1
|
Lara-Navarro IJ, Jave-Suárez LF, Marchal JA, Jaloma-Cruz AR. CRISPR/Cas9 Edition of the F9 Gene in Human Mesenchymal Stem Cells for Hemophilia B Therapy. Life (Basel) 2024; 14:1640. [PMID: 39768347 PMCID: PMC11676118 DOI: 10.3390/life14121640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/29/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
Hemophilia B is a genetic disorder characterized by clotting factor IX deficiency and bleeding in joints and muscles. Current treatments involve intravenous infusion of plasma-derived products or recombinant proteins, which have limited efficacy due to the short half-life of infused proteins. Recently, gene therapy for bleeding disorders has offered a potential solution. This study aimed to develop an in vitro gene therapy model using the CRISPR/Cas9 system to incorporate the F9 cDNA in human mesenchymal stem cells (hMSCs) to produce clotting factor IX. RNA guide sequences targeting the promoter-exon 1 region of the F9 gene were designed to incorporate a wild-type F9 cDNA into the cells. Knockin was performed with the CRISPR/Cas9 system and pDONOR-CMV/cDNAF9/IRES/EGFP vector template recombination in Lenti-X HEK293 cells and MSCs. A lentiviral F9 cDNA vector was designed as a FIX secretor model to validate the CRISPR/Cas9 system. Results showed successful gene editing and F9 expression in both cell models, although editing efficiency was lower in hMSCs. Future investigations will focus on improving gene editing efficiency using different transfection conditions or hybrid methodologies. This study demonstrates the potential of CRISPR/Cas9-based gene therapy in hMSCs as a target for hemophilia B. Further optimizations are required to translate these findings into clinical applications.
Collapse
Affiliation(s)
- Irving Jair Lara-Navarro
- Doctorado en Genética Humana, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico;
| | - Luis Felipe Jave-Suárez
- División de Inmunología, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara 44340, Jalisco, Mexico;
| | - Juan Antonio Marchal
- Departamento de Anatomía y Embriología Humana, Universidad de Granada, 18012 Granada, Spain;
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), 18100 Granada, Spain
- Excellence Research Unit Modelling Nature (MNat), BioFab i3D-Biofabricación y 3D (Bio) Printing Laboratory Granada, Universidad de Granada, 18100 Granada, Spain
| | - Ana Rebeca Jaloma-Cruz
- División de Genética, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara 44340, Jalisco, Mexico
| |
Collapse
|
2
|
Krishnan SR, Liu C, Bochenek MA, Bose S, Khatib N, Walters B, O’Keeffe L, Facklam A, Langer R, Anderson DG. A wireless, battery-free device enables oxygen generation and immune protection of therapeutic xenotransplants in vivo. Proc Natl Acad Sci U S A 2023; 120:e2311707120. [PMID: 37738292 PMCID: PMC10556620 DOI: 10.1073/pnas.2311707120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 08/10/2023] [Indexed: 09/24/2023] Open
Abstract
The immune isolation of cells within devices has the potential to enable long-term protein replacement and functional cures for a range of diseases, without requiring immune suppressive therapy. However, a lack of vasculature and the formation of fibrotic capsules around cell immune-isolating devices limits oxygen availability, leading to hypoxia and cell death in vivo. This is particularly problematic for pancreatic islet cells that have high O2 requirements. Here, we combine bioelectronics with encapsulated cell therapies to develop the first wireless, battery-free oxygen-generating immune-isolating device (O2-Macrodevice) for the oxygenation and immune isolation of cells in vivo. The system relies on electrochemical water splitting based on a water-vapor reactant feed, sustained by wireless power harvesting based on a flexible resonant inductive coupling circuit. As such, the device does not require pumping, refilling, or ports for recharging and does not generate potentially toxic side products. Through systematic in vitro studies with primary cell lines and cell lines engineered to secrete protein, we demonstrate device performance in preventing hypoxia in ambient oxygen concentrations as low as 0.5%. Importantly, this device has shown the potential to enable subcutaneous (SC) survival of encapsulated islet cells, in vivo in awake, freely moving, immune-competent animals. Islet transplantation in Type I Diabetes represents an important application space, and 1-mo studies in immune-competent animals with SC implants show that the O2-Macrodevice allows for survival and function of islets at high densities (~1,000 islets/cm2) in vivo without immune suppression and induces normoglycemia in diabetic animals.
Collapse
Affiliation(s)
- Siddharth R. Krishnan
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Anesthesiology, Boston Children’s Hospital, Boston, MA02115
| | - Claudia Liu
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Anesthesiology, Boston Children’s Hospital, Boston, MA02115
| | - Matthew A. Bochenek
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Anesthesiology, Boston Children’s Hospital, Boston, MA02115
| | - Suman Bose
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Anesthesiology, Boston Children’s Hospital, Boston, MA02115
| | - Nima Khatib
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Anesthesiology, Boston Children’s Hospital, Boston, MA02115
| | - Ben Walters
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Anesthesiology, Boston Children’s Hospital, Boston, MA02115
| | - Laura O’Keeffe
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Anesthesiology, Boston Children’s Hospital, Boston, MA02115
| | - Amanda Facklam
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Bioengineering, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Robert Langer
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Anesthesiology, Boston Children’s Hospital, Boston, MA02115
- Department of Bioengineering, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA02139
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Daniel G. Anderson
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Anesthesiology, Boston Children’s Hospital, Boston, MA02115
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA02139
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA02139
| |
Collapse
|
3
|
Ashimova A, Yegorov S, Negmetzhanov B, Hortelano G. Cell Encapsulation Within Alginate Microcapsules: Immunological Challenges and Outlook. Front Bioeng Biotechnol 2019; 7:380. [PMID: 31850335 PMCID: PMC6901392 DOI: 10.3389/fbioe.2019.00380] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 11/15/2019] [Indexed: 12/29/2022] Open
Abstract
Cell encapsulation is a bioengineering technology that provides live allogeneic or xenogeneic cells packaged in a semipermeable immune-isolating membrane for therapeutic applications. The concept of cell encapsulation was first proposed almost nine decades ago, however, and despite its potential, the technology has yet to deliver its promise. The few clinical trials based on cell encapsulation have not led to any licensed therapies. Progress in the field has been slow, in part due to the complexity of the technology, but also because of the difficulties encountered when trying to prevent the immune responses generated by the various microcapsule components, namely the polymer, the encapsulated cells, the therapeutic transgenes and the DNA vectors used to genetically engineer encapsulated cells. While the immune responses induced by polymers such as alginate can be minimized using highly purified materials, the need to cope with the immunogenicity of encapsulated cells is increasingly seen as key in preventing the immune rejection of microcapsules. The encapsulated cells are recognized by the host immune cells through a bidirectional exchange of immune mediators, which induce both the adaptive and innate immune responses against the engrafted capsules. The potential strategies to cope with the immunogenicity of encapsulated cells include the selective diffusion restriction of immune mediators through capsule pores and more recently inclusion in microcapsules of immune modulators such as CXCL12. Combining these strategies with the use of well-characterized cell lines harboring the immunomodulatory properties of stem cells should encourage the incorporation of cell encapsulation technology in state-of-the-art drug development.
