1
|
Jones L, Efron N, Bandamwar K, Barnett M, Jacobs DS, Jalbert I, Pult H, Rhee MK, Sheardown H, Shovlin JP, Stahl U, Stanila A, Tan J, Tavazzi S, Ucakhan OO, Willcox MDP, Downie LE. TFOS Lifestyle: Impact of contact lenses on the ocular surface. Ocul Surf 2023; 29:175-219. [PMID: 37149139 DOI: 10.1016/j.jtos.2023.04.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 04/10/2023] [Indexed: 05/08/2023]
Abstract
Several lifestyle choices made by contact lens wearers can have adverse consequences on ocular health. These include being non-adherent to contact lens care, sleeping in lenses, ill-advised purchasing options, not seeing an eyecare professional for regular aftercare visits, wearing lenses when feeling unwell, wearing lenses too soon after various forms of ophthalmic surgery, and wearing lenses when engaged in risky behaviors (e.g., when using tobacco, alcohol or recreational drugs). Those with a pre-existing compromised ocular surface may find that contact lens wear exacerbates ocular disease morbidity. Conversely, contact lenses may have various therapeutic benefits. The coronavirus disease-2019 (COVID-19) pandemic impinged upon the lifestyle of contact lens wearers, introducing challenges such as mask-associated dry eye, contact lens discomfort with increased use of digital devices, inadvertent exposure to hand sanitizers, and reduced use of lenses. Wearing contact lenses in challenging environments, such as in the presence of dust and noxious chemicals, or where there is the possibility of ocular trauma (e.g., sport or working with tools) can be problematic, although in some instances lenses can be protective. Contact lenses can be worn for sport, theatre, at high altitude, driving at night, in the military and in space, and special considerations are required when prescribing in such situations to ensure successful outcomes. A systematic review and meta-analysis, incorporated within the review, identified that the influence of lifestyle factors on soft contact lens dropout remains poorly understood, and is an area in need of further research. Overall, this report investigated lifestyle-related choices made by clinicians and contact lens wearers and discovered that when appropriate lifestyle choices are made, contact lens wear can enhance the quality of life of wearers.
Collapse
Affiliation(s)
- Lyndon Jones
- Centre for Ocular Research & Education (CORE), School of Optometry and Vision Science, University of Waterloo, Waterloo, ON, Canada.
| | - Nathan Efron
- School of Optometry and Vision Science, Queensland University of Technology, Kelvin Grove, Queensland, Australia
| | - Kalika Bandamwar
- Department of Ophthalmology, New Zealand National Eye Centre, The University of Auckland, Auckland, New Zealand
| | - Melissa Barnett
- University of California, Davis Eye Center, Sacramento, CA, USA
| | - Deborah S Jacobs
- Massachusetts Eye & Ear, Harvard Medical School, Boston, MA, USA
| | - Isabelle Jalbert
- School of Optometry and Vision Science, UNSW Sydney, NSW, Australia
| | - Heiko Pult
- Dr Heiko Pult Optometry & Vision Research, Weinheim, Germany
| | | | - Heather Sheardown
- Department of Chemical Engineering, McMaster University, Hamilton, Ontario, Canada
| | | | - Ulli Stahl
- Centre for Ocular Research & Education (CORE), School of Optometry and Vision Science, University of Waterloo, Waterloo, ON, Canada
| | | | - Jacqueline Tan
- School of Optometry and Vision Science, UNSW Sydney, NSW, Australia
| | - Silvia Tavazzi
- Department of Materials Science, University of Milano-Bicocca, Milan, Italy
| | | | - Mark D P Willcox
- School of Optometry and Vision Science, UNSW Sydney, NSW, Australia
| | - Laura E Downie
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
2
|
Wolffsohn JS, Dumbleton K, Huntjens B, Kandel H, Koh S, Kunnen CME, Nagra M, Pult H, Sulley AL, Vianya-Estopa M, Walsh K, Wong S, Stapleton F. CLEAR - Evidence-based contact lens practice. Cont Lens Anterior Eye 2021; 44:368-397. [PMID: 33775383 DOI: 10.1016/j.clae.2021.02.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 02/01/2021] [Indexed: 12/15/2022]
Abstract
Evidence-based contact lens -->practice involves finding, appraising and applying research findings as the basis for patient management decisions. These decisions should be informed by the strength of the research study designs that address the question, as well as by the experience of the practitioner and the preferences and environment of the patient. This reports reviews and summarises the published research evidence that is available to inform soft and rigid contact lens history and symptoms taking, anterior eye health examination (including the optimised use of ophthalmic dyes, grading scales, imaging techniques and lid eversion), considerations for contact lens selection (including the ocular surface measurements required to select the most appropriate lens parameter, lens modality and material selection), evaluation of lens fit, prescribing (teaching self-application and removal, adaptation, care regimen and cleaning instructions, as well as -->minimising risks of lens wear through encouraging compliance) and an aftercare routine.
