5627-36. [PMID: 20237085 DOI: 10.1128/jvi.00014-10] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Lentiviral vectors are promising vaccine vector candidates that have been tested extensively in preclinical models of infectious disease and cancer immunotherapy. They are also used in gene therapy clinical trials both for the ex vivo modification of cells and for direct in vivo injection. It is therefore critical to understand the mechanism(s) by which such vectors might stimulate the immune system. We evaluated the effect of lentiviral vectors on myeloid dendritic cells (DC), the main target of lentiviral transduction following subcutaneous immunization. The activation of DC cultures was independent of the lentiviral pseudotype but dependent on cell entry and reverse transcription. In vivo-transduced DC also displayed a mature phenotype, produced tumor necrosis factor alpha (TNF-alpha), and stimulated naive CD8(+) T cells. The lentiviral activation of DC was Toll-like receptor (TLR) dependent, as it was inhibited in TRIF/MyD88 knockout (TRIF/MyD88(-/-)) DC. TLR3(-/-) or TLR7(-/-) DC were less activated, and reverse transcription was important for the activation of TLR7(-/-) DC. Moreover, lentivirally transduced DC lacking TLR3 or TLR7 had an impaired capacity to induce antigen-specific CD8(+) T-cell responses. In conclusion, we demonstrated TLR-dependent DC activation by lentiviral vectors, explaining their immunogenicity. These data allow the rational development of strategies to manipulate the host's immune response to the transgene.
Collapse
|
18
|
Targeting human telomerase reverse transcriptase with recombinant lentivector is highly effective to stimulate antitumor CD8 T-cell immunity in vivo. Blood 2010; 115:3025-32. [PMID: 20130242 DOI: 10.1182/blood-2009-11-253641] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The success of active immunotherapy is based on the vaccine's ability to overcome immune tolerance through recalibrating the immune system so that it is able to recognize tumor antigens as foreign rather than self. In this study, we used a lentiviral vector system to target human telomerase reverse transcriptase (lv-hTERT), a widely expressed tumor antigen. Immunization of HLA-A*0201 transgenic HHD mice with recombinant lv-hTERT vector induces potent and diversified cytotoxic T lymphocyte responses that recognize in vitro murine tumor cells, which overexpress telomerase. Compared with peptide-based vaccinations, the lv-hTERT vector triggers better and more sustained CD8(+) T-cell response against self/TERT epitope in vivo. The study found that the additional use of a heterologous boosted vaccination drastically improves self/TERT-specific CD8 responses in lv-hTERT primed mice. Both primary and long-lasting self/TERT-specific CD8(+) T-cell responses induced with Iv-hTERT vector required the presence of CD4 T cells in vivo. This lv-hTERT-based active immunotherapy efficiently inhibits the growth of telomerase expressing tumors (B16/HLA-A2.1 murine melanoma) in HHD mice. These data show that targeting hTERT with lentivector is highly effective in stimulating a broad range of CD8 T-cell immunity that can be exploited for cancer immunotherapy.
Collapse
|
19
|
Liu Y, Peng Y, Mi M, Guevara-Patino J, Munn DH, Fu N, He Y. Lentivector immunization stimulates potent CD8 T cell responses against melanoma self-antigen tyrosinase-related protein 1 and generates antitumor immunity in mice. THE JOURNAL OF IMMUNOLOGY 2009; 182:5960-9. [PMID: 19414747 DOI: 10.4049/jimmunol.0900008] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Recombinant lentivector immunization has been demonstrated to induce potent CD8 T cell responses in vivo. In this study, we investigated whether lentivector delivering a self/tumor Ag, tyrosinase related protein 1 (TRP1), could stimulate effective antitumor T cell responses. We found that immunization with lentivector expressing mutated TRP1 Ag elicited potent CD8 T cell responses against multiple TRP1 epitopes. Importantly, the activated CD8 T cells effectively recognize wild-type TRP1 epitopes. At peak times, as many as 10% of CD8 T cells were effector cells against TRP1 Ag. These cells killed wild-type TRP1 peptide-pulsed target cells in vivo and produced IFN-gamma after ex vivo stimulation. The CD8 T cell responses were long-lasting (3-4 wk). Immunized mice were protected from B16 tumor cell challenge. In a therapeutic setting, lentivector immunization induced potent CD8 T cell responses in tumor bearing mice. The number of infiltrating T cells and the ratio of CD8/CD4 were dramatically increased in the tumors of immunized mice. The tumor-infiltrating CD8 T cells were functional and produced IFN-gamma. The potent CD8 T cell responses stimulated by lentivector immunization eliminated small 3-day s.c. B16 tumors and strongly inhibited the growth of more established 5-day tumors. These studies demonstrate that genetic immunization with lentivector expressing mutated self/tumor Ag can generate potent CD8 T cell immune responses and antitumor immunity that prevent and inhibit B16 tumor growth, suggesting that lentivector immunization has the potential for tumor immunotherapy and immune prevention.
Collapse
Affiliation(s)
- Yanjun Liu
- Immunology/Immunotherapy Program, Medical College of Georgia Cancer Center, Medical College of Georgia, Augusta, GA 30912, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
Dendritic cells (DCs) play a key role in the orchestration of immune reactions. Manipulation of DC function through genetic manipulation for vaccine development provides a multitude of applications for active immunotherapy of cancer and chronic infections. Several laboratories have shown that lentiviral vectors (LVs) are efficient and consistent tools for ex vivo gene manipulation of DCs and their precursors. LVs integrate in the genome of target cells resulting in persistent and stable transgene expression, and gene delivery does not result in cytostatic or nonspecific adverse immunomodulatory reactions. Mouse, macaque, and human DCs are efficiently transduced with LVs, allowing preclinical vaccination studies to be gradually implemented into clinical trials. This chapter describes HIV-1-derived LV transduction used for ex vivo gene delivery of marking genes, antigens, and immunomodulatory molecules into mouse and human hematopoietic precursors and DCs. With the perspective of bioengineering DCs from the inside-out, we also describe a one-hit LV transduction method for constitutive expression of GM-CSF and IL-4 genes, which allows self-differentiation of mouse and human hematopoietic precursor cells into highly viable and potent DCs.
Collapse
Affiliation(s)
- Renata Stripecke
- Department of Hematology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
21
|
Wingard JB, Anderson B, Weissman D. Induction of HIV-specific T and B cell responses with a replicating and conditionally infectious lentiviral vaccine. Eur J Immunol 2008; 38:1310-20. [PMID: 18412164 DOI: 10.1002/eji.200738069] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The development of an HIV vaccine that induces broad and potent immunity is critically needed. Viruses, including lentiviruses, have been used as vectors for ex vivo transduction of antigens into dendritic cells (DC). We hypothesized that DC transduced with a vector that allows selective infection of DC could induce potent immunity by continually priming DC. A lentiviral vector encoding HIV gag-pol without env would form viral cores in transduced DC, but would release non-infectious particles by budding into endosomes and releasing apoptotic bodies or exosomes containing viral cores. DC function by endocytosing DC-derived apoptotic bodies, and they are specialized in their ability to move endocytic contents into the cytoplasm. We postulated that endocytosis of vector cores could lead to transduction of a second round of DC. In this report, we demonstrate accumulation of viral cores inside transduced DC and show second-round transduction of immature DC that endocytose transduced DC in vitro. The effectiveness of immunization of mice with transduced DC to induce specific lymphocyte activation was assessed. Mice developed antigen-specific T cell responses and specific antibodies after immunization. Transduction of DC with a replication-competent but conditionally infectious lentivirus could be a novel vaccine strategy for HIV.