Collapse
Affiliation(s)
- Assem Ashimova
- Department of Biology, School of Science and Humanities, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Sergey Yegorov
- Department of Biology, School of Science and Humanities, Nazarbayev University, Nur-Sultan, Kazakhstan
- Department of Pedagogical Mathematics and Natural Science, Faculty of Education and Humanities, Suleyman Demirel University, Almaty, Kazakhstan
| | - Baurzhan Negmetzhanov
- Department of Biology, School of Science and Humanities, Nazarbayev University, Nur-Sultan, Kazakhstan
- National Laboratory Astana, Center for Life Sciences, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Gonzalo Hortelano
- Department of Biology, School of Science and Humanities, Nazarbayev University, Nur-Sultan, Kazakhstan
| |
Collapse
|
4
|
Sayyar B, Dodd M, Marquez-Curtis L, Janowska-Wieczorek A, Hortelano G. Fibronectin-Alginate microcapsules improve cell viability and protein secretion of encapsulated Factor IX-engineered human mesenchymal stromal cells. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2016; 43:318-27. [PMID: 24564349 DOI: 10.3109/21691401.2014.885446] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Continuous delivery of proteins by engineered cells encapsu-lated in biocompatible polymeric microcapsules is of considerable therapeutic potential. However, this technology has not lived up to expectations due to inadequate cell--matrix interactions and subsequent cell death. In this study we hypoth-esize that the presence of fibronectin in an alginate matrix may enhance the viability and functionality of encapsulated human cord blood-derived mesenchymal stromal cells (MSCs) expressing the human Factor IX (FIX) gene. MSCs were encapsulated in alginate-PLL microcapsules containing 10, 100, or 500 μg/ml fibronectin to ameliorate cell survival. MSCs in microcapsules with 100 and 500 μg/ml fibronectin demonstrated improved cell viability and proliferation and higher FIX secretion compared to MSCs in non-supplemented microcapsules. In contrast, 10 μg/ml fibronectin did not significantly affect the viability and protein secretion from the encapsulated cells. Differentiation studies demonstrated osteogenic (but not chondrogenic or adipogenic) differentiation capability and efficient FIX secretion of the enclosed MSCs in the fibronectin-alginate suspension culture. Thus, the use of recombinant MSCs encapsulated in fibronectin-alginate microcapsules in basal or osteogenic cultures may be of practical use in the treatment of hemophilia B.
Collapse
|
5
|
Abstract
INTRODUCTION Islet transplantation can treat the most severe cases of type 1 diabetes but it currently requires deceased donor pancreata as an islet source and chronic immunosuppression to prevent rejection and recurrence of autoimmunity. Stem cell-derived insulin-producing cells may address the shortage of organ donors, whereas cell encapsulation may reduce or eliminate the requirement for immunosuppression, minimizing the risks associated with the islet transplantation procedure, and potentially prolonging graft survival. AREAS COVERED This review focuses on the design principles for immunoisolation devices and on stem cell differentiation into insulin-producing cell products. The reader will gain understanding of the different types of immunoisolation devices and the key parameters that affect the outcome of the encapsulated graft. Progresses in stem cell differentiation towards mature endocrine islet cells, including the most recent clinical trials and the challenges associated with the application of immunoisolation devices designed for primary islets to stem-cell products, are also discussed. EXPERT OPINION Recent advancements in the field of stem cell-derived islet cell products and immunoisolation strategies hold great promise for type 1 diabetes. However, a combination product including both cells and an immunoisolation strategy still needs to be optimized and tested for safety and efficacy.