Collapse
Affiliation(s)
| | - Kathy Dumbleton
- School of Optometry, University of California, Berkeley, CA, USA
| | - Byki Huntjens
- Division of Optometry and Visual Sciences at City, University of London, London, UK
| | - Himal Kandel
- Save Sight Institute, Sydney Medical School, The University of Sydney, Sydney, Australia
| | - Shizuka Koh
- Department of Innovative Visual Science, Osaka University Graduate School of Medicine, Japan
| | | | - Manbir Nagra
- Vision and Eye Research Institute, ARU, Cambridge, UK
| | - Heiko Pult
- Optometry and Vision Research, Weinheim, Germany
| | | | - Marta Vianya-Estopa
- Department of Vision and Hearing Sciences Research Centre, Anglia Ruskin University, Cambridge, UK
| | - Karen Walsh
- Centre for Ocular Research & Education, School of Optometry & Vision Science, University of Waterloo, Waterloo, Canada
| | - Stephanie Wong
- Centre for Ocular Research & Education, School of Optometry & Vision Science, University of Waterloo, Waterloo, Canada
| | - Fiona Stapleton
- School of Optometry and Vision Science, UNSW Sydney, Australia
| |
Collapse
|
3
|
Bussan KA, Robertson DM. Contact lens wear and the diabetic corneal epithelium: A happy or disastrous marriage? J Diabetes Complications 2019; 33:75-83. [PMID: 30391097 PMCID: PMC7364814 DOI: 10.1016/j.jdiacomp.2018.09.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 09/10/2018] [Accepted: 09/23/2018] [Indexed: 12/11/2022]
Abstract
Diabetes mellitus is an epidemic in the US and abroad. With the advent of new contact lens technology, the use of contact lenses as glucose sensors in lieu of the traditional finger stick is quickly becoming realized. This has the potential to rapidly expand the contact lens market into this growing patient population. The independent cellular and physiological effects of contact lens wear and diabetes on the corneal epithelium have been described. However, little evidence exists to date to support whether there is increased risk associated with contact lens wear in diabetes. The focus of this review is to discuss what is known about the cellular effects of contact lenses on the corneal epithelium, the pathophysiological changes in the corneal epithelium that occur in diabetes, and whether an increased risk for corneal epithelial damage and/or infection may negatively impact safety in diabetic contact lens wearers. Available data indicates that there are inherent risks associated with contact lens wear in diabetics. Importantly, eye care practitioners fitting contact lenses in the diabetic patient need to carefully consider the duration of disease, the level of glycemic control, the presence of retinopathy, and the patient's overall health.
Collapse
Affiliation(s)
- Katherine A Bussan
- The Department of Ophthalmology, The University of Texas Southwestern Medical Center, United States of America
| | - Danielle M Robertson
- The Department of Ophthalmology, The University of Texas Southwestern Medical Center, United States of America.
