1
|
Malin K, Witkowska-Piłaszewicz O, Papis K. The many problems of somatic cell nuclear transfer in reproductive cloning of mammals. Theriogenology 2022; 189:246-254. [DOI: 10.1016/j.theriogenology.2022.06.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 06/20/2022] [Accepted: 06/20/2022] [Indexed: 11/24/2022]
|
2
|
Zhang Y, Gao E, Guan H, Wang Q, Zhang S, Liu K, Yan F, Tian H, Shan D, Xu H, Hou J. Vitamin C treatment of embryos, but not donor cells, improves the cloned embryonic development in sheep. Reprod Domest Anim 2019; 55:255-265. [PMID: 31837175 DOI: 10.1111/rda.13606] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 12/10/2019] [Indexed: 12/29/2022]
Abstract
Vitamin C is not only an antioxidant but also a regulator of epigenetic modifications that can enhance the activity of the ten-eleven translocation (TET) family dioxygenases and promote the oxidation of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC). Here, we investigated the effects of vitamin C in regulating DNA methylation in sheep somatic cells or embryos in an effort to improve the cloned embryo development. Vitamin C treatment of sheep foetal fibroblast cells significantly increased the 5hmC levels but did not affect the 5mC levels in cells. After nuclear transfer, vitamin C-treated donor cells could not support a higher blastocyst development rate than non-treated cells. Although combination of serum starvation and vitamin C treatment could induce significant 5mC decrease in donor cells, it failed to promote the development of resultant cloned embryos. When cloned embryos were directly treated with vitamin C, the pre-implantation development of embryos and the 5hmC levels in blastocysts were significantly improved. This beneficial role of vitamin C on embryo development was also observed in fertilized embryos. Our results suggest that vitamin C treatment of the embryos, but not the donor cells, can improve the development of cloned sheep embryos.
Collapse
Affiliation(s)
- Yumei Zhang
- State Key Laboratory of Agrobiotechnology and College of Biological Science, China Agricultural University, Beijing, China
| | - Enen Gao
- State Key Laboratory of Agrobiotechnology and College of Biological Science, China Agricultural University, Beijing, China
| | - Hong Guan
- State Key Laboratory of Agrobiotechnology and College of Biological Science, China Agricultural University, Beijing, China
| | - Qianqian Wang
- State Key Laboratory of Agrobiotechnology and College of Biological Science, China Agricultural University, Beijing, China
| | - Shuo Zhang
- State Key Laboratory of Agrobiotechnology and College of Biological Science, China Agricultural University, Beijing, China
| | - Kexiong Liu
- State Key Laboratory of Agrobiotechnology and College of Biological Science, China Agricultural University, Beijing, China
| | - Fengxiang Yan
- State Key Laboratory of Agrobiotechnology and College of Biological Science, China Agricultural University, Beijing, China
| | - Hao Tian
- State Key Laboratory of Agrobiotechnology and College of Biological Science, China Agricultural University, Beijing, China
| | - Dehai Shan
- Hanshan White Cashmere Goat Breeding Farm, Chifeng, China
| | - Huijuan Xu
- Hanshan White Cashmere Goat Breeding Farm, Chifeng, China
| | - Jian Hou
- State Key Laboratory of Agrobiotechnology and College of Biological Science, China Agricultural University, Beijing, China
| |
Collapse
|
3
|
Tamashiro KLK, Wakayama T, Yamazaki Y, Akutsu H, Woods SC, Kondo S, Yanagimachi R, Sakai RR. Phenotype of Cloned Mice: Development, Behavior, and Physiology. Exp Biol Med (Maywood) 2016; 228:1193-200. [PMID: 14610260 DOI: 10.1177/153537020322801015] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Cloning technology has potential to be a valuable tool in basic research, clinical medicine, and agriculture. However, it is critical to determine the consequences of this technique in resulting offspring before widespread use of the technology. Mammalian cloning using somatic cells was first demonstrated in sheep in 1997 and since then has been extended to a number of other species. We examined development, behavior, physiology, and longevity in B6C3F1 female mice cloned from adult cumulus cells. Control mice were naturally fertilized embryos subjected to the same in vitro manipulation and culture conditions as clone embryos. Clones attained developmental milestones similar to controls. Activity level, motor ability and coordination, and learning and memory skills of cloned mice were comparable with controls. Interestingly, clones gained more body weight than controls during adulthood. Increased body weight was attributable to higher body fat and was associated with hyperleptinemia and hyperinsulinemia indicating that cloned mice are obese. Cloned mice were not hyperphagic as adults and had hypersensitive leptin and melanocortin signaling systems. Longevity of cloned mice was comparable with that reported by the National Institute on Aging and the causes of death were typical for this strain of mouse. These studies represent the first comprehensive set of data to characterize cloned mice and provide critical information about the long-term effects of somatic cell cloning.
Collapse
Affiliation(s)
- Kellie L K Tamashiro
- Department of Psychiatry and Neuroscience Program, University of Cincinnati, Cincinnati, Ohio 45267-0559, USA
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Affiliation(s)
- Douglas J. Richmond
- Section for Evolutionary Genomics Natural History Museum of Denmark University of Copenhagen Øster Voldgade 5–7 1350 Copenhagen Denmark
| | - Mikkel‐Holger S. Sinding
- Section for Evolutionary Genomics Natural History Museum of Denmark University of Copenhagen Øster Voldgade 5–7 1350 Copenhagen Denmark
- Natural History Museum University of Oslo P.O. Box 1172 Blindern NO‐0318 Oslo Norway
| | - M. Thomas P. Gilbert
- Section for Evolutionary Genomics Natural History Museum of Denmark University of Copenhagen Øster Voldgade 5–7 1350 Copenhagen Denmark
- Trace and Environmental DNA Laboratory Department of Environment and Agriculture Curtin University Perth WA 6102 Australia
- NTNU University Museum NO‐7491 Trondheim Norway
| |
Collapse
|
5
|
Han F, Baremberg D, Gao J, Duan J, Lu X, Zhang N, Chen Q. Development of stem cell-based therapy for Parkinson's disease. Transl Neurodegener 2015; 4:16. [PMID: 26339485 PMCID: PMC4559356 DOI: 10.1186/s40035-015-0039-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 08/24/2015] [Indexed: 12/31/2022] Open
Abstract
Parkinson’s disease (PD) is one of the most common neurodegenerative disorders of aging, characterized by the degeneration of dopamine neurons (DA neurons) in the substantial nigra, leading to the advent of both motor symptoms and non-motor symptoms. Current treatments include electrical stimulation of the affected brain areas and dopamine replacement therapy. Even though both categories are effective in treating PD patients, the disease progression cannot be stopped. The research advance into cell therapies provides exciting potential for the treatment of PD. Current cell sources include neural stem cells (NSCs) from fetal brain tissues, human embryonic stem cells (hESCs), induced pluripotent stem cells (iPSCs) and directly induced dopamine neurons (iDA neurons). Here, we evaluate the research progress in different cell sources with a focus on using iPSCs as a valuable source and propose key challenges for developing cells suitable for large-scale clinical applications in the treatment of PD.
Collapse
Affiliation(s)
- Fabin Han
- Centre for Stem Cells and Regenerative Medicine, The Liaocheng People's Hospital/Affiliated Liaocheng Hospital, Taishan Medical University, Shandong, 252000 China
| | - Deborah Baremberg
- Centre for Stem Cells and Regenerative Medicine, The Liaocheng People's Hospital/Affiliated Liaocheng Hospital, Taishan Medical University, Shandong, 252000 China
| | - Junyu Gao
- Centre for Stem Cells and Regenerative Medicine, The Liaocheng People's Hospital/Affiliated Liaocheng Hospital, Taishan Medical University, Shandong, 252000 China
| | - Jing Duan
- Centre for Stem Cells and Regenerative Medicine, The Liaocheng People's Hospital/Affiliated Liaocheng Hospital, Taishan Medical University, Shandong, 252000 China
| | - Xianjie Lu
- Centre for Stem Cells and Regenerative Medicine, The Liaocheng People's Hospital/Affiliated Liaocheng Hospital, Taishan Medical University, Shandong, 252000 China
| | - Nan Zhang
- Centre for Stem Cells and Regenerative Medicine, The Liaocheng People's Hospital/Affiliated Liaocheng Hospital, Taishan Medical University, Shandong, 252000 China
| | - Qingfa Chen
- Centre for Stem Cells and Regenerative Medicine, The Liaocheng People's Hospital/Affiliated Liaocheng Hospital, Taishan Medical University, Shandong, 252000 China
| |
Collapse
|
6
|
Pan X, Zhang Y, Guo Z, Wang F. Development of interspecies nuclear transfer embryos reconstructed with argali (Ovis ammon) somatic cells and sheep ooplasm. Cell Biol Int 2015; 38:211-8. [PMID: 24123771 DOI: 10.1002/cbin.10191] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 08/16/2013] [Accepted: 09/17/2013] [Indexed: 11/09/2022]
Abstract
Interspecies nuclear transfer has already achieved success in several species, which shows great potential in recovery and conservation of endangered animals. The study was conducted to establish an efficient system for in vitro argali (Ovis ammon)-sheep embryo reconstruction via interspecies somatic cell nuclear transfer (iSCNT). The competence of domestic sheep cytoplasts to reprogram the adult argali fibroblast nuclei was evaluated, and the effects of enucleation methods and donor cell passage and cell state on the in vitro development of argali-sheep cloned embryos were also examined. Sheep oocytes could support argali and sheep fibroblast cell nuclei transfer and develop to blastocysts in vitro. Oocytes matured for 21–23 h and enucleated by chemically assisted enucleation (CAE) had a higher enucleation rate than blind enucleation (BE), but the development rate of iSCNTembryos was the same (P>0.05). Moreover, passage numbers of fibroblast cells <10, as well as the cell cycle stages did not affect the development rate of iSCNT reconstructed embryos. Thus sheep cytoplasm successfully supports argali nucleus development to blastocyst stage after optimising the nuclear transfer procedure, which indicates that iSCNT can be used to conserve endangered argali in the near future.
