1
|
Maldanis L, Fernandez-Remolar D, Lemelle L, Knoll AH, Guizar-Sicairos M, Holler M, da Silva FMC, Magnin V, Mermoux M, Simionovici A. Unveiling Challenging Microbial Fossil Biosignatures from Rio Tinto with Micro-to-Nanoscale Chemical and Ultrastructural Imaging. ASTROBIOLOGY 2024; 24:721-733. [PMID: 38985734 DOI: 10.1089/ast.2023.0127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Understanding the nature and preservation of microbial traces in extreme environments is crucial for reconstructing Earth's early biosphere and for the search for life on other planets or moons. At Rio Tinto, southwestern Spain, ferric oxide and sulfate deposits similar to those discovered at Meridiani Planum, Mars, entomb a diversity of fossilized organisms, despite chemical conditions commonly thought to be challenging for life and fossil preservation. Investigating this unique fossil microbiota can elucidate ancient extremophile communities and the preservation of biosignatures in acidic environments on Earth and, potentially, Mars. In this study, we use an innovative multiscale approach that combines the state-of-the-art synchrotron X-ray nanoimaging methods of ptychographic X-ray computed laminography and nano-X-ray fluorescence to reveal Rio Tinto's microfossils at subcellular resolution. The unprecedented nanoscale views of several different specimens within their geological and geochemical contexts reveal novel intricacies of preserved microbial communities. Different morphotypes, ecological interactions, and possible taxonomic affinities were inferred based on qualitative and quantitative 3D ultrastructural information, whereas diagenetic processes and metabolic affinities were inferred from complementary chemical information. Our integrated nano-to-microscale analytical approach revealed previously invisible microbial and mineral interactions, which complemented and filled a gap of spatial resolution in conventional methods. Ultimately, this study contributes to the challenge of deciphering the faint chemical and morphological biosignatures that can indicate life's presence on the early Earth and on distant worlds.
Collapse
Affiliation(s)
- Lara Maldanis
- ISTerre, Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, IRD, IFSTTAR, Grenoble, France
| | - David Fernandez-Remolar
- SKL Lunar and Planetary Sciences, Macau University of Science and Technology, Macau, China
- CNSA Macau Center for Space Exploration and Science, Macau, China
| | | | - Andrew H Knoll
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge Massachusetts, USA
| | - Manuel Guizar-Sicairos
- Paul Scherrer Institute, Villigen PSI, Switzerland
- Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Mirko Holler
- Paul Scherrer Institute, Villigen PSI, Switzerland
| | - Francisco Mateus Cirilo da Silva
- Brazilian Synchrotron Light Laboratory, LNLS, Brazilian Center for Research in Energy and Materials, CNPEM, Campinas, Brazil
- Institute of Physics, IFGW, Campinas University, UNICAMP, Campinas, Brazil
| | - Valérie Magnin
- ISTerre, Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, IRD, IFSTTAR, Grenoble, France
| | - Michel Mermoux
- LEPMI, Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, Grenoble INP, 38000 Grenoble, France
| | - Alexandre Simionovici
- ISTerre, Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, IRD, IFSTTAR, Grenoble, France
| |
Collapse
|
2
|
Nachon M, Ewing RC, Tice MM, Williford B, Marounina N. Investigating Microbial Biosignatures in Aeolian Environments Using Micro-X-Ray: Simulation of PIXL Instrument Analyses at Jezero Crater Onboard the Perseverance Mars 2020 Rover. ASTROBIOLOGY 2024; 24:498-517. [PMID: 38768431 DOI: 10.1089/ast.2022.0031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Assessing the past habitability of Mars and searching for evidence of ancient life at Jezero crater via the Perseverance rover are the key objectives of NASA's Mars 2020 mission. Onboard the rover, PIXL (Planetary Instrument for X-ray Lithochemistry) is one of the best suited instruments to search for microbial biosignatures due to its ability to characterize chemical composition of fine scale textures in geological targets using a nondestructive technique. PIXL is also the first micro-X-ray fluorescence (XRF) spectrometer onboard a Mars rover. Here, we present guidelines for identifying and investigating a microbial biosignature in an aeolian environment using PIXL-analogous micro-XRF (μXRF) analyses. We collected samples from a modern wet aeolian environment at Padre Island, Texas, that contain buried microbial mats, and we analyzed them using μXRF techniques analogous to how PIXL is being operated on Mars. We show via μXRF technique and microscope images the geochemical and textural variations from the surface to ∼40 cm depth. Microbial mats are associated with heavy-mineral lags and show specific textural and geochemical characteristics that make them a distinct biosignature for this environment. Upon burial, they acquire a diffuse texture due to the expansion and contraction of gas-filled voids, and they present a geochemical signature rich in iron and titanium, which is due to the trapping of heavy minerals. We show that these intrinsic characteristics can be detected via μXRF analyses, and that they are distinct from buried abiotic facies such as cross-stratification and adhesion ripple laminations. We also designed and conducted an interactive survey using the Padre Island μXRF data to explore how different users chose to investigate a biosignature-bearing dataset via PIXL-like sampling strategies. We show that investigating biosignatures via PIXL-like analyses is heavily influenced by technical constraints (e.g., the XRF measurement characteristics) and by the variety of approaches chosen by different scientists. Lessons learned for accurately identifying and characterizing this biosignature in the context of rover-mission constraints include defining relative priorities among measurements, favoring a multidisciplinary approach to the decision-making process of XRF measurements selection, and considering abiotic results to support or discard a biosignature interpretation. Our results provide guidelines for PIXL analyses of potential biosignature on Mars.