Collapse
Affiliation(s)
- Alice Anna Tomei
- University of Miami Miller School of Medicine, Diabetes Research Institute , 1450 NW 10th Avenue, Miami, FL 33136 , USA +1 305 243 3469 ;
| | | | | |
Collapse
|
6
|
Dodd M, Marquez-Curtis L, Janowska-Wieczorek A, Hortelano G. Sustained expression of coagulation factor IX by modified cord blood-derived mesenchymal stromal cells. J Gene Med 2014; 16:131-42. [DOI: 10.1002/jgm.2769] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 06/12/2014] [Accepted: 06/16/2014] [Indexed: 01/07/2023] Open
Affiliation(s)
- Megan Dodd
- School of Biomedical Engineering; McMaster University; Hamilton ON Canada
- Department of Biomedical Engineering; Jimma Institute of Technology; Jimma Ethiopia
| | - Leah Marquez-Curtis
- Centre for Innovation (formerly Research and Development); Canadian Blood Services; Edmonton AB Canada
| | - Anna Janowska-Wieczorek
- Centre for Innovation (formerly Research and Development); Canadian Blood Services; Edmonton AB Canada
- Department of Medicine; University of Alberta; Edmonton AB Canada
| | - Gonzalo Hortelano
- School of Biomedical Engineering; McMaster University; Hamilton ON Canada
- Department of Pathology & Molecular Medicine; McMaster University; Hamilton ON Canada
- Department of Biology & Chemistry, School of Science and Technology; Nazarbayev University; Astana Republic of Kazakhstan
| |
Collapse
|
7
|
Sandvig I, Karstensen K, Rokstad AM, Aachmann FL, Formo K, Sandvig A, Skjåk-Braek G, Strand BL. RGD-peptide modified alginate by a chemoenzymatic strategy for tissue engineering applications. J Biomed Mater Res A 2014; 103:896-906. [DOI: 10.1002/jbm.a.35230] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 04/15/2014] [Accepted: 05/13/2014] [Indexed: 01/20/2023]
Affiliation(s)
- Ioanna Sandvig
- MI Lab and Department of Circulation and Medical Imaging; Norwegian University of Science and Technology; Trondheim Norway
| | - Kristin Karstensen
- Department of Biotechnology, NOBIPOL; Norwegian University of Science and Technology; Trondheim Norway
| | - Anne Mari Rokstad
- Department of Cancer Research and Molecular Medicine; Norwegian University of Science and Technology; Trondheim Norway
- Central Norwegian Regional Health Authority; St. Olav's Hospital, Trondheim University Hospital; Trondheim Norway
| | - Finn Lillelund Aachmann
- Department of Biotechnology, NOBIPOL; Norwegian University of Science and Technology; Trondheim Norway
| | - Kjetil Formo
- Department of Biotechnology, NOBIPOL; Norwegian University of Science and Technology; Trondheim Norway
| | - Axel Sandvig
- MI Lab and Department of Circulation and Medical Imaging; Norwegian University of Science and Technology; Trondheim Norway
- Department of Neurosurgery; Umeå University Hospital; Umeå Sweden
| | - Gudmund Skjåk-Braek
- Department of Biotechnology, NOBIPOL; Norwegian University of Science and Technology; Trondheim Norway
| | - Berit Løkensgard Strand
- Department of Biotechnology, NOBIPOL; Norwegian University of Science and Technology; Trondheim Norway
- Department of Cancer Research and Molecular Medicine; Norwegian University of Science and Technology; Trondheim Norway
- Central Norwegian Regional Health Authority; St. Olav's Hospital, Trondheim University Hospital; Trondheim Norway
| |
Collapse
|
8
|
Sayyar B, Dodd M, Marquez-Curtis L, Janowska-Wieczorek A, Hortelano G. Cell-matrix Interactions of Factor IX (FIX)-engineered human mesenchymal stromal cells encapsulated in RGD-alginate vs. Fibrinogen-alginate microcapsules. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2013; 42:102-9. [DOI: 10.3109/21691401.2013.794354] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
9
|
Sayyar B, Dodd M, Wen J, Ma S, Marquez-Curtis L, Janowska-Wieczorek A, Hortelano G. Encapsulation of factor IX-engineered mesenchymal stem cells in fibrinogen-alginate microcapsules enhances their viability and transgene secretion. J Tissue Eng 2012; 3:2041731412462018. [PMID: 23316273 PMCID: PMC3540750 DOI: 10.1177/2041731412462018] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Cell microencapsulation holds significant promise as a strategy for cellular therapies; however, inadequate survival and functionality of the enclosed cells limit its application in hemophilia treatment. Here, we evaluated the use of alginate-based microcapsules to enhance the viability and transgene secretion of human cord blood–derived mesenchymal stem cells in three-dimensional cultures. Given the positive effects of extracellular matrix molecules on mesenchymal stem cell growth, we tested whether fibrinogen-supplemented alginate microcapsules can improve the efficiency of encapsulated factor IX–engineered mesenchymal stem cells as a treatment of hemophilia B. We found that fibrinogen-supplemented alginate microcapsules (a) significantly enhanced the viability and proliferation of factor IX–engineered mesenchymal stem cells and (b) increased factor IX secretion by mesenchymal stem cells compared to mesenchymal stem cells in nonsupplemented microcapsules. Moreover, we observed the osteogenic, but not chondrogenic or adipogenic, differentiation capability of factor IX–engineered cord blood mesenchymal stem cells and their efficient factor IX secretion while encapsulated in fibrinogen-supplemented alginate microcapsules. Thus, the use of engineered mesenchymal stem cells encapsulated in fibrinogen-modified microcapsules may have potential application in the treatment of hemophilia or other protein deficiency diseases.
Collapse
Affiliation(s)
- Bahareh Sayyar
- School of Biomedical Engineering, McMaster University, Hamilton, ON, Canada
| | | | | | | | | | | | | |
Collapse
|
10
|
Thakur A, Sengupta R, Matsui H, Lillicrap D, Jones K, Hortelano G. Characterization of viability and proliferation of alginate-poly-L-lysine-alginate encapsulated myoblasts using flow cytometry. J Biomed Mater Res B Appl Biomater 2010; 94:296-304. [PMID: 20586078 DOI: 10.1002/jbm.b.31648] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Genetically modified cells encapsulated in alginate-poly-L-lysine-alginate (APA) are being developed to deliver therapeutic products to treat a variety of diseases. The characterization of the encapsulated cells thus becomes paramount. This study reports a novel method to assess the viability, granularity and proliferation of encapsulated cells based on flow cytometry. The in vitro viability of encapsulated G8 murine myoblasts secreting canine FVIII (cFVIII) measured by flow cytometry was comparable to the traditional trypan blue exclusion method and both correlated with cFVIII secretion levels. In contrast, after implantation into mice, only viability measured by flow cytometry correlated with cFVIII secretion. Further, flow cytometry analysis of encapsulated cells maintained in vitro and in vivo revealed a greater fraction of granular cells compared to free cells, suggesting that encapsulation influences the morphology (cytoplasmic composition) of cells within APA microcapsules. Interestingly, the proliferation study showed that encapsulated cells proliferate faster, on average, and were more heterogeneous in vivo compared to in vitro culture conditions, suggesting that encapsulated cell proliferation is complex and environment-dependent. In conclusion, we show that flow cytometry analysis allows for a more consistent and comprehensive examination of encapsulated cells to aid in the development of cell therapy protocols.