Collapse
|
7
|
Hoelker M, Held E, Salilew-Wondim D, Schellander K, Tesfaye D. Molecular signatures of bovine embryo developmental competence. Reprod Fertil Dev 2014; 26:22-36. [PMID: 24305174 DOI: 10.1071/rd13255] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Assessment of the developmental capacity of early bovine embryos is still an obstacle. Therefore, the present paper reviews all current knowledge with respect to morphological criteria and environmental factors that affect embryo quality. The molecular signature of an oocyte or embryo is considered to reflect its quality and to predict its subsequent developmental capacity. Therefore, the primary aim of the present review is to provide an overview of reported correlations between molecular signatures and developmental competence. A secondary aim of this paper is to present some new strategies to enable concomitant evaluation of the molecular signatures of specific embryos and individual developmental capacity.
Collapse
Affiliation(s)
- M Hoelker
- Institute of Animal Science, Animal Breeding and Husbandry Group, University of Bonn, Endenicher Alle 15, 53115 Bonn, Germany
| | | | | | | | | |
Collapse
|
8
|
Induced pluripotent stem cell technology in regenerative medicine and biology. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2014; 123:127-41. [PMID: 20549468 DOI: 10.1007/10_2010_72] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The potential of human embryonic stem cells (ESCs) for regenerative medicine is unquestionable, but practical and ethical considerations have hampered clinical application and research. In an attempt to overcome these issues, the conversion of somatic cells into pluripotent stem cells similar to ESCs, commonly termed nuclear reprogramming, has been a top objective of contemporary biology. More than 40 years ago, King, Briggs, and Gurdon pioneered somatic cell nuclear reprogramming in frogs, and in 1981 Evans successfully isolated mouse ESCs. In 1997 Wilmut and collaborators produced the first cloned mammal using nuclear transfer, and then Thomson obtained human ESCs from in vitro fertilized blastocysts in 1998. Over the last 2 decades we have also seen remarkable findings regarding how ESC behavior is controlled, the importance of which should not be underestimated. This knowledge allowed the laboratory of Shinya Yamanaka to overcome brilliantly conceptual and technical barriers in 2006 and generate induced pluripotent stem cells (iPSCs) from mouse fibroblasts by overexpressing defined combinations of ESC-enriched transcription factors. Here, we discuss some important implications of human iPSCs for biology and medicine and also point to possible future directions.
Collapse
|
9
|
Production of healthy cloned pigs with neural stem cells as nuclear donors. Anim Biotechnol 2014; 25:294-305. [PMID: 24813221 DOI: 10.1080/10495398.2013.872119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The objectives of the present study were to establish a porcine neural stem cell (NSC) line and to determine if these NSCs could be used to produce cloned pigs. NSCs were isolated from the brains of three embryonic day 30 fetal pigs and were induced to differentiate in vitro . NSCs and the differentiated cells were harvested for analysis of markers by immunostaining and reverse-transcription polymerase chain reaction (RT-PCR). The NSCs at passage 10 were used for nuclear transfer, and the cloned embryos at the two-cell stage were transferred into the oviducts of surrogate mothers. The results showed that three NSC lines (2 male and 1 female) were successfully established. All NSCs at passage 17 continued to express nestin and Sox2. NSCs could differentiate into neurons (TUBB3+), astrocytes (GFAP+), and oligodendrocytes (O4+). After NSC nuclear transfer, 2020 two-cell stage embryos formed. After embryo transfer, 6 of 10 surrogates were pregnant, and 40 piglets (18 males and 22 females) were born. Twenty-two of these piglets reached sexual maturity and were found to be fertile. The other piglets died within 45 days post-partum. In conclusion, 3 porcine NSC lines capable of self-renewal and differentiation were established, and the cloned embryos derived from these cells could develop to term. Thus, NSCs could be efficient alternative nuclear donors for pig cloning.
Collapse
|
10
|
Hamm J, Tessanne K, Murphy CN, Prather RS. Transcriptional regulators TRIM28, SETDB1, and TP53 are aberrantly expressed in porcine embryos produced by in vitro fertilization in comparison to in vivo- and somatic-cell nuclear transfer-derived embryos. Mol Reprod Dev 2014; 81:552-66. [PMID: 24659575 PMCID: PMC4235398 DOI: 10.1002/mrd.22324] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 03/16/2014] [Indexed: 02/04/2023]
Abstract
In vitro embryo production is important for research in animal reproduction, embryo transfer, transgenics, and cloning. Yet, in vitro-fertilized (IVF) embryos are generally developmentally delayed and are inferior to in vivo-derived (IVV) embryos; this discrepancy is likely a result of aberrant gene expression. Transcription of three genes implicated to be important in normal preimplantation embryo development, TRIM28, SETDB1, and TP53, was determined by quanitative PCR in IVF, somatic-cell nuclear transfer (SCNT), parthenogenetic, and IVV porcine oocytes and embryos. There was no difference in TRIM28 or SETDB1 abundance between oocytes matured in vitro versus in vivo (P > 0.05), whereas TP53 levels were higher in in vitro-matured oocytes. TRIM28 increased from metaphase-II oocytes to the 4-cell and blastocyst stages in IVF embryos, whereas IVV embryos showed a reduction in TRIM28 abundance from maturation throughout development. The relative abundance of TP53 increased by the blastocyst stage in all treatment groups, but was higher in IVF embryos compared to IVV and SCNT embryos. In contrast, SETDB1 transcript levels decreased from the 2-cell to blastocyst stage in all treatments. For each gene analyzed, SCNT embryos of both hard-to-clone and easy-to-clone cell lines were more comparable to IVV than IVF embryos. Knockdown of TRIM28 also had no effect on blastocyst development or expression of SETDB1 or TP53. Thus, TRIM28, SETDB1, and TP53 are dynamically expressed in porcine oocytes and embryos. Furthermore, TRIM28 and TP53 abundances in IVV and SCNT embryos are similar, but different from quantities in IVF embryos. Mol. Reprod. Dev. 81: 552–556, 2014. © 2014 The Authors. Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jennifer Hamm
- Division of Animal Sciences, University of Missouri, Columbia, Missouri
| | | | | | | |
Collapse
|
11
|
Abstract
In the present study, a porcine system was supplemented with sorbitol during in vitro maturation (IVM) or in vitro culture (IVC), and the effects of sorbitol on oocyte maturation and embryonic development following parthenogenetic activation were assessed. Porcine immature oocytes were treated with different concentrations of sorbitol during IVM, and the resultant metaphase II stage oocytes were activated and cultured in porcine zygote medium-3 (PZM-3) for 7 days. No significant difference was observed in cumulus expansion and the nuclear maturation between the control and sorbitol-treated groups, with the exception of the 100 mM group, which showed significantly decreased nuclear maturation and cumulus expansion. There was no significant difference in the intracellular reactive oxygen species (ROS) levels between oocytes matured with 10 or 20 mM sorbitol and control groups, but 50 and 100 mM groups had significantly higher ROS levels than other groups. The 20 mM group showed significant increases in intracellular glutathione and subsequent blastocyst formation rates following parthenogenetic activation compared with the other groups. During IVC, supplementation with sorbitol significantly reduced blastocyst formation and increased the apoptotic index compared with the control. The apoptotic index of blastocysts from the sorbitol-treated group for entire culture period was significantly higher than those of the partially sorbitol-exposed groups. Based on these findings, it can be concluded that the addition of a low concentration of sorbitol (20 mM) during IVM of porcine oocytes benefits subsequent blastocyst development and improves embryo quality, whereas sorbitol supplement during IVC has a negative effect on blastocyst formation.
Collapse
|
12
|
Ooplasm transfer and interspecies somatic cell nuclear transfer: heteroplasmy, pattern of mitochondrial migration and effect on embryo development. ZYGOTE 2010; 19:147-56. [PMID: 20735895 DOI: 10.1017/s0967199410000419] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Although interspecies somatic cell nuclear transfer (iSCNT) has potential applications in the conservation of exotic species, an in vitro developmental block has been observed in embryos produced by this approach. It has been suggested that mitochondrial mismatch between donor cell and recipient oocyte could cause embryonic developmental arrest. A series of experiments was conducted to investigate the effect of mixed mitochondrial populations (heteroplasmy) on early development of iSCNT-derived cloned embryos. The effect of combining the techniques of ooplasm transfer (OT) and somatic cell nuclear transfer (SCNT) was examined by monitoring in vitro embryonic development; the presence and pattern of migration of foreign mitochondria after OT was analysed by MitoTracker staining. In addition, the effect of transferring caprine ooplasm (iOT) into the bovine enucleated oocytes used in iSCNT was analysed. There was no significant effect of the sequence of events (OT-SCNT or SCNT-OT) on the number of fused, cleaved, blastocyst or hatched blastocyst stage embryos. MitoTracker Green staining of donor oocytes used for OT confirmed the introduction of foreign mitochondria. The distribution pattern of transferred mitochondria most commonly remained in a distinct cluster after 12, 74 and 144 h of in vitro culture. When goat ooplasm was injected into bovine enucleated oocytes (iSCNT), there was a reduction (p < 0.05) in fusion (52 vs. 82%) and subsequent cleavage rates (55 vs. 78%). The procedure of iOT prior to iSCNT had no effect in overcoming the 8- to 16-cell in vitro developmental block, and only parthenogenetic cow and goat controls reached the blastocyst (36 and 32%) and hatched blastocyst (25 and 12%) stages, respectively. This study indicates that when foreign mitochondria are introduced at the time of OT, these organelles tend to remain as distinct clusters without relocation after a few mitotic divisions. Although the bovine cytoplast appears capable of supporting mitotic divisions after iOT-iSCNT, heteroplasmy or mitochondrial incompatibilities may affect nuclear-ooplasmic events occurring at the time of genomic activation.
