1
|
Miyoshi K, Kawaguchi H, Maeda K, Sato M, Akioka K, Noguchi M, Horiuchi M, Tanimoto A. Birth of Cloned Microminipigs Derived from Somatic Cell Nuclear Transfer Embryos That Have Been Transiently Treated with Valproic Acid. Cell Reprogram 2017; 18:390-400. [PMID: 27906585 DOI: 10.1089/cell.2016.0025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
In our previous study, we found that treatment of miniature pig somatic cell nuclear transfer (SCNT) embryos with 4 mM valproic acid (VPA), a histone deacetylase inhibitor, for 48 hours after activation enhanced blastocyst formation rate and octamer-binding transcription factor-3/4 (Oct-3/4) gene expression at the late blastocyst stage; however, the production of viable cloned pups failed, when those VPA-treated SCNT embryos were transferred to recipients. This failure suggests that the present VPA treatment is suboptimal. In the present study, we explored the optimal conditions for VPA to have beneficial effects on the development of SCNT embryos. When miniature pig SCNT embryos were treated with 8 mM VPA for 24 hours after activation, both the rates of blastocyst formation and blastocysts expressing the Oct-3/4 gene were significantly (p < 0.05) improved. A similar increase in blastocyst formation was also observed when microminipig-derived cells were used as SCNT donors. Five cloned piglets were obtained after the transfer of 152 microminipig SCNT embryos that had been treated with 8 mM VPA for 24 hours. The results indicated that a short duration of treatment with VPA improves the development of both miniature pig and microminipig SCNT embryos, possibly via an enhanced reprogramming mechanism.
Collapse
Affiliation(s)
- Kazuchika Miyoshi
- 1 Laboratory of Animal Reproduction, Faculty of Agriculture, Kagoshima University , Kagoshima, Japan
| | - Hiroaki Kawaguchi
- 2 Department of Hygiene and Health Promotion Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University , Kagoshima, Japan
| | - Kosuke Maeda
- 1 Laboratory of Animal Reproduction, Faculty of Agriculture, Kagoshima University , Kagoshima, Japan
| | - Masahiro Sato
- 3 Section of Gene Expression Regulation, Center for Advanced Biomedical Science and Swine Research, Kagoshima University , Kagoshima, Japan
| | - Kohei Akioka
- 4 Department of Veterinary Histopathology, Joint Faculty of Veterinary Medicine, Kagoshima University , Kagoshima, Japan
| | - Michiko Noguchi
- 5 Laboratory of Theriogenology, Faculty of Veterinary Medicine, Azabu University , Kanagawa, Japan
| | - Masahisa Horiuchi
- 2 Department of Hygiene and Health Promotion Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University , Kagoshima, Japan
| | - Akihide Tanimoto
- 6 Department of Pathology, Graduate School of Medical and Dental Sciences, Kagoshima University , Kagoshima, Japan
| |
Collapse
|
2
|
Yu Y, Yan J, Zhang Q, Yan L, Li M, Zhou Q, Qiao J. Successful reprogramming of differentiated cells by somatic cell nuclear transfer, using in vitro-matured oocytes with a modified activation method. J Tissue Eng Regen Med 2012; 7:855-63. [PMID: 22589148 DOI: 10.1002/term.1476] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Revised: 07/28/2011] [Accepted: 01/13/2012] [Indexed: 11/06/2022]
Abstract
Therapeutic cloning has tremendous potential for cell therapy and tissue repair in some diseases. However, the efficiency of development of cloned human embryos by somatic cell nuclear transfer is still low. In the present study, the activation of cloned human embryos was investigated while using in vitro-matured oocytes. Pseudo-pronuclear formation and the subsequent development was compared with different activation parameters, including different durations of ionomycin and 6-dimethylaminopurine treatment. The results showed that somatic cells were successfully reprogrammed by modification of activation treatments while using in vitro-matured oocytes. The activation efficiency of cloned human embryos was significantly increased at durations of ionomycin at both 5 and 7 min, despite different durations of 6-DMAP treatment. The results of blastocyst development showed that 20% of activated embryos developed to the blastocyst stage when the embryos were activated with 5 µm ionomycin for 5 min and 2 mm 6-DMAP for 5 h, which was significantly higher than those activated with other parameters. Moreover, we found that an increasing duration of 6-DMAP induced the formation of a single, large, pseudo-pronucleus in cloned human embryos and impaired subsequent development competence. In conclusion, successful reprogramming of human somatic cells was achieved using in vitro-matured oocytes by somatic cell nuclear transfer and improved with a modified activation method.
Collapse
Affiliation(s)
- Yang Yu
- Centre for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, the People's Republic of China; Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, the People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
3
|
Golding MC, Williamson GL, Stroud TK, Westhusin ME, Long CR. Examination of DNA methyltransferase expression in cloned embryos reveals an essential role for Dnmt1 in bovine development. Mol Reprod Dev 2011; 78:306-17. [PMID: 21480430 DOI: 10.1002/mrd.21306] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2011] [Accepted: 02/25/2011] [Indexed: 01/03/2023]
Abstract
In studies of somatic cell nuclear transfer (SCNT), the ability of factors within the oocyte to epigenetically reprogram transferred nuclei is essential for embryonic development of the clone to proceed. However, irregular patterns of X-chromosome inactivation, abnormal expression of imprinted genes, and genomic DNA hypermethylation are frequently observed in reconstructed embryos, suggesting abnormalities in this process. To better understand the epigenetic events underlying SCNT reprogramming, we sought to determine if the abnormal DNA methylation levels observed in cloned embryos result from a failure of the oocyte to properly reprogram transcription versus differential biochemical regulation of the DNA methyltransferase family of enzymes (DNMTs) between embryonic and somatic nuclei. To address this question, we conducted real-time quantitation of Dnmt transcripts in bovine preimplantation embryos generated though in vitro fertilization (IVF), parthenogenic activation, and SCNT. By the 8-cell stage, transcripts encoding Dnmt1 become significantly down-regulated in cloned embryos, likely in response to the state of genomic hypermethylation, while the de novo methyltransferases maintain an expression pattern indistinguishable from their IVF and parthenote counterparts. Depletion of embryonic/maternal Dnmt1 transcripts within IVF embryos using short-interfering RNAs, while able to lower genomic DNA methylation levels, resulted in developmental arrest at the 8/16-cell stage. In contrast, SCNT embryos derived from a stable, Dnmt1-depleted donor cell line develop to blastocyst stage, but failed to carry to term. Our results indicate an essential role for Dnmt1 during bovine preimplantation development, and suggest proper transcriptional reprogramming of this gene family in SCNT embryos.
Collapse
Affiliation(s)
- Michael C Golding
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843-4466, USA.
| | | | | | | | | |
Collapse
|
4
|
Miyoshi K, Mori H, Mizobe Y, Akasaka E, Ozawa A, Yoshida M, Sato M. Valproic Acid EnhancesIn VitroDevelopment and Oct-3/4 Expression of Miniature Pig Somatic Cell Nuclear Transfer Embryos. Cell Reprogram 2010; 12:67-74. [DOI: 10.1089/cell.2009.0032] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Affiliation(s)
- Kazuchika Miyoshi
- Laboratory of Animal Reproduction, Faculty of Agriculture, Kagoshima University, Kagoshima, Japan
| | - Hironori Mori
- Laboratory of Animal Reproduction, Faculty of Agriculture, Kagoshima University, Kagoshima, Japan
| | - Yamato Mizobe
- Laboratory of Animal Reproduction, Faculty of Agriculture, Kagoshima University, Kagoshima, Japan
| | - Eri Akasaka
- Section of Gene Expression Regulation, Frontier Science Research Center, Kagoshima University, Kagoshima, Japan
| | - Akio Ozawa
- Section of Gene Expression Regulation, Frontier Science Research Center, Kagoshima University, Kagoshima, Japan
| | - Mitsutoshi Yoshida
- Laboratory of Animal Reproduction, Faculty of Agriculture, Kagoshima University, Kagoshima, Japan
| | - Masahiro Sato
- Section of Gene Expression Regulation, Frontier Science Research Center, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
5
|
MIYOSHI K, MORI H, MIZOBE Y, HIMAKI T, YOSHIDA M, SATO M. Beneficial Effects of Reversine on In Vitro Development of Miniature Pig Somatic Cell Nuclear Transfer Embryos. J Reprod Dev 2010; 56:291-6. [DOI: 10.1262/jrd.09-149a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Kazuchika MIYOSHI
- Laboratory of Animal Reproduction, Faculty of Agriculture, Kagoshima University
| | - Hironori MORI
- Laboratory of Animal Reproduction, Faculty of Agriculture, Kagoshima University
| | - Yamato MIZOBE
- Laboratory of Animal Reproduction, Faculty of Agriculture, Kagoshima University
| | - Takehiro HIMAKI
- Laboratory of Animal Reproduction, Faculty of Agriculture, Kagoshima University
| | - Mitsutoshi YOSHIDA
- Laboratory of Animal Reproduction, Faculty of Agriculture, Kagoshima University
| | - Masahiro SATO
- Section of Gene Expression Regulation, Frontier Science Research Center, Kagoshima University
| |
Collapse
|
6
|
Bui LC, Evsikov AV, Khan DR, Archilla C, Peynot N, Hénaut A, Le Bourhis D, Vignon X, Renard JP, Duranthon V. Retrotransposon expression as a defining event of genome reprogramming in fertilized and cloned bovine embryos. Reproduction 2009; 138:289-99. [PMID: 19465487 DOI: 10.1530/rep-09-0042] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Genome reprogramming is the ability of a nucleus to modify its epigenetic characteristics and gene expression pattern when placed in a new environment. Low efficiency of mammalian cloning is attributed to the incomplete and aberrant nature of genome reprogramming after somatic cell nuclear transfer (SCNT) in oocytes. To date, the aspects of genome reprogramming critical for full-term development after SCNT remain poorly understood. To identify the key elements of this process, changes in gene expression during maternal-to-embryonic transition in normal bovine embryos and changes in gene expression between donor cells and SCNT embryos were compared using a new cDNA array dedicated to embryonic genome transcriptional activation in the bovine. Three groups of transcripts were mostly affected during somatic reprogramming: endogenous terminal repeat (LTR) retrotransposons and mitochondrial transcripts were up-regulated, while genes encoding ribosomal proteins were downregulated. These unexpected data demonstrate specific categories of transcripts most sensitive to somatic reprogramming and likely affecting viability of SCNT embryos. Importantly, massive transcriptional activation of LTR retrotransposons resulted in similar levels of their transcripts in SCNT and fertilized embryos. Taken together, these results open a new avenue in the quest to understand nuclear reprogramming driven by oocyte cytoplasm.