Collapse
Affiliation(s)
- Ajit Thakur
- School of Biomedical Engineering, McMaster University, Hamilton L8N3Z5, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
11
|
De Castro M, Orive G, Hernández RM, Bartkowiak A, Brylak W, Pedraz JL. Biocompatibility andin vivoevaluation of oligochitosans as cationic modifiers of alginate/Ca microcapsules. J Biomed Mater Res A 2009; 91:1119-30. [PMID: 19145624 DOI: 10.1002/jbm.a.32270] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
12
|
Friso A, Tomanin R, Alba S, Gasparotto N, Puicher EP, Fusco M, Hortelano G, Muenzer J, Marin O, Zacchello F, Scarpa M. Reduction of GAG storage in MPS II mouse model following implantation of encapsulated recombinant myoblasts. J Gene Med 2006; 7:1482-91. [PMID: 15966019 DOI: 10.1002/jgm.790] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Hunter syndrome, mucopolysaccharidosis type II (MPS II), is a X-linked inherited disorder caused by the deficiency of the enzyme iduronate-2-sulfatase (IDS), involved in the lysosomal catabolism of the glycosaminoglycans (GAG) dermatan and heparan sulfate. Such a deficiency leads to the intracellular accumulation of undegraded GAG and eventually to a progressive severe clinical pattern. Many attempts have been made in the last two to three decades to identify possible therapeutic strategies for the disorder, including gene therapy and somatic cell therapy. METHODS In this study we evaluated the intraperitoneal implantation of allogeneic myoblasts over-expressing IDS, enclosed in alginate microcapsules, in the MPS II mouse model. Animals were monitored for 8 weeks post-implantation, during which plasma and tissue IDS levels, as well as tissue and urinary GAG contents, were measured. RESULTS AND CONCLUSIONS Induced enzyme activity occurred both in the plasma and in the different tissues analyzed. A significant decrease in urinary undegraded GAG between the fourth and the sixth week of treatment was observed. Moreover, a biochemical reduction of GAG deposits was measured 8 weeks after treatment in the liver and kidney, on average 30 and 38%, respectively, while in the spleen GAG levels were almost normalized. Finally, the therapeutic effect was confirmed by histolochemical examination of the same tissues. Such effects were obtained following implantation of about 1.5 x 10(6) recombinant cells/animal. Taken together, these results represent a clear evidence of the therapeutic efficacy of this strategy in the MPS II mouse model, and encourage further evaluation of this approach for potential treatment of human beings.
Collapse
Affiliation(s)
- Adelaide Friso
- Gene Therapy Laboratory, Centre for Rare Diseases and Department of Pediatrics, University of Padova, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
De Castro M, Orive G, Gascón AR, Hernandez RM, Pedraz JL. Evaluation of human serum albumin as a substitute of foetal bovine serum for cell culture. Int J Pharm 2006; 310:8-14. [PMID: 16434155 DOI: 10.1016/j.ijpharm.2005.10.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2005] [Revised: 10/06/2005] [Accepted: 10/15/2005] [Indexed: 11/24/2022]
Abstract
Cell microencapsulation requires clinically approved materials for their use in pharmaceutical and/or biomedical applications. The overwhelming majority of the literature has used the classical alginate-poly-l-lysine-alginate (APA) capsules for cell immobilization. Although alginate is granted with the medical approval, some of the remaining components such as foetal bovine serum (FBS), an essential ingredient of cell culture media, are not in accordance with the guidelines affirmed by the American Society for Testing and Materials (ASTM) and Food and Drug Administration (FDA). In this paper, human serum albumin (HSA), a medically approved substance, was evaluated as a potential substitute of FBS. The effect of different percentages of FBS and HSA was studied on the proliferation rate, viability and protein production of two different cell lines (C2C12 and baby hamster kidney (BHK) cells), maintained in culture and immobilized in APA microcapsules. Results show that substitution of FBS by HSA reduced the functionality of both non-encapsulated and encapsulated BHK cells. However, immobilized C2C12 cells presented the highest level of viability and a reduction in protein production of 25% when 1% HSA was used. It can be concluded that HSA might be a possible substitute of FBS in order to maintain or transport encapsulated C2C12 cells for short periods of time before implantation.
Collapse
Affiliation(s)
- M De Castro
- Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of the Basque Country, Vitoria-Gasteiz, Spain
| | | | | | | | | |
Collapse
|
14
|
Wen J, Vargas AG, Ofosu FA, Hortelano G. Sustained and therapeutic levels of human factor IX in hemophilia B mice implanted with microcapsules: key role of encapsulated cells. J Gene Med 2006; 8:362-9. [PMID: 16311997 DOI: 10.1002/jgm.852] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND A gene therapy delivery system based on microcapsules enclosing recombinant cells engineered to secrete a therapeutic protein was explored in this study. In order to prevent immune rejection of the delivered cells, they were enclosed in non-antigenic biocompatible alginate microcapsules prior to being implanted intraperitoneally into mice. We have shown that encapsulated C2C12 myoblasts can temporarily deliver therapeutic levels of factor IX (FIX) in mice, but the C2C12 myoblasts elicited an immune response to FIX. In this study we report the use of mouse fetal G8 myoblasts secreting hFIX in hemophilia mice. METHODS Mouse G8 myoblasts were transduced with MFG-FIX vector. A pool of recombinant G8 myoblasts secreting approximately 1500 ng hFIX/10(6) cells/24 h in vitro were enclosed in biocompatible alginate microcapsules and implanted intraperitoneally into immunocompetent C57BL/6 and hemophilic mice. RESULTS Circulating levels of hFIX in treated mice reached approximately 400 ng/ml for at least 120 days (end of experiment). Interestingly, mice treated with encapsulated G8 myoblasts did not develop anti-hFIX antibodies. Activated partial thromboplastin time (APTT) of plasmas obtained from treated hemophilic mice was reduced from 107 to 82 sec on day 60 post-treatment, and whole blood clotting time (WBCT) was also corrected from 7-9 min before treatment to 3-5 min following microcapsule implantation. Further, mice were protected against bleeding following major trauma. Thus, the FIX delivery in vivo was biologically active. CONCLUSIONS Our findings suggest that the type of cells encapsulated play a key role in the generation of immune responses against the transgene. Further, a judicious selection of encapsulated cells is critical for achieving sustained gene expression. Our findings support the feasibility of encapsulated G8 myoblasts as a gene therapy approach for hemophilia B.