Collapse
Affiliation(s)
- Marion Nachon
- Department of Geology and Geophysics and Texas A&M University, College Station, Texas, USA
| | - Ryan C Ewing
- Department of Geology and Geophysics and Texas A&M University, College Station, Texas, USA
| | - Michael M Tice
- Department of Geology and Geophysics and Texas A&M University, College Station, Texas, USA
| | - Blake Williford
- Department of Computer Science & Engineering, Texas A&M University, College Station, Texas, USA
| | - Nadejda Marounina
- Department of Astronomy and Astrophysics, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
3
|
Schaible MJ, Szeinbaum N, Bozdag GO, Chou L, Grefenstette N, Colón-Santos S, Rodriguez LE, Styczinski MJ, Thweatt JL, Todd ZR, Vázquez-Salazar A, Adams A, Araújo MN, Altair T, Borges S, Burton D, Campillo-Balderas JA, Cangi EM, Caro T, Catalano E, Chen K, Conlin PL, Cooper ZS, Fisher TM, Fos SM, Garcia A, Glaser DM, Harman CE, Hermis NY, Hooks M, Johnson-Finn K, Lehmer O, Hernández-Morales R, Hughson KHG, Jácome R, Jia TZ, Marlow JJ, McKaig J, Mierzejewski V, Muñoz-Velasco I, Nural C, Oliver GC, Penev PI, Raj CG, Roche TP, Sabuda MC, Schaible GA, Sevgen S, Sinhadc P, Steller LH, Stelmach K, Tarnas J, Tavares F, Trubl G, Vidaurri M, Vincent L, Weber JM, Weng MM, Wilpiszeki RL, Young A. Chapter 1: The Astrobiology Primer 3.0. ASTROBIOLOGY 2024; 24:S4-S39. [PMID: 38498816 DOI: 10.1089/ast.2021.0129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
The Astrobiology Primer 3.0 (ABP3.0) is a concise introduction to the field of astrobiology for students and others who are new to the field of astrobiology. It provides an entry into the broader materials in this supplementary issue of Astrobiology and an overview of the investigations and driving hypotheses that make up this interdisciplinary field. The content of this chapter was adapted from the other 10 articles in this supplementary issue and thus represents the contribution of all the authors who worked on these introductory articles. The content of this chapter is not exhaustive and represents the topics that the authors found to be the most important and compelling in a dynamic and changing field.