Collapse
Affiliation(s)
- L C Bui
- INRA, UMR 1198 Biologie du Développement et Reproduction, Jouy en Josas, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
MIYOSHI K, MORI H, MIZOBE Y, AKASAKA E, OZAWA A, YOSHIDA M, SATO M. Development of a Noninvasive Monitoring System for Evaluation of Oct-3/4 Promoter Status in Miniature Pig Somatic Cell Nuclear Transfer Embryos. J Reprod Dev 2009; 55:661-9. [DOI: 10.1262/jrd.09-089a] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Kazuchika MIYOSHI
- Laboratory of Animal Reproduction, Faculty of Agriculture, Kagoshima University
| | - Hironori MORI
- Laboratory of Animal Reproduction, Faculty of Agriculture, Kagoshima University
| | - Yamato MIZOBE
- Laboratory of Animal Reproduction, Faculty of Agriculture, Kagoshima University
| | - Eri AKASAKA
- Section of Gene Expression Regulation, Frontier Science Research Center, Kagoshima University
| | - Akio OZAWA
- Section of Gene Expression Regulation, Frontier Science Research Center, Kagoshima University
| | - Mitsutoshi YOSHIDA
- Laboratory of Animal Reproduction, Faculty of Agriculture, Kagoshima University
| | - Masahiro SATO
- Section of Gene Expression Regulation, Frontier Science Research Center, Kagoshima University
| |
Collapse
|
8
|
Prather RS. Nuclear remodeling and nuclear reprogramming for making transgenic pigs by nuclear transfer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 591:1-13. [PMID: 17176551 DOI: 10.1007/978-0-387-37754-4_1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
A better understanding of the cellular and molecular events that occur when a nucleus is transferred to the cytoplasm of an oocyte will permit the development of improved procedures for performing nuclear transfer and cloning. In some cases it appears that the gene(s) are reprogrammed, while in other cases there appears to be little effect on gene expression. Not only does the pattern of gene expression need to be reprogrammed, but other structures within the nucleus also need to be remodeled. While nuclear transfer works and transgenic and knockout animals can be created, it still is an inefficient process. However, even with the current low efficiencies this technique has proved very valuable for the production of animals that might be useful for tissue or organ transplantation to humans.
Collapse
Affiliation(s)
- Randall S Prather
- Division of Animal Science, Food for the 21st Century, College of Food, Agriculture & Natural Resources, University of Missouri-Columbia, 920 East Campus Drive, E125 ASRC, Columbia, Missouri 65211-5300, USA.
| |
Collapse
|
9
|
Im GS, Samuel M, Lai L, Hao Y, Prather RS. Development and calcium level changes in pre-implantation porcine nuclear transfer embryos activated with 6-DMAP after fusion. Mol Reprod Dev 2007; 74:1158-64. [PMID: 17366547 PMCID: PMC2488272 DOI: 10.1002/mrd.20492] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
This study investigated the effect of treatment with 6-dimethylaminopurine (6-DMAP) following fusion on in vitro development of porcine nuclear transfer (NT) embryos. Frozen thawed ear skin cells were transferred into the perivitelline space of enucleated oocytes. Reconstructed oocytes were fused and activated with electric pulse in 0.3 M mannitol supplemented with either 0.1 or 1.0 mM CaCl(2). In each calcium concentration, activated oocytes were divided into three groups. Two groups of them were exposed to either ionomycin (I + 6-DMAP or 6-DMAP alone. In experiment 2, fused NT embryos in 0.3 M mannitol containing 1.0 mM CaCl(2) were exposed to 6-DMAP either immediately or 20 min after fusion/activation. For 0.1 mM CaCl(2), oocytes activated with either I + 6-DMAP or 6-DMAP alone showed a higher (P < 0.05) developmental rate to the blastocyst stage than those activated with an electric pulse alone (26.7 and 22.5 vs. 12.5%). For 1.0 mM CaCl(2), oocytes activated with either I + 6-DMAP or 6-DMAP alone showed significantly higher (P < 0.05) developmental rate to the blastocyst stage (35.6 and 28.3 vs. 19.8%). Developmental rate to the blastocyst stage was (P < 0.05) increased in NT embryos activated with 6-DMAP 20 min after fusion. 6-DMAP made a higher and wider Ca(2+) transient compared to that induced by electric pulses (Fig. 3). The fluctuation lasted during the time that oocytes were cultured in 6-DMAP. Regardless of Ca(2+) concentration in fusion medium, activation with 6-DMAP following electric pulses supported more development of porcine NT embryos. Activation of NT embryos with 6-DMAP after fusion in the presence of 1.0 mM CaCl(2) could support better developmental rate to the blastocyst stage.
Collapse
Affiliation(s)
- Gi-Sun Im
- Division of Animal Sciences, University of Missouri-Columbia, Columbia, MO 65211
- National Livestock Research Institute, RDA, Suwon, 441-706, Korea
| | - Melissa Samuel
- Division of Animal Sciences, University of Missouri-Columbia, Columbia, MO 65211
| | - Liangxue Lai
- Division of Animal Sciences, University of Missouri-Columbia, Columbia, MO 65211
| | - Yanhong Hao
- Division of Animal Sciences, University of Missouri-Columbia, Columbia, MO 65211
| | - Randall S. Prather
- Division of Animal Sciences, University of Missouri-Columbia, Columbia, MO 65211
- Corresponding author. Tel.: +1-573-882-6414; fax: +1-573-884-7827. E-mail address: (Randall S. Prather). 920 East Campus Drive, E125D ASRC, University of Missouri-Columbia, Columbia, MO, 65211 U.S.A
| |
Collapse
|
10
|
Naruse K, Quan YS, Kim BC, Lee JH, Park CS, Jin DI. Brief exposure to cycloheximide prior to electrical activation improves in vitro blastocyst development of porcine parthenogenetic and reconstructed embryos. Theriogenology 2007; 68:709-16. [PMID: 17604096 DOI: 10.1016/j.theriogenology.2007.05.065] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2007] [Accepted: 05/31/2007] [Indexed: 11/21/2022]
Abstract
To investigate the effects of cycloheximide exposure before electrical activation of in vitro-matured porcine oocytes on the subsequent development of parthenogenetic embryos, cumulus-free mature oocytes were exposed to NCSU-23 medium containing cycloheximide (10 microg/mL) for 0, 5, 10, 20, 30 and 60 min, activated by electrical pulse treatment (1.5 kV/cm, 100 micros) and then cultured in PZM-3 for 7 days. To evaluate the effects of cycloheximide on the activation of nuclear transfer embryos, reconstructed embryos were electrically activated by two DC pulses (1.2 kV/cm, 30 micros) before or after exposure to cycloheximide. The reconstructed embryos were allocated into four groups: electrical pulse treatment alone (Ele); exposure to cycloheximide for 10 min followed by electrical activation (CHX+Ele); electrical activation followed by exposure to cycloheximide for 6h (Ele+CHX); exposure to cycloheximide for 10 min, followed by electrical activation and a further exposure to cycloheximide for 6h (CHX+Ele+CHX). The activated reconstructed embryos were cultured in PZM-3 for 6 days. Oocytes treated with 10 min exposure to cycloheximide followed by electrical activation had a significantly higher percentage of blastocyst formation compared to control oocytes and oocytes exposed for > or =30 min. In the reconstructed embryos, the blastocyst development rates of embryos exposed to cycloheximide (CHX+Ele, Ele+CHX and CHX+Ele+CHX) were significantly higher than those of the control group (Ele). Among the cycloheximide-treated groups, the CHX+Ele group had increased development rate and total blastocyst cell number, though these values were not significantly different from those observed in the other cycloheximide-treated groups. To evaluate the quality of NT embryos treated with cycloheximide, apoptosis in blastocysts was analyzed by TUNEL assay. The 10 min exposure to cycloheximide prior to electrical activation significantly reduced cell death compared with longer exposure to cycloheximide after electrical fusion. In conclusion, brief exposure to cycloheximide prior to electrical activation may increase the subsequent blastocyst development rates in porcine parthenogenetic and reconstructed embryos.