Collapse
Affiliation(s)
- Jianping Wen
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, L8N 3Z5 Canada
| | | | | | | |
Collapse
|
15
|
Weber W, Rinderknecht M, Daoud-El Baba M, de Glutz FN, Aubel D, Fussenegger M. CellMAC: a novel technology for encapsulation of mammalian cells in cellulose sulfate/pDADMAC capsules assembled on a transient alginate/Ca2+ scaffold. J Biotechnol 2004; 114:315-26. [PMID: 15522441 DOI: 10.1016/j.jbiotec.2004.07.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2004] [Revised: 07/14/2004] [Accepted: 07/15/2004] [Indexed: 11/17/2022]
Abstract
Microencapsulation of desired mammalian cell phenotypes in biocompatible polymer matrices represents a powerful technology for cell-based therapies and biopharmaceutical manufacturing of protein therapeutics. We have pioneered a novel jet break-up-compatible process for encapsulation of mammalian cells in cellulose sulfate (CS)/poly-diallyl-dimethyl-ammoniumchloride (pDADMAC) (CellMAC) capsules. CS and pDADMAC polymerize on a transient ad hoc co-assembled Ca2+/alginate scaffold and form homogenous capsules following dissolution of the alginate core by Ca2+ chelating agents. CellMAC capsules exhibited excellent mechanical properties and showed a molecular weight cut-off between 43 and 77kDa. Chinese hamster ovary cells engineered for constitutive production of the glycohormone erythropoietin reached high viable cell densities when grown inside CellMAC capsules, while specific erythropoietin (EPO) productivities matched those of conventional non-encapsulated control cultures. CellMAC-encapsulated EPO-production cell lines induced increased EPO serum levels when implanted intraperitoneally into mice and provided robust glycoprotein production during standard stirred-tank bioreactor operation. We expect the CellMAC technology to foster advances in therapeutic encapsulation of engineered cell lines as well as manufacturing of protein pharmaceuticals.
Collapse
Affiliation(s)
- Wilfried Weber
- Institute of Biotechnology, Swiss Federal Institute of Technology, ETH Hoenggerberg, CH-8093 Zurich, Switzerland
| | | | | | | | | | | |
Collapse
|
16
|
Abstract
The goal of all haemophilia therapy is to prevent bleeding and its associated complications. Replacement by factor concentrates can only ever be suboptimum, and efforts are being made to correct the genetic cause of the disorder. Haemophilia is an ideal candidate for gene therapy, as it is caused by mutations in a single gene. A number of vectors have been used in an attempt to obtain therapeutic levels of factor VIII and factor IX in animal models, with some success. A number of phase 1 clinical trials have been conducted, and, although connection of the bleeding disorder was neither complete nor long-lasting, they do offer hope for a permanent gene-therapy cure for the disease.
Collapse
Affiliation(s)
- M K L Chuah
- Center for Transgene Technology and Gene Therapy, Flanders Interuniversity Institute for Biotechnology, University of Leuven, 3000 Leuven, Belgium
| | | | | |
Collapse
|
17
|
Li AA, MacDonald NC, Chang PL. Effect of growth factors and extracellular matrix materials on the proliferation and differentiation of microencapsulated myoblasts. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2004; 14:533-49. [PMID: 12901436 DOI: 10.1163/15685620360674236] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
An alternative approach to gene therapy via non-autologous somatic gene therapy is to implant genetically-engineered cells protected from immune rejection with microcapsules to deliver a therapeutic gene product. This delivery system may be optimized by using myoblast cell lines which can undergo terminal differentiation into myotubes, thus removing the potential problems of tumorigenesis and space restriction. However, once encapsulated, myoblasts do not proliferate or differentiate well. We now report the use of extracellular matrix components and growth factors to improve these properties. Addition of matrix material collagen, merosin or laminin all stimulated myoblast proliferation, particularly when merosin and laminin were combined; however, none, except collagen, stimulated differentiation. Inclusion of basic fibroblast growth factor (bFGF) within the microcapsules in the presence of collagen stimulated proliferation of C2C12 myoblasts, as well as differentiation into myotubes. Inclusion of insulin growth factor (IGF-II) in the microcapsules had no effect on proliferation but accelerated myoblasts differentiation. When the above matrix material and growth factors were provided in combination, the use of merosin and laminin together with bFGF and IGF-II stimulated myoblast proliferation but had no effect on differentiation. In contrast, the cocktail containing bFGF, IGF-II and collagen induced increased myoblasts proliferation and subsequent differentiation. Hence, the combination of bFGF, IGF-II and collagen appears optimal in improving proliferation and differentiation in encapsulated myoblasts.