Collapse
Affiliation(s)
- Micah J Schaible
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Nadia Szeinbaum
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - G Ozan Bozdag
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Luoth Chou
- NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
- Center for Space Sciences and Technology, University of Maryland, Baltimore, Maryland, USA
- Georgetown University, Washington DC, USA
| | - Natalie Grefenstette
- Santa Fe Institute, Santa Fe, New Mexico, USA
- Blue Marble Space Institute of Science, Seattle, Washington, USA
| | - Stephanie Colón-Santos
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Wisconsin, USA
- Department of Botany, University of Wisconsin-Madison, Wisconsin, USA
| | - Laura E Rodriguez
- Lunar and Planetary Institute, Universities Space Research Association, Houston, Texas, USA
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - M J Styczinski
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
- University of Washington, Seattle, Washington, USA
| | - Jennifer L Thweatt
- Department of Biochemistry and Molecular Biology, Penn State University, University Park, Pennsylvania, USA
| | - Zoe R Todd
- Department of Earth and Space Sciences, University of Washington, Seattle, Washington, USA
| | - Alberto Vázquez-Salazar
- Departamento de Biología Evolutiva, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, California, USA
| | - Alyssa Adams
- Center for Space Sciences and Technology, University of Maryland, Baltimore, Maryland, USA
| | - M N Araújo
- Biochemistry Department, University of São Paulo, São Carlos, Brazil
| | - Thiago Altair
- Institute of Chemistry of São Carlos, Universidade de São Paulo, São Carlos, Brazil
- Department of Chemistry, College of the Atlantic, Bar Harbor, Maine, USA
| | | | - Dana Burton
- Department of Anthropology, George Washington University, Washington DC, USA
| | | | - Eryn M Cangi
- Laboratory for Atmospheric and Space Physics, University of Colorado Boulder, Boulder, Colorado, USA
| | - Tristan Caro
- Department of Geological Sciences, University of Colorado Boulder, Boulder, Colorado, USA
| | - Enrico Catalano
- Sant'Anna School of Advanced Studies, The BioRobotics Institute, Pisa, Italy
| | - Kimberly Chen
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Peter L Conlin
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Z S Cooper
- Department of Earth and Space Sciences, University of Washington, Seattle, Washington, USA
| | - Theresa M Fisher
- School of Earth and Space Exploration, Arizona State University, Tempe, Arizona, USA
| | - Santiago Mestre Fos
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Amanda Garcia
- Department of Bacteriology, University of Wisconsin-Madison, Wisconsin, USA
| | - D M Glaser
- Arizona State University, Tempe, Arizona, USA
| | - Chester E Harman
- Departamento de Biología Evolutiva, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Ninos Y Hermis
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
- Department of Physics and Space Sciences, University of Granada, Granada, Spain
| | - M Hooks
- NASA Johnson Space Center, Houston, Texas, USA
| | - K Johnson-Finn
- Earth-Life Science Institute, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo, Japan
- Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Owen Lehmer
- Department of Earth and Space Sciences, University of Washington, Seattle, Washington, USA
| | - Ricardo Hernández-Morales
- Departamento de Biología Evolutiva, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Kynan H G Hughson
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Rodrigo Jácome
- Departamento de Biología Evolutiva, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Tony Z Jia
- Blue Marble Space Institute of Science, Seattle, Washington, USA
- Earth-Life Science Institute, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo, Japan
| | - Jeffrey J Marlow
- Department of Biology, Boston University, Boston, Massachusetts, USA
| | - Jordan McKaig
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Veronica Mierzejewski
- School of Earth and Space Exploration, Arizona State University, Tempe, Arizona, USA
| | - Israel Muñoz-Velasco
- Departamento de Biología Evolutiva, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Ceren Nural
- Istanbul Technical University, Istanbul, Turkey
| | - Gina C Oliver
- Department of Geology, San Bernardino Valley College, San Bernardino, California, USA
| | - Petar I Penev
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Chinmayee Govinda Raj
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Tyler P Roche
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Mary C Sabuda
- Department of Earth and Environmental Sciences, University of Minnesota-Twin Cities, Minneapolis, Minnesota, USA
- Biotechnology Institute, University of Minnesota-Twin Cities, St. Paul, Minnesota, USA
| | - George A Schaible
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| | - Serhat Sevgen
- Blue Marble Space Institute of Science, Seattle, Washington, USA
- Institute of Marine Sciences, Middle East Technical University, Erdemli, Mersin, Turkey
| | - Pritvik Sinhadc
- BEYOND: Center For Fundamental Concepts in Science, Arizona State University, Arizona, USA
- Dubai College, Dubai, United Arab Emirates