| |
Collapse
|
4
|
The impact of diabetes on corneal nerve morphology and ocular surface integrity. Ocul Surf 2018; 16:45-57. [PMID: 29113918 DOI: 10.1016/j.jtos.2017.10.006] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 10/03/2017] [Accepted: 10/26/2017] [Indexed: 12/11/2022]
|
5
|
Chen L, Tse WH, Chen Y, McDonald MW, Melling J, Zhang J. Nanostructured biosensor for detecting glucose in tear by applying fluorescence resonance energy transfer quenching mechanism. Biosens Bioelectron 2016; 91:393-399. [PMID: 28063388 DOI: 10.1016/j.bios.2016.12.044] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 12/15/2016] [Accepted: 12/17/2016] [Indexed: 12/19/2022]
Abstract
In this paper, a nanostructured biosensor is developed to detect glucose in tear by using fluorescence resonance energy transfer (FRET) quenching mechanism. The designed FRET pair, including the donor, CdSe/ZnS quantum dots (QDs), and the acceptor, dextran-binding malachite green (MG-dextran), was conjugated to concanavalin A (Con A), an enzyme with specific affinity to glucose. In the presence of glucose, the quenched emission of QDs through the FRET mechanism is restored by displacing the dextran from Con A. To have a dual-modulation sensor for convenient and accurate detection, the nanostructured FRET sensors were assembled onto a patterned ZnO nanorod array deposited on the synthetic silicone hydrogel. Consequently, the concentration of glucose detected by the patterned sensor can be converted to fluorescence spectra with high signal-to-noise ratio and calibrated image pixel value. The photoluminescence intensity of the patterned FRET sensor increases linearly with increasing concentration of glucose from 0.03mmol/L to 3mmol/L, which covers the range of tear glucose levels for both diabetics and healthy subjects. Meanwhile, the calibrated values of pixel intensities of the fluorescence images captured by a handhold fluorescence microscope increases with increasing glucose. Four male Sprague-Dawley rats with different blood glucose concentrations were utilized to demonstrate the quick response of the patterned FRET sensor to 2µL of tear samples.
Collapse
Affiliation(s)
- Longyi Chen
- Department of Chemical & Biochemical Engineering, University of Western Ontario, London, Ontario, Canada N6A 5B9
| | - Wai Hei Tse
- Department of Medical Biophysics, University of Western Ontario, London, Ontario, Canada N6A 5B9
| | - Yi Chen
- Department of Chemical & Biochemical Engineering, University of Western Ontario, London, Ontario, Canada N6A 5B9
| | - Matthew W McDonald
- School of Kinesiology, Faculty of Health Sciences, University of Western Ontario, London, Ontario, Canada N6A 5B9
| | - James Melling
- School of Kinesiology, Faculty of Health Sciences, University of Western Ontario, London, Ontario, Canada N6A 5B9
| | - Jin Zhang
- Department of Chemical & Biochemical Engineering, University of Western Ontario, London, Ontario, Canada N6A 5B9; Department of Medical Biophysics, University of Western Ontario, London, Ontario, Canada N6A 5B9.
| |
Collapse
|
6
|
Noninvasive Continuous Monitoring of Tear Glucose Using Glucose-Sensing Contact Lenses. Optom Vis Sci 2016; 93:426-34. [PMID: 26390345 DOI: 10.1097/opx.0000000000000698] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
: The incidence of diabetes mellitus is dramatically increasing in the developed countries. Tight control of blood glucose concentration is crucial to diabetic patients to prevent microvascular complications. Self-monitoring of blood glucose is widely used for controlling blood glucose levels and usually performed by an invasive test using a portable glucometer. Many technologies have been developed over the past decades with the purpose of obtaining a continuous physiological glycemic monitoring. A contact lens is the ideal vehicle for continuous tear glucose monitoring of glucose concentration in tear film. There are several research groups that are working in the development of contact lenses with embedded biosensors for continuously and noninvasively monitoring tear glucose levels. Although numerous aspects must be improved, contact lens technology is one step closer to helping diabetic subjects better manage their condition, and these contact lenses will be able to measure the level of glucose in the wearer's tears and communicate the information to a mobile phone or computer. This article reviews studies on ocular glucose and its monitoring methods as well as the attempts to continuously monitor the concentration of tear glucose by using contact lens-based sensors.
Collapse
|
7
|
Teutsch T, Mesch M, Giessen H, Tarin C. Dynamic modeling of the hydrogel molecular filter in a metamaterial biosensing system for glucose concentration estimation. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2015; 2014:2081-4. [PMID: 25570394 DOI: 10.1109/embc.2014.6944026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We present a novel concept for ophthalmic glucose sensing using a biosensing system that consists of plasmonic dipole metamaterial covered by a layer of functionalized hydrogel. The metamaterial together with the hydrogel can be integrated into a contact lens. This optical sensor changes its properties such as reflectivity upon the ambient glucose concentration, which allows in situ measurements in the eye. The functionalization of the sensor with hydrogel allows for a glucose-specific detection, providing both selectivity and sensitivity. As a result of the presented work we derive a dynamic model of the hydrogel that can be used for further simulation studies.