Collapse
Affiliation(s)
- K Naruse
- Division of Animal Science and Resources, Research Center for Transgenic and Cloned Pigs, Chungnam National University, Daejeon City, South Korea
| | | | | | | | | | | |
Collapse
|
11
|
Westhusin ME, Shin T, Templeton JW, Burghardt RC, Adams LG. Rescuing valuable genomes by animal cloning: a case for natural disease resistance in cattle. J Anim Sci 2007; 85:138-42. [PMID: 17179549 DOI: 10.2527/jas.2006-258] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Tissue banking and animal cloning represent a powerful tool for conserving and regenerating valuable animal genomes. Here we report an example involving cattle and the rescue of a genome affording natural disease resistance. During the course of a 2-decade study involving the phenotypic and genotypic analysis for the functional and genetic basis of natural disease resistance against bovine brucellosis, a foundation sire was identified and confirmed to be genetically resistant to Brucella abortus. This unique animal was utilized extensively in numerous animal breeding studies to further characterize the genetic basis for natural disease resistance. The bull died in 1996 of natural causes, and no semen was available for AI, resulting in the loss of this valuable genome. Fibroblast cell lines had been established in 1985, cryopreserved, and stored in liquid nitrogen for future genetic analysis. Therefore, we decided to utilize these cells for somatic cell nuclear transfer to attempt the production of a cloned bull and salvage this valuable genotype. Embryos were produced by somatic cell nuclear transfer and transferred to 20 recipient cows, 10 of which became pregnant as determined by ultrasound at d 40 of gestation. One calf survived to term. At present, the cloned bull is 4.5 yr old and appears completely normal as determined by physical examination and blood chemistry. Furthermore, in vitro assays performed to date indicate this bull is naturally resistant to B. abortus, Mycobacterium bovis, and Salmonella typhimurium, as was the original genetic donor.
Collapse
Affiliation(s)
- M E Westhusin
- Texas A&M University, College of Veterinary Medicine & Biomedical Sciences, College Station, TX, USA.
| | | | | | | | | |
Collapse
|
12
|
Im GS, Seo JS, Hwang IS, Kim DH, Kim SW, Yang BC, Yang BS, Lai L, Prather RS. Development and apoptosis of pre-implantation porcine nuclear transfer embryos activated with different combination of chemicals. Mol Reprod Dev 2006; 73:1094-101. [PMID: 16736528 DOI: 10.1002/mrd.20455] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Artificial activation of oocytes is a pre-requisite for successful cloning by nuclear transfer (NT). This study investigated effect of different combination of activation chemicals such as electric pulse (E), thimerosal (Thi) + dithiothreitol (DTT), 6-dimethylaminopurine (6-DMAP), or cycloheximide (CH) on the developmental ability and the frequency of apoptosis of porcine NT embryos during the culture in vitro. NT embryos activated with chemicals showed significantly higher developmental rate to blastocyst stage compared to embryos activated with E alone (21.5%-26.6% vs. 15.7%, respectively). Of chemicals, Thi + DTT supported higher development to blastocyst stage as compared to 6-DMAP or CH (26.6% vs. 21.5%-23.4%, respectively). Apoptosis of NT embryos were analyzed by using a terminal deoxynucleatidyl transferase-mediated deoxyuridine 5-triphosphate nick-end labeling (TUNEL) assay. The onset of apoptosis of embryos activated E alone was on Day 4, whereas embryos activated with chemicals showed apoptosis on Day 3 post-activation NT embryos exposed to chemicals for activation had higher frequency of apoptosis compared to that of embryos exposed to E alone from Day 3 to Day 7 during the culture. In conclusion, this study shows that chemical activation after fusion could increase not only the developmental ability of porcine NT embryos but also the mean cell number with an increased ratio of inner cell mass (ICM) to trophectoderm (TE) cells. However, the chemical activation also could increase the frequency of apoptosis and induced apoptosis earlier in porcine NT embryos.
Collapse
Affiliation(s)
- Gi-Sun Im
- Division of Animal Sciences, University of Missouri-Columbia, 65211, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Prather RS, Kühholzer B, Lai L, Park KW. Changes in the structure of nuclei after transfer to oocytes. ACTA ACUST UNITED AC 2005; 2:117-22. [PMID: 16218847 DOI: 10.1089/152045500750039815] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Nuclear transfer and the potential for cloning animals have refocused attention on the oocyte. This focus is not limited to the use of the oocyte as a recipient in nuclear transfer procedures, but more broadly in terms of what factors are present in the oocyte that are responsible for establishing the developmental pattern of RNA synthesis and subsequent protein production. Deviations in the pattern of RNA synthesis can result in abortions, as well as abnormalities at birth. This paper will focus on the changes to nuclear structure that result from transfer to the cytoplasm of an oocyte, as well as some of the changes in the patterns of RNA synthesis that have been described.
Collapse
Affiliation(s)
- R S Prather
- University of Missouri-Columbia, Columbia, MO 65211, USA.
| | | | | | | |
Collapse
|
14
|
Prather RS, Sutovsky P, Green JA. Nuclear remodeling and reprogramming in transgenic pig production. Exp Biol Med (Maywood) 2005; 229:1120-6. [PMID: 15564438 DOI: 10.1177/153537020422901106] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The manufacture of pigs with modifications to specific chromosomal regions requires that the modification first be made in somatic cells. The modified cells can then be used as donors for nuclear transfer (NT) in an attempt to clone that cell into a newborn animal. Unfortunately the procedures are inefficient and sometimes lead to animals that are abnormal. The cause of these abnormalities is likely established during the first cell cycle after the NT. Either the donor cell was abnormal or the oocyte cytoplasm was unable to adequately remodel the donor nucleus such that it was structured similar to the pronucleus of a zygote. A better understanding of chromatin remodeling and subsequent developmental gene expression will provide clues as to how procedures can be modified to generate fertile animals more efficiently.
Collapse
Affiliation(s)
- Randall S Prather
- Department of Animal Science, University of Missouri at Columbia, Columbia, MO 65211-5300, USA.
| | | | | |
Collapse
|
15
|
Tecirlioglu RT, Cooney MA, Lewis IM, Korfiatis NA, Hodgson R, Ruddock NT, Vajta G, Downie S, Trounson AO, Holland MK, French AJ. Comparison of two approaches to nuclear transfer in the bovine: hand-made cloning with modifications and the conventional nuclear transfer technique. Reprod Fertil Dev 2005; 17:573-85. [PMID: 15907283 DOI: 10.1071/rd04122] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2004] [Accepted: 04/05/2005] [Indexed: 11/23/2022] Open
Abstract
The aim of the present study was to compare the in vitro and in vivo developmental competence of hand-made cloning (HMC) embryos with the conventional nuclear transfer (NT) method using five somatic cell lines and in vitro-fertilised (IVF; control) embryos. Modifications to the HMC procedure included fusion efficiency optimisation, effect of cytoplasmic volume and cloned embryo aggregation. The developmental competence of blastocysts from each of the treatment groups and cell lines used was assessed following transfer to 345 recipients. Vitrification was also used to enable management of recipient resources and to assess the susceptibility of membranes to cryopreservation following zona removal. Increasing cytoplasmic volume to 150% or aggregating two embryos improved the blastocyst development rate and increased the total cell number. Although HMC embryo transfers established a significantly higher pregnancy rate on Day 30 than fresh IVF or NT embryo transfers, the overall outcome in terms of cloned live births derived from either fresh or vitrified/thawed HMC or NT embryo transfers across the five cell lines did not differ. The birth and continued survival of clones produced with HMC technology with equivalent efficiency to NT shows that it can be used as an alternative method for the generation of cloned offspring in the bovine.