| | - Luke H Steller
- Australian Centre for Astrobiology, and School of Biological, Earth and Environmental Sciences, University of New South Wales, Kensington, Australia
| | - Kamil Stelmach
- Department of Chemistry, University of Virginia, Charlottesville, Virginia, USA
| | - J Tarnas
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Frank Tavares
- Space Enabled Research Group, MIT Media Lab, Cambridge, Massachusetts, USA
| | - Gareth Trubl
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California, USA
| | - Monica Vidaurri
- Center for Space Sciences and Technology, University of Maryland, Baltimore, Maryland, USA
- Department of Physics and Astronomy, Howard University, Washington DC, USA
| | - Lena Vincent
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Wisconsin, USA
| | - Jessica M Weber
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | | | | | - Amber Young
- NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
- Northern Arizona University, Flagstaff, Arizona, USA
| |
Collapse
|
4
|
Chou L, Grefenstette N, Borges S, Caro T, Catalano E, Harman CE, McKaig J, Raj CG, Trubl G, Young A. Chapter 8: Searching for Life Beyond Earth. ASTROBIOLOGY 2024; 24:S164-S185. [PMID: 38498822 DOI: 10.1089/ast.2021.0104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
The search for life beyond Earth necessitates a rigorous and comprehensive examination of biosignatures, the types of observable imprints that life produces. These imprints and our ability to detect them with advanced instrumentation hold the key to our understanding of the presence and abundance of life in the universe. Biosignatures are the chemical or physical features associated with past or present life and may include the distribution of elements and molecules, alone or in combination, as well as changes in structural components or physical processes that would be distinct from an abiotic background. The scientific and technical strategies used to search for life on other planets include those that can be conducted in situ to planetary bodies and those that could be observed remotely. This chapter discusses numerous strategies that can be employed to look for biosignatures directly on other planetary bodies using robotic exploration including those that have been deployed to other planetary bodies, are currently being developed for flight, or will become a critical technology on future missions. Search strategies for remote observations using current and planned ground-based and space-based telescopes are also described. Evidence from spectral absorption, emission, or transmission features can be used to search for remote biosignatures and technosignatures. Improving our understanding of biosignatures, their production, transformation, and preservation on Earth can enhance our search efforts to detect life on other planets.
Collapse
Affiliation(s)
- Luoth Chou
- NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
- Center for Space Sciences and Technology, University of Maryland, Baltimore, Maryland, USA
- Georgetown University, Washington, DC, USA
| | - Natalie Grefenstette
- Santa Fe Institute, Santa Fe, New Mexico, USA
- Blue Marble Space Institute of Science, Seattle, Washington, USA
| | | | - Tristan Caro
- Department of Geological Sciences, University of Colorado Boulder, Boulder, Colorado, USA
| | - Enrico Catalano
- Sant'Anna School of Advanced Studies, The BioRobotics Institute, Pisa, Italy
| | | | - Jordan McKaig
- Georgia Institute of Technology, Atlanta, Georgia, USA
| | | | - Gareth Trubl
- Lawrence Livermore National Laboratory, Livermore, California, USA
| | - Amber Young
- NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
- Northern Arizona University, Flagstaff, Arizona, USA
| |
Collapse
|
5
|
Vickers P, Cowie C, Dick SJ, Gillen C, Jeancolas C, Rothschild LJ, McMahon S. Confidence of Life Detection: The Problem of Unconceived Alternatives. ASTROBIOLOGY 2023; 23:1202-1212. [PMID: 37506351 DOI: 10.1089/ast.2022.0084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
Potential biosignatures that offer the promise of extraterrestrial life (past or present) are to be expected in the coming years and decades, whether from within our own solar system, from an exoplanet atmosphere, or otherwise. With each such potential biosignature, the degree of our uncertainty will be the first question asked. Have we really identified extraterrestrial life? How sure are we? This paper considers the problem of unconceived alternative explanations. We stress that articulating our uncertainty requires an assessment of the extent to which we have explored the relevant possibility space. It is argued that, for most conceivable potential biosignatures, we currently have not explored the relevant possibility space very thoroughly at all. Not only does this severely limit the circumstances in which we could reasonably be confident in our detection of extraterrestrial life, it also poses a significant challenge to any attempt to quantify our degree of uncertainty. The discussion leads us to the following recommendation: when it comes specifically to an extraterrestrial life-detection claim, the astrobiology community should follow the uncertainty assessment approach adopted by the Intergovernmental Panel on Climate Change (IPCC).
