1
|
Valverde-Villegas JM, Naranjo-Gomez M, Durand M, Rutagwera D, Bedin AS, Kankasa C, Debiesse S, Nagot N, Tuaillon E, Van de Perre P, Molès JP. The CD133 + Stem/Progenitor-Like Cell Subset Is Increased in Human Milk and Peripheral Blood of HIV-Positive Women. Front Cell Infect Microbiol 2020; 10:546189. [PMID: 33102251 PMCID: PMC7546783 DOI: 10.3389/fcimb.2020.546189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 08/20/2020] [Indexed: 12/19/2022] Open
Abstract
Human milk is a significant source of different CD133+ and/or CD34+ stem/progenitor-like cell subsets in healthy women but their cell distribution and percentages in this compartment of HIV-positive women have not been explored. To date, a decrease of CD34+ hematopoietic stem and progenitor cell frequencies in peripheral blood and bone marrow of HIV-positive patients has been reported. Herein, human milk and peripheral blood samples were collected between day 2–15 post-partum from HIV-positive and HIV-negative women, and cells were stained with stem cell markers and analyzed by flow cytometry. We report that the median percentage of CD45+/highCD34−CD133+ cell subset from milk and blood was significantly higher in HIV-positive than in HIV-negative women. The percentage of CD45dimCD34−CD133+ cell subset from blood was significantly higher in HIV-positive than HIV-negative women. Moreover, percentages of CD45dimCD34+, CD45dimCD34+CD133−, and CD45+highCD34+CD133− cell subsets from blood were significantly lower in HIV-positive than HIV-negative women. The CD133+ stem/progenitor-like cell subsets are increased in early human milk and blood of HIV-positive women and are differentially distributed to CD34+ cell subset frequencies which are decreased in blood.
Collapse
Affiliation(s)
- Jacqueline María Valverde-Villegas
- Pathogenesis and Control of Chronic Infections (PCCI), INSERM, University of Montpellier, Établissement Français du Sang, Montpellier, France
| | - Mar Naranjo-Gomez
- Pathogenesis and Control of Chronic Infections (PCCI), INSERM, University of Montpellier, Établissement Français du Sang, Montpellier, France.,IRMB, University of Montpellier, INSERM, CHU Montpellier, Montpellier, France
| | - Mélusine Durand
- Pathogenesis and Control of Chronic Infections (PCCI), INSERM, University of Montpellier, Établissement Français du Sang, Montpellier, France
| | - David Rutagwera
- Department of Paediatrics and Child Health, University Teaching Hospital, School of Medicine University of Zambia, Lusaka, Zambia
| | - Anne-Sophie Bedin
- Pathogenesis and Control of Chronic Infections (PCCI), INSERM, University of Montpellier, Établissement Français du Sang, Montpellier, France
| | - Chipepo Kankasa
- Department of Paediatrics and Child Health, University Teaching Hospital, School of Medicine University of Zambia, Lusaka, Zambia
| | - Ségolène Debiesse
- Pathogenesis and Control of Chronic Infections (PCCI), INSERM, University of Montpellier, Établissement Français du Sang, Montpellier, France
| | - Nicolas Nagot
- Pathogenesis and Control of Chronic Infections (PCCI), INSERM, University of Montpellier, Établissement Français du Sang, Montpellier, France.,CHU Montpellier, Department of Bacteriology-Virology and Department of Medical Information, Montpellier, France
| | - Edouard Tuaillon
- Pathogenesis and Control of Chronic Infections (PCCI), INSERM, University of Montpellier, Établissement Français du Sang, Montpellier, France.,CHU Montpellier, Department of Bacteriology-Virology and Department of Medical Information, Montpellier, France
| | - Philippe Van de Perre
- Pathogenesis and Control of Chronic Infections (PCCI), INSERM, University of Montpellier, Établissement Français du Sang, Montpellier, France.,CHU Montpellier, Department of Bacteriology-Virology and Department of Medical Information, Montpellier, France
| | - Jean-Pierre Molès
- Pathogenesis and Control of Chronic Infections (PCCI), INSERM, University of Montpellier, Établissement Français du Sang, Montpellier, France
| |
Collapse
|
2
|
Chander V, Gangenahalli G. Emerging strategies for enhancing the homing of hematopoietic stem cells to the bone marrow after transplantation. Exp Cell Res 2020; 390:111954. [PMID: 32156602 DOI: 10.1016/j.yexcr.2020.111954] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/04/2020] [Accepted: 03/06/2020] [Indexed: 12/26/2022]
Abstract
Bone marrow failure is the primary cause of death after nuclear accidents or intentional exposure to high or low doses of ionizing radiation. Hematopoietic stem cell transplantation is the most potent treatment procedure for patients suffering from several hematopoietic malignancies arising after radiation injuries. Successful hematopoietic recovery after transplantation depends on efficient homing and subsequent engraftment of hematopoietic stem cells in specific niches within the bone marrow. It is a rapid and coordinated process in which circulating cells actively enter the bone marrow through the process known as transvascular migration, which involves the tightly regulated relay of events that finally leads to homing of cells in the bone marrow. Various adhesion molecules, chemokines, glycoproteins, integrins, present both on the surface of stem cells and sinusoidal endothelium plays a critical role in transvascular migration. But despite having an in-depth knowledge of homing and engraftment and the key events that regulate it, we are still not completely able to avoid graft failures and post-transplant mortalities. This deems it necessary to design a flawless plan for successful transplantation. Here, in this review, we will discuss the current clinical methods used to overcome graft failures and their flaws. We will also discuss, what are the new approaches developed in the past 10-12 years to selectively deliver the hematopoietic stem cells in the bone marrow by adopting proper targeting strategies that can help revolutionize the field of regenerative and translational medicine.