Collapse
|
22
|
He Y, Munn D, Falo LD. Recombinant lentivector as a genetic immunization vehicle for antitumor immunity. Expert Rev Vaccines 2008; 6:913-24. [PMID: 18377355 DOI: 10.1586/14760584.6.6.913] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Encouraged by remarkable successes in preventing infectious diseases and by the well-established potential of the immune system for controlling tumor growth, active therapeutic immunization approaches hold great promise for treating malignant tumors. In recent years, engineered recombinant viral vectors have been carefully examined as genetic-immunization vehicles and have been demonstrated to induce potent T-cell-mediated immune responses that can control tumor growth. Very recent efforts suggest that lentivectors possess important advantages over other candidate recombinant viral vectors for genetic immunization. Here, we review the development of recombinant lentivectors and the characteristics of T-cell immune responses elicited by lentivector immunization, including the mechanism of T-cell priming with a focus on the role of skin dendritic cells and potential applications for tumor immunotherapy.
Collapse
Affiliation(s)
- Yukai He
- Medical College of Georgia, Immunology/Immunotherapy Program, MCG Cancer Center, CN-4150, 1120 15th Street, Augusta, GA 30912, USA.
| | | | | |
Collapse
|
23
|
Wei MQ, Ren R, Good D, Anné J. Clostridial spores as live 'Trojan horse' vectors for cancer gene therapy: comparison with viral delivery systems. GENETIC VACCINES AND THERAPY 2008; 6:8. [PMID: 18279524 PMCID: PMC2267465 DOI: 10.1186/1479-0556-6-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/21/2007] [Accepted: 02/17/2008] [Indexed: 01/14/2023]
Abstract
Solid tumours account for 90% of all cancers. Gene therapy represents a potential new modality for their treatment. Up to now, several approaches have been developed, but the most efficient ones are the viral vector based gene therapy systems. However, viral vectors suffer from several deficiencies: firstly most vectors currently in use require intratumoural injection to elicit an effect. This is far from ideal as many tumours are inaccessible and many may have already spread to other parts of the body, making them difficult to locate and inject gene therapy vectors into. Second, because of cell heterogeneity within a given cancer, the vectors do not efficiently enter and kill every cancer cell. Third, hypoxia, a prevalent characteristic feature of most solid tumours, reduces the ability of the viral vectors to function and decreases viral gene expression and production. Consequently, a proportion of the tumour is left unaffected, from which tumour regrowth occurs. Thus, cancer gene therapy has yet to realise its full potential. The facultative or obligate anaerobic bacteria have been shown to selectively colonise and regerminate in solid tumours when delivered systemically. Among them, the clostridial spores were easy to produce, stable to store and safe to use as well as having extensive oncolytic ability. However, research in animals and humans has shown that oncolysis was almost always interrupted sharply at the outer rim of the viable tumour tissue where the blood supply was sufficient. These clostridial spores, though, could serve as "Trojan horse" for cancer gene therapy. Indeed, various spores harbouring genes for cancerstatic factors, prodrug enzymes, or proteins or cytokines had endowed with additional tumour-killing capability. Furthermore, combination of these "Trojan horses" with conventional chemotherapy or radiation therapies often significantly perform better, resulting in the "cure" of solid tumours in a high percentage of animals. It is, thus, not too difficult to predict the potential outcomes for the use of clostridial spores as "Trojan horse" vectors for oncolytic therapy when compared with viral vector-mediated cancer therapy for it be replication-deficient or competent. However, to move the "Trojan horse" to a clinic, though, additional requirements need to be satisfied (i) target tumours only and not anywhere else, and (ii) be able to completely kill primary tumours as well as metastases. Current technologies are in place to achieve these goals.
Collapse
Affiliation(s)
- Ming Q Wei
- Department of Medicine, University of Queensland, Prince Charles Hospital, Brisbane, Queensland, 4032, Australia
- Division of Molecular and Gene Therapies, Griffith Institute for Health and Medical Research, GH1, Griffith University, Gold Coast, Queensland, 4222, Australia
| | - Ruimei Ren
- Department of Medicine, University of Queensland, Prince Charles Hospital, Brisbane, Queensland, 4032, Australia
- Division of Molecular and Gene Therapies, Griffith Institute for Health and Medical Research, GH1, Griffith University, Gold Coast, Queensland, 4222, Australia
- Tumour Hospital, Shandong Academy of Medical Sciences, Jinan, Shandong Province, PR China
| | - David Good
- Department of Medicine, University of Queensland, Prince Charles Hospital, Brisbane, Queensland, 4032, Australia
- Division of Molecular and Gene Therapies, Griffith Institute for Health and Medical Research, GH1, Griffith University, Gold Coast, Queensland, 4222, Australia
| | - Jozef Anné
- Rega Institute for Medical Research, Minderbroedersstraat 10, B-3000 Leuven, Belgium
| |
Collapse
|
24
|
Tumor protection following vaccination with low doses of lentivirally transduced DCs expressing the self-antigen erbB2. Mol Ther 2008; 16:607-17. [PMID: 18180774 DOI: 10.1038/sj.mt.6300390] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Gene therapy strategies may accelerate the development of prophylactic immunotherapy against cancer. We synthesized a lentiviral (LV) vector encoding a kinase-deficient form of erbB2 (erbB2tr) to transduce murine dendritic cells (DCs) efficiently. Murine erbB2 models a clinically relevant tumor-associated self-antigen; its human homolog (HER-2/neu) is overexpressed in breast cancer and in 80% of metastatic prostate cancers. Following one infection, approximately 47% of DCs overexpressed erbB2tr. To determine whether low doses of transduced DCs could protect mice from prostate cancer cells, we performed prime/boost vaccinations with 2 x 10(3) or 2 x 10(5) erbB2tr-transduced DCs. Six weeks after vaccination, mice were simultaneously bilaterally challenged with the aggressive RM-1 prostate cancer cell line and an erbB2tr-expressing variant (RM-1-erbB2tr). Whereas control mice developed both tumors, all recipients of 2 x 10(5) erbB2tr-transduced DCs developed only wild-type RM-1 tumors. One-third of mice vaccinated with just 2 x 10(3) erbB2tr-transduced DCs also demonstrated erbB2tr-specific tumor protection. Protection against RM-1-erbB2tr tumors was associated with sustained levels of anti-erbB2tr antibody production and also correlated with erbB2tr-specific Th1 cytokine secretion. Depletion of CD4(+), CD8(+), or natural killer (NK) cells prior to tumor challenge underscored their role in mediating tumor protection. We conclude that administration of DCs expressing a self-antigen through efficient LV-based gene transfer activates cellular and humoral immunity, protecting host animals against specific tumor challenge.
Collapse
|
25
|
De A, Yaghoubi SS, Gambhir SS. Applications of lentiviral vectors in noninvasive molecular imaging. Methods Mol Biol 2008; 433:177-202. [PMID: 18679624 DOI: 10.1007/978-1-59745-237-3_11] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Noninvasive imaging of molecular-genetic and cellular processes is an effective way to determine the location(s), magnitude, and time variation of action of gene products used for many therapeutic strategies. Lentiviral vectors provide effective means for the delivery, integration, and expression of transgenes in cultured mammalian cells as well as in vivo. Therefore, the combination of lentiviral vector-mediated therapeutic and imaging-targeted reporter gene delivery to various target organs holds promise for the future treatment of diseases. In this chapter, we provide protocols for developing lentiviral vectors that can be utilized for noninvasive monitoring/imaging of reporter gene expression. We have described the procedures to perform cellular assays and animal imaging based on positron emission tomography (PET), optical bioluminescence, and fluorescence reporter genes. The protocols described here are standardized for mouse models, which can also be adapted for other small animal models (e.g., rats).
Collapse
Affiliation(s)
- Abhijit De
- Departments of Radiology and Bioengineering, School of Medicine, Stanford University, Stanford, CA, USA
| | | | | |
Collapse
|
26
|
Breckpot K, Thielemans K. Lentiviruses in cancer immunotherapy. Future Virol 2007. [DOI: 10.2217/17460794.2.6.597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Lentiviral vectors have emerged as promising tools for cancer immunotherapy owing to their capacity to transduce a wide range of different cell types, including dendritic cells (DCs), the key regulators of immunity. Ex vivo transduced DCs proved to be potent inducers of strong antigen-specific T-cell responses, both in vitro and in vivo. Moreover, lentiviral vectors have been successfully applied for antigen-specific immunization, offering the advantage that the same lentivirus can be used for all patients resulting in an ‘off-the-shelf’ therapeutic. This review provides an update on the state-of-the-art induction of tumor-specific immune responses in vivo upon direct administration of tumor-associated antigen-encoding lentiviruses. Focusing on the cell types transduced, the results of current studies and the explanation for the potency of lentiviral vectors are discussed.