Collapse
|
13
|
Zhu XQ, Pan XH, Wang W, Chen Q, Pang RQ, Cai XM, Hoffman AR, Hu JF. Transient in vitro epigenetic reprogramming of skin fibroblasts into multipotent cells. Biomaterials 2009; 31:2779-87. [PMID: 20044135 DOI: 10.1016/j.biomaterials.2009.12.027] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Accepted: 12/11/2009] [Indexed: 12/16/2022]
Abstract
Multipotent stem cells have the potential to establish a new field of promising regenerative medicine to treat tissue damage, genetic disorders, and degenerative diseases. However, limited resource of stem cells has turned to be an evitable obstacle in clinical applications. We utilized a simple in vitro epigenetic reprogramming approach to convert skin fibroblasts into multipotent cells. After transient reprogramming, stem cell markers, including Oct4 and Nanog, became activated in the treated cells. The reprogrammed cells were multipotent as demonstrated by their ability to differentiate into a variety of cells and to form teratomas. Genomic imprinting of insulin-like growth factor II (Igf2) and H19 was not affected by this short period of cell reprogramming. This study may provide an alternative strategy to efficiently generate patient-specific stem cells for basic and clinical research, solving major hurdles of virally-induced pluripotent stem (iPS) cells that entail the potential risks of mutation, gene instability, and malignancy.
Collapse
Affiliation(s)
- Xiang-Qing Zhu
- The Research Center of Stem Cell, Tissue and Organ Engineering, Kunming Army General Hospital, Kunming 650032, PR China
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Kim S, Park SW, Hossein MS, Jeong YW, Kim JJ, Lee E, Kim YW, Hyun SH, Shin T, Hwang WS. Production of cloned dogs by decreasing the interval between fusion and activation during somatic cell nuclear transfer. Mol Reprod Dev 2009; 76:483-9. [PMID: 18951374 DOI: 10.1002/mrd.20953] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
To improve the efficiency of somatic cell nuclear transfer (SCNT) in dogs, we evaluated whether or not the interval between fusion and activation affects the success rate of SCNT. Oocytes retrieved from outbred dogs were reconstructed with adult somatic cells from a male or female Golden Retriever. In total, 151 and 225 reconstructed oocytes were transferred to 9 and 14 naturally synchronized surrogates for male and female donor cells, respectively. Chromosomal morphology was evaluated in 12 oocytes held for an interval of 2 hr between fusion and activation and 14 oocytes held for an interval of 4 hr. Three hundred seventy-six and 288 embryos were transferred to 23 and 16 surrogates for the 2 and 4 hr interval groups, respectively. Both the male (two pregnant surrogates gave birth to three puppies) and female (one pregnant surrogate gave birth to one puppy) donor cells gave birth to live puppies (P > 0.05). In the 2 hr group, significantly more reconstructed oocytes showed condensed, metaphase-like chromosomes compared to the 4 hr group (P < 0.05). A significantly higher pregnancy rate and a greater number of live born puppies were observed in the 2 hr group (13.0% and 1.1%, respectively) compared to the 4 hr group (0%) (P < 0.05). In total, three surrogate dogs carried pregnancies to term and four puppies were born. These results demonstrate that decreasing the interval between fusion and activation increases the success rate of clone production and pregnancy. These results may increase the overall efficiency of SCNT in the canine family.
Collapse
Affiliation(s)
- Sue Kim
- SooAm Biotech Research Foundation, Wonsam-myeon, Cheoin-gu, Yongin-si, Gyeonggi-do, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Grafi G. The complexity of cellular dedifferentiation: implications for regenerative medicine. Trends Biotechnol 2009; 27:329-32. [DOI: 10.1016/j.tibtech.2009.02.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2009] [Revised: 02/17/2009] [Accepted: 02/20/2009] [Indexed: 12/15/2022]
|
16
|
Choi J, Park SM, Lee E, Kim JH, Jeong YI, Lee JY, Park SW, Kim HS, Hossein MS, Jeong YW, Kim S, Hyun SH, Hwang WS. Anti-apoptotic effect of melatonin on preimplantation development of porcine parthenogenetic embryos. Mol Reprod Dev 2008; 75:1127-35. [DOI: 10.1002/mrd.20861] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
17
|
Ganesan M, Paithankar KR, Jagannadham MV, Sundaram CS, Murthy BS, Singh L. Characterization of novel DNA-binding proteins expressed in snake oocyte cDNA library. Protein Expr Purif 2007; 53:164-78. [PMID: 17189702 DOI: 10.1016/j.pep.2006.11.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2006] [Revised: 11/09/2006] [Accepted: 11/09/2006] [Indexed: 10/23/2022]
Abstract
DNA-binding proteins play pivotal roles in transcription, DNA-replication, recombination/repair and determine cell-fate in all physiological conditions of differentiation, development and disease. As they are present in extremely small amounts in cells, their isolation/identification, particularly from scarce tissues is impracticable. We cloned the cDNA pool of snake (Ptyas mucosus) oocytes (a scarce tissue) in bacteria, overexpressed total library, purified and identified DNA-binding proteins expressed in the library. Although snake databases do not exist, we identified 23 DNA-binding proteins, obtained 10-15 amino acids internal sequence tags of six of them and succeeded in PCR amplification of the cDNAs of five proteins. We employed electro spray ionization mass spectrometry, matrix assisted laser desorption/ionization time of flight and analyzed the results by peptide mass fingerprint (PMF) and various sequence BLAST analyses. Proteins identified were largely unanimous between the PMF and BLAST analyses. We expect these proteins to play important roles in snake embryonic development and differentiation. We arrived at homologous mouse proteins to some of the identified snake proteins and are working towards characterizing their structure and physiological function. Similar approaches shall prove valuable in isolation and identification of important factors from scarce carcinoma tissues, mammalian oocytes and early embryos, which might be involved in important functions like nuclear reprogramming, embryonic development and differentiation.
Collapse
MESH Headings
- Animals
- Chromatography, Affinity
- Cloning, Molecular
- Colubridae/embryology
- Colubridae/genetics
- DNA, Complementary/genetics
- DNA-Binding Proteins/chemistry
- DNA-Binding Proteins/isolation & purification
- DNA-Binding Proteins/physiology
- Databases, Protein
- Electrophoresis, Gel, Two-Dimensional
- Electrophoresis, Polyacrylamide Gel
- Embryo, Nonmammalian
- Female
- Gene Library
- Oocytes/metabolism
- Peptide Mapping
- Polymerase Chain Reaction
- Protein Binding
- Sequence Analysis, Protein
- Spectrometry, Mass, Electrospray Ionization
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
- Trypsin/pharmacology
Collapse
Affiliation(s)
- Mala Ganesan
- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | | | | | | | | | | |
Collapse
|
18
|
Wang H, Ao H, Pan Q, Li R, Zhao M, Lian Z, Li N, Wu C. Effects of different states of sheep fetal fibroblasts as donor cells on the early development in vitro of reconstructed sheep embryos. ACTA ACUST UNITED AC 2007; 50:178-85. [PMID: 17447024 DOI: 10.1007/s11427-007-0013-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2006] [Accepted: 07/17/2006] [Indexed: 11/24/2022]
Abstract
To investigate the effects of different states of donor cells on the development of reconstructed sheep embryos, we designed five treatments of donor cells, including cell passage, cell size, serum starvation, colchicine treatment and gene transfection. Results are as follows: (I) Compared with 16-18 passage cells, the morula/blastocyst rate of 5-7 passage cells as donor nuclei was significantly higher (17.3% vs. 4.9%, P<0.05), suggesting the advantage of short-time cultured cells in supporting the development of reconstructed embryos. (II) The mourla/blastocyst rate of reconstructed embryos derived from medium cells (15-25 microm) as donor nuclei was higher than that from large cells (25-33 microm) and small cells (8-15 microm)(20.0% vs. 8.0%, 9.7%), indicating that reconstructed embryos from medium cells had a greater potentiality to develop into morula/blastocysts than those from small or large ones. (III) The morula/blastocyst rate of reconstructed embryos from donor cells of SS (serum starvation) was lower than that from donor cells of NSS (non-serum starvation), but no significant difference was detected between SS and NSS(11.8% vs. 18.6%, P>0.05). (IV) Fetal fibroblasts treated with 0.05 micromol/L colchicine exhibited a higher morula/blastocyst rate of reconstructed embryos than those treated with 0.10 micromol/L colchicine and untreated ones (27.5% vs. 12.1%, 17.1%), however, no significant difference among the three treatments was detected (P>0.05). (V) The morula/blastocyst rate of reconstructed embryos from fetal fibroblasts transfected with GFP gene only was 3.1%, significantly lower than that from non-transgenic cells (3.1% vs. 20.4%, P<0.05). In conclusion, our results demonstrated that fetal fibroblasts of fewer passages, medium size could ensure a higher morula/blastocyst rate of reconstructed embryos. Serum starvation of donor cells might be unnecessary to the development of reconstructed embryos. Donor cells treated with 0.05 micromol/L colchicine could facilitate the development of reconstructed embryos. Additionally, as cells transfected with GFP gene were used as donor nuclei, adverse effect on the development of reconstructed embryos was observed. Therefore, the developmental efficiency of reconstructed embryos could be improved if proper treatments to donor cells were used.