Collapse
Affiliation(s)
- Vikas Chander
- Division of Stem Cell & Gene Therapy Research, Institute of Nuclear Medicine & Allied Sciences, Delhi, 110054, India
| | - Gurudutta Gangenahalli
- Division of Stem Cell & Gene Therapy Research, Institute of Nuclear Medicine & Allied Sciences, Delhi, 110054, India.
| |
Collapse
|
3
|
Renko O, Tolonen AM, Rysä J, Magga J, Mustonen E, Ruskoaho H, Serpi R. SDF1 gradient associates with the distribution of c-Kit+ cardiac cells in the heart. Sci Rep 2018; 8:1160. [PMID: 29348441 PMCID: PMC5773575 DOI: 10.1038/s41598-018-19417-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 12/29/2017] [Indexed: 12/11/2022] Open
Abstract
Identification of the adult cardiac stem cells (CSCs) has offered new therapeutic possibilities for treating ischemic myocardium. CSCs positive for the cell surface antigen c-Kit are known as the primary source for cardiac regeneration. Accumulating evidence shows that chemokines play important roles in stem cell homing. Here we investigated molecular targets to be utilized in modulating the mobility of endogenous CSCs. In a four week follow-up after experimental acute myocardial infarction (AMI) with ligation of the left anterior descending (LAD) coronary artery of Sprague-Dawley rats c-Kit+ CSCs redistributed in the heart. The number of c-Kit+ CSCs in the atrial c-Kit niche was diminished, whereas increased amount was observed in the left ventricle and apex. This was associated with increased expression of stromal cell-derived factor 1 alpha (SDF1α), and a significant positive correlation was found between c-Kit+ CSCs and SDF1α expression in the heart. Moreover, the migratory capacity of isolated c-Kit+ CSCs was induced by SDF1 treatment in vitro. We conclude that upregulation of SDF1α after AMI associates with increased expression of endogenous c-Kit+ CSCs in the injury area, and show induced migration of c-Kit+ cells by SDF1.
Collapse
Affiliation(s)
- Outi Renko
- Research Unit of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, Oulu, Finland
| | - Anna-Maria Tolonen
- Research Unit of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, Oulu, Finland
| | - Jaana Rysä
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Johanna Magga
- Research Unit of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, Oulu, Finland
| | - Erja Mustonen
- Research Unit of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, Oulu, Finland
| | - Heikki Ruskoaho
- Division of Pharmacology and Pharmacotherapy, University of Helsinki, Helsinki, Finland
| | - Raisa Serpi
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research, University of Oulu, Oulu, Finland.
| |
Collapse
|
4
|
Progress and obstacles towards generating hematopoietic stem cells from pluripotent stem cells. Curr Opin Hematol 2016; 22:317-23. [PMID: 26049752 DOI: 10.1097/moh.0000000000000147] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW Human pluripotent stem cells (PSCs) have the potential to provide an inexhaustible source of hematopoietic stem cells (HSCs) that could be used in disease modeling and in clinical applications such as transplantation. Although the goal of deriving definitive HSCs from PSCs has not been achieved, recent studies indicate that progress is being made. This review will provide information on the current status of deriving HSCs from PSCs, and will highlight existing challenges and obstacles. RECENT FINDINGS Recent strides in HSC generation from PSCs has included derivation of developmental intermediates, identification of transcription factors and small molecules that support hematopoietic derivation, and the development of strategies to recapitulate niche-like conditions. SUMMARY Despite considerable progress in defining the molecular events driving derivation of hematopoietic progenitor cells from PSCs, the generation of robust transplantable HSCs from PSCs remains elusive. We propose that this goal can be facilitated by better understanding of the regulatory pathways governing HSC identity, development of HSC supportive conditions, and examining the marrow homing properties of PSC-derived HSCs.