Collapse
Affiliation(s)
- Karine Breckpot
- Medical School of the Vrije Universiteit Brussel, Laboratory of Molecular & Cellular Therapy, Department of Physiology-Immunology, Laarbeeklaan 103 Building E, B-1090, Brussels, Belgium
| | - K Thielemans
- Medical School of the Vrije Universiteit Brussel, Laboratory of Molecular & Cellular Therapy, Department of Physiology-Immunology, Laarbeeklaan 103 Building E, B-1090, Brussels, Belgium
| |
Collapse
|
27
|
Iglesias MC, Mollier K, Beignon AS, Souque P, Adotevi O, Lemonnier F, Charneau P. Lentiviral Vectors Encoding HIV-1 Polyepitopes Induce Broad CTL Responses In Vivo. Mol Ther 2007; 15:1203-10. [PMID: 17375069 DOI: 10.1038/sj.mt.6300135] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Lentiviral vectors have been tested as vaccination vectors in anti-tumoral and anti-viral models. They efficiently transduce dendritic cells and stimulate strong T-cell responses against the encoded antigen. However, their capacity to stimulate a cytotoxic T-lymphocyte (CTL) response against several antigens has not been evaluated. Broad anti-human immunodeficiency virus 1 (HIV-1) T-cell immune responses are important for the control of HIV replication. We evaluated the potential of polyepitope-encoding lentiviral vectors to induce broad anti-HIV CTL responses. We constructed two lentiviral vectors coding for an HLA-A2- or HLA-B7-restricted polyepitope and evaluated their immunogenicity by direct injection of vector particles in HLA-A2 or HLA-B7 transgenic mice. In vitro cytotoxicity assays showed that a single immunization induces a strong, diversified, and long-lasting CTL response in both mouse models. CTL responses were directed against all 13 epitopes in the HLA-A2 system and 8 out of 12 in the HLA-B7 system. A second immunization augmented the number of responding mice in the HLA-A2 system but not in the HLA-B7 system. HLA-B7-immunized mice mounted strong interferon-gamma (IFN-gamma)-secreting T-cell responses against a majority of the epitopes and lysed peptide-loaded target cells in vivo. CTL responses in HLA-B7 mice were only partially dependent on CD4 T-cell help. This work underlines the potential of lentiviral vectors as candidates for therapeutic vaccination against acquired immunodeficiency syndrome.
Collapse
|
28
|
Breckpot K, Aerts JL, Thielemans K. Lentiviral vectors for cancer immunotherapy: transforming infectious particles into therapeutics. Gene Ther 2007; 14:847-62. [PMID: 17361214 DOI: 10.1038/sj.gt.3302947] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Lentiviral vectors have emerged as promising tools for both gene therapy and immunotherapy purposes. They exhibit several advantages over other viral systems in that they are less immunogenic and are capable of transducing a wide range of different cell types, including dendritic cells (DC). DC transduced ex vivo with a whole range of different (tumor) antigens were capable of inducing strong antigen-specific T-cell responses, both in vitro and in vivo. Recently, the administration of lentiviral vectors in vivo has gained substantial interest as an alternative method for antigen-specific immunization. This method offers a number of advantages over DC vaccines as the same lentivirus can in principle be used for all patients resulting in a significantly reduced cost and requirement for considerably less expertise for the generation and administration of lentiviral vaccines. By selectively targeting lentiviral vectors to, or restricting transgene expression in certain cell types, selectivity, safety and efficacy can be further improved. This review will focus on the use of direct administration of lentiviral vectors encoding tumor-associated antigens (TAA) for the induction of tumor-specific immune responses in vivo, with a special focus on problems related to the generation of large amounts of highly purified virus and specific targeting of antigen-presenting cells (APC).
Collapse
Affiliation(s)
- K Breckpot
- Laboratory of Molecular and Cellular Therapy, Department of Physiology and Immunology, Medical School of the Vrije Universiteit Brussel, Brussels, Belgium.
| | | | | |
Collapse
|
29
|
Thomson CW, Mossoba ME, Siatskas C, Chen W, Sung A, Medin JA, Zhang L. Lentivirally transduced recipient-derived dendritic cells serve to ex vivo expand functional FcRgamma-sufficient double-negative regulatory T cells. Mol Ther 2007; 15:818-824. [PMID: 17264854 DOI: 10.1038/sj.mt.6300082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2006] [Accepted: 11/19/2006] [Indexed: 12/23/2022] Open
Abstract
alphabetaTCR(+)CD4(-)CD8(-) double-negative (DN) T regulatory (Treg) cells have recently been shown to suppress antigen-specific immune responses mediated by CD8(+) and CD4(+) T cells in mice and humans. In this study, we developed a system to expand DN Treg cells for transplantation therapy that exclusively uses recipient-derived immune cells and confers a high degree of safety as the protocol does not involve the direct injection of lentiviral vectors. Recipient-derived dendritic cells (DCs) were transduced with lentiviral vectors that express major histocompatibility complex class I L(d) antigen (LV-L(d)), which is expressed by the donor graft but is allogeneic to the graft recipient. LV-L(d)-transduced mature DCs (mDCs) were able to expand effectively both FcRgamma(-/-) and FcRgamma(+/+) DN T cells. After expansion with LV-L(d)-transduced mDCs, only the FcRgamma(+/+) DN Treg cells maintained their ability to suppress CD8(+) T cells in vitro. In addition, adoptive transfer of the FcRgamma(+/+) ex vivo expanded DN Treg cells significantly prolonged the survival of L(d+) skin grafts. This study is the first description of successful ex vivo expansion of antigen-specific DN Treg cells using genetically modified syngeneic DCs for adoptive immunotherapy and demonstrates that although FcRgamma(-/-) DN T cells can be expanded, they do not gain regulatory ability.
Collapse
Affiliation(s)
- Christopher W Thomson
- Department of Laboratory Medicine and Pathobiology, Multi Organ Transplantation Program, Toronto General Research Institute, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
30
|
Dullaers M, Van Meirvenne S, Heirman C, Straetman L, Bonehill A, Aerts JL, Thielemans K, Breckpot K. Induction of effective therapeutic antitumor immunity by direct in vivo administration of lentiviral vectors. Gene Ther 2006; 13:630-40. [PMID: 16355115 DOI: 10.1038/sj.gt.3302697] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Ex vivo lentivirally transduced dendritic cells (DC) have been described to induce CD8+ and CD4+ T-cell responses against various tumor-associated antigens (TAAs) in vitro and in vivo. We report here that direct administration of ovalbumin (OVA) encoding lentiviral vectors caused in vivo transduction of cells that were found in draining lymph nodes (LNs) and induced potent anti-OVA cytotoxic T cells similar to those elicited by ex vivo transduced DC. The cytotoxic T-lymphocyte (CTL) response following direct injection of lentiviral vectors was highly effective in eliminating target cells in vivo up to 30 days after immunization and was efficiently recalled after a boost immunization. Injection of lentiviral vectors furthermore activated OVA-specific CD4+ T cells and this CD4 help was shown to be necessary for an adequate primary and memory CTL response. When tested in therapeutic tumor experiments with OVA+ melanoma cells, direct administration of lentiviral vectors slowed down tumor growth to a comparable extent with the highest dose of ex vivo transduced DC. Taken together, these data indicate that direct in vivo administration of lentiviral vectors encoding TAAs has strong potential for anticancer vaccination.