Collapse
Affiliation(s)
- Anna Aihua Li
- Department of Pediatrics, Health Sciences Centre, Room 3N18, McMaster University, 1200 Main Street West, Hamilton, Ontario, L8S 4J9, Canada
| | | | | |
Collapse
|
18
|
Zhang J, Xu L, Haskins ME, Parker Ponder K. Neonatal gene transfer with a retroviral vector results in tolerance to human factor IX in mice and dogs. Blood 2004; 103:143-51. [PMID: 12969967 DOI: 10.1182/blood-2003-06-2181] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The effect of neonatal gene transfer on antibody formation was determined using a retroviral vector (RV) expressing human factor IX (hFIX). Normal mice from different strains injected intravenously with RV as newborns achieved therapeutic levels of hFIX without antibody production and were tolerant as adults to challenge with hFIX. Neonatal hemophilia B mice that received different amounts of RV achieved stable and dose-related expression of hFIX without anti-hFIX antibody formation. After protein challenge, antibody formation was markedly reduced for animals that expressed hFIX at levels higher than 14 ng/mL (0.3% of normal). However, antibodies developed for animals that received the lowest dose of RV and expressed hFIX at approximately 2 ng/mL before protein challenge. In dogs, neonatal injection of a high dose of RV resulted in 500 ng/mL hFIX in plasma without antibody formation. We conclude that neonatal gene transfer with RV does not induce antibody responses to hFIX in mice or dogs and that mice achieving levels greater than 3 x 10-10 M hFIX are usually tolerant to protein injection as adults. Low-dose gene therapy or frequent protein injections in the neonatal period might induce tolerance to subsequent injections of protein with a low risk for adverse effects.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Internal Medicine, Washington University School of Medicine, St Louis, MO 63110, USA
| | | | | | | |
Collapse
|
19
|
Abstract
Significant progress has recently been made in the development of gene therapy for the treatment of hemophilia A and B. These advances parallel the development of improved gene delivery systems. Long-term therapeutic levels of factor (F) VIII and FIX can be achieved in adult FVIII- and FIX-deficient mice and in adult hemophiliac dogs using adeno-associated viral (AAV) vectors, high-capacity adenoviral vectors (HC-Ad) and lentiviral vectors. In mouse models, some of the highest FVIII or FIX expression levels were achieved using HC-Ad vectors with no or only limited adverse effects. Encouraging preclinical data have been obtained using AAV vectors, yielding long-term FIX levels above 10% in primates and in hemophilia B dogs, which prevented spontaneous bleeding. Non-viral ex vivo gene therapy approaches have also led to long-term therapeutic levels of coagulation factors in animal models. Nevertheless, the induction of neutralizing antibodies (inhibitors) to FVIII or FIX sometimes precludes stable phenotypic correction following gene therapy. The risk of inhibitor formation varies depending on the type of vector, vector serotype, vector dose, expression levels and promoter used, route of administration, transduced cell type and the underlying mutation in the hemophilia model. Some studies suggest that continuous expression of clotting factors may induce immune tolerance, particularly when expressed by the liver. Several gene therapy phase I clinical trials have been initiated in patients suffering from severe hemophilia A or B. Some subjects report fewer bleeding episodes and occasionally have low levels of clotting factor activity detected. Further improvement of the various gene delivery systems is warranted to bring a permanent cure for hemophilia one step closer to reality.
Collapse
Affiliation(s)
- T VandenDriessche
- Center for Transgene Technology and Gene Therapy, Flanders Interuniversity Institute for Biotechnology-University of Leuven, 49 Herestraat B-3000 Leuven, Belgium.
| | | | | |
Collapse
|
20
|
Tomanin R, Friso A, Alba S, Piller Puicher E, Mennuni C, La Monica N, Hortelano G, Zacchello F, Scarpa M. Non-viral transfer approaches for the gene therapy of mucopolysaccharidosis type II (Hunter syndrome). ACTA PAEDIATRICA (OSLO, NORWAY : 1992). SUPPLEMENT 2003; 91:100-4. [PMID: 12572851 DOI: 10.1111/j.1651-2227.2002.tb03119.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIMS Hunter syndrome is a rare X-linked lysosomal storage disorder caused by the deficiency of the housekeeping enzyme iduronate-2-sulphatase (IDS). Deficiency of IDS causes accumulation of undegraded dermatan and heparan-sulphate in various tissues and organs. Approaches have been proposed for the symptomatic therapy of the disease, including bone marrow transplantation and, very recently, enzyme replacement. To date, gene therapy strategies have considered mainly retroviral and adenoviral transduction of the correct cDNA. In this paper, two non-viral somatic gene therapy approaches are proposed: encapsulated heterologous cells and muscle electro-gene transfer (EGT). METHODS Hunter primary fibroblasts were co-cultured with either cell clones over-expressing the lacking enzyme or with the same incorporated in alginate microcapsules. For EGT, plasmid vector was injected into mouse quadriceps muscle, which was then immediately electro-stimulated. RESULTS Co-culturing Hunter primary fibroblasts with cells over-expressing IDS resulted in a three- to fourfold increase in fibroblast enzyme activity with respect to control cells. Fibroblast IDS activity was also increased after co-culture with encapsulated cells. EGT was able to transduce genes in mouse muscle, resulting in at least a tenfold increase in IDS activity 1-5 weeks after treatment. CONCLUSION Although preliminary, results from encapsulated heterologous cell clones and muscle EGT encourage further evaluations for possible application to gene therapy for Hunter syndrome.
Collapse
Affiliation(s)
- R Tomanin
- Centre for Rare Diseases, Department of Pediatrics, University of Padova, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
King A, Strand B, Rokstad AM, Kulseng B, Andersson A, Skjåk-Braek G, Sandler S. Improvement of the biocompatibility of alginate/poly-L-lysine/alginate microcapsules by the use of epimerized alginate as a coating. J Biomed Mater Res A 2003; 64:533-9. [PMID: 12579568 DOI: 10.1002/jbm.a.10276] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Alginate/poly-L-lysine(PLL)/alginate capsules are used widely for the microencapsulation of cells. Alginate consists of guluronic acid and mannuronic acid, the ratio and sequence of which affect the properties of the alginate. Using C5-epimerases, mannuronic acid can be converted to guluronic acid in the alginate polymer. Such an enzyme, AlgE4, was used to convert blocks of mannuronic acid (M-blocks) to blocks of alternating sequence (MG-blocks). The aims of this study were 1) to investigate whether the use of epimerized alginate as a coating could improve the biocompatibility of alginate/PLL/alginate capsules and 2) to study the biocompatibility of simple alginate beads prepared with epimerized alginate. Four different capsules, two of which contained epimerized alginate, were investigated after implantation in C57BL/6 mice for 1 week. The biocompatibility of alginate/PLL/alginate capsules, as measured by retrieval rates of the capsules and DNA contents and glucose oxidation rates of the cellular overgrowth, was improved when an epimerized coating alginate was used. There were, however, no statistically significant differences in the biocompatibility of simple alginate beads made from epimerized alginate when compared with non-epimerized alginate beads. In general, such beads produced without a PLL coating swelled to a higher extent than the conventional alginate/PLL/alginate capsules. In conclusion, the use of an epimerized coating on alginate-PLL-alginate can improve the biocompatibility of such capsules but still cannot completely eliminate the detrimental effects of PLL on the biocompatibility of the capsules.