Collapse
|
5
|
Sahin AO, Buitenhuis M. Molecular mechanisms underlying adhesion and migration of hematopoietic stem cells. Cell Adh Migr 2012; 6:39-48. [PMID: 22647939 DOI: 10.4161/cam.18975] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Hematopoietic stem cell transplantation is the most powerful treatment modality for a large number of hematopoietic malignancies, including leukemia. Successful hematopoietic recovery after transplantation depends on homing of hematopoietic stem cells to the bone marrow and subsequent lodging of those cells in specific niches in the bone marrow. Migration of hematopoietic stem cells to the bone marrow is a highly regulated process that requires correct regulation of the expression and activity of various molecules including chemoattractants, selectins and integrins. This review will discuss recent studies that have extended our understanding of the molecular mechanisms underlying adhesion, migration and bone marrow homing of hematopoietic stem cells.
Collapse
Affiliation(s)
- Aysegul Ocal Sahin
- Department of Hematology and Erasmus MC Stem Cell Institute for Regenerative Medicine, Erasmus MC, Rotterdam, The Netherlands
| | | |
Collapse
|
6
|
Goncharova V, Serobyan N, Iizuka S, Schraufstatter I, de Ridder A, Povaliy T, Wacker V, Itano N, Kimata K, Orlovskaja IA, Yamaguchi Y, Khaldoyanidi S. Hyaluronan expressed by the hematopoietic microenvironment is required for bone marrow hematopoiesis. J Biol Chem 2012; 287:25419-33. [PMID: 22654110 DOI: 10.1074/jbc.m112.376699] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The contribution of hyaluronan (HA) to the regulatory network of the hematopoietic microenvironment was studied using knock-out mice of three hyaluronan synthase genes (Has1, Has2, and Has3). The number of hematopoietic progenitors was decreased in bone marrow and increased in extramedullary sites of Prx1-Cre;Has2(flox/flox);Has1(-/-);Has3(-/-) triple knock-out (tKO) mice as compared with wild type (WT) and Has1(-/-);Has3(-/-) double knock-out (dKO) mice. In line with this observation, decreased hematopoietic activity was observed in long term bone marrow cultures (LTBMC) from tKO mice, whereas the formation of the adherent layer and generation of hematopoietic cells in WT and dKO cultures was not different. 4-Methylumbelliferone (4MU) was used to pharmacologically inhibit the production of HA in LTBMC. Treatment with 4MU inhibited HA synthesis, decreased expression of HAS2 and HAS3, and eliminated hematopoiesis in LTBMC, and this effect was alleviated by the addition of exogenous HA. Exogenous HA also augmented the cell motility in LTBMC, which correlated with the HA-stimulated production of chemokines and growth factors. Conditioned media from HA-induced LTBMC enhanced the chemotaxis of hematopoietic stem/progenitor cells (HSPC) in response to SDF-1. Exposure of endothelial cells to 4MU decreased their ability to support HSPC rolling and adhesion. In addition, migration of transplanted HSPC into the marrow of 4MU-pretreated mice was lower than in untreated mice. Collectively, the results suggest that HA depletion reduces the ability of the microenvironment to support HSPC, and confirm a role for HA as a necessary regulatory element in the structure of the hematopoietic microenvironment.
Collapse
|
7
|
Bistrian R, Dorn A, Möbest DCC, Rüster B, Ludwig R, Scheele J, Seifried E, Martin H, Henschler R. Shear stress-mediated adhesion of acute myeloid leukemia and KG-1 cells to endothelial cells involves functional P-selectin. Stem Cells Dev 2009; 18:1235-42. [PMID: 19105599 DOI: 10.1089/scd.2008.0380] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Acute myeloid leukemia (AML) shows malignant behavior through the ability of immature cells to circulate in blood and to invade peripheral tissues. Whereas binding of human AML cells to endothelial cells (ECs) through E-selectin has been shown to occur using classical adhesion assays, little is known about the ability of endothelial P-selectin to support this process. We therefore characterized the ability of AML blasts and KG-1 cells to bind to endothelial selectin type ligands. Flow cytometry revealed that, in addition to various integrin adhesion receptors, AML cells regularly express the P-selectin glycoprotein ligand (PSGL)-1, a ligand for P- and E-selectin on ECs. In parallel flow chambers, AML cells both rolled and adhered to TNF-alpha pretreated human umbilical vein endothelial cells (HUVECs). Pretreatment of HUVECs with anti-P- or anti-E-selectin function blocking antibodies significantly reduced both, rolling and subsequent arrest of primary AML cells. Intravital microscopy of i.v. injected fluorescence-labeled KG-1 cells into P-selectin deficient or wild type mice confirmed a significant role of endothelial P-selectin in the binding of human primary AML cells to ECs also in vivo. Thus, the currently available data suggest a role of P- and E-selectin in coordinated circulation of AML cells. Thus, P- or E-selectin mediated adhesion of AML cells may provide a target for the development anti-leukemic therapies.