Collapse
Affiliation(s)
- R Tayfur Tecirlioglu
- Centre for Early Human Development, Monash Institute of Medical Research, Monash University, Clayton, Victoria, Australia.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Jang G, Park ES, Cho JK, Bhuiyan MMU, Lee BC, Kang SK, Hwang WS. Preimplantational embryo development and incidence of blastomere apoptosis in bovine somatic cell nuclear transfer embryos reconstructed with long-term cultured donor cells. Theriogenology 2004; 62:512-21. [PMID: 15226007 DOI: 10.1016/j.theriogenology.2003.11.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2003] [Revised: 10/27/2003] [Accepted: 11/01/2003] [Indexed: 11/17/2022]
Abstract
This study was performed to investigate whether types and/or age of donor cells affect preimplantational embryo development and the incidence of apoptosis in bovine somatic cell nuclear transfer (SCNT) embryos. Bovine fetal or adult ear fibroblasts were isolated, cultured in vitro and categorized into fresh or long-term cultured cells in terms of population doublings (PD): in fetal fibroblasts, <16 being considered fresh and >50 being long-term cultured; in adult ear fibroblasts, <16 being considered fresh and >30 being long-term cultured. Bovine oocytes from slaughterhouse ovaries were matured in TCM-199, enucleated and reconstructed by SCNT. The reconstructed oocytes were fused, chemically activated, and cultured in modified synthetic oviduct fluid (mSOF) at 39 degrees C in a humidified atmosphere of 5% CO(2) air for 7 days. The early development of SCNT embryos was monitored under a microscope and the quality of blastocysts was assessed by differential counting of inner cell mass (ICM) and trophectoderm (TE) cells and by apoptosis detection in blastomeres using a terminal deoxynucleotidyl transferase-mediated d-UTP nick end-labeling (TUNEL) assay. As results, types and/or age of donor cells did not affect the rate of blastocyst formation and the number of ICM and TE cells. However, a significant increase in apoptotic blastomeres was observed in SCNT embryos reconstructed with long-term cultured fetal or adult ear fibroblasts compared to those in SCNT embryos derived from fresh fetal or adult ear fibroblasts. In conclusion, these results indicated that the long-term culture of donor cells caused increased the incidence of apoptosis in bovine SCNT embryos but did not affect the developmental competence and the cell number of blastocysts.
Collapse
Affiliation(s)
- Goo Jang
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul 151-742, South Korea
| | | | | | | | | | | | | |
Collapse
|
17
|
Schrader AD, Iqbal MJ, Jones KL. Gene expression in cloned bovine fetal liver. CLONING AND STEM CELLS 2003; 5:63-9. [PMID: 12713702 DOI: 10.1089/153623003321512175] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Nuclear transfer (NT) is a method of animal reproduction that bypasses fertilization and propagates known combinations of genes. Currently NT is an inefficient process. Attempts have been made to increase the efficiency of this procedure, but most have been deemed unsuccessful. Some problems associated with NT are unusually large birth weights, and physical abnormalities in developing liver, heart, and brain. Despite numerous studies performed on NT animals, the factors behind the anomalies remain unknown. It is possible that nuclear reprogramming is the basis of poor development rates, meaning, when the donor cells are fused with enucleated eggs the nuclei may not regain the full ability to direct cell differentiation in subsequent mitotic divisions. If reprogramming is not carried out precisely, then some genes may not be correctly expressed in NT animals. The purpose of this study was to determine if differential gene expression between the livers of NT fetuses when compared to an embryo transfer (ET) derived fetus could be detected and the genes identified. An Angus fetus at 45 d of gestation was collected and a non-clonal cell line established for use as NT donor cells. Two NT fetuses were propagated and compared to the original. Differential Display Reverse Transcription Polymerase Chain Reaction (ddRT-PCR) was used to identify genes that were differentially expressed. Differentially abundant cDNAs were subcloned, sequenced and their corresponding mRNAs were verified by semi-quantitative RT-PCR. Twenty-three Expressed Sequence Tags (ESTs) were sequenced in Bos taurus and submitted to GenBank. The results of ddRT-PCR identified 39 genes/ESTs that were potentially differentially expressed. Fifteen of the genes were tested by semi-quantitative RT-PCR, but no significant differences were detected.
Collapse
Affiliation(s)
- A D Schrader
- Department of Animal Science, Food and Nutrition, Southern Illinois University, Carbondale, Illinois, USA
| | | | | |
Collapse
|
18
|
Tian XC, Kubota C, Enright B, Yang X. Cloning animals by somatic cell nuclear transfer--biological factors. Reprod Biol Endocrinol 2003; 1:98. [PMID: 14614770 PMCID: PMC521203 DOI: 10.1186/1477-7827-1-98] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2003] [Accepted: 11/13/2003] [Indexed: 01/25/2023] Open
Abstract
Cloning by nuclear transfer using mammalian somatic cells has enormous potential application. However, somatic cloning has been inefficient in all species in which live clones have been produced. High abortion and fetal mortality rates are commonly observed. These developmental defects have been attributed to incomplete reprogramming of the somatic nuclei by the cloning process. Various strategies have been used to improve the efficiency of nuclear transfer, however, significant breakthroughs are yet to happen. In this review we will discuss studies conducted, in our laboratories and those of others, to gain a better understanding of nuclear reprogramming. Because cattle are a species widely used for nuclear transfer studies, and more laboratories have succeeded in cloning cattle than any other species, this review will be focused on somatic cell cloning of cattle.
Collapse
Affiliation(s)
- X Cindy Tian
- Center for Regenerative Biology/Department of Animal Science, University of Connecticut, Storrs, Connecticut 06269-4243, USA
| | - Chikara Kubota
- Kagoshima Prefectural Cattle Breeding and Genetic Institute, Kagoshima, Japan
| | - Brian Enright
- Center for Regenerative Biology/Department of Animal Science, University of Connecticut, Storrs, Connecticut 06269-4243, USA
| | - Xiangzhong Yang
- Center for Regenerative Biology/Department of Animal Science, University of Connecticut, Storrs, Connecticut 06269-4243, USA
- Evergen Biotechnologies, Inc. Incubator Program at the University of Connecticut, 1392 Storrs Road, Storrs, CT06269-USA
| |
Collapse
|
19
|
Golding MC, Westhusin ME. Analysis of DNA (cytosine 5) methyltransferase mRNA sequence and expression in bovine preimplantation embryos, fetal and adult tissues. Gene Expr Patterns 2003; 3:551-8. [PMID: 12971987 DOI: 10.1016/s1567-133x(03)00121-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Mammalian preimplantation development is a critical stage for establishment of the genomic methylation pattern and proper function of the enzymes responsible for this appear essential for normal development. To date, the vast majority of work concerning the developmental expression of the DNA cytosine 5-methyltansferases (Dnmts) has been conducted in mice. Here we report the sequence and expression of the Dnmt family during bovine preimplantation and fetal development. Bovine Dnmt mRNAs display strong sequence homology to those of human and mouse and similar to other species, exist as multiple isoforms. Two of these splice variants, which have been termed Dnmt2gamma and Dnmt3a4, represent previously unreported sequence combinations. Work presented here demonstrates early bovine embryos express mRNA coding for the somatic form of Dnmt1 and that this transcript fractionates with the ribosome. Unlike the murine model, mRNA encoding the de novo methyltransferases, Dnmt3a and 3b are present during preimplantation development and can also be found in the ribosomal subcellular fraction. Further, results of Real Time PCR analysis indicate significant differences in Dnmt mRNA expression levels exist among different tissue types as well as between fetal and adult stages. Recently, it has been postulated that the cause of abnormal methylation observed in cloned embryos may be due in part to misexpression of the Dnmt1o isoform during preimplantation development. Work presented here raises new and significant hypotheses that must be considered both regarding the cadre of DNA methyltranferases that direct epigenetic programming during normal development and regarding the implication of abnormal DNMT expression in cloned embryos.
Collapse
Affiliation(s)
- Michael C Golding
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine Texas A&M University, College Station, TX 77843-4466, USA.
| | | |
Collapse
|
20
|
Miyoshi K, Rzucidlo SJ, Pratt SL, Stice SL. Improvements in cloning efficiencies may be possible by increasing uniformity in recipient oocytes and donor cells. Biol Reprod 2003; 68:1079-86. [PMID: 12606466 DOI: 10.1095/biolreprod.102.010876] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The low efficiency of somatic cell cloning is the major obstacle to widespread use of this technology. Incomplete nuclear reprogramming following the transfer of donor nuclei into recipient oocytes has been implicated as a primary reason for the low efficiency of the cloning procedure. The mechanisms and factors that affect the progression of the nuclear reprogramming process have not been completely elucidated, but the identification of these factors and their subsequent manipulation would increase cloning efficiency. At present, many groups are studying donor nucleus reprogramming. Here, we present an approach in which the efficiency of producing viable offspring is improved by selecting recipient oocytes and donor cells that will produce cloned embryos with functionally reprogrammed nuclei. This approach will produce information useful in future studies aimed at further deciphering the nuclear reprogramming process.