Collapse
Affiliation(s)
- M Dullaers
- Laboratory of Molecular and Cellular Therapy, Department of Physiology-Immunology, Medical School of the Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Lopes L, Fletcher K, Ikeda Y, Collins M. Lentiviral vector expression of tumour antigens in dendritic cells as an immunotherapeutic strategy. Cancer Immunol Immunother 2006; 55:1011-6. [PMID: 16311731 PMCID: PMC11030885 DOI: 10.1007/s00262-005-0095-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2005] [Accepted: 10/25/2005] [Indexed: 11/24/2022]
Abstract
Therapeutic cancer vaccines need to stimulate a refractory immune system to make an effective anti-tumour response. We have explored the use of lentiviral vectors to deliver tumour antigen genes to dendritic cells (DC) as a possible mechanism of immune stimulation. Direct injection of a lentiviral vector encoding the melanoma antigen NY-ESO-1 in HLA-A2 transgenic mice primed NY-ESO-1-specific CD8+ cells that could be expanded by boosting with an NY-ESO-1 vaccinia virus. The expanded cells could kill NY-ESO-1(157-165) peptide-pulsed targets in vivo. In order to examine the priming step directly, we constructed another lentiviral vector expressing the melanoma antigen Melan-A (MART-1). Here we show that Melan-A protein is also efficiently expressed after transduction of human DC cultured from peripheral blood mononuclear cells. When these transduced DC are co-cultured with autologous naïve T cells, they cause the expansion of cells that recognise the HLA-A2 restricted Melan-A(27-35) epitope. The expanded cells are functional in that they release IFN-gamma upon antigen stimulation. Melan-A lentiviral vector transduced DC caused a similar level of naïve T-cell expansion to Melan-A(27-35) peptide-pulsed DC in four experiments using different HLA-A2 positive donors. These data suggest that a vaccine based either on DC transduced with a lentiviral vector ex vivo, or on direct lentiviral vector injection, should be assessed in a phase I clinical trial.
Collapse
Affiliation(s)
- Luciene Lopes
- Infection and Immunity, University College London, Windeyer Building, 46 Cleveland St, W1T 4JF London, UK
| | - Kate Fletcher
- Infection and Immunity, University College London, Windeyer Building, 46 Cleveland St, W1T 4JF London, UK
| | - Yasuhiro Ikeda
- Infection and Immunity, University College London, Windeyer Building, 46 Cleveland St, W1T 4JF London, UK
| | - Mary Collins
- Infection and Immunity, University College London, Windeyer Building, 46 Cleveland St, W1T 4JF London, UK
| |
Collapse
|
32
|
Dullaers M, Thielemans K. From pathogen to medicine: HIV-1-derived lentiviral vectors as vehicles for dendritic cell based cancer immunotherapy. J Gene Med 2006; 8:3-17. [PMID: 16288497 DOI: 10.1002/jgm.846] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Over the years, the unique capacity of dendritic cells (DC) for efficient activation of naive T cells has led to their extensive use in cancer immunotherapy protocols. In order to be able to fulfil their role as antigen-presenting cells, the antigen of interest needs to be efficiently introduced and subsequently correctly processed and presented by the DC. For this purpose, a variety of both viral and non-viral antigen-delivery systems have been evaluated. Amongst those, HIV-1-derived lentiviral vectors have been used successfully to transduce DC. This review considers the use of HIV-1-derived lentiviral vectors to transduce human and murine DC for cancer immunotherapy. Lentivirally transduced DC have been shown to present antigenic peptides, prime transgene-specific T cells in vitro and elicit a protective cytotoxic T-lymphocyte (CTL) response in animal models. Different parameters determining the efficacy of transduction are considered. The influence of lentiviral transduction on the DC phenotype and function is described and the induction of immune responses by lentivirally transduced DC in vitro and in vivo is discussed in detail. In addition, direct in vivo administration of lentiviral vectors aiming at the induction of antigen-specific immunity is reviewed. This strategy might overcome the need for ex vivo generation and antigen loading of DC. Finally, future perspectives towards the use of lentiviral vectors in cancer immunotherapy are presented.
Collapse
Affiliation(s)
- Melissa Dullaers
- Laboratory of Molecular and Cellular Therapy, Department of Physiology-Immunology, Medical School of the Vrije Universiteit Brussel (VUB), Laarbeeklaan 103/E, 1090 Brussels, Belgium
| | | |
Collapse
|
33
|
Kim JH, Majumder N, Lin H, Watkins S, Falo LD, You Z. Induction of therapeutic antitumor immunity by in vivo administration of a lentiviral vaccine. Hum Gene Ther 2006; 16:1255-66. [PMID: 16259559 DOI: 10.1089/hum.2005.16.1255] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Direct in vivo administration of a lentiviral vaccine has been shown to transduce dendritic cells (DCs) in order to induce antigen-specific CD8+ T cell responses, but the efficacy of antitumor immunity has not been reported. In this study we tested whether direct in vivo administration of a lentiviral vaccine can induce selfantigen- based therapeutic antitumor immunity in murine tumor models. Lentiviral vector (LV) transduced DCs efficiently in vitro and was able to transduce DCs in vivo. LV-transduced DCs effectively presented antigens to T cells. Compared with a naked DNA tyrosinase-related protein-2 (TRP2)-heat shock protein-70 (hsp70) vaccine, the TRP2-specific interferon-gamma-producing CD8+ T cell response was augmented by direct in vivo administration of an LV-TRP2hsp70 vaccine, which induced significant therapeutic antitumor immunity in subcutaneous B16 and subcutaneous GL-26 models. Moreover, in vivo administration of an LV-NeuEDhsp70 vaccine induced significant therapeutic antitumor immunity against spontaneous breast tumors in a BALB/c- Neu transgenic model. Our observations indicate that direct in vivo administration of a lentiviral vaccine not only enhances antigen-specific CD8+ T cell responses, but also generates significant therapeutic antitumor activities.
Collapse
Affiliation(s)
- Jin H Kim
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | | | | | | | | | | |
Collapse
|
34
|
Chapatte L, Colombetti S, Cerottini JC, Lévy F. Efficient Induction of Tumor Antigen–Specific CD8+ Memory T Cells by Recombinant Lentivectors. Cancer Res 2006; 66:1155-60. [PMID: 16424053 DOI: 10.1158/0008-5472.can-05-2597] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The success of active cancer immunotherapy entails a robust induction of tumor-reactive effector and memory CD8+ T cells. We compared the in vivo immunogenicity of the melanoma-associated antigen Melan-A(26-35) encoded by third-generation recombinant lentivector (rec. lv) or as peptide admixed with a strong adjuvant. Ex vivo analyses of immunized HLA-A2/H-2K(b) mice showed that rec. lv triggered a stronger anti-Melan-A CD8+ T -cell response than peptide vaccine. Importantly, the majority of anti-Melan-A T cells elicited by rec. lv expressed the memory marker CD127 at the peak of the primary response. In those mice, memory T cells were detectable several months after priming and could be activated by recall peptide vaccination. These results show that immunization with rec. lv induces not only a strong antigen-specific CD8+ T -cell response but also a long-lasting T-cell memory against a bona fide tumor-associated antigen.
Collapse
Affiliation(s)
- Laurence Chapatte
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne, Chemin des Boveresses 155, 1066 Epalinges, Switzerland
| | | | | | | |
Collapse
|
35
|
Iglesias MC, Frenkiel MP, Mollier K, Souque P, Despres P, Charneau P. A single immunization with a minute dose of a lentiviral vector-based vaccine is highly effective at eliciting protective humoral immunity against West Nile virus. J Gene Med 2006; 8:265-74. [PMID: 16308885 DOI: 10.1002/jgm.837] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Lentiviral vectors, due to their capacity to transduce non-dividing cells, have become precious and worldwide used gene transfer systems. Their ability to efficiently and stably transduce dendritic cells (DCs) has led to their successful use as vaccination vectors for eliciting strong, specific and protective cellular immune responses mostly in anti-tumoral but also in anti-viral applications. However, the ability of lentiviral vectors to elicit an antibody-based protective immunity has, to date, not been evaluated. In the present study, we evaluated the potential of a lentiviral vector-based vaccine to elicit humoral immunity against West Nile virus (WNV). WNV is a mosquito-borne flavivirus that emerged in North America and causes encephalitis in humans, birds and horses. Neutralizing anti-WNV antibodies have been shown to be crucial for protection against WNV encephalitis. METHODS The ability of lentiviral vector TRIP/sE(WNV), expressing the secreted soluble form of the envelope E-glycoprotein (sE(WNV)) from the highly virulent IS-98-ST1 strain of WNV, to induce a specific humoral response and protection against WNV infection was assessed in a mouse model of WNV encephalitis. RESULTS Remarkably, a single immunization with a minute dose of TRIP/sE(WNV) was efficient at eliciting a long-lasting, protective and sterilizing humoral immunity, only 1 week after priming. CONCLUSIONS This study broadens the applicability of lentiviral vectors as efficient non-replicating vaccines against pathogens for which a neutralizing humoral response is one active arm of the protective immunity. The TRIP/sE(WNV) lentiviral vector appears to be a promising tool for veterinary vaccination against zoonotic WNV.