Collapse
Affiliation(s)
- Aileen King
- Department of Medical Cell Biology, Uppsala University, Box 571, Biomedical Centre, SE 751 23 Uppsala, Sweden.
| | | | | | | | | | | | | |
Collapse
|
22
|
García-Martín C, Chuah MKL, Van Damme A, Robinson KE, Vanzieleghem B, Saint-Remy JM, Gallardo D, Ofosu FA, Vandendriessche T, Hortelano G. Therapeutic levels of human factor VIII in mice implanted with encapsulated cells: potential for gene therapy of haemophilia A. J Gene Med 2002; 4:215-23. [PMID: 11933222 DOI: 10.1002/jgm.248] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND A gene therapy delivery system based on microcapsules enclosing recombinant cells engineered to secrete a therapeutic protein has been evaluated. The microcapsules are implanted intraperitoneally. In order to prevent cell immune rejection, cells are enclosed in non-antigenic biocompatible alginate microcapsules prior to their implantation into mice. It has been shown that encapsulated myoblasts can deliver therapeutic levels of Factor IX (FIX) in mice. The delivery of human Factor VIII (hFVIII) in mice using microcapsules was evaluated in this study. METHODS Mouse C2C12 myoblasts and canine MDCK epithelial kidney cells were transduced with MFG-FVIII (B-domain deleted) vector. Selected recombinant clones were enclosed in alginate microcapsules. Encapsulated recombinant clones were subsequently implanted intraperitoneally into C57BL/6 and immunodeficient SCID mice. RESULTS Plasma of mice receiving C2C12 and encapsulated MDCK cells had transient therapeutic levels of FVIII in immunocompetent C57BL/6 mice (up to 20% and 7% of physiological levels, respectively). In addition, FVIII delivery in SCID mice was also transient, suggesting that a non-immune mechanism must have contributed to the decline of hFVIII in plasma. Quantitative RT-PCR analysis confirmed directly that the decline of hFVIII is due to a reduction in steady-state hFVIII mRNA, consistent with transcriptional repression. Furthermore, encapsulated cells retrieved from implanted mice were viable, but secreted FVIII ex vivo at three-fold lower levels than the pre-implantation levels. In addition, antibodies to hFVIII were detected in immunocompetent C57BL/6 mice. CONCLUSIONS Implantable microcapsules can deliver therapeutic levels of FVIII in mice, suggesting the potential of this gene therapy approach for haemophilia A. The findings suggest vector down-regulation in vivo.
Collapse
Affiliation(s)
- Carmen García-Martín
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Van Raamsdonk JM, Ross CJD, Potter MA, Kurachi S, Kurachi K, Stafford DW, Chang PL. Treatment of hemophilia B in mice with nonautologous somatic gene therapeutics. THE JOURNAL OF LABORATORY AND CLINICAL MEDICINE 2002; 139:35-42. [PMID: 11873243 DOI: 10.1067/mlc.2002.120649] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The implantation of nonautologous cells encapsulated in immunoprotective microcapsules provides an alternative nonviral method for gene therapy. This strategy was successful in reversing the disease phenotypes of dwarfism and a lysosomal storage disease, mucopolysaccharidosis VII, in murine models. In this article we implanted transgenic hemophilic B mice with microcapsules enclosing factor IX-secreting C2C12 myoblasts to study the clinical potential of this approach in the treatment of hemophilia. Treated mice showed increased plasma factor IX levels as high as 28 ng of human factor IX per milliliter of plasma and decreased activated thromboplastin times (reduced by 20% to 29%). However, the level of factor IX decreased to baseline levels by day 7, coinciding with emergence of anti-human factor IX antibody, the titer of which increased greater than 10-fold by day 28. Monoclonal anti-CD4 antibodies were used to deplete CD4+ T cells to suppress the immune response against the recombinant factor IX. In the treated hemophilic mice, the anti-factor IX antibody response was totally suppressed to beyond day 28 accompanied by a significant decrease in activated thromboplastin time compared with that seen in untreated hemophilic mice. When the microcapsules were recovered from the intraperitoneal cavity after 38 days of implantation, the encapsulated cells continued to secrete factor IX at preimplantation levels, but both cell viability and microcapsule mechanical stability were reduced. Hence although the polymer chemistry of the microcapsules and cell viability may need to be improved for long-term delivery, nonautologous gene therapy with microencapsulated cells has been shown to be effective, at least for the short-term, in alleviating the hemophilic hemostatic anomaly. Coadministration of an immunosuppressant is effective in inhibiting antibody development against the delivered factor IX and should be considered for recipients at risk of inhibitor development.
Collapse
Affiliation(s)
- J M Van Raamsdonk
- Departments of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
24
|
Hortelano G, Wang L, Xu N, Ofosu FA. Sustained and therapeutic delivery of factor IX in nude haemophilia B mice by encapsulated C2C12 myoblasts: concurrent tumourigenesis. Haemophilia 2001; 7:207-14. [PMID: 11260281 DOI: 10.1046/j.1365-2516.2001.00492.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
This study reports the generation of an immunodeficient murine model for haemophilia B, obtained by breeding factor IX-deficient mice with an immunodeficient mouse strain, and use of this mouse model to evaluate the long-term efficacy and safety of a gene therapy strategy for treating haemophilia B. Nude haemophilic mice were implanted with biocompatible microcapsules enclosing recombinant myoblasts secreting human factor IX. The activated partial thromboplastin time (APTT) of plasma of mice thus treated was invariably shortened 3 weeks after microcapsule implantation, and remained shortened for at least 77 days. Shortening of the APTT of the haemophilia mice coincided with the appearance of human factor IX in mice plasmas (up to 600 ng mL(-1) on day 77), and normalization of the tail-bleeding time. Thus, the microencapsulated myoblasts reversed the clinical phenotype of haemophilia B. In contrast, plasmas of immunocompetent haemophilic mice similarly implanted with microcapsules only showed a transient shortening of APTT, and coincident transient delivery of human factor IX antigen. Rapid disappearance of human factor IX from plasmas of immunocompetent mice also coincided with production of antibodies to the human transgene. Significantly, 86% of the nude haemophilia mice developed tumours of myoblast origin. Thus, while this study revealed the feasibility of this gene therapy approach to treat severe haemophilia B, it also highlights the importance of using safer cell lines to prevent tumour development.