Collapse
Affiliation(s)
- Kazuchika Miyoshi
- Department of Animal and Dairy Science, University of Georgia, Athens, Georgia 30602-2771, USA
| | | | | | | |
Collapse
|
21
|
Vajta G, Lewis IM, Trounson AO, Purup S, Maddox-Hyttel P, Schmidt M, Pedersen HG, Greve T, Callesen H. Handmade somatic cell cloning in cattle: analysis of factors contributing to high efficiency in vitro. Biol Reprod 2003; 68:571-8. [PMID: 12533421 DOI: 10.1095/biolreprod.102.008771] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Widespread application of somatic cell cloning has been hampered by biological and technical problems, which include complicated and time-consuming procedures requiring skilled labor. Recently, zona-free techniques have been published with limited or no requirement for micromanipulators. The purpose of the present work was to optimize certain steps of the micromanipulator-free (i.e., handmade) procedure, to analyze the morphology of the developing blastocysts, and to explain factors involved in the high efficiencies observed. Optimization of the procedure included selection of the appropriate medium for enucleation, orientation of pairs at fusion, timing of fusion, and culture conditions. As a result of these improved steps, in vitro efficiency as measured by blastocysts per reconstructed embryo and blastocysts per working hour was among the highest described so far. The cattle serum used in our experiments was superior to other protein sources for in vitro embryo development. One possible explanation of this effect is the considerable mitogenic activity of the cattle serum compared with that of commercially available fetal calf serum. Morphological analysis of blastocysts by inverted microscopy, inner cell mass-trophoblast differential staining, and transmission electron microscopy revealed high average quality. A high initial pregnancy rate was achieved after the transfer of single blastocysts derived by aggregation of two nuclear transfer embryos into recipients. The improved handmade somatic cell nuclear transfer method may become a useful technology as a simple, inexpensive, and efficient alternative to traditional somatic cell nuclear transfer.
Collapse
Affiliation(s)
- Gábor Vajta
- Department of Animal Breeding and Genetics, Danish Institute of Agricultural Sciences, DK-8830 Tjele, Denmark.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Munsie M, O'brien C, Mountford P. Transgenic strategy for demonstrating nuclear reprogramming in the mouse. CLONING AND STEM CELLS 2003; 4:121-30. [PMID: 12180428 DOI: 10.1089/153623002320253300] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Totipotency can be restored to the nuclei of somatic cells by reprogramming the nucleus via the technique of nuclear transfer. As genes expressed in somatic cells differ from those expressed in early embryos, a change in gene expression must accompany nuclear reprogramming. In this study, nuclear reprogramming of somatic cell nuclei following nuclear transfer (NT) was demonstrated by the reactivation of developmentally regulated lacZ reporter genes. NT embryos were generated by direct injection of adult cumulus cell nuclei into mature mouse oocytes from which maternal chromosomes were subsequently removed. Cumulus cells were collected from transgenic mice which show developmentally regulated lacZ reporter gene expression as a result of integration and functional coupling of reporter gene expression with the endogenous Oct4 or COB54 genes. As both genes are transcriptionally silent in somatic cells but are expressed during early embryonic development, reactivation of reporter gene expression in cumulus cell-derived NT embryos was assessed as a means of monitoring nuclear reprogramming. The pattern of X-gal staining observed in individual NT embryos derived from both transgenic lines revealed that coordination of reactivation appeared to be specific for each gene, and that the timing of expression was consistent with that seen in control non-manipulated transgenic embryos. However, the staining in some NT embryos appeared to be diminished or absent. This reduction in staining may indicate a failure to reprogram gene expression in these embryos. Similar transgenic strategies employing lacZ vital stains, or alter-native reporters such as GFP, may facilitate real-time monitoring of reprogramming and a potential selection strategy to increase cloning efficiency through the identification and selection of reprogrammed, preimplantation stage NT embryos prior to embryo transfer.
Collapse
Affiliation(s)
- Megan Munsie
- Centre for Early Human Development, Monash Institute of Reproduction and Development, Monash Universitym Clayton, Victoria, Australia
| | | | | |
Collapse
|
23
|
Booth PJ, Tan SJ, Holm P, Callesen H. Application of the zona-free manipulation technique to porcine somatic nuclear transfer. CLONING AND STEM CELLS 2002; 3:191-7. [PMID: 11945228 DOI: 10.1089/15362300152725909] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The recent demonstration of a successful zona-free manipulation technique for bovine somatic nuclear transfer (NT) that is both simpler and less labor intensive is of considerable benefit to advance the applications of this technology. Here, we describe that this method is also applicable to porcine somatic NT. Porcine cumulus oocyte complexes were matured in TCM-199 medium before sequential removal of the cumulus and zonae. Zona-free oocytes were bisected using a microknife, and the halves containing the metaphase plate (as determined by Hoechst 33342 staining) were discarded. Each half cytoplast was agglutinated to a single granulosa cell (primary cultures grown in 0.5% serum for 2-5 days prior to use) in phytohaemagglutinin-P. Subsequently, each half cytoplast-granulosa cell couplet was simultaneously electrofused together and to another half cytoplast. Reconstructed embryos were activated in calcium ionophore A23187 followed by DMAP and were then individually cultured in microwells in NCSU-23 medium. On day 7 after activation, blastocyst yield and total cell numbers were counted. Of 279 attempted reconstructed NT embryos, 85.0 +/- 2.8% (mean +/- SEM; n = 5 replicates) successfully fused and survived activation. The blastocyst rate (per successfully fused and surviving embryo) was 4.8 +/- 2.3% (11/236; range, 0-12.8%). Total blastocyst cell count was 36.0 +/- 4.5 (range, 18-58 cells). The blastocyst rate and total cell numbers of parthenogenetically activated and zona-free control oocytes propagated under the same conditions was 11.6 +/- 3.9% (35/335 embryos; n = 3 replicates) and 36.8 +/- 5.2, respectively. Developmentally halted embryos that could still be evaluated on day 7 possessed 54.4 +/- 2.3% (53/96 embryos; n = 3 replicates) anucleate blastomeres, the latter representing 53.5 +/- 6.6% of the blastomeres in such embryos. In conclusion, blastocyst yield was independent of activation efficiency and was likely reduced by insufficient nuclear remodeling, reprogramming, imprinting, or other effects. The data also suggest that fragmentation was a considerable problem that could conceivably contribute to halted development in a high proportion of embryos. The results indicate that the zona-free manipulation technique can be successfully applied to pig somatic NT. Although such zona-free early cleavage stage embryos cannot be transferred to recipients at present, this technique permits simplification of the NT technique for application in basic research, until pig nonsurgical blastocyst transfer becomes a realistic option.
Collapse
Affiliation(s)
- P J Booth
- Section for Reproductive Biology, Department of Animal Breeding and Genetics, Danish Institute of Agricultural Sciences, 8800 Tjele, Denmark.
| | | | | | | |
Collapse
|
24
|
Humpherys D, Eggan K, Akutsu H, Friedman A, Hochedlinger K, Yanagimachi R, Lander ES, Golub TR, Jaenisch R. Abnormal gene expression in cloned mice derived from embryonic stem cell and cumulus cell nuclei. Proc Natl Acad Sci U S A 2002; 99:12889-94. [PMID: 12235366 PMCID: PMC130555 DOI: 10.1073/pnas.192433399] [Citation(s) in RCA: 286] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To assess the extent of abnormal gene expression in clones, we assessed global gene expression by microarray analysis on RNA from the placentas and livers of neonatal cloned mice derived by nuclear transfer (NT) from both cultured embryonic stem cells and freshly isolated cumulus cells. Direct comparison of gene expression profiles of more than 10,000 genes showed that for both donor cell types approximately 4% of the expressed genes in the NT placentas differed dramatically in expression levels from those in controls and that the majority of abnormally expressed genes were common to both types of clones. Importantly, however, the expression of a smaller set of genes differed between the embryonic stem cell- and cumulus cell-derived clones. The livers of the cloned mice also showed abnormal gene expression, although to a lesser extent, and with a different set of affected genes, than seen in the placentas. Our results demonstrate frequent abnormal gene expression in clones, in which most expression abnormalities appear common to the NT procedure whereas others appear to reflect the particular donor nucleus.
Collapse
Affiliation(s)
- David Humpherys
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, 9 Cambridge Center, Cambridge, MA 02142, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Park KW, Lai L, Cheong HT, Cabot R, Sun QY, Wu G, Rucker EB, Durtschi D, Bonk A, Samuel M, Rieke A, Day BN, Murphy CN, Carter DB, Prather RS. Mosaic gene expression in nuclear transfer-derived embryos and the production of cloned transgenic pigs from ear-derived fibroblasts. Biol Reprod 2002; 66:1001-5. [PMID: 11906919 DOI: 10.1095/biolreprod66.4.1001] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Genetically modified domestic animals have many potential applications ranging from basic research to production agriculture. One of the goals in transgenic animal production schemes is to reliably predict the expression pattern of the foreign gene. Establishing a method to screen genetically modified embryos for transgene expression before transfer to surrogates may improve the likelihood of producing offspring with the desired expression pattern. In order to determine how transgene expression may be regulated in the early embryo, we generated porcine embryos from two distinct genetically modified cell lines by using the nuclear transfer (NT) technique. Both cell lines expressed the enhanced green fluorescent protein (eGFP); the first was a fibroblast cell line derived from the skin of a newborn pig that expressed eGFP, whereas the second was a fetal derived fibroblast cell line into which the eGFP gene was introduced by a retroviral vector. The reconstructed embryos were activated by electrical pulses and cultured in NCSU23. Although the in vitro developmental ability of each group of NT embryos was not different, the eGFP expression pattern was different. All embryos produced from the transduced fetal cell line fluoresced, but only 26% of the embryos generated from the newborn cell line fluoresced, and among those that did express eGFP, more than half had a mosaic expression pattern. This was unexpected because the fetal cell line was not clonally selected, and each cell had potentially different sites of integration. Embryos generated from the newborn cell line were surgically transferred to five surrogate gilts. One gilt delivered four female piglets, all of which expressed eGFP, and all had microsatellites identical to the donor. Here we demonstrate that transgene expression in all the blastomeres of an NT embryo is not uniform. In addition, transgene expression in a genetically manipulated embryo may not be an accurate indicator of expression in the resulting offspring.