Collapse
Affiliation(s)
- Hai Wang
- Institute of Zoology, Chinese Academy of Sciences, Beijing 100080, China
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Lee SL, Kumar BM, Kim JG, Ock SA, Jeon BG, Balasubramanian S, Choe SY, Rho GJ. Cellular Composition and Viability of Cloned Bovine Embryos Using Exogene-Transfected Somatic Cells. Reprod Domest Anim 2007; 42:44-52. [PMID: 17214773 DOI: 10.1111/j.1439-0531.2006.00723.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The present study compared the efficiency of transgenic (TG) cloned embryo production by somatic cell nuclear transfer (SCNT) with fetal-derived fibroblast cells (FFCs) which were transfected with pEGFP-N1 to in vitro-fertilized (IVF), parthenogenetic and SCNT counterparts by evaluating the rates of cleavage and blastocyst formation, apoptosis rate at different developmental stages, cell number, ploidy and gene expression in blastocysts. In SCNT and TG embryos, the rates of cleavage and blastocyst formation were significantly lower (p < 0.05) than those of IVF controls, but it did not differ between SCNT and TG embryos. In IVF control, 86.7% embryos displayed diploid chromosomal complements and the rates were significantly (p < 0.05) higher than those of SCNT and TG embryos. Most TG embryos (79%) with FFCs expressed the gene by both PCR and under fluorescence microscopy. The expression of apoptosis by TUNEL was first detected at six to eight cell stages in all embryos of IVF, SCNT and TG groups, but the expression rate at each developmental stages was significantly higher (p < 0.05) in SCNT and TG embryos than in IVF counterparts. The expression rate in inner cell mass (ICM) of TG embryos was significantly higher (p < 0.05) than in SCNT and IVF embryos. These results indicate that the high occurrence of apoptosis observed in SCNT and TG embryos compared with IVF counterparts might influence the developmental competence. Moreover, the SCNT embryos derived using non-transfected donor cells exhibited a lower apoptosis expression in ICM cells than in TG embryos derived using pEGP-N1-transfected donor cells suggesting a possible role of negative gene effect in TG embryos.
Collapse
Affiliation(s)
- S-L Lee
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Chinju, Korea
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Vajta G, Gjerris M. Science and technology of farm animal cloning: state of the art. Anim Reprod Sci 2006; 92:211-30. [PMID: 16406426 DOI: 10.1016/j.anireprosci.2005.12.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2005] [Revised: 11/04/2005] [Accepted: 12/14/2005] [Indexed: 12/25/2022]
Abstract
Details of the first mammal born after nuclear transfer cloning were published by Steen Malte Willadsen in 1986. In spite of its enormous scientific significance, this discovery failed to trigger much public concern, possibly because the donor cells were derived from pre-implantation stage embryos. The major breakthrough in terms of public recognition has happened when Ian Wilmut et al. [Wilmut, I., Schnieke, A.E., McWhir, J., Kind, A.J., Campbell, K.H., 1997. Viable offspring derived from fetal és adult mammalian cells. Nature 385, 810-813] described the successful application of almost exactly the same method, but using the nuclei of somatic cells from an adult mammal, to create Dolly the sheep. It has become theoretically possible to produce an unlimited number of genetic replicates from an adult animal or a post-implantation foetus. Since 1997 a number of different species including pigs, goats, horses, cats, etc. have been cloned with the somatic cell nuclear transfer technique. Although the technology still has relatively low success rates and there seems to be substantial problems with the welfare of some of the cloned animals, cloning is used both within basic research and the biomedical sector. The next step seems to be to implement cloning in the agricultural production system and several animals have been developed in this direction. This article reviews the current state of the art of farm animal cloning from a scientific and technological perspective, describes the animal welfare problems and critically assess different applications of farm animal cloning. The scope is confined to animal biotechnologies in which the use of cell nuclear transfer is an essential part and extends to both biomedical and agricultural applications of farm animal cloning. These applications include the production of genetically identical animals for research purposes, and also the creation of genetically modified animals. In the agricultural sector, cloning can be used as a tool within farm animal breeding. We do not intend to give an exhaustive review of the all the literature available; instead we pinpoint issues and events pivotal to the development of current farm animal cloning practices and their possible applications.
Collapse
Affiliation(s)
- Gábor Vajta
- Population Genetics and Embryology, Department of Genetics and Biotechnology, Danish Institute of Agricultural Sciences, Research Centre Foulum, DK-8830 Tjele, Denmark.
| | | |
Collapse
|
21
|
Alisky JM. Neurotransmitter depletion may be a cause of dementia pathology rather than an effect. Med Hypotheses 2006; 67:556-60. [PMID: 16647220 DOI: 10.1016/j.mehy.2006.02.043] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2006] [Accepted: 02/15/2006] [Indexed: 11/21/2022]
Abstract
BACKGROUND There is widespread loss of acetylcholine and other neurotransmitters in Alzheimer's disease and vascular dementia. It has generally been assumed that death of neurons causes neurotransmitter loss, but alternatively neurotransmitter depletion itself may at least contribute to neurodegeneration. PRESENTATION OF THE HYPOTHESIS Transgenic mice and pigs with inducible 50% depletion of acetylcholine, dopamine, norepinephrine, serotonin, gamma-aminobutyric acid (GABA) and corticotrophin releasing factor will reproduce Alzheimer's disease or vascular dementia neuropathology, and pharmacologically restoring neurotransmitters will attenuate neuronal injury. TESTING THE HYPOTHESIS Through nuclear transfer cloning, transgenic mice and pigs would be created with transgenes on one X chromosome, so that transgenes would only be expressed in half of all cells in female animals. Transgenes would encode tetracycline-inducible short hairpin RNA (shRNA) designed to form small interfering RNA (siRNA) to knock down neurotransmitter biosynthesis in late adulthood. Transgene expressing neurons could be readily identified in tissue sections with fluorescent reporter genes. Cholinesterase inhibitors, antidepressants, benzodiazepines and CRF would then be administered in an attempt to rescue degenerating neurons. IMPLICATIONS OF THE HYPOTHESIS The mice and pigs could serve as an important new model for the pathogenesis of dementia, especially if pharmacologically restoring neurotransmitters rescues degenerating neurons. The animals may also be useful for as models for other disorders such as multi-system atrophy, Parkinson's disease, and depression.
Collapse
Affiliation(s)
- Joseph Martin Alisky
- Marshfield Clinic Research Foundation, 1000 Oak Avenue, Marshfield, WI 54449, USA.
| |
Collapse
|
22
|
Abstract
The first round of double nuclear transfer (NT) procedure includes the following steps: transfer of somatic cell nuclei into enucleated recipient oocytes, fusion, activation, and culture of reconstructed oocytes. The next day, a second round of NT is performed by removing karyoplasts from 1-d-old NT embryos and transferring them into in vivo-derived zygotes from which the two pronuclei have been removed. Couplets are then fused using an electrical pulse and transferred into synchronized recipient gilts. This system, which uses fertilized oocytes as cytoplast recipients, bypasses the inefficiencies of artificial activation procedures, and may promote more successful development.
Collapse
|
23
|
|
24
|
Abstract
Recent advances in reproductive biotechnologies in small ruminants include improvement of methods for in vitro production of embryos and attempts at spermatogonial stem cell transplantation. In vitro production of embryos by IVM/IVF, intra-cytoplasmic sperm injection (ICSI), or nuclear transfer (NT) has been made possible by improvements in oocyte collection and maturation techniques, and early embryo culture systems. However, in vitro embryo production still is not very efficient due to several limiting factors affecting the outcome of each step of the process. This paper discusses factors affecting in vitro embryo production in small ruminants and camelids, as well as preliminary results with the technique of spermatogonial stem cell transplantation.
Collapse
Affiliation(s)
- A Tibary
- Department of Veterinary Clinical Sciences and Center for Reproductive Biology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164-6610, USA.
| | | | | |
Collapse
|
25
|
Hölker M, Petersen B, Hassel P, Kues WA, Lemme E, Lucas-Hahn A, Niemann H. Duration of In Vitro Maturation of Recipient Oocytes Affects Blastocyst Development of Cloned Porcine Embryos. CLONING AND STEM CELLS 2005; 7:35-44. [PMID: 15996116 DOI: 10.1089/clo.2005.7.35] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
This study investigated the effects of different incubation periods for oocyte maturation and contact inhibition of donor cells as well as different osmolarities for storage of recipient oocytes on fusion rates, cleavage rates, and blastocyst yields of porcine somatic nuclear transfer (SCNT) derived embryos. In addition, the in vivo developmental potential of cloned embryos derived from the most promising SCNT protocol was tested by transfer to recipient gilts. Storage of in vitro-matured oocytes for 7.5 h in calcium-free TL-HEPES medium at 295 or 320 mOsmol prior to activation yielded significantly (p < 0.05) higher parthenogenetic blastocyst rates compared to storage in TL-HEPES with an osmolarity of 270 mOsmol (24.4 +/- 3.0% and 26.2 +/- 4.3% vs. 18.3 +/- 6.4%, respectively, mean +/- SD) and improved the visibility of the polar body. Electrical fusion of fibroblasts to enucleated oocytes matured for 38, 40, or 42 h resulted in similar fusion and cleavage rates (74.8-84.4%). However, nuclear transfer with oocytes matured for 40 h in vitro yielded significantly higher (p < 0.05) development to the blastocyst stage after 7 days of culture (14.7 +/- 1.7%) than with oocytes matured for 38 h (9.5 +/- 2.1%) or 42 h (5.1 +/- 2.1%). Contact inhibition for 24, 48, or 72 h significantly (p < 0.05) increased the proportion of cells at G0/G1 compared with cycling fibroblasts. However, duration of contact inhibition of the donor cells for either 24, 48, or 72 h had no effect on blastocyst rates of SCNT embryos. Four gilts received an average of 150 SCNT embryos (range 138-161) reconstructed with oocytes matured for 40 h; two of these became pregnant; one of them went to term and farrowed four piglets on day 115 of pregnancy. Microsatellite analysis confirmed that the clones were genetically identical with the donor cells. These results show that changes of the in vitro maturation protocol may affect in vitro development of reconstructed porcine embryos, while duration of the contact inhibition period plays a minor role for the success of porcine SCNT. The effects on in vivo development are yet to be determined.