Collapse
|
25
|
Abstract
Hemophilia A and B are X-chromosome linked recessive bleeding disorders that result from a deficiency in factor VIII (FVIII) and factor IX (FIX) respectively. Though factor substitution therapy has greatly improved the lives of hemophiliac patients, there are still limitations to the current treatment that have triggered interest in alternative treatments by gene therapy. Significant progress has recently been made in the development of gene therapy for the treatment of hemophilia A and B. These advances parallel the technical improvements of existing vector systems including MoMLV-based retroviral, adenoviral and AAV vectors, and the development of new delivery methods such as lentiviral vectors, helper-dependent adenoviral vectors and improved non-viral gene delivery methods. Therapeutic and physiologic levels of FVIII and FIX could be achieved in FVIII- and FIX-deficient mice and hemophilia dogs by different gene therapy approaches. Long-term correction of the bleeding disorders and in some cases a permanent cure has been realized in these preclinical studies. However, the induction of neutralizing antibodies often precludes stable phenotypic correction. Another complication is that certain promoters are prone to transcriptional inactivation in vivo, precluding long-term FVIII or FIX expression. Several gene therapy phase I clinical trials are currently ongoing in patients suffering from severe hemophilia A or B. No significant adverse side-effects were reported, and semen samples were negative for vector sequences by sensitive PCR assays. Most importantly, some subjects report fewer bleeding episodes and occasionally have very low levels of clotting factor activity detected. The results from the extensive preclinical studies in normal and hemophilic animal models and encouraging preliminary clinical data indicate that the simultaneous development of different strategies is likely to bring a permanent cure for hemophilia one step closer to reality.
Collapse
Affiliation(s)
- M K Chuah
- Center for Transgene Technology and Gene Therapy, Flanders Interuniversity Institute for Biotechnology, University of Leuven, Belgium
| | | | | |
Collapse
|
26
|
Lynch TJ. Biotechnology: alternatives to human plasma-derived therapeutic proteins. Best Pract Res Clin Haematol 2000; 13:669-88. [PMID: 11102283 DOI: 10.1053/beha.2000.0100] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Proteins derived from human plasma have become critically important therapeutic products since their introduction in the 1940s. In the last 20 years, the tools of molecular biology have provided alternatives to the administration of the natural products. Recombinant analogues of Factor VIII and Factor IX are commercially available, and recombinant forms of other plasma proteins are under development. Genetic engineering also provides the opportunity to modify a natural protein to improve the efficiency with which it can be produced in vitro, or to change its therapeutic profile. More efficient production systems, such as transgenic plants or animals, may yield less costly therapies and a wider availability of products that are now in limited supply. Finally, gene therapy offers the prospect of permanently correcting conditions arising from deficiencies in any one of several plasma proteins, freeing individuals from the need to undergo periodic treatments with exogenous proteins.
Collapse
Affiliation(s)
- T J Lynch
- Division of Hematology, U.S. Food and Drug Administration, Rockville, MD, USA
| |
Collapse
|
27
|
Springer ML, Hortelano G, Bouley DM, Wong J, Kraft PE, Blau HM. Induction of angiogenesis by implantation of encapsulated primary myoblasts expressing vascular endothelial growth factor. J Gene Med 2000; 2:279-88. [PMID: 10953919 DOI: 10.1002/1521-2254(200007/08)2:4<279::aid-jgm114>3.0.co;2-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND We previously demonstrated that intramuscular implantation of primary myoblasts engineered to express vascular endothelial growth factor (VEGF) constitutively resulted in hemangioma formation and the appearance of VEGF in the circulation. To investigate the potential for using allogeneic myoblasts and the effects of delivery of VEGF-expressing myoblasts to non-muscle sites, we have enclosed them in microcapsules that protect allogeneic cells from rejection, yet allow the secretion of proteins produced by the cells. METHODS Encapsulated mouse primary myoblasts that constitutively expressed murine VEGF164, or encapsulated negative control cells, were implanted either subcutaneously or intraperitoneally into mice. RESULTS Upon subcutaneous implantation, capsules containing VEGF-expressing myoblasts gave rise to large tissue masses at the implantation site that continued to grow and were composed primarily of endothelial and smooth muscle cells directly surrounding the capsules, and macrophages and capillaries further away from the capsules. Similarly, when injected intraperitoneally, VEGF-producing capsules caused significant localized inflammation and angiogenesis within the peritoneum, and ultimately led to fatal intraperitoneal hemorrhage. Notably, however, VEGF was not detected in the plasma of any mice. CONCLUSIONS We conclude that encapsulated primary myoblasts persist and continue to secrete VEGF subcutaneously and intraperitoneally, but that the heparin-binding isoform VEGF164 exerts localized effects at the site of production. VEGF secreted from the capsules attracts endothelial and smooth muscle cells in a macrophage-independent manner. These results, along with our previous results, show that the mode and site of delivery of the same factor by the same engineered myoblasts can lead to markedly different outcomes. Moreover, the results confirm that constitutive delivery of high levels of VEGF is not desirable. In contrast, regulatable expression may lead to efficacious, safe, and localized VEGF delivery by encapsulated allogeneic primary myoblasts that can serve as universal donors.
Collapse
Affiliation(s)
- M L Springer
- Department of Molecular Pharmacology, Stanford University School of Medicine, CA 94305-5174, USA
| | | | | | | | | | | |
Collapse
|
28
|
Literature alerts. J Microencapsul 2000; 17:253-62. [PMID: 10738700 DOI: 10.1080/026520400288481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|