Collapse
Affiliation(s)
- Kwang-Wook Park
- Department of Animal Sciences, University of Missouri-Columbia, 920 East Campus Drive, Columbia, MO 65211, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Affiliation(s)
- Jonathan R Hill
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853, USA.
| |
Collapse
|
27
|
Renard JP, Zhou Q, LeBourhis D, Chavatte-Palmer P, Hue I, Heyman Y, Vignon X. Nuclear transfer technologies: between successes and doubts. Theriogenology 2002; 57:203-22. [PMID: 11775970 DOI: 10.1016/s0093-691x(01)00667-7] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cloning of mammals by nuclear transfer can lead to the birth of healthy adult animals but more often compromises the development of the reconstructed embryos. A high incidence of fetal and postnatal losses has been observed in several species, revealing the existence of long-lasting effects induced by the nuclear transfer procedures. Remodeling of donor chromatin by the recipient cytoplasm after nuclear transfer is frequently associated with the deregulation of specific genes, and recent observations point to the potential importance of time-dependent DNA methylation events in the occurrence of these alterations. Screening strategies to design nuclear transfer procedures that would mimic the epigenetic remodeling occurring in normal embryos are being designed, and improvement in the efficiency of procedures could imply a pre-conditioning of donor cells. Early mammalian development appears to be rather tolerant to epigenetic abnormalities, raising the possibility that even a fully functional reprogrammed genome may have been subjected to some epigenetic alterations. Bringing nuclear transfer to routine practice requires greater knowledge and understanding of the basic biological processes underlying epigenetic controls of nuclear activities. An important issue at present is to limit the production of those aberrant phenotypes that may result in significant insult to the nature and welfare of animals.
Collapse
Affiliation(s)
- J P Renard
- Biologie du Développement et Biotechnologies, INRA, 92170, Jouy en Josas, France.
| | | | | | | | | | | | | |
Collapse
|
28
|
Wrenzycki C, Wells D, Herrmann D, Miller A, Oliver J, Tervit R, Niemann H. Nuclear transfer protocol affects messenger RNA expression patterns in cloned bovine blastocysts. Biol Reprod 2001; 65:309-17. [PMID: 11420254 DOI: 10.1095/biolreprod65.1.309] [Citation(s) in RCA: 235] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The successful production of embryos by nuclear transfer (NT) employing cultured somatic donor cells depends upon a variety of factors. The objective of the present study was to investigate the effects 1) of two different activation protocols, 2) the use of quiescent or nonquiescent donor cells (G(0) or G(1) of the cell cycle), and 3) passage number of donor cells on the relative abundance (RA) of eight specific mRNAs (DNA methyltransferase, DNMT; mammalian achaete-scute homologue, Mash2; glucose transporter-1, Glut-1; heat shock protein 70.1, Hsp; desmocollin II, Dc II; E-cadherin, E-cad; interferon tau, IF; insulin-like growth factor 2 receptor, Igf2r) in single blastocysts employing a semiquantitative reverse transcription-polymerase chain reaction assay. The results were compared with those for their in vitro (IVP)- and in vivo-generated noncloned counterparts. In experiment 1, employing either FBA (fusion before activation) or AFS (fusion and activation simultaneously) to generate NT blastocysts, Hsp mRNAs were not found in NT embryos from either protocol, whereas Hsp transcripts were detectable in IVP embryos. The relative abundance (RA) of IF transcripts was significantly increased in the AFS and IVP groups compared to the FBA treatment. In experiment 2, the use of either G(0) or G(1) donor cells to produce cloned embryos both significantly reduced the relative amount of DNMT transcripts and significantly increased the RA of Mash2 compared to the IVP embryos. In addition, IF transcript levels were significantly elevated in NT blastocysts employing G(1) donor cells for NT compared to IVP embryos and those generated using G(0) cells. In experiment 3, donor cells, either from passsage 5/6 or 8, were employed for NT. DNMT transcripts were significantly decreased, whereas Mash2 transcripts were significantly increased in both NT groups compared to their IVP counterparts. The amount of IF mRNA was significantly higher in P8-derived than in P5/6 and IVP embryos. In experiment 4, the RA of DNMT transcripts was decreased in in vivo-derived blastocysts compared to those produced in vitro. Mash2 expression was increased in in vivo embryos and those IVP embryos produced in medium containing Sigma BSA. The RA of Hsp was higher in IVP embryos produced in serum containing medium than in those produced in Sigma BSA or in vivo. In vivo embryos and those produced in Life Technologies BSA had the lowest expression of IF transcripts. Expression of all other genes was not affected by variation in NT methodology or IVP culture systems throughout experiments 1-4. In conclusion, depending on steps of the cloning procedure NT-derived embryos display marked differences from their IVP- and in vivo-derived counterparts. An aberrant expression pattern in NT embryos was found with respect to genes thought to be involved in stress adaptation, trophoblastic function, and DNA methylation during preimplantation development.
Collapse
Affiliation(s)
- C Wrenzycki
- Department of Biotechnology, Institut für Tierzucht und Tierverhalten (FAL), Mariensee, 31535 Neustadt, Germany
| | | | | | | | | | | | | |
Collapse
|
29
|
De Sousa PA, King T, Harkness L, Young LE, Walker SK, Wilmut I. Evaluation of gestational deficiencies in cloned sheep fetuses and placentae. Biol Reprod 2001; 65:23-30. [PMID: 11420219 DOI: 10.1095/biolreprod65.1.23] [Citation(s) in RCA: 166] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Sheep fetal development at 35 days of gestation was examined following natural mating, in vitro production (IVP) of fertilized embryos, or somatic cell nuclear transfer (NT). Five crossbred (Blackface x Black Welsh) and four purebred (Black Welsh) fetuses and their associated placentae produced by natural mating were morphologically normal and consistent with each other. From 10 ewes receiving 21 IVP embryos, 17 fetuses (81%) were recovered, and 15 of these (88%) were normal. The NT fetuses were derived from two Black Welsh fetal fibroblast cell lines (BLW1 and 6). Transfer of 21 BLW1 and 22 BLW6 NT embryos into 12 and 11 ewes, respectively, yielded 7 (33%) and 8 (36%) fetuses, respectively. Only three (43%) BLW1 and two (25%) BLW6 NT fetuses were normal, with the rest being developmentally retarded. The NT fetal and placental deficiencies included liver enlargement, dermal hemorrhaging, and lack of placental vascular development reflected by reduced or absent cotyledonary structures. Fibroblasts isolated from normal and abnormal cloned fetuses did not differ in their karyotype from sexually conceived fetuses or nuclear donor cell lines. Our results demonstrate that within the first quarter of gestation, cloned fetuses are characterized by a high incidence of developmental retardation and placental insufficiency. These deficiencies are not linked to gross defects in chromosome number.
Collapse
Affiliation(s)
- P A De Sousa
- Division of Gene Expression and Development, Roslin Institute, Roslin EH25 9PS, United Kingdom.
| | | | | | | | | | | |
Collapse
|
30
|
Bordignon V, Clarke HJ, Smith LC. Factors controlling the loss of immunoreactive somatic histone H1 from blastomere nuclei in oocyte cytoplasm: a potential marker of nuclear reprogramming. Dev Biol 2001; 233:192-203. [PMID: 11319868 DOI: 10.1006/dbio.2001.0215] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nuclei of differentiated cells can acquire totipotency following transfer into the cytoplasm of oocytes. While the molecular basis of this nuclear reprogramming remains unknown, the developmental potential of nuclear-transfer embryos is influenced by the cell-cycle stage of both donor and recipient. As somatic H1 becomes immunologically undetectable on bovine embryonic nuclei following transfer into ooplasm and reappears during development of the reconstructed embryo, suggesting that it may act as a marker of nuclear reprogramming, we investigated the link between cell-cycle state and depletion of immunoreactive H1 following nuclear transplantation. Blastomere nuclei at M-, G1-, or G2-phase were introduced into ooplasts at metaphase II, telophase II, or interphase, and the reconstructed embryos were processed for immunofluorescent detection of somatic histone H1. Immunoreactivity was lost more quickly from donor nuclei at metaphase than at G1 or G2. Regardless of the stage of the donor nucleus, immunoreactivity was lost most rapidly when the recipient cytoplast was at metaphase and most slowly when the recipient was at interphase. When the recipient oocyte was not enucleated, however, immunoreactive H1 remained in the donor nucleus. The phosphorylation inhibitors 6-DMAP, roscovitine, and H89 inhibited the depletion of immunoreactive H1 from G2, but not G1, donor nuclei. In addition, immunoreactive H1 was depleted from mouse blastomere nuclei following transfer into bovine oocytes. Finally, expression of the developmentally regulated gene, eIF-1A, but not of Gapdh, was extinguished in metaphase recipients but not in interphase recipients. These results indicate that evolutionarily conserved cell-cycle-regulated activities, nuclear elements, and phosphorylation-linked events participate in the depletion of immunoreactive histone H1 from blastomere nuclei transferred in oocyte cytoplasm and that this is linked to changes in gene expression in the transferred nucleus.