Collapse
Affiliation(s)
- Michael Hölker
- Department of Biotechnology, Institute for Animal Breeding, Mariensee, Germany
| | | | | | | | | | | | | |
Collapse
|
26
|
Sansinena MJ, Hylan D, Hebert K, Denniston RS, Godke RA. Banteng (Bos javanicus) embryos and pregnancies produced by interspecies nuclear transfer. Theriogenology 2005; 63:1081-91. [PMID: 15710195 DOI: 10.1016/j.theriogenology.2004.05.025] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2003] [Accepted: 05/21/2004] [Indexed: 10/26/2022]
Abstract
The banteng (Bos javanicus), a member of the bovidae family, is currently listed as threatened by the IUCN Red List and it is estimated the total world population is <10,000 animals. In exotic or endangered species, the lack of oocytes and recipients precludes the use of traditional somatic cell nuclear transfer (NT), and an approach such as interspecies NT may be the only alternative to produce embryos and offspring. A total of 348 enucleated domestic bovine oocytes were reconstructed with either male (Treatment A) or female (Treatment B) adult banteng fibroblasts and a total of 103 bovine oocytes were parthenogenically activated as a control (Treatment C). There was no significant difference in fusion rate (68 versus 77%) between Treatments A and B. Of fused couplets, those in Treatment A had greater (P < 0.05) cleavage (67 versus 51%) and blastocyst (28 versus 15%) rate than Treatment B. Of a total of 24 blastocysts transferred into 12 domestic cattle recipients from Treatment A, two pregnancies (17%) were established with heart beats detectable at 30 day by rectal ultrasonography. No pregnancies resulted from the transfer of 14 blastocysts from Treatment B. Both pregnancies were subsequently lost, one between 30 and 60 days and the second between 60 and 90 days of gestation. The bovine cytoplast supported mitotic cleavage of banteng karyoplasts, and was capable of reprogramming the nucleus to achieve blastocyst stage embryos and pregnancies in exotic bovids.
Collapse
Affiliation(s)
- M J Sansinena
- Embryo Biotechnology Laboratory, Department of Animal Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA
| | | | | | | | | |
Collapse
|
27
|
Gómez MC, Pope CE, Giraldo A, Lyons LA, Harris RF, King AL, Cole A, Godke RA, Dresser BL. Birth of African Wildcat Cloned Kittens Born from Domestic Cats. CLONING AND STEM CELLS 2004; 6:247-58. [PMID: 15671671 DOI: 10.1089/clo.2004.6.247] [Citation(s) in RCA: 154] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In the present study, we used the African Wildcat (Felis silvestris lybica) as a somatic cell donor to evaluate the in vivo developmental competence, after transfer into domestic cat recipients, of cloned embryos produced by the fusion of African Wildcat (AWC) fibroblast cell nuclei with domestic cat cytoplasts. Cloned embryos were produced by fusion of a single AWC somatic cell to in vivo or in vitro enucleated domestic cat cytoplasts. When the two sources of oocytes were compared, fusion rate was higher using in vivo-matured oocytes as recipient cytoplasts, but cleavage rate was higher after reconstruction of in vitro-matured oocytes. To determine the number of reconstructed embryos required per domestic cat recipient to consistently establish pregnancies, AWC cloned embryos were transferred within two groups: recipients (n = 24) receiving < or =25 embryos and recipients (n = 26) receiving > or =30 embryos. Twelve recipients (46.2%) receiving > or =30 embryos were diagnosed to be pregnant, while no pregnancies were established in recipients receiving < or =25 NT embryos. Also, to determine the influence of length of in vitro culture on pregnancy rate, we compared oviductal transfer on day 1 and uterine transfer on day 5, 6, or 7. Pregnancy rates were similar after transfer of embryos on day 1 (6/12; 50.0%), day 5 (4/9; 44.4%), or day 6 (2/5; 40.0%) to synchronous recipients, but the number of fetuses developing after transfer of embryos on day 1 (n = 17), versus day 5 (n = 4) or day 6 (n = 3) was significantly different. Of the 12 pregnant recipients, nine (75%) developed to term and fetal resorption or abortion occurred in the other three (25%) from day 30 to 48 of gestation. Of a total of 17 cloned kittens born, seven were stillborn, eight died within hours of delivery or up to 6 weeks of age, and two are alive and healthy. Perinatal mortality was due to lung immaturity at premature delivery, placental separation and bacterial septicemia. Subsequent DNA analysis of 12 cat-specific microsatellite loci confirmed that all 17 kittens were clones of the AWC donor male. These AWC kittens represent the first wild carnivores to be produced by nuclear transfer.
Collapse
Affiliation(s)
- Martha C Gómez
- Audubon Center for Research of Endangered Species, New Orleans, LA 70131, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Wrenzycki C, Herrmann D, Lucas-Hahn A, Lemme E, Korsawe K, Niemann H. Gene expression patterns in in vitro-produced and somatic nuclear transfer-derived preimplantation bovine embryos: relationship to the large offspring syndrome? Anim Reprod Sci 2004; 82-83:593-603. [PMID: 15271482 DOI: 10.1016/j.anireprosci.2004.05.009] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
A considerable proportion of the offspring born from somatic nuclear transfer (sNT)-derived and in vitro-produced (IVP) embryos, particularly in ruminants and mice, is affected by multiple abnormalities of which a high birth weight is the predominant feature; a phenomenon that has been called "large offspring syndrome (LOS)". The underlying mechanisms are largely unknown at present, but changes in epigenetic modifications occurring during preimplantation development resulting in perturbed embryonic and fetal gene expression patterns are thought to be involved in the syndrome. This review summarizes results from studies comparing mRNA expression patterns from IVP and sNT-derived embryos to those of their in vivo counterparts, which are regarded as the "gold standard". Numerous aberrations have been observed ranging from suppression of expression to de novo overexpression or more frequently to a significant up- or down-regulation of a specific gene. These observations emphasize the need for further studies during preimplantation embryo development to gain insight in the molecular, preferentially epigenetic, mechanisms regulating embryonic and fetal development. Understanding these mechanisms will help to improve biotechnologies applied to early embryos in all species including humans.
Collapse
Affiliation(s)
- C Wrenzycki
- Department of Biotechnology, Institute for Animal Breeding, Hoeltystr. 10, Mariensee, 31535 Neustadt, Germany.
| | | | | | | | | | | |
Collapse
|
29
|
Baldassarre H, Wang B, Pierson J, Neveu N, Sneek L, Lapointe J, Cote F, Kafidi N, Keefer CL, Lazaris A, Karatzas CN. Prepubertal propagation of transgenic cloned goats by laparoscopic ovum pick-up and in vitro embryo production. CLONING AND STEM CELLS 2004; 6:25-9. [PMID: 15107243 DOI: 10.1089/15362300460743808] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The use of laparoscopic ovum pick-up (LOPU) followed by in vitro embryo production was evaluated in the early propagation of cloned goats. Ten kinder goats produced by somatic cell nuclear transfer technology were used as oocyte donors. Half of the donor animals were subjected to LOPU at 2-3 months of age (prior to induction of lactation), whereas the other five goats were subjected to LOPU at 6-7 months of age (following induction to lactation). They were stimulated with 80 mg NIH-FSH-P1 (Folltropin, Vetrepharm, Canada) together with 300 IU eCG (Novormon, Vetrepharm, Canada) administered intramuscularly 36 h prior to LOPU. The number of follicles aspirated and oocytes recovered was higher in the younger group of donors (57 +/- 7 and 41 +/- 4 vs. 28 +/- 2 and 25.8 +/- 2, p < 0.05), however, oocytes from animals in the late prepubertal age showed higher developmental capacity resulting in higher transferable embryo yield (81.4% vs. 67.8%, p < 0.01), pregnancy rate (80% vs. 40%, p < 0.05) and total kids born (27 vs. 15, p < 0.01). In conclusion, LOPU in combination with in vitro embryo production techniques is an efficient method for the early propagation of valuable goats produced by somatic cell nuclear transfer.