Collapse
Affiliation(s)
- Roxana Bistrian
- Department of Production, DRK Institute of Transfusion Medicine and Immune Hematology, Johann Wolfgang Goethe-University, Sandhofstrasse 1, Frankfurt am Main, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Nevo I, Sagi-Assif O, Meshel T, Ben-Baruch A, Jöhrer K, Greil R, Trejo LEL, Kharenko O, Feinmesser M, Yron I, Witz IP. The involvement of the fractalkine receptor in the transmigration of neuroblastoma cells through bone-marrow endothelial cells. Cancer Lett 2008; 273:127-39. [PMID: 18778890 DOI: 10.1016/j.canlet.2008.07.029] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2008] [Revised: 06/01/2008] [Accepted: 07/30/2008] [Indexed: 12/13/2022]
Abstract
Transendothelial migration (TEM) of tumor cells is a crucial step in metastasis formation. The prevailing paradigm is that the mechanism underlying TEM of tumor cells is similar to that of leukocytes involving adhesion molecules and chemokines. Fractalkine (CX3CL1) is a unique membrane-bound chemokine that functions also as an adhesion molecule. CX3CL1 can be cleaved to a soluble fragment, capable of attracting fractalkine receptor (CX3CR1)-expressing cells. In the present study, we asked if CX3CR1 is involved in the TEM of neuroblastoma cells. We demonstrated that biologically functional CX3CR1 is expressed by several neuroblastoma cell lines. Most importantly, CX3CR1-expressing neuroblastoma cells were stimulated by CX3CL1 to transmigrate through human bone-marrow endothelial cells. A dose dependent phosphorylation of ERK1/2 and AKT was induced in CX3CR1-expressing neuroblastoma cells by soluble CX3CL1. In addition to CX3CR1, neuroblastoma cells also express the CX3CL1 ligand. Membrane CX3CL1 expression was downregulated and the shedding of soluble CX3CL1 was upregulated by PKC activation. Taken together, the results of this study indicate that CX3CR1 plays a functional role in transmigration of neuroblastoma cells through bone-marrow endothelium. These results led us to hypothesize that the CX3CR1-CX3CL1 axis takes part in bone-marrow metastasis of neuroblastoma.
Collapse
Affiliation(s)
- Ido Nevo
- Department of Cell Research and Immunology, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, Ramat-Aviv, Tel-Aviv 69978, Israel
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Seidel J, Niggemann B, Punzel M, Fischer J, Zänker KS, Dittmar T. The neurotransmitter GABA is a potent inhibitor of the stromal cell-derived factor-1alpha induced migration of adult CD133+ hematopoietic stem and progenitor cells. Stem Cells Dev 2008; 16:827-36. [PMID: 17999603 DOI: 10.1089/scd.2007.0004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The ability of hematopoietic stem and progenitor cells (HSPCs) to migrate is a prerequisite for bone marrow homing and tissue regeneration processes. Induction of HSPC migration is chiefly directed by stromal cell-derived factor-1alpha (SDF-1alpha). Considerably less is known about factors that terminate HSPC migration. Adult CD133(+) HSPCs were isolated from mobilized peripheral blood by immunomagnetic separation. Cell migration was assessed using the three-dimensional collagen matrix migration assay, which allows detailed migration analysis on a cell population and single-cell level. The SDF-1alpha-induced locomotory activity of CD133(+) cells was efficiently blocked by the neurotransmitter gamma-aminobutyric acid (GABA). GABA signaling was effected via the GABA(B)-receptor. This was verified by flow cytometry and cell migration studies using the specific GABA(A)-receptor and GABA(B)-receptor agonists isoguvacine and baclofen, respectively. Baclofen blocked SDF-1alpha-induced migration of CD133(+) cells. Flow cytometry-based calcium measurements revealed that GABA inhibits the SDF-1alpha-induced migration of CD133(+) cells by blocking the SDF-1alpha-induced calcium influx. Similar results were obtained with the specific calcium-release-activated calcium (CRAC) channel inhibitor BTP-2, which both blocked the SDF-1alpha-induced calcium influx and migration of CD133(+) cells. These results suggest that GABA(B)-receptor signaling modulates the activity of CRAC channels, whereby the mechanism in detail remains unclear. In summary, the neurotransmitter GABA is a potent blocker of the SDF-1alpha-induced migration of CD133(+) HSPCs from mobilized peripheral blood.