Collapse
|
8
|
Teutsch T, Mesch M, Giessen H, Tarin C. Discrete wavelength selection for the optical readout of a metamaterial biosensing system for glucose concentration estimation via a support vector regression model. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2015; 2015:6421-6424. [PMID: 26737762 DOI: 10.1109/embc.2015.7319862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In this contribution, a method to select discrete wavelengths that allow an accurate estimation of the glucose concentration in a biosensing system based on metamaterials is presented. The sensing concept is adapted to the particular application of ophthalmic glucose sensing by covering the metamaterial with a glucose-sensitive hydrogel and the sensor readout is performed optically. Due to the fact that in a mobile context a spectrometer is not suitable, few discrete wavelengths must be selected to estimate the glucose concentration. The developed selection methods are based on nonlinear support vector regression (SVR) models. Two selection methods are compared and it is shown that wavelengths selected by a sequential forward feature selection algorithm achieves an estimation improvement. The presented method can be easily applied to different metamaterial layouts and hydrogel configurations.
Collapse
|
9
|
Kang JW, Shin KC. Changes in Central Corneal Thickness and Corneal Endothelial Morphology in Contact Lens-Wearing Diabetic Patients. JOURNAL OF THE KOREAN OPHTHALMOLOGICAL SOCIETY 2014. [DOI: 10.3341/jkos.2014.55.10.1426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Joon Won Kang
- Department of Ophthalmology, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, Korea
| | - Ki Cheul Shin
- Department of Ophthalmology, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, Korea
| |
Collapse
|
10
|
Abstract
The literature suggests that diabetic patients may have altered tear chemistry and tear secretion as well as structural and functional changes to the corneal epithelium, endothelium and nerves. These factors, together with a reported increased incidence of corneal infection, suggest that diabetic patients may be particularly susceptible to developing ocular complications during contact lens wear. Reports of contact lens-induced complications in diabetic patients do exist, although a number of these reports concern patients with advanced diabetic eye disease using lenses on an extended wear basis. Over the past decade or so, there have been published studies documenting the response of the diabetic eye to more modern contact lens modalities. The results of these studies suggest that contact lenses can be a viable mode of refractive correction for diabetic patients. Furthermore, new research suggests that the measurement of tear glucose concentration could, in future, be used to monitor metabolic control non-invasively in diabetic patients. This could be carried out using contact lenses manufactured from hydrogel polymers embedded with glucose-sensing agents or nanoscale digital electronic technology. The purpose of this paper is to review the literature on the anterior ocular manifestations of diabetes, particularly that pertaining to contact lens wear.
Collapse
|
11
|
Abstract
Diabetic peripheral neuropathy (DPN) is a debilitating condition that affects about 50% of diabetic patients. The symptoms of DPN include numbness, tingling, or pain in the arms and legs. Patients with numbness may be unaware of foot trauma, which could develop into a foot ulcer. If left untreated, this may ultimately require amputation. Currently, the only method of directly examining peripheral nerves is to conduct skin punch or sural/peroneal nerve biopsies, which are uncomfortable and invasive. Indirect methods include quantitative sensory testing (assessing responses to heat, cold, and vibration) and nerve electrophysiology. Here, I describe research undertaken in my laboratory, investigating the possibility of using a range of ophthalmic markers to assess DPN. Corneal nerve structure and function can be assessed using corneal confocal microscopy and non-contact corneal esthesiometry, respectively. Retinal nerve structure and visual function can be evaluated using optical coherence tomography and perimetry, respectively. These techniques have been used to demonstrate that DPN is associated with morphological degradation of corneal nerves, reduced corneal sensitivity, retinal nerve fiber layer thinning, and peripheral visual field loss. With further validation, these ophthalmic markers could become established as rapid, painless, non-invasive, sensitive, reiterative, cost-effective, and clinically accessible means of screening for early detection, diagnosis, staging severity, and monitoring progression of DPN, as well as assessing the effectiveness of possible therapeutic interventions. Looking to the future, this research may pave the way for an expanded role for the ophthalmic professions in diabetes management.