Collapse
Affiliation(s)
- H Baldassarre
- Nexia Biotechnologies Inc., Vaudreuil-Dorion, Quebec, Canada.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Holm P, Booth PJ, Callesen H. Developmental kinetics of bovine nuclear transfer and parthenogenetic embryos. CLONING AND STEM CELLS 2004; 5:133-42. [PMID: 12930625 DOI: 10.1089/153623003322234731] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Early developmental kinetics of nuclear transfer (NT) embryos reconstituted with blastomeres and parthenogenones produced by ionophore activation followed by either dimethylaminopurine (DMAP) or cycloheximide (CHX) treatment was studied. In vitro produced (IVP) embryos served as controls. Embryos were cultured to the hatched blastocyst stage, and images were recorded every 0.5 h throughout the culture period. The longest cell cycle shifted from 4th to 5th cycle (26 +/- 4 and 44 +/- 5 h) in NT-embryos compared to IVP-embryos (41 +/- 2 and 20 +/- 3 h) and showed greater asynchrony between blastomeres than any other embryo category. Compared to DMAP, CHX prolonged the 1(st) (23 +/- 1 vs. 33 +/- 1 h) and shortened the 3(rd) cell cycle (17 +/- 2 vs. 13 +/- 1 h). Moreover, though cytoskeleton activity was initialised, a larger proportion of CHX embryos was unable to accomplish first cleavage. The parthegenones differed from IVP embryos with respect to the lengths of the 1st, 3rd, and 4th cell cycles and time of hatching. The findings are discussed in relation to known ultrastructural, chromosomal and genomic aberrations found in NT embryos and parthenogenones. We hypothesize that the shift of the longest cell cycle in NT embryos is associated with a shift in the time of major genomic transition.
Collapse
Affiliation(s)
- P Holm
- Department of Animal Breeding and Genetics, Danish Institute of Agricultural Sciences, Tjele, Denmark.
| | | | | |
Collapse
|
31
|
Schrader AD, Iqbal MJ, Jones KL. Gene expression in cloned bovine fetal liver. CLONING AND STEM CELLS 2003; 5:63-9. [PMID: 12713702 DOI: 10.1089/153623003321512175] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Nuclear transfer (NT) is a method of animal reproduction that bypasses fertilization and propagates known combinations of genes. Currently NT is an inefficient process. Attempts have been made to increase the efficiency of this procedure, but most have been deemed unsuccessful. Some problems associated with NT are unusually large birth weights, and physical abnormalities in developing liver, heart, and brain. Despite numerous studies performed on NT animals, the factors behind the anomalies remain unknown. It is possible that nuclear reprogramming is the basis of poor development rates, meaning, when the donor cells are fused with enucleated eggs the nuclei may not regain the full ability to direct cell differentiation in subsequent mitotic divisions. If reprogramming is not carried out precisely, then some genes may not be correctly expressed in NT animals. The purpose of this study was to determine if differential gene expression between the livers of NT fetuses when compared to an embryo transfer (ET) derived fetus could be detected and the genes identified. An Angus fetus at 45 d of gestation was collected and a non-clonal cell line established for use as NT donor cells. Two NT fetuses were propagated and compared to the original. Differential Display Reverse Transcription Polymerase Chain Reaction (ddRT-PCR) was used to identify genes that were differentially expressed. Differentially abundant cDNAs were subcloned, sequenced and their corresponding mRNAs were verified by semi-quantitative RT-PCR. Twenty-three Expressed Sequence Tags (ESTs) were sequenced in Bos taurus and submitted to GenBank. The results of ddRT-PCR identified 39 genes/ESTs that were potentially differentially expressed. Fifteen of the genes were tested by semi-quantitative RT-PCR, but no significant differences were detected.
Collapse
Affiliation(s)
- A D Schrader
- Department of Animal Science, Food and Nutrition, Southern Illinois University, Carbondale, Illinois, USA
| | | | | |
Collapse
|
32
|
Peura TT. Improved in vitro development rates of sheep somatic nuclear transfer embryos by using a reverse-order zona-free cloning method. CLONING AND STEM CELLS 2003; 5:13-24. [PMID: 12713697 DOI: 10.1089/153623003321512120] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
This paper describes a modified zona-free cloning protocol for examining the effects of short-term exposure of donor nuclei to maternal chromosomal components and associated factors. In vitro matured zona-free sheep oocytes were enucleated by micromanipulator-assisted aspiration either before or after fusion with adult fibroblast or granulosa donor cells. Subsequent kinetics of donor nuclei and maternal chromatin as well as in vitro embryo development rates were recorded. The effect of an additional activation stimulus in connection with the reverse-order cloning (fusion before enucleation) and the feasibility of manual enucleation by metal blade were also studied. As a result of the simultaneous fusion and activation, most donor nuclei remained in interphase but swelled in size. Maternal chromosomes reached anaphase II-telophase II stages within 1-2 h of activation, effectively facilitating telophase enucleation with both the micromanipulator-assisted aspiration and manual bisection. A significantly higher development rate to the blastocyst stage was achieved with the reverse-order protocol, suggesting further investigation into the possible role of oocyte nucleus-associated factors in reprogramming is warranted. Overall, the reverse-order zona-free cloning method was efficient in the production of transferable cloned sheep blastocysts and may offer yet another choice of methodology in the practical application of nuclear transfer technology.
Collapse
Affiliation(s)
- T T Peura
- South Australian Research and Development Institute, Turretfield Research Centre, Rosedale, Australia.
| |
Collapse
|
33
|
Abstract
Microinjection of foreign DNA into pronuclei of a fertilized oocyte has predominantly been used for the generation of transgenic livestock. This technology works reliably, but is inefficient and results in random integration and variable expression patterns in the transgenic offspring. Nevertheless, remarkable achievements have been made with this technology. By targeting expression to the mammary gland, numerous heterologous recombinant human proteins have been produced in large amounts which could be purified from milk of transgenic goats, sheep, cattle and rabbit. Products such as human anti-thrombin III, alpha-anti-trypsin and tissue plasminogen activator are currently in advanced clinical trials and are expected to be on the market within the next few years. Transgenic pigs that express human complement regulating proteins have been tested in their ability to serve as donors in human organ transplantation (i.e. xenotransplantation). In vitro and in vivo data convincingly show that the hyperacute rejection response can be overcome in a clinically acceptable manner by successful employing this strategy. It is anticipated that transgenic pigs will be available as donors for functional xenografts within a few years. Similarly, pigs may serve as donors for a variety of xenogenic cells and tissues. The recent developments in nuclear transfer and its merger with the growing genomic data allow a targeted and regulatable transgenic production. Systems for efficient homologous recombination in somatic cells are being developed and the adaptation of sophisticated molecular tools, already explored in mice, for transgenic livestock production is underway. The availability of these technologies are essential to maintain "genetic security" and to ensure absence of unwanted side effects.
Collapse
Affiliation(s)
- Heiner Niemann
- Department of Biotechnology, Institut für Tierzucht Mariensee, FAL, 31535 Neustadt, Germany.
| | | |
Collapse
|
34
|
Abstract
Genetically modified laboratory animals provide a powerful approach for studying gene expression and regulation and allow one to directly examine structure-function and cause-and-effect relationships in pathophysiological processes. Today, transgenic mice are available as a research tool in almost every research institution. On the other hand, the development of a relatively large mammalian transgenic model, transgenic rabbits, has provided unprecedented opportunities for investigators to study the mechanisms of human diseases and has also provided an alternative way to produce therapeutic proteins to treat human diseases. Transgenic rabbits expressing human genes have been used as a model for cardiovascular disease, AIDS, and cancer research. The recombinant proteins can be produced from the milk of transgenic rabbits not only at lower cost but also on a relatively large scale. One of the most promising and attractive recombinant proteins derived from transgenic rabbit milk, human alpha-glucosidase, has been successfully used to treat the patients who are genetically deficient in this enzyme. Although the pronuclear microinjection is still the major and most popular method for the creation of transgenic rabbits, recent progress in gene targeting and animal cloning has opened new avenues that should make it possible to produce transgenic rabbits by somatic cell nuclear transfer in the future. Based on a computer-assisted search of the studies of transgenic rabbits published in the English literature here, we introduce to the reader the achievements made thus far with transgenic rabbits, with emphasis on the application of these rabbits as human disease models and live bioreactors for producing human therapeutic proteins and on the recent progress in cloned rabbits.
Collapse
Affiliation(s)
- Jianglin Fan
- Laboratory of Cardiovascular Disease, Department of Pathology, Institute of Basic Medical Sciences, University of Tsukuba, Tsukuba 305-8575, Japan.
| | | |
Collapse
|
35
|
Niemann H, Rath D, Wrenzycki C. Advances in biotechnology: new tools in future pig production for agriculture and biomedicine. Reprod Domest Anim 2003; 38:82-9. [PMID: 12654017 DOI: 10.1046/j.1439-0531.2003.00409.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Biotechnology in livestock comprises an arsenal of reproductive biotechniques and molecular genetics. While molecular genetics are poorly developed in swine, reproductive techniques are more advanced and applied under field conditions. This review describes three selected examples of our own research to illustrate the implication of biotechnology in future pig reproduction. Sperm sexing technology is now available and can be used to generate piglets of the desired sex by IVF and ICSI. First studies also indicate satisfactory success rates following intrauterine insemination with sexed spermatozoa. Cloning technique and production of transgenic pigs require information about the regulation and time course of gene expression during in vitro production and pre-implantation development. Information on gene expression is scare in porcine embryos. With the exception of transcripts for the oestrogen receptor gene, no mRNA's from the activated porcine genome have been identified. Recent development of cDNA arrays might help to identify a larger amount of genes in single embryos. Remarkable progress has been made in organ transplantation technology. As the demand for human organs is increasing rapidly, the pig might serve as donor of xenotranplants, provided the transmission of zoonoses from the donor animal to the human recipient is prevented, donor organ anatomy and function are compatible, and immunological rejections (HAR, VAR MAC) can be overcome. The most promising strategy is the synthesis of human complement regulatory proteins in the pig. Transgenic pigs have been generated for hDAF or hCD 46 and their hearts have been transplanted into non human primates for up to 90 days. HCD 59 driven by CMV promotor provides significant protection against HAR at least under in vitro and in vivo conditions. Current studies indicate a temporary use in patients within the next 3-5 years. As the microinjection technology to produce transgenic offspring is time consuming and very expensive, nuclear transfer technology provides a possibility for multiplication without going through the germ line with recombination effects. A functional nuclear transfer system will be crucial for xenotransplantation as it is anticipated that the expression of several transgenes will be required.