Collapse
Affiliation(s)
- Jeanette Seidel
- Institute of Immunology, Witten/Herdecke University, 58448 Witten, Germany
| | | | | | | | | | | |
Collapse
|
10
|
Nakajima H, Sakakibara Y, Tambara K, Marui A, Yoshimoto M, Premaratne GU, Lin X, Kanemitsu N, Sakaguchi G, Ikeda T, Nishimura K, Nakahata T, Komeda M. Delivery Route in Bone Marrow Cell Transplantation Should be Optimized According to the Etiology of Heart Disease. Circ J 2008; 72:1528-35. [DOI: 10.1253/circj.cj-06-0430] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Hiroyuki Nakajima
- Department of Cardiovascular Surgery, Graduate School of Medicine, Kyoto University
- Department of Cardiovascular Surgery, Mitsubishi Kyoto Hospital
| | - Yutaka Sakakibara
- Department of Cardiovascular Surgery, Graduate School of Medicine, Kyoto University
| | - Keiichi Tambara
- Department of Cardiovascular Surgery, Graduate School of Medicine, Kyoto University
| | - Akira Marui
- Department of Cardiovascular Surgery, Graduate School of Medicine, Kyoto University
| | - Momoko Yoshimoto
- Department of Pediatrics, Graduate School of Medicine, Kyoto University
| | | | - Xue Lin
- Department of Cardiovascular Surgery, Graduate School of Medicine, Kyoto University
| | - Naoki Kanemitsu
- Department of Cardiovascular Surgery, Graduate School of Medicine, Kyoto University
| | - Genichi Sakaguchi
- Department of Cardiovascular Surgery, Graduate School of Medicine, Kyoto University
| | - Tadashi Ikeda
- Department of Cardiovascular Surgery, Graduate School of Medicine, Kyoto University
| | | | | | - Masashi Komeda
- Department of Cardiovascular Surgery, Graduate School of Medicine, Kyoto University
| |
Collapse
|
11
|
Dresske B, El Mokhtari NE, Ungefroren H, Ruhnke M, Plate V, Janssen D, Siebert R, Reinecke A, Simon R, Fandrich F. Multipotent cells of monocytic origin improve damaged heart function. Am J Transplant 2006; 6:947-58. [PMID: 16611330 DOI: 10.1111/j.1600-6143.2006.01289.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Recently, we generated cells with multipotent properties from blood monocytes that in vitro differentiate into various somatic cell types. This experimental study investigated whether these programmable cells of monocytic origin (PCMO) succeed to restore left ventricular function after myocardial infarction (MI). PCMO were generated from monocytes by exposition to RPMI medium containing M-CSF and IL-3 for 6 days. MI was induced in female Lewis rats ligating the left coronary artery. PCMO of male Lewis donors were injected either intramyocardially (i.my.) or intravenously (i.v.) 24 h or 6 days post-infarction. Hemodynamic assessment after 60 days demonstrated significant improvement of left ventricular function following i.my. transplantation of PCMO as well as early (24 h post-infarction) i.v. application while nonmodulated monocytes failed to restore heart function. The Y-chromosome-specific SRY gene of male donor PCMO was detected exclusively in infarcted hearts of animals, which demonstrated improved cardiac function. Subdivision of infarcted hearts by microdissection localized the SRY gene-containing department to the left ventricle adjacent to the infarcted area whereas the right ventricle remained negative. Successful generation of PCMO in access numbers allows their autologous use as a new additive treatment for early restoration of cardiac function after MI.