Collapse
Affiliation(s)
- Maria Candela Iglesias
- Groupe de Virologie Moléculaire et Vectorologie, Institut Pasteur, 28 rue du Dr. Roux. 75724 Paris Cedex 15, France
| | | | | | | | | | | |
Collapse
|
36
|
Rowe HM, Lopes L, Ikeda Y, Bailey R, Barde I, Zenke M, Chain BM, Collins MK. Immunization with a lentiviral vector stimulates both CD4 and CD8 T cell responses to an ovalbumin transgene. Mol Ther 2005; 13:310-9. [PMID: 16275163 DOI: 10.1016/j.ymthe.2005.08.025] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2005] [Revised: 08/31/2005] [Accepted: 08/31/2005] [Indexed: 11/26/2022] Open
Abstract
Lentiviral vectors encoding antigens are promising vaccine candidates because they transduce dendritic cells (DC) in vivo and prime CTL responses. Here we examine their stimulation of antigen-specific CD4(+) T cells, critical for protective immunity against tumors or infectious disease. We constructed lentiviral vectors (lentivectors) expressing ovalbumin, which was secreted (OVA), cytoplasmic (OVAcyt), or fused to either invariant chain (Ii-OVA) or transferrin receptor (TfR-OVA) sequences, targeting the MHC class II presentation pathway. Murine DC infected with the various lentivectors could stimulate OT-I (CD8(+), OVA TCR transgenic) T cells and all except OVAcyt could also stimulate OT-II (CD4(+), OVA TCR transgenic) T cells in vitro. Direct injection of the OVA-, Ii-OVA-, or TfR-OVA-expressing vectors into mice resulted in a CD4(+) T cell response, as shown by expansion of adoptively transferred OT-II T cells and upregulation of CD44 on these cells. The Ii-OVA vector was the most potent inducer of IFN-gamma-secreting CD4(+) and CD8(+) T cells and was the only vector to protect mice completely from challenge with OVA-expressing tumor cells. Therefore directly injected lentivectors can stimulate CD4(+) T cells; both CD4(+) and CD8(+) responses can be enhanced by targeting the antigen to the MHC class II pathway.
Collapse
Affiliation(s)
- Helen M Rowe
- Infection and Immunity, University College London, Windeyer Building, UK
| | | | | | | | | | | | | | | |
Collapse
|
37
|
He Y, Zhang J, Mi Z, Robbins P, Falo LD. Immunization with lentiviral vector-transduced dendritic cells induces strong and long-lasting T cell responses and therapeutic immunity. THE JOURNAL OF IMMUNOLOGY 2005; 174:3808-17. [PMID: 15749922 DOI: 10.4049/jimmunol.174.6.3808] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Dendritic cell (DC) therapies are currently being evaluated for the treatment of cancer. The majority of ongoing clinical trials use DCs loaded with defined antigenic peptides or proteins, or tumor-derived products, such as lysates or apoptotic cells, as sources of Ag. Although several theoretical considerations suggest that DCs expressing transgenic protein Ags may be more effective immunogens than protein-loaded cells, methods for efficiently transfecting DCs are only now being developed. In this study we directly compare the immunogenicity of peptide/protein-pulsed DCs with lentiviral vector-transduced DCs, and their comparative efficacy in tumor immunotherapy. Maturing, bone marrow-derived DCs can be efficiently transduced with lentiviral vectors, and transduction does not affect DC maturation, plasticity, or Ag presentation function. Transduced DCs efficiently process and present both MHC class I- and II-restricted epitopes from the expressed transgenic Ag OVA. Compared with peptide- or protein-pulsed DCs, lentiviral vector-transduced DCs elicit stronger and longer-lasting T cell responses in vivo, as measured by both in vivo killing assays and intracellular production of IFN-gamma by Ag-specific T cells. In the B16-OVA tumor therapy model, the growth of established tumors was significantly inhibited by a single immunization using lentiviral vector-transduced DCs, resulting in significantly longer survival of immunized animals. These results suggest that compared with Ag-pulsed DCs, vaccination with lentiviral vector-transduced DCs may achieve more potent antitumor immunity. These data support the further development of lentiviral vectors to transduce DCs with genes encoding Ags or immunomodulatory adjuvants to generate and control systemic immune responses.
Collapse
Affiliation(s)
- Yukai He
- Department of Dermatology, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15261, USA.
| | | | | | | | | |
Collapse
|
38
|
Strang BL, Takeuchi Y, Relander T, Richter J, Bailey R, Sanders DA, Collins MKL, Ikeda Y. Human immunodeficiency virus type 1 vectors with alphavirus envelope glycoproteins produced from stable packaging cells. J Virol 2005; 79:1765-71. [PMID: 15650201 PMCID: PMC544098 DOI: 10.1128/jvi.79.3.1765-1771.2005] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Alphavirus glycoproteins have broad host ranges. Human immunodeficiency virus type 1 (HIV-1) vectors pseudotyped with their glycoproteins could extend the range of tissues that can be transduced in both humans and animal models. Here, we established stable producer cell lines for HIV vectors pseudotyped with alphavirus Ross River virus (RRV) and Semliki Forest virus (SFV) glycoproteins E2E1. RRV E2E1-stable clones could routinely produce high-titer pseudotyped vectors for at least 5 months. SFV E2E1-stable clones, however, produced relatively low titers. We examined the properties of RRV E2E1-pseudotyped vectors [HIV-1(RRV)] and compared them with amphotropic murine leukemia virus Env- and vesicular stomatitis virus glycoprotein G-pseudotyped vectors. HIV-1(RRV) displayed a number of characteristics which would be advantageous in ex vivo and in vivo experiments, including resistance to inactivation by heat-labile components in fresh human sera and thermostability at 37 degrees C. Upon single-step concentration by ultracentrifugation of HIV-1(RRV), we could achieve vector stocks with titers up to 6 x 10(7) IU/ml. HIV-1(RRV) efficiently transduced cells from several different species, including murine primary dendritic cells, but failed to transduce human and murine T cells as well as human hematopoietic stem cells (HSC). These results indicate that HIV-1(RRV) could be used in a number of applications including animal model experiments and suggest that expression of RRV cellular receptors is limited or absent in certain cell types such as T cells and human HSC.