Collapse
Affiliation(s)
- H Niemann
- Department of Biotechnology, Institute of Animal Science, Mariensee (FAL), Neustadt, Germany
| | | | | |
Collapse
|
36
|
|
37
|
Walker SC, Shin T, Zaunbrecher GM, Romano JE, Johnson GA, Bazer FW, Piedrahita JA. A highly efficient method for porcine cloning by nuclear transfer using in vitro-matured oocytes. CLONING AND STEM CELLS 2003; 4:105-12. [PMID: 12171703 DOI: 10.1089/153623002320253283] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
To date, the efficiency of pig cloning by nuclear transfer of somatic cell nuclei has been extremely low, with less than 1% of transferred embryos surviving to term. Even the utilization of complex procedures such as two rounds of nuclear transfer has not resulted in greater overall efficiencies. As a result, the applicability of the technology for the generation of transgenic and cloned animals has not moved forward rapidly. We report here a simple nuclear transfer protocol, utilizing commercially available in vitro-matured oocytes, that results in greater than 5% overall cloning efficiency. Of five recipients receiving nuclear transfer embryos produced with a fetal fibroblast cell line as nuclear donor, all five established pregnancies by day 28 (100%), and 4/5 (80%) went to term. Efficiencies for each transfer were 7% (9 piglets/128 doublets transferred), 5% (5/100), 12% (7/59), and 6.6% (7/106). The overall efficiency in all recipients was 5.5% and in pregnant recipients 7.7%, with a total of 28 cloned piglets produced. With the average fusion rate being 58%, the percentage of fused doublets producing a live piglet approached 12%. The method described here can be undertaken by a single micromanipulator at a reasonable cost, and should facilitate the broad utilization of porcine cloning technology in transgenic and nontransgenic applications.
Collapse
Affiliation(s)
- Shawn C Walker
- Center for Animal Biotechnology and Genomics, Texas A&M University, College Station, Texas 77843-4458, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
Fertility has many components and stages which require that males and females be functionally capable of carrying out all critical stages if each generational reproductive cycle is to be completed. To accomplish this, the male must produce and ejaculate normal fertile sperm. The female must produce, store and ovulate normal fertilizable oocytes. Furthermore, the female must provide a reproductive system compatible with sperm transport, capacitation, and fertilization of the oocytes, embryo and fetal development, and finally birth of healthy young. Reproductive success or failure at several of these points can be estimated quantitatively on a population basis, and in a few situations on an individual basis. It is important that fertility estimates be determined accurately and with precision to be most useful to researchers and managers of animal enterprises. Many studies have underestimated the biological relationship of fertility to other traits because the estimates lacked precision. Many in vitro manipulations of sperm in artificial insemination, of gametes in various assisted reproductive technologies, and of embryos in embryo transfer are utilized in animal breeding programs. Accurate estimation of reproductive efficiency of these in vitro procedures also is important. Conditions surrounding different sets of fertility estimates almost certainly will be different. These conditions should be described as precisely as possible, and appropriate controls included in all experiments. When possible, experiments should be replicated over time and place to determine the repeatability of the various criteria used to estimate fertility and reproductive efficiency. Advances in genomic information and molecular biology should facilitate characterizing more fully inherent potential fertility of animals at birth. In vitro tests will improve, and automated techniques will facilitate making multiple determinations possible on a large scale. Reliability of fertility estimates will increase, with the potential for enhanced animal reproductive performance through more accurate selection, genetic engineering, and enlightened animal care. Simultaneously, it is important to recognize that prediction of future fertility is more hazardous than estimating fertility, as a completely new set of circumstances may occur which are not predictable. Because fertility estimation may be applied under a myriad of conditions, principles and factors affecting fertility will be emphasized in this review as being more useful than a compilation of numerical examples.
Collapse
Affiliation(s)
- Robert H Foote
- Department of Animal Science, Cornell University, Ithaca, NY 14853-4801, USA.
| |
Collapse
|
39
|
Tecirlioglu RT, French AJ, Lewis IM, Vajta G, Korfiatis NA, Hall VJ, Ruddock NT, Cooney MA, Trounson AO. Birth of a cloned calf derived from a vitrified hand-made cloned embryo. Reprod Fertil Dev 2003; 15:361-6. [PMID: 14984692 DOI: 10.1071/rd03052] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2003] [Accepted: 01/01/2003] [Indexed: 11/23/2022] Open
Abstract
The hand-made cloning (HMC) technique describes a simplified nuclear transfer process without the need for micromanipulators. The technique involves manual bisection of zona-free oocytes, selection of cytoplasts by Hoechst staining and fusion of a single somatic cell and two cytoplasts. In this proof-of-principle experiment, the objective was to examine the developmental competence of HMC embryos following embryo transfer. Modifications to the original method include not selecting of matured oocytes and simultaneous fusion of cytoplasts and karyoplast. Blastocyst rates for embryos cultured in the glass oviduct system as singles (10.5%; 24/228) or in pairs (16.1%; 36/224) did not differ significantly. Fresh and vitrified–thawed blastocysts were transferred to 16 synchronised recipients (three to four embryos per recipient). Ultrasound examination on Days 35–45 showed an initial pregnancy rate of 43.8% (7/16) and a pregnancy rate >8 months of 12.5% (2/16). A male cloned calf (42 kg) derived from a vitrified HMC blastocyst was delivered by Caesarean section on Day 271. The birth and ongoing survival (15 months, 243 kg) of a healthy and apparently normal calf, combining both HMC and vitrification technologies, provides a ‘proof of principle’ of the technology and a promising alternative to traditional nuclear-transfer techniques.
Collapse
Affiliation(s)
- R T Tecirlioglu
- Centre for Early Human Development, Monash Institute of Reproduction and Development, Monash University, Clayton, Victoria, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Niemann H, Wrenzycki C, Lucas-Hahn A, Brambrink T, Kues WA, Carnwath JW. Gene expression patterns in bovine in vitro-produced and nuclear transfer-derived embryos and their implications for early development. CLONING AND STEM CELLS 2002; 4:29-38. [PMID: 12006154 DOI: 10.1089/153623002753632020] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Bovine in vitro-produced (IVP) and nuclear transfer (NT)-derived embryos differ from their in vivo-developed counterparts in a number of characteristics. A preeminent observation is the occurrence of the large offspring syndrome, which is correlated with considerable embryonic fetal and postnatal losses. We summarize here results from our studies in which we compared gene expression patterns from IVP and NT-derived embryos with those from their IVP counterparts. Numerous aberrations were found in IVP and NT-derived embryos, including a complete lack of expression, an induced expression, or a significant up- or downregulation of a specific gene. These alterations may affect a number of physiological functions and are considered as a kind of stress response of the embryos to deficient environmental conditions. We hypothesize that the alterations are caused by epigenetic modifications, primarily by changes in the methylation patterns. Unravelling these epigenetic modifications is promising to reveal the underlying mechanisms of the large offspring syndrome.
Collapse
Affiliation(s)
- H Niemann
- Department of Biotechnology, Institute for Animal Science, Neustadt, Germany.
| | | | | | | | | | | |
Collapse
|
41
|
Matsuda J, Takahashi S, Ohkoshi K, Kaminaka K, Kaminaka S, Nozaki C, Maeda H, Tokunaga T. Production of transgenic chimera rabbit fetuses using somatic cell nuclear transfer. CLONING AND STEM CELLS 2002; 4:9-19. [PMID: 12006152 DOI: 10.1089/153623002753632002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
We produced aggregate chimeric embryos between blastomeres from the somatic cell nuclear transfer (SCNT) embryos and blastomeres from normal embryos. The SCNT embryos were produced by fusing enucleated oocytes with GFP gene introduced fibroblast cells, which were derived from a day 16 fetus. GFP gene-introduced fibroblast cells were cultured and passaged four to 12 times over a period of 45-79 days before SCNT. After transferring them into pseudopregnant recipient rabbits, the 15-day postcoitus fetuses were collected. We examined the existence of the cells derived from SCNT embryos in the fetus stage of pregnancy to detect the GFP gene. Fetuses that were not collected continued to develop into newborn rabbits. Two hundred and thirty-six chimeric embryos were produced using 39 SCNT morula stage embryos, and these embryos were transferred to 11 recipient rabbits. As a result, 27 normally developed and 16 degenerated concepti were obtained. The GFP gene-positive signals were detected in one of the fetuses, two of the placentae, and two of the degenerated concepti. In this study, we found that the rabbit SCNT embryos have the ability to develop and differentiate in vivo. We also demonstrated a novel method of producing a transgenic rabbit using SCNT.