Collapse
|
12
|
Regression Methods for Ophthalmic Glucose Sensing Using Metamaterials. JOURNAL OF ELECTRICAL AND COMPUTER ENGINEERING 2011. [DOI: 10.1155/2011/953064] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We present a novel concept for in vivo sensing of glucose using metamaterials in combination with automatic learning systems. In detail, we use the plasmonic analogue of electromagnetically induced transparency (EIT) as sensor and evaluate the acquired data with support vector machines. The metamaterial can be integrated into a contact lens. This sensor changes its optical properties such as reflectivity upon the ambient glucose concentration, which allows for in situ measurements in the eye. We demonstrate that estimation errors below 2% at physiological concentrations are possible using simulations of the optical properties of the metamaterial in combination with an appropriate electrical circuitry and signal processing scheme. In the future, functionalization of our sensor with hydrogel will allow for a glucose-specific detection which is insensitive to other tear liquid substances providing both excellent selectivity and sensitivity.
Collapse
|
13
|
Abstract
This article reviews the development of a noninvasive diagnostic for diabetes by detecting ocular glucose. Early diagnosis and daily management are very important to diabetes patients to ensure a healthy life. Commercial blood glucose sensors have been used since the 1970s. Millions of diabetes patients have to prick their finger for a drop of blood 4-5 times a day to check blood glucose levels--almost 1800 times annually. There is a strong need to have a noninvasive device to help patients to manage the disease easily and painlessly. Instead of detecting the glucose in blood, monitoring the glucose level in other body fluids may provide a feasible approach for noninvasive diagnosis and diabetes control. Tear glucose has been studied for several decades. This article reviews studies on ocular glucose and its monitoring methods. Attempts to continuously monitor the concentration of tear glucose by using contact lens-based sensors are discussed as well as our current development of a nanostructured lens-based sensor for diabetes. This disposable biosensor for the detection of tear glucose may provide an alternative method to help patients manage the disease conveniently.
Collapse
Affiliation(s)
- Jin Zhang
- Department of Chemical and Biochemical Engineering, University of Western Ontario, London, Ontario, Canada.
| | | | | | | |
Collapse
|
14
|
Skarbez K, Priestley Y, Hoepf M, Koevary SB. Comprehensive Review of the Effects of Diabetes on Ocular Health. EXPERT REVIEW OF OPHTHALMOLOGY 2010; 5:557-577. [PMID: 21760834 PMCID: PMC3134329 DOI: 10.1586/eop.10.44] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
15
|
Abstract
PURPOSE The aim of this study was to characterize the clinical signs, symptoms, and ocular and systemic comorbidities in a large case series of contact lens-related microbial keratitis. METHODS Two hundred ninety-seven cases of contact lens-related microbial keratitis, aged between 15 and 64 years were detected through surveillance of hospital and community based ophthalmic practitioners in Australia and New Zealand. Full clinical data were available for 190 cases and 90 were interviewed by telephone. Clinical data included the size, location, and degree of anterior chamber response. Symptom data were available from the practitioner and from participant self-report. Associations between symptoms and disease severity were evaluated. Data on ocular and systemic disease were collected from participants and practitioners. The frequency of comorbidities was compared between the different severities of disease and to population norms. RESULTS More severe disease was associated with greater symptom severity and pain was the most prevalent symptom reported. Ninety-one percent of cases showed progression of ocular symptoms after lens removal, and symptom progression was associated with all severities of disease. Twenty-five percent of cases reported prior episodes requiring emergency attention. Thyroid disease (p = 0.05) and self-reported poor health (p = 0.001) were more common in cases compared with age-matched population norms. DISCUSSION Information on the signs, symptoms, and comorbidities associated with contact lens-related microbial keratitis may be useful in patient education and for practitioners involved in the fitting of lenses and management of complications. Although pain was the most common symptom experienced, progression of symptoms despite lens removal was close to universal. Poor general health, particularly respiratory disease and thyroid disease was more common in cases than in the general population, which may prompt practitioners to recommend flexibility in wear schedules when in poor health or the selection of a lower risk wear schedule in at risk patients.