Collapse
Affiliation(s)
- Blair L Strang
- Department of Immunology and Molecular Pathology, University College London, University of London, London, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Murakami T, Tokunaga N, Waku T, Gomi S, Kagawa S, Tanaka N, Fujiwara T. Antitumor effect of intratumoral administration of bone marrow-derived dendritic cells transduced with wild-type p53 gene. Clin Cancer Res 2004; 10:3871-80. [PMID: 15173096 DOI: 10.1158/1078-0432.ccr-03-0599] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
PURPOSE Dendritic cells (DCs) are attractive effectors for cancer immunotherapy because of their potential to function as professional antigen-presenting cells for initiating cellular immune responses. The tumor suppressor gene p53 is pivotal in the regulation of apoptosis, and approximately 50% of human malignancies exhibit mutation and aberrant expression of p53. We investigated the antitumor effect of intratumoral administration of bone marrow-derived dendritic cells transduced with wild-type p53 gene. EXPERIMENTAL DESIGN We examined whether intratumoral administration of DCs infected with recombinant adenovirus expressing murine wild-type p53 (Ad-mp53) could induce systemic antitumor responses against mutant p53-expressing tumors, highly immunogenic MethA, or weakly immunogenic MCA-207 implanted in syngeneic mice. RESULTS Accumulation of wild-type p53 protein in bone marrow-derived murine DCs could be successfully achieved by Ad-mp53 infection. Treatment with intratumoral injection of Ad-mp53-transduced DCs caused a marked reduction in the in vivo growth of established MethA and MCA-207 tumors with massive cellular infiltrates. Administration of p53-expressing DCs suppressed the growth of both injected MCA-207 tumors and untreated distant MCA-207 tumors, but not unrelated Lewis lung carcinoma tumors, suggesting the augmentation of systemic immunogenicity against MCA-207 tumor cells. Moreover, intratumoral injection of p53-expressing DCs had a greater antitumor effect than did s.c. immunization. CONCLUSIONS Our results indicate that intratumoral administration of DCs expressing murine wild-type p53 leads to significant systemic immune responses and potent antitumor effects in mutant p53-expressing murine cancer models. These findings raise the possibility of using this strategy of intratumoral injection of p53-expressing DCs for human cancer treatment.
Collapse
Affiliation(s)
- Takayoshi Murakami
- Department of Surgery, Okayama University Graduate School of Medicine and Dentistry, Okayama University Hospital, Okayama, Japan
| | | | | | | | | | | | | |
Collapse
|
40
|
Breckpot K, Corthals J, Heirman C, Bonehill A, Michiels A, Tuyaerts S, De Greef C, Thielemans K. Activation of monocytes via the CD14 receptor leads to the enhanced lentiviral transduction of immature dendritic cells. Hum Gene Ther 2004; 15:562-73. [PMID: 15212715 DOI: 10.1089/104303404323142015] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
In this study, we compared dendritic cells (DCs) differentiated from positively selected monocytes (CD14-DCs) to DCs differentiated from adherence-selected monocytes (adh-DCs) with emphasis on lentiviral transduction. Using a second-generation, triple-helix containing, self-inactivating lentiviral vector at a multiplicity of infection (MOI) of 15, we observed enhanced transduction of CD14-DCs (72.8 +/- 5.3%, mean fluorescence intensity [MFI] = 166 +/- 76) compared to adh-DCs (32.3 +/- 13.1%, MFI = 119 +/- 76, n = 5). More importantly, the efficiency to transduce adh-DCs was significantly increased when monocytes were incubated with antiCD14 antibody coupled beads, anti-CD14 antibodies, or lipopolysaccharide (LPS), reaching transduction efficiencies up to 86.6%, 53.3%, and 80.9%, respectively. We showed that this enhanced transduction was correlated to an activation of the monocytes, characterized by the up regulation of the cytokines interleukin (IL)-1beta and tumor necrosis factor (TNF)-alpha and the de novo synthesis of IL-6 and IL-10. However, the enhanced transduction of immature CD14-DCs was not correlated with a progression in the cell cycle from G(0) to G(1). We further showed that CD14-DCs were phenotypically comparable to adh-DCs. Functional analysis revealed that there were no differences in allostimulatory capacity, production of IL-12 p70 on CD40 ligation or expression of IL-1beta, IL-6, IL-8, IL-10, IL-12, and TNF-alpha as evaluated by reverse transcriptase-polymerase chain reaction (RT-PCR). Finally, we showed that lentivirally transduced CD14-DCs were equally capable as adh-DCs in stimulating MAGE-A3 antigen-specific CD4(+) and CD8(+) T cells in vitro.
Collapse
Affiliation(s)
- Karine Breckpot
- Laboratory of Molecular and Cellular Therapy, Department of Physiology and Immunology, Medical School of the Vrije Universiteit Brussel (V.U.B.), Laarbeeklaan 103/E, 1090 Brussels, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Bao L, Jaligam V, Zhang XY, Kutner RH, Kantrow SP, Reiser J. Stable transgene expression in tumors and metastases after transduction with lentiviral vectors based on human immunodeficiency virus type 1. Hum Gene Ther 2004; 15:445-56. [PMID: 15144575 DOI: 10.1089/10430340460745775] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The relatively low efficiency of target cell transduction and variations in the stability of transgene expression by retroviral vectors based on the Moloney murine leukemia virus (MoMLV) are major impediments to the use of such vectors in cancer gene therapy approaches. The present study was designed to investigate the stability and efficiency of transgene expression in human lung and breast cancer cell lines transduced with vectors based on human immunodeficiency virus type 1 (HIV-1) in vitro and in vivo in nude mouse models of metastasis. H460 lung carcinoma cells and MDA-MB-231 breast carcinoma cells were transduced with lentiviral vectors encoding enhanced green fluorescent protein (EGFP) and beta-galactosidase (beta-Gal), respectively. Transduced H460 cells were administered to nude mice by either intravenous or subcutaneous injection and MDA-MB-231 cells were implanted orthotopically into the mammary fat pad of such mice to induce primary tumor and metastatic lung tumor formation. High-level EGFP expression was maintained in transduced H460 cells in metastatic lung nodules for up to 6 weeks and transgene expression in vitro persisted for at least 23 days after retrieval of EGFP-positive H460 cells from the lungs of tumor-bearing mice and subsequent cultivation in vitro. Likewise, beta-Gal expression levels in metastatic MDA-MB-231 cells in lungs remained high for up to 11 weeks. Southern blot analyses carried out with DNA from lung nodules showed that proviral DNAs in H460 cells were maintained stably over many cell generations and during subsequent reimplantation in vivo. However, molecular analyses revealed variations in transgene copy numbers and expression levels among individual lung clones. These results demonstrate the usefulness of HIV-1-based lentiviral vectors for sustained and stable transgene expression in human lung and breast cancer cell lines in vitro and in vivo.
Collapse
Affiliation(s)
- Lili Bao
- Department of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | | | | | | | | | | |
Collapse
|
42
|
Zarei S, Abraham S, Arrighi JF, Haller O, Calzascia T, Walker PR, Kündig TM, Hauser C, Piguet V. Lentiviral transduction of dendritic cells confers protective antiviral immunity in vivo. J Virol 2004; 78:7843-5. [PMID: 15220461 PMCID: PMC434082 DOI: 10.1128/jvi.78.14.7843-7845.2004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Control of a viral infection in vivo requires a rapid and efficient cytotoxic-T-lymphocyte response. We demonstrate that lentivirus-mediated introduction of antigen in dendritic cells confers a protective antiviral immunity in vivo in a lymphocytic choriomeningitis virus model. Therefore, lentiviral vectors may be excellent vaccine candidates for viral infections.
Collapse
Affiliation(s)
- Shohreh Zarei
- Department of Immunology and Allergy, University Hospital of Geneva, Geneva, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Schauber CA, Tuerk MJ, Pacheco CD, Escarpe PA, Veres G. Lentiviral vectors pseudotyped with baculovirus gp64 efficiently transduce mouse cells in vivo and show tropism restriction against hematopoietic cell types in vitro. Gene Ther 2004; 11:266-75. [PMID: 14737086 DOI: 10.1038/sj.gt.3302170] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The envelope glycoprotein from vesicular stomatitis virus (VSV-G) has been used extensively to pseudotype lentiviral vectors, but has several drawbacks including cytotoxicity, potential for priming of immune responses against transgene products through efficient transduction of antigen-presenting cells (APCs) and sensitivity to inactivation by human complement. As an alternative to VSV-G, we extensively characterized lentiviral vectors pseudotyped with the gp64 envelope glycoprotein from baculovirus both in vitro and in vivo. We demonstrated for the first time that gp64-pseudotyped vectors could be delivered efficiently in vivo in mice via portal vein injection. Following delivery, the efficiency of mouse cell transduction and the transgene expression is comparable to VSV-G-pseudotyped vectors. In addition, we found that gp64-pseudotyped lentiviral vectors could efficiently transduce a variety of cell lines in vitro, although gp64 showed a more restricted tropism than VSV-G, with especially poor ability to transduce hematopoietic cell types including dendritic cells (DCs). Although we found that gp64-pseudotyped vectors are also sensitive to inactivation by human complement, gp64 nevertheless has advantages over VSV-G, because of its lack of cytotoxicity and narrower tropism. Consequently, gp64 is an attractive alternative to VSV-G because it can efficiently transduce cells in vivo and may reduce immune responses against the transgene product or viral vector by avoiding transduction of APCs such as DCs.