Collapse
Affiliation(s)
- Junichi Matsuda
- The Chemo-Sero-Therapeutic Research Institute, Kikuchi Research Center, Kumamoto, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Affiliation(s)
- Alan Colman
- PPL Therapeutics Ltd., Roslin, Edinburgh EH25 9PP, Scotland, UK.
| |
Collapse
|
43
|
Tamashiro KLK, Wakayama T, Akutsu H, Yamazaki Y, Lachey JL, Wortman MD, Seeley RJ, D'Alessio DA, Woods SC, Yanagimachi R, Sakai RR. Cloned mice have an obese phenotype not transmitted to their offspring. Nat Med 2002; 8:262-7. [PMID: 11875497 DOI: 10.1038/nm0302-262] [Citation(s) in RCA: 276] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mammalian cloning using somatic cells has been accomplished successfully in several species, and its potential basic, clinical and therapeutic applications are being pursued on many fronts. Determining the long-term effects of cloning on offspring is crucial for consideration of future application of the technique. Although full-term development of animals cloned from adult somatic cells has been reported, problems in the resulting progeny indicate that the cloning procedure may not produce animals that are phenotypically identical to their cell donor. We used a mouse model to take advantage of its short generation time and lifespan. Here we report that the increased body weight of cloned B6C3F1 female mice reflects an increase of body fat in addition to a larger body size, and that these mice share many characteristics consistent with obesity. We also show that the obese phenotype is not transmitted to offspring generated by mating male and female cloned mice.
Collapse
Affiliation(s)
- Kellie L K Tamashiro
- Department of Psychiatry, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Baldassarre H, Wang B, Kafidi N, Keefer C, Lazaris A, Karatzas CN. Advances in the production and propagation of transgenic goats using laparoscopic ovum pick-up and in vitro embryo production technologies. Theriogenology 2002; 57:275-84. [PMID: 11775975 DOI: 10.1016/s0093-691x(01)00671-9] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Laparoscopic ovum pick-up (LOPU) is a convenient methodology by which oocytes can be recovered and used either for in vitro production of zygotes or as a source of cytoplasts in nuclear transfer (NT) procedures. The pregnancy and transgenesis rates achieved with IVM/IVF of LOPU-sourced oocytes followed by subsequent DNA microinjection of zygotes are similar to the rates obtained when using in vivo-produced oocytes or zygotes. Similarly, pregnancy rates and kids born by using LOPU-sourced and in vitro matured oocytes as recipient cytoplasts in NT programs are comparable with those reported by others using in vivo matured oocytes collected by oviduct flushing. The use of LOPU allows for improved control over the stage of maturation/development of the oocytes and produced zygotes, a less invasive means of recovery, thereby allowing for repeated usage of the oocyte donor animals and the ability to source the oocytes from live animals of known health status. In addition, because of large follicular responses that can be obtained from prepubertal animals, LOPU followed by IVM/IVF has demonstrated great potential for the early propagation of valuable animals, in particular, transgenic animals.
Collapse
Affiliation(s)
- H Baldassarre
- Nexia Biotechnologies Inc., Vaudreuil, Quebec, Canada
| | | | | | | | | | | |
Collapse
|
45
|
Dean W, Santos F, Stojkovic M, Zakhartchenko V, Walter J, Wolf E, Reik W. Conservation of methylation reprogramming in mammalian development: aberrant reprogramming in cloned embryos. Proc Natl Acad Sci U S A 2001; 98:13734-8. [PMID: 11717434 PMCID: PMC61110 DOI: 10.1073/pnas.241522698] [Citation(s) in RCA: 707] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2001] [Accepted: 10/03/2001] [Indexed: 01/10/2023] Open
Abstract
Mouse embryos undergo genome-wide methylation reprogramming by demethylation in early preimplantation development, followed by remethylation thereafter. Here we show that genome-wide reprogramming is conserved in several mammalian species and ask whether it also occurs in embryos cloned with the use of highly methylated somatic donor nuclei. Normal bovine, rat, and pig zygotes showed a demethylated paternal genome, suggesting active demethylation. In bovine embryos methylation was further reduced during cleavage up to the eight-cell stage, and this reduction in methylation was followed by de novo methylation by the 16-cell stage. In cloned one-cell embryos there was a reduction in methylation consistent with active demethylation, but no further demethylation occurred subsequently. Instead, de novo methylation and nuclear reorganization of methylation patterns resembling those of differentiated cells occurred precociously in many cloned embryos. Cloned, but not normal, morulae had highly methylated nuclei in all blastomeres that resembled those of the fibroblast donor cells. Our study shows that epigenetic reprogramming occurs aberrantly in most cloned embryos; incomplete reprogramming may contribute to the low efficiency of cloning.
Collapse
Affiliation(s)
- W Dean
- Laboratory of Developmental Genetics and Imprinting, Developmental Genetics Program, Babraham Institute, Cambridge CB2 4AT, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
DNA methylation is a major epigenetic modification of the genome that regulates crucial aspects of its function. Genomic methylation patterns in somatic differentiated cells are generally stable and heritable. However, in mammals there are at least two developmental periods-in germ cells and in preimplantation embryos-in which methylation patterns are reprogrammed genome wide, generating cells with a broad developmental potential. Epigenetic reprogramming in germ cells is critical for imprinting; reprogramming in early embryos also affects imprinting. Reprogramming is likely to have a crucial role in establishing nuclear totipotency in normal development and in cloned animals, and in the erasure of acquired epigenetic information. A role of reprogramming in stem cell differentiation is also envisaged. DNA methylation is one of the best-studied epigenetic modifications of DNA in all unicellular and multicellular organisms. In mammals and other vertebrates, methylation occurs predominantly at the symmetrical dinucleotide CpG (1-4). Symmetrical methylation and the discovery of a DNA methyltransferase that prefers a hemimethylated substrate, Dnmt1 (4), suggested a mechanism by which specific patterns of methylation in the genome could be maintained. Patterns imposed on the genome at defined developmental time points in precursor cells could be maintained by Dnmt1, and would lead to predetermined programs of gene expression during development in descendants of the precursor cells (5, 6). This provided a means to explain how patterns of differentiation could be maintained by populations of cells. In addition, specific demethylation events in differentiated tissues could then lead to further changes in gene expression as needed. Neat and convincing as this model is, it is still largely unsubstantiated. While effects of methylation on expression of specific genes, particularly imprinted ones (7) and some retrotransposons (8), have been demonstrated in vivo, it is still unclear whether or not methylation is involved in the control of gene expression during normal development (9-13). Although enzymes have been identified that can methylate DNA de novo (Dnmt3a and Dnmt3b) (14), it is unknown how specific patterns of methylation are established in the genome. Mechanisms for active demethylation have been suggested, but no enzymes have been identified that carry out this function in vivo (15-17). Genomewide alterations in methylation-brought about, for example, by knockouts of the methylase genes-result in embryo lethality or developmental defects, but the basis for abnormal development still remains to be discovered (7, 14). What is clear, however, is that in mammals there are developmental periods of genomewide reprogramming of methylation patterns in vivo. Typically, a substantial part of the genome is demethylated, and after some time remethylated, in a cell- or tissue-specific pattern. The developmental dynamics of these reprogramming events, as well as some of the enzymatic mechanisms involved and the biological purposes, are beginning to be understood. Here we look at what is known about reprogramming in mammals and discuss how it might relate to developmental potency and imprinting.
Collapse
Affiliation(s)
- W Reik
- Laboratory of Developmental Genetics and Imprinting, The Babraham Institute, Cambridge CB2 4AT, UK
| | | | | |
Collapse
|
47
|
Affiliation(s)
- D P Wolf
- Oregon Regional Primate Research Center, Beaverton, Oregon, USA.
| |
Collapse
|
48
|
Colman A, Burley JC. A legal and ethical tightrope. Science, ethics and legislation of stem cell research. EMBO Rep 2001; 2:2-5. [PMID: 11252718 PMCID: PMC1083813 DOI: 10.1093/embo-reports/kve017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- A Colman
- Department of Government at the University of Manchester.
| | | |
Collapse
|
49
|
Westhusin ME, Long CR, Shin T, Hill JR, Looney CR, Pryor JH, Piedrahita JA. Cloning to reproduce desired genotypes. Theriogenology 2001; 55:35-49. [PMID: 11198087 DOI: 10.1016/s0093-691x(00)00444-1] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Cloned sheep, cattle, goats, pigs and mice have now been produced using somatic cells for nuclear transplantation. Animal cloning is still very inefficient with on average less than 10% of the cloned embryos transferred resulting in a live offspring. However successful cloning of a variety of different species and by a number of different laboratory groups has generated tremendous interest in reproducing desired genotypes. Some of these specific genotypes represent animal cell lines that have been genetically modified. In other cases there is a significant demand for cloning animals characterized by their inherent genetic value, for example prize livestock, household pets and rare or endangered species. A number of different variables may influence the ability to reproduce a specific genotype by cloning. These include species, source of recipient ova, cell type of nuclei donor, treatment of donor cells prior to nuclear transfer, and the techniques employed for nuclear transfer. At present, there is no solid evidence that suggests cloning will be limited to only a few specific animals, and in fact, most data collected to date suggests cloning will be applicable to a wide variety of different animals. The ability to reproduce any desired genotype by cloning will ultimately depend on the amount of time and resources invested in research.
Collapse
Affiliation(s)
- M E Westhusin
- Departments of Veterinary Physiology and Pharmacology, Anatomy and Public Health, College of Veterinary Medicine, Texas A&M University, College Station, TX 77843, USA.
| | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
For many years, researchers cloning mammals experienced little success, but recent advances have led to the successful cloning of several mammalian species. However, cloning by the transfer of nuclei from adult cells is still a hit-and-miss procedure, and it is not clear what technical and biological factors underlie this. Our understanding of the molecular basis of reprogramming remains extremely limited and affects experimental approaches towards increasing the success rate of cloning. Given the future practical benefits that cloning can offer, the time has come to address what should be done to resolve this problem.
Collapse
Affiliation(s)
- D Solter
- Max-Planck Institute of Immunobiology, Stübeweg 51, 79108 Freiburg, Germany.
| |
Collapse
|