Collapse
|
16
|
Baca JT, Finegold DN, Asher SA. Tear glucose analysis for the noninvasive detection and monitoring of diabetes mellitus. Ocul Surf 2008; 5:280-93. [PMID: 17938838 DOI: 10.1016/s1542-0124(12)70094-0] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
One approach to the noninvasive monitoring of blood glucose concentration is to monitor glucose concentrations in tear fluid. While several methods for sensing glucose in tear fluid have been proposed, controversy remains as to the precise concentrations of tear glucose in normal and diabetic subjects and as to whether tear fluid glucose concentrations correlate with blood glucose concentrations. This review covers the present understanding of the physiology of glucose transport in tears, the regulation of the aqueous tear fraction, and studies of tear glucose concentration over the last 80 years. The various tear collection methods employed greatly influence the measured tear glucose concentrations. Studies that involve mechanical irritation of the conjunctiva during sampling measure the highest tear glucose concentrations, while studies that avoid tear stimulation measure the lowest concentrations. Attempts to monitor tear glucose concentration in situ by using contact lens-based sensing devices are discussed, and new observations are presented of tear glucose concentration obtained by a method designed to avoid tear stimulation. These studies indicate the importance of the sampling method in determining tear glucose concentrations. On the basis of these results, we discuss the future of in vivo tear glucose sensing and outline the studies needed to resolve the remaining questions about the relationship between tear and blood glucose concentrations.
Collapse
Affiliation(s)
- Justin T Baca
- Department of Chemistry, Chevron Science Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | | | | |
Collapse
|
17
|
Abstract
BACKGROUND The purpose of the present study was to determine the effectiveness of software in the hand-held photofluorometer permitting the monitoring of a second fluorescent signal to improve a contact lens glucose sensor for the non-invasive monitoring of glucose. METHODS One fasting normal patient was given an oral challenge consisting of 75 mL of Sustacol (Thomson Micromedex, Greenwood, CO). The two contact lens fluorescent signals and fingerstick blood glucose were measured over a 3-h period. RESULTS Subtracting the second fluorescent signal from the main signal produced a product that appeared to track blood glucose well. The contact lens was comfortable and well tolerated. CONCLUSION The biwavelength contact lens glucose sensor shows promise as a non-invasive home glucose monitor.
Collapse
Affiliation(s)
- Wayne March
- Department of Ophthalmology, Downstate Medical Center, State University of New York, Brooklyn, New York 11203-2098, USA.
| | | | | |
Collapse
|
18
|
Domschke A, March WF, Kabilan S, Lowe C. Initial clinical testing of a holographic non-invasive contact lens glucose sensor. Diabetes Technol Ther 2006; 8:89-93. [PMID: 16472055 DOI: 10.1089/dia.2006.8.89] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
INTRODUCTION The purpose of the present study was to determine the effectiveness of a new holographic contact lens glucose sensor for the non-invasive monitoring of blood glucose. METHODS One fasting normal subject was given an oral challenge consisting of 44 g of glucose. The contact lens hologram signal and fingerstick blood glucose were measured over a 26- min period. RESULTS The contact lens hologram signal appeared to track blood glucose well. The contact lens was comfortable and well tolerated. CONCLUSION The holographic contact lens glucose sensor shows promise as a non-invasive home glucose monitor.
Collapse
|
19
|
Abstract
OBJECTIVE The purpose of the present study was to determine the effectiveness of a fluorescent contact lens glucose sensor in monitoring glucose in patients with diabetes. METHODS Under an institutional review board-approved protocol, five fasting patients with type II diabetes were given a challenge consisting of 75 mL of Sustacal (Thomson Micromedex, Greenwood, CO) by mouth. Contact lens fluorescence and venous blood glucose were measured over a 3-h period. RESULTS Contact lens fluorescence appeared to track blood glucose well. The fluorescent daily-wear disposable contact lenses were comfortable and were tolerated well, even in patients who had not previously worn contact lenses. CONCLUSION The contact lens glucose sensor shows promise as a home glucose monitor.
Collapse
Affiliation(s)
- Wayne F March
- Department of Ophthalmology, Downstate Health Science Center, State University of New York, Brooklyn, New York 11203-2098, USA.
| | | | | |
Collapse
|