Collapse
Affiliation(s)
- B Dresske
- Department of General and Thoracic Surgery, University of Schleswig-Holstein, Campus Kiel, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Nepomnyashchikh LM, Lushnikova EL, Goldshtein DV. Whether modern cell technologies can break down biological limitations of tissue-specific regeneration of the myocardium. Bull Exp Biol Med 2005; 139:481-90. [PMID: 16027887 DOI: 10.1007/s10517-005-0328-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The paper reviews modern concepts of physiological and reparative regeneration of the myocardium as a highly specific and highly differentiated tissue system. Special attention was given to evaluation of the proliferative potential of cardiomyocytes, in particular, to the existence of a population of resident cardiac stem cells in the myocardium. Modern approaches to replenishment of massive cardiomyocyte loss via transplantation and transdifferentiation of adult and embryonic stem cells are discussed and the possibilities of using cell technologies for induction of tissue-specific regeneration of the myocardium are analyzed.
Collapse
Affiliation(s)
- L M Nepomnyashchikh
- Research Institute of Regional Pathology and Pathomorphology, Siberian Division of the Russian Academy of Medical Sciences, Novosibirsk, Russia.
| | | | | |
Collapse
|
13
|
Woźniak J, Kopeć-Szlezak J. c-Kit receptor (CD117) expression on myeloblasts and white blood cell counts in acute myeloid leukemia. CYTOMETRY PART B-CLINICAL CYTOMETRY 2004; 58:9-16. [PMID: 14994370 DOI: 10.1002/cyto.b.10068] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND The c-Kit receptor is considered to play a crucial role in hematopoiesis. Induction of mobilization of hematopoietic cells in the bone marrow requires cooperative signaling through c-Kit and c-Kit ligand pathway, and these interactions are important in the retention of stem cells within the bone marrow. Therefore, we analyzed c-Kit density on the leukemic myeloblasts of patients with acute myeloid leukemia (AML) in relation to white blood cell count (WBC) in the peripheral blood. METHODS Bone marrow aspirates collected from patients with AML and bone marrow aspirates and leukapheresis products after granulocyte colony-stimulating factor blood mobilization from adult volunteers were studied. To determine the level of c-Kit receptor expression, we applied quantitative (relative fluorescence intensity and antibody binding per cell) cytometric methods. RESULTS Our data showed negative correlation between the level of c-Kit expression intensity on myeloblasts and the number of leukocytes in blood of AML patients. The c-Kit receptor density on myeloblasts in patients with low WBC was significantly stronger than that on myeloblasts in patients with high WBC. In the latter patient group, the density c-Kit receptor on myeloblasts was similar to that on CD34(+) cells in mobilized peripheral blood. CONCLUSIONS The obtained data suggest an involvement of c-Kit receptor in the regulation of leukemic myeloblasts egress to the peripheral blood.
Collapse
Affiliation(s)
- Jolanta Woźniak
- Department of Physiopathology, Institute of Haematology and Blood Transfusion, Warsaw, Poland.
| | | |
Collapse
|
14
|
Ni HT, Hu S, Sheng WS, Olson JM, Cheeran MCJ, Chan ASH, Lokensgard JR, Peterson PK. High-level expression of functional chemokine receptor CXCR4 on human neural precursor cells. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2004; 152:159-69. [PMID: 15351504 DOI: 10.1016/j.devbrainres.2004.06.015] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/06/2004] [Indexed: 02/05/2023]
Abstract
Neural precursor cells (NPCs) are self-renewing, multipotent progenitors that give rise to neurons, astrocytes and oligodendrocytes in the central nervous system (CNS). Fetal NPCs have attracted attention for their potential use in studying normal CNS development. Several studies of rodent neural progenitors have suggested that chemokines and their receptors are involved in directing NPC migration during CNS development. In this study, we established a consistent system to culture human NPCs and examined the expression of chemokine receptors on these cells. NPCs were found to express the markers nestin and CD133 and to differentiate into neurons, astrocytes and oligodendrocytes at the clonal level. Flow cytometry and RNase protection assay (RPA) indicated that NPCs express high levels of CXCR4 and low levels of several other chemokine receptors. When examined using a chemotaxis assay, NPCs were able to respond to CXCL12/SDF-1alpha, a ligand of CXCR4. Treatment with anti-CXCR4 antibody or HIV-1 gp120 abolished the migratory response of NPCs towards CXCL12/SDF-1alpha. These findings suggest that CXCR4 may play a significant role in directing NPC migration during CNS development.