Collapse
Affiliation(s)
- V Bordignon
- Centre de Recherche en Reproduction Animale (CRRA), Université de Montréal, Saint-Hyacinthe, Quebec, J2S 7C6, Canada
| | | | | |
Collapse
|
31
|
Affiliation(s)
- R Jaenisch
- Whitehead Institute for Biomedical Research and Department of Biology, MIT, Cambridge, MA 02142, USA
| | | |
Collapse
|
32
|
Xu J, Yang X. Telomerase activity in early bovine embryos derived from parthenogenetic activation and nuclear transfer. Biol Reprod 2001; 64:770-4. [PMID: 11207190 DOI: 10.1095/biolreprod64.3.770] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
This study examined the telomerase activity in preimplantation bovine embryos derived from either parthenogenetic activation or nuclear transfer. Telomeres are the DNA-protein structures located at the ends of eukaryotic chromosomes. Telomerase is the ribonuclear enzyme that helps to restore telomere length by synthesizing telomeric DNA repeat (5'-TTAGGG-3') from its own RNA template. Without telomerase activity, telomeres shorten with each cell division through conventional DNA replication. In most mammalian species, telomerase activity is present in germ cells but not in somatic cells. Previously, we reported the dynamics of telomerase activity in bovine in vitro fertilized (IVF) embryos. In the present study, we examined the telomerase activity in bovine embryos derived either from parthenogenetic activation or somatic cell nuclear transfer (i.e., cloning). Embryos from both sources were harvested at different stages, from zygote to blastocyst. Telomerase activity in embryos derived from parthenogenetic activation and nuclear transfer showed a dynamic profile similar to that of those derived from IVF. Telomerase activity was detected in embryos at all stages examined, with the highest level in the blastocyst stage, regardless of the method of embryo production.
Collapse
Affiliation(s)
- J Xu
- Department of Animal Science, University of Connecticut, Storrs, Connecticut 06269, USA
| | | |
Collapse
|
33
|
Besenfelder U, Havlicek V, Mösslacher G, Brem G. Collection of tubal stage bovine embryos by means of endoscopy. A technique report. Theriogenology 2001; 55:837-45. [PMID: 11245269 DOI: 10.1016/s0093-691x(01)00447-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Here we describe the development and optimization of endoscopy-mediated transvaginal access for collecting ova and embryos from the bovine oviduct. The novel technique was developed in three experimental setups: In Experiment 1 embryos were collected unilaterally from nonstimulated heifers. We flushed the oviducts of superovulated heifers unilaterally (Experiment 2) and bilaterally (Experiment 3). In Experiment 1 the oviducts of 18 heifers were successfully cannulated, which resulted in the collection of twelve 1-cell to 8-cell embryos and one empty zona. Unilateral flushing of 13 animals (Experiment 2) resulted in 84 ova with 6.3 +/- 3.2 observed ovulation sites. Bilateral flushing of 25 animals (Experiment 3) resulted in 293 ova plus 10 empty zonae from 11.8 +/- 5.4 ovulation sites. Given our experience from these studies we optimized the technical equipment by improving the flushing metal catheter (Experiment 4). The novel catheter hermetically sealed the lumen of the ampulla at the moment, the medium was flushed through the oviduct. This resulted in a visible flow of medium via oviducts toward the embryo filter connected to an embryo flushing catheter that was fixed in the uterine horns. Our endoscopy-guided method is minimally invasive and facilitates the flushing of tubal stage embryos.
Collapse
Affiliation(s)
- U Besenfelder
- Institute of Animal Breeding and Genetics, University of Veterinary Sciences, Vienna, Austria
| | | | | | | |
Collapse
|
34
|
Reprogramming of telomerase activity and rebuilding of telomere length in cloned cattle. Proc Natl Acad Sci U S A 2001. [PMID: 11158597 PMCID: PMC14711 DOI: 10.1073/pnas.031559298] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Nuclear reprogramming requires the removal of epigenetic modifications imposed on the chromatin during cellular differentiation and division. The mammalian oocyte can reverse these alterations to a state of totipotency, allowing the production of viable cloned offspring from somatic cell nuclei. To determine whether nuclear reprogramming is complete in cloned animals, we assessed the telomerase activity and telomere length status in cloned embryos, fetuses, and newborn offspring derived from somatic cell nuclear transfer. In this report, we show that telomerase activity was significantly (P < 0.05) diminished in bovine fibroblast donor cells compared with embryonic stem-like cells, and surprisingly was 16-fold higher in fetal fibroblasts compared with adult fibroblasts (P < 0.05). Cell passaging and culture periods under serum starvation conditions significantly decreased telomerase activity by approximately 30-50% compared with nontreated early passage cells (P < 0.05). Telomere shortening was observed during in vitro culture of bovine fetal fibroblasts and in very late passages of embryonic stem-like cells. Reprogramming of telomerase activity was apparent by the blastocyst stage of postcloning embryonic development, and telomere lengths were longer (15-23 kb) in cloned fetuses and offspring than the relatively short mean terminal restriction fragment lengths (14-18 kb) observed in adult donor cells. Overall, telomere lengths of cloned fetuses and newborn calves ( approximately 20 kb) were not significantly different from those of age-matched control animals (P > 0.05). These results demonstrate that cloned embryos inherit genomic modifications acquired during the donor nuclei's in vivo and in vitro period but are subsequently reversed during development of the cloned animal.
Collapse
|
35
|
Betts D, Bordignon V, Hill J, Winger Q, Westhusin M, Smith L, King W. Reprogramming of telomerase activity and rebuilding of telomere length in cloned cattle. Proc Natl Acad Sci U S A 2001; 98:1077-82. [PMID: 11158597 PMCID: PMC14711 DOI: 10.1073/pnas.98.3.1077] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Nuclear reprogramming requires the removal of epigenetic modifications imposed on the chromatin during cellular differentiation and division. The mammalian oocyte can reverse these alterations to a state of totipotency, allowing the production of viable cloned offspring from somatic cell nuclei. To determine whether nuclear reprogramming is complete in cloned animals, we assessed the telomerase activity and telomere length status in cloned embryos, fetuses, and newborn offspring derived from somatic cell nuclear transfer. In this report, we show that telomerase activity was significantly (P < 0.05) diminished in bovine fibroblast donor cells compared with embryonic stem-like cells, and surprisingly was 16-fold higher in fetal fibroblasts compared with adult fibroblasts (P < 0.05). Cell passaging and culture periods under serum starvation conditions significantly decreased telomerase activity by approximately 30-50% compared with nontreated early passage cells (P < 0.05). Telomere shortening was observed during in vitro culture of bovine fetal fibroblasts and in very late passages of embryonic stem-like cells. Reprogramming of telomerase activity was apparent by the blastocyst stage of postcloning embryonic development, and telomere lengths were longer (15-23 kb) in cloned fetuses and offspring than the relatively short mean terminal restriction fragment lengths (14-18 kb) observed in adult donor cells. Overall, telomere lengths of cloned fetuses and newborn calves ( approximately 20 kb) were not significantly different from those of age-matched control animals (P > 0.05). These results demonstrate that cloned embryos inherit genomic modifications acquired during the donor nuclei's in vivo and in vitro period but are subsequently reversed during development of the cloned animal.
Collapse
Affiliation(s)
- D Betts
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada N1G 2W1
| | | | | | | | | | | | | |
Collapse
|
36
|
Koo DB, Kang YK, Choi YH, Park JS, Kim HN, Kim T, Lee KK, Han YM. Developmental potential and transgene expression of porcine nuclear transfer embryos using somatic cells. Mol Reprod Dev 2001; 58:15-21. [PMID: 11144215 DOI: 10.1002/1098-2795(200101)58:1<15::aid-mrd3>3.0.co;2-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We examined whether porcine nuclear transfer (NT) embryos carrying somatic cells have a developmental potential and NT embryos carrying transformed fibroblasts express transgenes in the preimplantation stages. In Experiment 1, different activation methods were applied to NT embryos and the development rates were examined. Relative to A23187 only or A23187/6-DMAP, electrical pulse made a significant increase in both cleavage rate (58.1+/-13.9 or 60.7+/-6.3 vs. 74.9+/-7.5%) and development rate of NT embryos to the blastocyst stage (2.2+/-2.8 or 2.2+/-1.5 vs. 11.0+/-4.1%). In Experiment 2, in vitro developmental competence of NT embryos was investigated. The developmental rate to the blastocyst stage of NT embryos (9.9+/- 2.4% for cumulus cells and 9.8+/-1.6% for fibroblast cells) was significantly lower than that (22.9+/-3.5%) of IVF-derived embryos (P<0.01). NT blastocysts derived from either cumulus (28.9+/-11.4, n = 26) or fibroblast cells (30.2+/-9.9, n = 27) showed smaller mean nuclei numbers than IVF-derived blastocysts (38.6+/-10.4, n = 62) (P<0.05). In Experiment 3, nuclear transfer of porcine fibroblasts expressing the GFP (green fluorescent protein) gene resulted in green blastocysts without losing developmental potential. These results suggest that porcine embryos reconstructed by somatic cell nuclear transfer are capable of developing to preimplantation stage. We conclude that somatic cells expressing exogenous genes can be used as nuclei donors in the production of NT-mediated transgenic pig.