Collapse
Affiliation(s)
- C A Schauber
- Cell Genesys Inc., South San Francisco, CA 94080, USA
| | | | | | | | | |
Collapse
|
44
|
Palmowski MJ, Lopes L, Ikeda Y, Salio M, Cerundolo V, Collins MK. Intravenous Injection of a Lentiviral Vector Encoding NY-ESO-1 Induces an Effective CTL Response. THE JOURNAL OF IMMUNOLOGY 2004; 172:1582-7. [PMID: 14734738 DOI: 10.4049/jimmunol.172.3.1582] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Lentiviral vectors can efficiently transduce a variety of nondividing cells, including APCs. We assessed the immunogenicity of a lentiviral vector encoding the melanoma Ag NY-ESO-1 in HLA-A2 transgenic mice. Direct i.v. injection of NY-ESO-1 lentivirus induced NY-ESO-1(157-165)-specific CD8(+) cells, detected ex vivo with an A2/H-2K(b) chimeric class I tetramer. These NY-ESO-1(157-165)-specific CD8(+) cells could be expanded by boosting with an NY-ESO-1 vaccinia virus and could kill NY-ESO-1(157-165) peptide-pulsed targets in vivo. Such direct lentiviral vector injection was similar in potency to the injection of in vitro-transduced dendritic cells (DC). In addition, human monocyte-derived DC transduced by the NY-ESO-1 lentivirus stimulated an NY-ESO-1(157-165)-specific specific CTL clone. These data suggest that direct lentiviral transduction of DC in vivo might provide a powerful immunotherapeutic strategy.
Collapse
MESH Headings
- AIDS Vaccines/administration & dosage
- AIDS Vaccines/genetics
- AIDS Vaccines/immunology
- Animals
- Antigen Presentation/genetics
- Antigen-Presenting Cells/immunology
- Antigen-Presenting Cells/metabolism
- Antigens, Neoplasm/administration & dosage
- Antigens, Neoplasm/genetics
- Antigens, Neoplasm/immunology
- Antigens, Neoplasm/metabolism
- B-Lymphocytes/immunology
- B-Lymphocytes/metabolism
- Cell Line
- Cells, Cultured
- Cytotoxicity, Immunologic/genetics
- Dendritic Cells/cytology
- Dendritic Cells/immunology
- Dendritic Cells/metabolism
- Dendritic Cells/transplantation
- Genetic Vectors
- HIV-1/genetics
- HIV-1/immunology
- Humans
- Injections, Intravenous
- Membrane Proteins/administration & dosage
- Membrane Proteins/genetics
- Membrane Proteins/immunology
- Membrane Proteins/metabolism
- Mice
- Mice, Transgenic
- T-Lymphocytes, Cytotoxic/immunology
- Transduction, Genetic/methods
Collapse
Affiliation(s)
- Michael J Palmowski
- Tumour Immunology Unit, Institute of Molecular Medicine, John Radcliffe Hospital, Oxford, United Kingdom
| | | | | | | | | | | |
Collapse
|
45
|
Okada N, Masunaga Y, Okada Y, Mizuguchi H, Iiyama S, Mori N, Sasaki A, Nakagawa S, Mayumi T, Hayakawa T, Fujita T, Yamamoto A. Dendritic cells transduced with gp100 gene by RGD fiber-mutant adenovirus vectors are highly efficacious in generating anti-B16BL6 melanoma immunity in mice. Gene Ther 2003; 10:1891-902. [PMID: 14502218 DOI: 10.1038/sj.gt.3302090] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Dendritic cells (DCs) are the most potent professional antigen-presenting cells for the initiation of antigen-specific immune responses, and antigen-loaded DCs have been regarded as promising vaccines in cancer immunotherapy. We previously demonstrated that RGD fiber-mutant adenovirus vector (AdRGD) could attain highly efficient gene transduction into human and murine DCs. The aim of the present study is to demonstrate the predominance of ex vivo genetic DC manipulation using AdRGD in improving the efficacy of DC-based immunotherapy targeting gp100, a melanoma-associated antigen (MAA). Vaccination with murine bone marrow-derived DCs transduced with AdRGD encoding gp100 (AdRGD-gp100/mBM-DCs) dramatically improved resistance to B16BL6 melanoma challenge and pulmonary metastasis as compared with immunization with conventional Ad-gp100-transduced mBM-DCs. The improvement in antimelanoma effects upon immunization with AdRGD-gp100/mBM-DCs correlated with enhanced cytotoxic activities of natural killer (NK) cells and B16BL6-specific cytotoxic T lymphocytes (CTLs). Furthermore, in vivo depletion analysis demonstrated that CD8(+) CTLs and NK cells were the predominant effector cells responsible for the anti-B16BL6 immunity induced by vaccination with AdRGD-gp100/mBM-DCs, and that helper function of CD4(+) T cells was necessary for sufficiently eliciting effector activity. These findings clearly revealed that highly efficient MAA gene transduction to DCs by AdRGD could greatly improve the efficacy of DC-based immunotherapy against melanoma.
Collapse
Affiliation(s)
- N Okada
- Department of Biopharmaceutics, Kyoto Pharmaceutical University, Kyoto, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Breckpot K, Dullaers M, Bonehill A, van Meirvenne S, Heirman C, de Greef C, van der Bruggen P, Thielemans K. Lentivirally transduced dendritic cells as a tool for cancer immunotherapy. J Gene Med 2003; 5:654-67. [PMID: 12898635 DOI: 10.1002/jgm.400] [Citation(s) in RCA: 141] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Dendritic cells (DC) are the professional antigen-presenting cells of the immune system, fully equipped to prime naive T cells and thus essential components for cancer immunotherapy. METHODS We tested the influence of several elements (cPPT, trip, WPRE, SIN) on the transduction efficiency of human DC. Human and murine DC were transduced with tNGFR-encoding lentiviruses to assess the effect of transduction on phenotype and function. Human DC were transduced with lentiviruses encoding huIi80MAGE-A3 and murine DC with huIi80tOVA to test antigen presentation. RESULTS A self-inactivating (SIN) lentiviral vector containing the trip element was most efficient in transducing human DC. The transduction of DC with trip/SIN tNGFR encoding lentiviral vectors at MOI 15 resulted in stable gene expression in up to 94.6% (murine) and 88.2% (human) of the mature DC, without perturbing viability, phenotype and function. Human huIi80MAGE-A3-transduced DC were able to stimulate MAGE-A3-specific CD4(+) and CD8(+) T cell clones and could prime both MAGE-A3-specific CD4(+) and CD8(+) T cells in vitro. Murine huIi80tOVA-transduced DC were able to present OVA peptides in the context of MHC class I and class II in vitro and induced a strong OVA-specific cytotoxic T lymphocyte response in vivo, that was protective against subsequent challenge with OVA-expressing tumor cells. CONCLUSIONS We show that, using lentiviral vectors, efficient gene transfer in human and murine DC can be obtained and that these DC can elicit antigen-specific immune responses in vitro and in vivo. The composition of the transfer vector has a major impact on the transduction efficiency.