Collapse
Affiliation(s)
- Hsiao T Ni
- Stem Cell Group, R&D Systems, Inc., Minneapolis, MN 55413, USA
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Liang Z, Wu T, Lou H, Yu X, Taichman RS, Lau SK, Nie S, Umbreit J, Shim H. Inhibition of breast cancer metastasis by selective synthetic polypeptide against CXCR4. Cancer Res 2004; 64:4302-8. [PMID: 15205345 DOI: 10.1158/0008-5472.can-03-3958] [Citation(s) in RCA: 274] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Metastasis shares many similarities with leukocyte trafficking. Among those chemokine receptors thought to be involved in hemopoietic cell homing, stromal cell-derived factor-1 and its receptor CXC chemokine receptor-4 (CXCR4) have received considerable attention. Like hemopoietic cell homing, levels of stromal cell-derived factor-1 are high at sites of breast cancer metastasis including lymph node, lung, liver, and the marrow. Moreover, CXCR4 expression is low in normal breast tissues and high in malignant tumors, suggesting that a blockade of CXCR4 might limit tumor metastasis. We therefore investigated the role of a synthetic antagonist 14-mer peptide (TN14003) in inhibiting metastasis in an animal model. Not only was TN14003 effective in limiting metastasis of breast cancer by inhibiting migration, but it may also prove useful as a diagnostic tool to identify CXCR4 receptor-positive tumor cells in culture and tumors in paraffin-embedded clinical samples.
Collapse
Affiliation(s)
- Zhongxing Liang
- Department of Hematology/Oncology, Winship Cancer Institute, Atlanta, Georgia 30322, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Affiliation(s)
- D Orlic
- Genetics and Molecular Biology Branch, National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
17
|
Affiliation(s)
- James S Forrester
- Division of Cardiology, Cedars-Sinai Medical Center and Department of Medicine, UCLA School of Medicine, Los Angeles, Calif 90048, USA.
| | | | | |
Collapse
|
18
|
Liesveld JL, Lancet JE, Rosell KE, Menon A, Lu C, McNair C, Abboud CN, Rosenblatt JD. Effects of the farnesyl transferase inhibitor R115777 on normal and leukemic hematopoiesis. Leukemia 2003; 17:1806-12. [PMID: 12970780 DOI: 10.1038/sj.leu.2403063] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Patients with acute myelogenous leukemia or myelodysplastic syndrome may respond to farnesyl transferase inhibitors (FTIs) with partial or complete response rates noted in about 30% of such patients. FTIs prevent the attachment of a lipid farnesyl moiety to dependent proteins prior to their insertion into the plasma membrane and thereby prevent activity of these prenylation-dependent proteins, but their mechanism of tumor suppression remains unknown. Many patients receiving FTIs do experience myelosuppression. In this work, the in vitro effects of the FTI, R115777 on normal and leukemic hematopoiesis have been examined as have its effects on apoptosis induction and cell cycle profile in both leukemic blasts and normal CD34+ cells. R115777 was inhibitory to normal CD34+ cell proliferation and to leukemic blast cells, but did not affect long-term culture initiating cell frequency nor NOD-SCID reconstituting capacity. No induction of apoptosis or cell cycle changes were noted in AML blasts. These data suggest that myelosuppression with R115777 occurs largely at the intermediate to late progenitor stage of hematopoiesis and that cyclic use might avoid long-term marrow suppression.
Collapse
Affiliation(s)
- J L Liesveld
- James P Wilmot Cancer Center and the Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Askari AT, Unzek S, Popovic ZB, Goldman CK, Forudi F, Kiedrowski M, Rovner A, Ellis SG, Thomas JD, DiCorleto PE, Topol EJ, Penn MS. Effect of stromal-cell-derived factor 1 on stem-cell homing and tissue regeneration in ischaemic cardiomyopathy. Lancet 2003; 362:697-703. [PMID: 12957092 DOI: 10.1016/s0140-6736(03)14232-8] [Citation(s) in RCA: 936] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Myocardial regeneration via stem-cell mobilisation at the time of myocardial infarction is known to occur, although the mechanism for stem-cell homing to infarcted tissue subsequently and whether this approach can be used for treatment of ischaemic cardiomyopathy are unknown. We investigated these issues in a Lewis rat model (ligation of the left anterior descending artery) of ischaemic cardiomyopathy. METHODS We studied the effects of stem-cell mobilisation by use of granulocyte colony-stimulating factor (filgrastim) with or without transplantation of syngeneic cells. Shortening fraction and myocardial strain by tissue doppler imaging were quantified by echocardiography. FINDINGS Stem-cell mobilisation with filgrastim alone did not lead to engraftment of bone-marrow-derived cells. Stromal-cell-derived factor 1 (SDF-1), required for stem-cell homing to bone marrow, was upregulated immediately after myocardial infarction and downregulated within 7 days. 8 weeks after myocardial infarction, transplantation into the peri-infarct zone of syngeneic cardiac fibroblasts stably transfected to express SDF-1 induced homing of CD117-positive stem cells to injured myocardium after filgrastim administration (control vs SDF-1-expressing cardiac fibroblasts mean 7.2 [SD 3.4] vs 33.2 [6.0] cells/mm2, n=4 per group, p<0.02) resulting in greater left-ventricular mass (1.24 [0.29] vs 1.57 [0.27] g) and better cardiac function (shortening fraction 9.2 [4.9] vs 17.2 [4.2]%, n=8 per group, p<0.05). INTERPRETATION These findings show that SDF-1 is sufficient to induce therapeutic stem-cell homing to injured myocardium and suggest a strategy for directed stem-cell engraftment into injured tissues. Our findings also indicate that therapeutic strategies focused on stem-cell mobilisation for regeneration of myocardial tissue must be initiated within days of myocardial infarction unless signalling for stem-cell homing is re-established.