Collapse
Affiliation(s)
- D B Koo
- Korea Research Institute of Bioscience and Biotechnology, Taejon, Korea
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Koo DB, Kang YK, Choi YH, Park JS, Han SK, Park IY, Kim SU, Lee KK, Son DS, Chang WK, Han YM. In vitro development of reconstructed porcine oocytes after somatic cell nuclear transfer. Biol Reprod 2000; 63:986-92. [PMID: 10993818 DOI: 10.1095/biolreprod63.4.986] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
This study was designed to examine the developmental ability of porcine embryos after somatic cell nuclear transfer. Porcine fibroblasts were isolated from fetuses at Day 40 of gestation. In vitro-matured porcine oocytes were enucleated and electrically fused with somatic cells. The reconstructed eggs were activated using electrical stimulus and cultured in vitro for 6 days. Nuclear-transferred (NT) embryos activated at a field strength of 120 V/mm (11.6 +/- 1.6%) showed a higher developmental rate as compared to the 150-V/mm group (6.5 +/- 2.3%) (P: < 0.05), but the mean cell numbers of blastocysts were similar between the two groups. Rates of blastocyst development from NT embryos electrically pulsed at different times (2, 4, and 6 h) after electrofusion were 11.6 +/- 2.9, 6.6 +/- 2.3, and 8.1 +/- 3.3%, respectively. The mean cell numbers of blastocysts developed from NT embryos were gradually decreased (30.4 +/- 10.4 > 24.6 +/- 10.1 > 16.5 +/- 7.4 per blastocyst) as exposure time (2, 4, and 6 h) of nuclei to oocyte cytoplast before activation was prolonged. There was a significant difference in the cell number between the 2- and 6-h groups (P: < 0. 05). Nuclear-transferred embryos (9.4 +/- 0.9%) had a lower developmental rate than in vitro fertilization (IVF)-derived (21.4 +/- 1.9%) or parthenogenetic embryos (22.4 +/- 7.2%) (P: < 0.01). The mean cell number (28.9 +/- 11.4) of NT-derived blastocysts was smaller than that (38.6 +/- 10.4) of IVF-derived blastocysts (P: < 0. 05) and was similar to that (29.9 +/- 12.1) of parthenogenetic embryos. Our results suggest that porcine NT eggs using somatic cells after electrical activation have developmental potential to the blastocyst stage, although with smaller cell numbers compared to IVF embryos.
Collapse
Affiliation(s)
- D B Koo
- Korea Research Institute of Bioscience and Biotechnology, Yusong, Taejon 305-600, Korea. National Livestock Research Institute, Chonan 330-800, Suwon 441-350, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Kühholzer B, Prather RS. Advances in livestock nuclear transfer. PROCEEDINGS OF THE SOCIETY FOR EXPERIMENTAL BIOLOGY AND MEDICINE. SOCIETY FOR EXPERIMENTAL BIOLOGY AND MEDICINE (NEW YORK, N.Y.) 2000; 224:240-5. [PMID: 10964258 DOI: 10.1046/j.1525-1373.2000.22427.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cloning and transgenic animal production have been greatly enhanced by the development of nuclear transfer technology. In the past, genetic modification in domestic animals was not tightly controlled. With the nuclear transfer technology one can now create some domestic animals with specific genetic modifications. An ever-expanding variety of cell types have been successfully used as donors to create the clones. Both cell fusion and microinjection are successfully being used to create these animals. However, it is still not clear which stage(s) of the cell cycle for donor and recipient cells yield the greatest degree of development. While for the most part gene expression is reprogrammed in nuclear transfer embryos, all structural changes may not be corrected as evidenced by the length of the telomeres in sheep resulting from nuclear transfer. Even after these animals are created the question of "are they really clones?" arises due to mitochondrial inheritance from the donor cell versus the recipient oocyte. This review discusses these issues as they relate to livestock.
Collapse
Affiliation(s)
- B Kühholzer
- Animal Science Research Center, University of Missouri-Columbia, Missouri 65211-5300, USA
| | | |
Collapse
|
39
|
Winger QA, Hill JR, Shin T, Watson AJ, Kraemer DC, Westhusin ME. Genetic reprogramming of lactate dehydrogenase, citrate synthase, and phosphofructokinase mRNA in bovine nuclear transfer embryos produced using bovine fibroblast cell nuclei. Mol Reprod Dev 2000; 56:458-64. [PMID: 10911395 DOI: 10.1002/1098-2795(200008)56:4<458::aid-mrd3>3.0.co;2-l] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Adult animal cloning has progressed to allow the production of offspring cloned from adult cells, however many cloned calves die prenatally or shortly after birth. This study examined the expression of three important metabolic enzymes, lactate dehydrogenase (LDH), citrate synthase, and phosphofructokinase (PFK), to determine if their detection in nuclear transfer (NT) embryos mimics that determined for in vitro produced embryos. A day 40 nuclear transfer produced fetus derived from an adult cell line was collected and fetal fibroblast cultures were established and maintained. Reconstructed NT embryos were then produced from this cell line, and RT-PCR was used to evaluate mRNA reprogramming. All three mRNAs encoding these enzymes were detected in the regenerated fetal fibroblast cell line. Detection patterns were first determined for IVF produced embryos (1-cell, 2-cell, 6-8 cell, morula, and blastocyst stages) to compare with their detection in NT embryos. PFK has three subunits: PFK-L, PFK-M, and PFK-P. PFK-L and PFK-P were not detected in bovine oocytes. PFK subunits were not detected in 6-8 cell embryos but were detected in blastocysts. Results from NT embryo RT-PCR demonstrated that PFK was not detected in 8-cell NT embryos but was detected in NT blastocysts indicating that proper nuclear reprogramming had occurred. Citrate synthase was detected in oocytes and throughout development to the blastocyst stage in both bovine IVF and NT embryos. LDH-A and LDH-B were detected in bovine oocytes and in all stages of IVF and NT embryos examined up to the blastocyst stage. A third subunit, LDH-C was not detected at the blastocyst stage in IVF or NT embryos but was detected in all earlier stages and in mature oocytes. In addition, LDH-C mRNA was detected in gonad isolated from the NT and an in vivo produced control fetus. These results indicate that the three metabolic enzymes maintain normal expression patterns and therefore must be properly reprogrammed following nuclear transfer.
Collapse
Affiliation(s)
- Q A Winger
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine, Texas A&M University, College Station 77843-4466, USA
| | | | | | | | | | | |
Collapse
|
40
|
Natale DR, Kidder GM, Westhusin ME, Watson AJ. Assessment by differential display-RT-PCR of mRNA transcript transitions and alpha-amanitin sensitivity during bovine preattachment development. Mol Reprod Dev 2000; 55:152-63. [PMID: 10618654 DOI: 10.1002/(sici)1098-2795(200002)55:2<152::aid-mrd4>3.0.co;2-n] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The objectives of this study were to compare patterns of mRNA expression, investigate the onset of transcription, and isolate stage-specific and alpha-amanitin-sensitive mRNAs during early bovine development by differential-display-reverse transcription-polymerase chain reaction (DD-RT-PCR). Embryos representing a preattachment developmental series from the 1-cell to the expanded/hatched blastocyst stage were cultured in synthetic oviduct fluid medium + citrate and amino acids (cSOFMaa) with and without alpha-amanitin (100 microg/mL) for 4 and 12 hr. mRNA profiles were displayed by DD-RT-PCR using 5' primers A and N. Total conserved cDNA banding patterns varied according to embryo stage with cDNA band numbers declining during early cleavage stages compared to oocyte values and then increasing in total number from the 6-8-cell stage through to the blastocyst stage. A cDNA banding pattern was established at the 8-16-cell stage that was largely unchanged through to the blastocyst stage. These findings with respect to cDNA banding patterns were conserved between oligo primer sets and experimental replicates. alpha-Amanitin sensitivity was first detected at the 2-5-cell stage but became predominant following the 6-8-cell stage of development to eventually affect the appearance of up to 40% of all cDNA bands by the blastocyst stage. A 12 hr alpha-amanitin treatment was required to effectively block (3)H-uridine incorporation into mRNA in blastocyst stage embryos. Several stage-specific and alpha-amanitin-sensitive cDNAs were isolated and they will be a focus for future studies. In conclusion, DD-RT-PCR is an effective tool for contrasting gene expression patterns and isolating uncharacterized mRNA transcripts during bovine early development. Mol. Reprod. Dev. 55:152-163, 2000.
Collapse
Affiliation(s)
- D R Natale
- Department of Obstetrics and Gynaecology, The University of Western Ontario, London, Ontario, Canada
| | | | | | | |
Collapse
|