Collapse
Affiliation(s)
- Karine Breckpot
- Department of Physiology and Immunology, Medical School of the Vrije Universiteit Brussel (VUB), Laarbeeklaan 103/E, 1090 Brussels, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Negroiu G, Dwek RA, Petrescu SM. The inhibition of early N-glycan processing targets TRP-2 to degradation in B16 melanoma cells. J Biol Chem 2003; 278:27035-42. [PMID: 12719423 DOI: 10.1074/jbc.m303167200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Tyrosinase-related protein-2 (TRP-2) is a DOPAchrome tautomerase catalyzing a distal step in the melanin synthesis pathway. Similar to the other two melanogenic enzymes belonging to the TRP gene family, tyrosinase and TRP-1, TRP-2 is expressed in melanocytes and melanoma cells. Despite the increasing evidence of its efficiency as a melanoma antigen, little is known about the maturation and intracellular trafficking of TRP-2. Here we show that TRP-2 is mainly distributed in the TGN of melanoma cells instead of being confined solely to melanosomes. This, together with the plasma membrane occasional localization observed by immunofluorescence, suggest the TRP-2 participation in a recycling pathway, which could include or not the melanosomes. Using pulse-chase experiments we show that the TRP-2 polypeptide folds in the endoplasmic reticulum (ER) in the presence of calnexin, until it reaches a dithiothreitol-resistant conformation enabling its ER exit to the Golgi. If N-glycosylation inhibitors prevent the association with calnexin, the TRP-2 nascent chain undergoes an accelerated degradation process. This process is delayed in the presence of proteasomal inhibitors, indicating that the misfolded chain is retro-translocated from the ER into the cytosol and degraded in proteasomes. This is a rare example in which calnexin although indispensable for the nascent chain folding is not required for its targeting to degradation. Therefore TRP-2 may prove to be a good model to document the calnexin-independent retro-translocation process of proteasomally degraded proteins. Clearly, TRP-2 has a distinct maturation pathway from tyrosinase and TRP-1 and possibly a second regulatory function within the cell.
Collapse
Affiliation(s)
- Gabriela Negroiu
- Institute of Biochemistry of the Romanian Academy, Splaiul Independentei 296, 77700 Bucharest, Romania
| | | | | |
Collapse
|
48
|
Abstract
Dendritic cells (DCs) constitute a specialised system of antigen-presenting cells with a high capacity to induce and to modulate the immune response against microbial, tumour and self-antigens. New techniques to generate large amounts of DCs together with the molecular identification of human tumour-associated antigens (TAA) have opened new ways for antigen-specific cancer immunotherapies. DCs loaded either with TAA-derived MHC class I-specific synthetic peptides or with whole tumour cell preparations have been used in numerous clinical trials evaluating the efficacy of DCs in patients with cancer. However, the disadvantages of DCs pulsed with synthetic peptides from TAA include the uncertainty regarding the longevity of antigen presentation, the restriction by the patient's haplotype and the relatively low number of known MHC class I and in particular of MHC class II helper cell-related epitopes. Whole tumour cell preparations are difficult to standardise, and they depend on the availability of tumour cells. Thus the utilisation of viral vectors genetically modified to express TAA for the ex vivo transduction of DCs is an attractive alternative to achieve a MHC I- and MHC II-restricted presentation of tumoural antigens. To induce protective anti-tumoural immune response an increasing number of modified viral vectors have been used to transduce DCs. Although high transduction efficacies were reported for several viruses, analysis of the interaction of viral vectors with DCs has revealed several viral mechanisms that interfere with main functions of DCs, dampening somewhat the initial optimism in the field of DC transduction. However, promising results with different vectors have been achieved. In this review we summarise available data and discuss advantages and drawbacks of currently available vectors.
Collapse
Affiliation(s)
- J Humrich
- Department of Dermatology, University of Erlangen, Hartmannstrasse 14, 91052 Erlangen, Germany
| | | |
Collapse
|
49
|
Abstract
Lentiviral-mediated gene delivery holds significant promise for sustained gene expression within living systems. Vesicular stomatitis virus glycoprotein-pseudotyped human immunodeficiency virus type 1-based lentiviral vectors can be used to introduce transgenes in a broad spectrum of dividing as well as nondividing cells. In the current study, we construct a lentiviral vector carrying two reporter genes separated by an internal ribosomal entry site and utilize that virus in delivering both genes into neuroblastoma cells in cell culture and into cells implanted in living mice. We utilize two reporter genes, a mutant herpes simplex virus type 1 (HSV1) sr39tk as a reporter gene compatible with positron emission tomography (PET) and a bioluminescent optical reporter gene, firefly luciferase (Fluc), to image expression in living mice by an optical charge-coupled device (CCD) camera. By using this lentivirus, neuroblastoma (N2a) cells are stably transfected and a high correlation (R(2) = 0.91) between expressions of the two reporter genes in cell culture is established. Imaging of both reporter genes using microPET and optical CCD camera in living mice is feasible, with the optical approach being more sensitive, and a high correlation (R(2) = 0.86) between gene expressions is again observed in lentiviral-infected N2a tumor xenografts. Indirect imaging of HSV1-sr39tk suicide gene therapy utilizing Fluc is also feasible and can be detected with increased sensitivity by using the optical CCD. These preliminary results validate the use of lentiviral vectors carrying reporter genes for multimodality imaging of gene expression and should have many applications, including imaging of xenografts, metastasis, and cell trafficking as well as noninvasive monitoring of lentiviral-mediated gene delivery and expression.
Collapse
Affiliation(s)
- Abhijit De
- The Crump Institute for Molecular Imaging, University of California at Los Angeles School of Medicine, Los Angeles, California 90095-1770, USA
- Department of Molecular & Medical Pharmacology, University of California at Los Angeles School of Medicine, Los Angeles, California 90095-1770, USA
| | - Xiaoman Zhou Lewis
- Department of Molecular & Medical Pharmacology, University of California at Los Angeles School of Medicine, Los Angeles, California 90095-1770, USA
| | - Sanjiv Sam Gambhir
- The Crump Institute for Molecular Imaging, University of California at Los Angeles School of Medicine, Los Angeles, California 90095-1770, USA
- Department of Molecular & Medical Pharmacology, University of California at Los Angeles School of Medicine, Los Angeles, California 90095-1770, USA
- UCLA–Jonsson Comprehensive Cancer Center, University of California at Los Angeles School of Medicine, Los Angeles, California 90095-1770, USA
- Department of Biomathematics, University of California at Los Angeles School of Medicine, Los Angeles, California 90095-1770, USA
- To whom correspondence and reprint requests should be addressed at the Crump Institute for Molecular Imaging, Department of Molecular & Medical Pharmacology, UCLA School of Medicine, B3-399A BRI, 700 Westwood Plaza, Los Angeles, CA 90095-1770. Fax: (310) 209-4655.
| |
Collapse
|
50
|
Rossi GR, Mautino MR, Morgan RA. High-efficiency lentiviral vector-mediated gene transfer into murine macrophages and activated splenic B lymphocytes. Hum Gene Ther 2003; 14:385-91. [PMID: 12659679 DOI: 10.1089/104303403321208989] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The goal of the present report was to determine if lentiviral vectors could mediate gene transfer into murine terminally differentiated macrophages and mature B lymphocytes as a new strategy of gene delivery into professional antigen-presenting cells (APC). We demonstrated that nondividing tissue resident macrophages were efficiently transduced in vitro by lentiviral vectors. Gene transfer efficiencies of up to 90% were demonstrated using a green fluorescent protein (GFP) reporter gene-containing vector and expression was stable for the length of cell culture. Transduced macrophages were functionally competent, preserving their phagocytic activity, accessory cell function, interleukin (IL)-12 secretion, and nitric oxide (NO) production similar to control untransduced macrophages. Lentiviral vector mediated transduction of CD19(+) B cell blasts was demonstrated to be in the range of 60%-70% GFP-positive cells. These transduced cells retain the ability to upregulate CD80 and CD86 similar to control B cell cultures. In addition, we show that the human immunodeficiency virus type 1 (HIV-1) accessory proteins Nef, Vpr, Vif, and Vpu are not required for the transduction of both resident macrophages and activated B lymphoblasts. We conclude that HIV-1-based lentiviral vectors can mediate efficient gene transfer into primary murine macrophages and mature B lymphocytes.
Collapse
Affiliation(s)
- Gabriela R Rossi
- National Cancer Institute, Building 10, Room 2B04, National Institutes of Health, 10 Center Drive, MSC 1502, Bethesda, MD 20892, USA
| | | | | |
Collapse
|