Collapse
Affiliation(s)
- Arman T Askari
- Department of Cardiovascular Medicine, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Papayannopoulou T, Priestley GV, Bonig H, Nakamoto B. The role of G-protein signaling in hematopoietic stem/progenitor cell mobilization. Blood 2003; 101:4739-47. [PMID: 12595315 DOI: 10.1182/blood-2002-09-2741] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The directed migration of mature leukocytes to inflammatory sites and the lymphocyte trafficking in vivo are dependent on G protein-coupled receptors and delivered through pertussis toxin (Ptx)-sensitive Gi-protein signaling. In the present study, we explored the in vivo role of G-protein signaling on the redistribution or mobilization of hematopoietic stem/progenitor cells (HPCs). A single injection of Ptx in mice elicits a long-lasting leukocytosis and a progressive increase in circulating colony-forming unit-culture (CFU-C) and colony-forming unit spleen (CFU-S). We found that the prolonged effect is sustained by a continuous slow release of Ptx bound to red blood cells or other cells and is potentially enhanced by an indirect influence on cell proliferation. Plasma levels of certain cytokines (interleukin 6 [IL-6], granulocyte colony-stimulating factor [G-CSF]) increase days after Ptx treatment, but these are unlikely initiators of mobilization. In addition to normal mice, mice genetically deficient in monocyte chemotactic protein 1 (MCP-1), matrix metalloproteinase 9 (MMP-9), G-CSF receptor, beta2 integrins, or selectins responded to Ptx treatment, suggesting independence of Ptx-response from the expression of these molecules. Combined treatments of Ptx with anti-very late activation antigen (anti-VLA-4), uncovered potentially important insight in the interplay of chemokines/integrins, and the synergy of Ptx with G-CSF appeared to be dependent on MMP-9. As Ptx-mobilized kit+ cells display virtually no response to stromal-derived factor 1 (SDF-1) in vitro, our data suggest that disruption of CXCR4/SDF-1 signaling may be the underlying mechanism of Ptx-induced mobilization and indirectly reinforce the notion that active signaling through this pathway is required for continuous retention of cells within the bone marrow. Collectively, our data unveil a novel example of mobilization through pharmacologic modulation of signaling.
Collapse
|
21
|
Abstract
Stem cells are being investigated for their potential use in regenerative medicine. A series of remarkable studies suggested that adult stem cells undergo novel patterns of development by a process referred to as transdifferentiation or plasticity. These observations fueled an exciting period of discovery and high expectations followed by controversy that emerged from data suggesting cell-cell fusion as an alternate interpretation for transdifferentiation. However, data supporting stem cell plasticity are extensive and cannot be easily dismissed. Myocardial regeneration is perhaps the most widely studied and debated example of stem cell plasticity. Early reports from animal and clinical investigations disagree on the extent of myocardial renewal in adults, but evidence indicates that cardiomyocytes are generated in what was previously considered a postmitotic organ. On the basis of postmortem microscopic analysis, it is proposed that renewal is achieved by stem cells that infiltrate normal and infarcted myocardium. To further understand the role of stem cells in regeneration, it is incumbent on us to develop instrumentation and technologies to monitor myocardial repair over time in large animal models. This may be achieved by tracking labeled stem cells as they migrate into myocardial infarctions. In addition, we must begin to identify the environmental cues that are needed for stem cell trafficking and we must define the genetic and cellular mechanisms that initiate transdifferentiation. Only then will we be able to regulate this process and begin to realize the full potential of stem cells in regenerative medicine.
Collapse
Affiliation(s)
- Donald Orlic
- Genetics and Molecular Biology Branch, National Human Genome Research Institute, NIH, Bethesda, Md 20892-4442, USA.
| | | | | |
Collapse
|