Collapse
Affiliation(s)
| | | | - Steven J Dick
- NASA Chief Historian (Retired), NASA, Washington, DC, USA
| | | | | | | | | |
Collapse
|
6
|
Heubeck C, Reimann S, Homann M. Stromatolite-like Structures Within Microbially Laminated Sandstones of the Paleoarchean Moodies Group, Barberton Greenstone Belt, South Africa. ASTROBIOLOGY 2023; 23:926-935. [PMID: 37527187 DOI: 10.1089/ast.2023.0014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
We report abundant small calcareous mounds associated with fossilized kerogenous microbial mats in tidal-facies sandstones of the predominantly siliciclastic Moodies Group (ca. 3.22 Ga) of the Barberton Greenstone Belt (BGB), South Africa and Eswatini. Most of the bulbous, internally microlaminated mounds are several centimeters in diameter and formed at the sediment-water interface contemporaneously with sedimentation. They originally consisted of Fe-Mg-Mn carbonate, which is now largely silicified; subtle internal compositional laminations are composed of organic matter and sericite. Their presence for >6 km along strike, their restriction to the inferred photic zone, and the internal structure suggest that mineral precipitation was induced by photosynthetic microorganisms. Similar calcareous mounds in this unit also occur within and on top of fluid-escape conduits, suggesting that carbonate precipitation may either have occurred abiogenically or involved chemotrophic metabolism(s) utilizing the oxidation of organic matter, methane, or hydrogen, the latter possibly generated by serpentinization of underlying ultramafic rocks. Alternatively or additionally, carbonate may have precipitated abiotically where heated subsurface fluids, sourced by the intrusion of a major Moodies-age sill, reached the tidal flats. In summary, precipitation mechanisms may have been variable; the calcareous mounds may represent "hybrid carbonates" that may have originated from the small-scale overlap of bioinduced and abiotic processes in space and time. Significantly, the widespread occurrence of these stromatolite-like structures in a fully siliciclastic, high-energy tidal setting broadens search criteria in the search for life on Mars while their possible hybrid origin challenges our ability to unambiguously identify a biogenic component.
Collapse
Affiliation(s)
- C Heubeck
- Department of Geosciences, Friedrich-Schiller-University Jena, Germany
| | - S Reimann
- Department of Geosciences, Friedrich-Schiller-University Jena, Germany
| | - M Homann
- University College London, London, UK
| |
Collapse
|
7
|
Burnie TM, Power IM, Paulo C, Alçiçek H, Falcón LI, Lin Y, Wilson SA. Environmental and Mineralogical Controls on Biosignature Preservation in Magnesium Carbonate Systems Analogous to Jezero Crater, Mars. ASTROBIOLOGY 2023; 23:513-535. [PMID: 36944136 DOI: 10.1089/ast.2022.0111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Jezero Crater on Mars is a paleolacustrine environment where Mg-carbonates may host evidence of ancient life. To elucidate the environmental and mineralogical controls on biosignature preservation, we examined samples from five terrestrial analogs: Lake Salda (Turkey), Lake Alchichica (Mexico), Qinghai-Tibetan Plateau (China), Mg-carbonate playas (British Columbia, Canada), and a mine with fine-grained ultramafic tailings (Yukon, Canada). The mineralogical compositions of the samples varied, yet were often dominated by either aragonite (CaCO3) or hydromagnesite [Mg5(CO3)4(OH)2·4H2O]. Aragonite-rich samples from Alchichica, Mg-carbonate playas, and the ultramafic mine contained an abundance of entombed microbial biomass, including organic structures that resembled cells, whereas hydromagnesite-rich samples were devoid of microfossils. Aragonite often precipitates subaqueously where microbes thrive, thereby increasing the likelihood of biomass entombment, while hydrated Mg-carbonates typically form by evaporation in subaerial settings where biofilms are less prolific. Magnesite (MgCO3), the most stable Mg-carbonate, forms extremely slowly, which may limit the capture of biosignatures. Hydrated Mg-carbonates are prone to transformation via coupled dissolution-precipitation reactions that may expose biosignatures to degradation. Although less abundant, aragonite is commonly found in Mg-carbonate environments and is a better medium for biosignature preservation due to its fast precipitation rates and relative stability, as well as its tendency to form subaqueously and lithify. Consequently, we propose that aragonite be considered a valuable exploration target on Mars.
Collapse
Affiliation(s)
- Teanna M Burnie
- Trent School of the Environment, Trent University, Peterborough, Ontario, Canada
| | - Ian M Power
- Trent School of the Environment, Trent University, Peterborough, Ontario, Canada
| | - Carlos Paulo
- Trent School of the Environment, Trent University, Peterborough, Ontario, Canada
| | - Hülya Alçiçek
- Department of Geology, Pamukkale University, Denizli, Turkey
| | - Luisa I Falcón
- Instituto de Ecología, Universidad Nacional Autónoma de Mexico, México DF, Mexico
| | - Yongjie Lin
- Key Laboratory of Saline Lake Resources and Environments of Ministry of Natural Resources, Institute of Mineral Resource, Chinese Academy of Geological Sciences, Beijing, China
- Department of Earth Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Siobhan A Wilson
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
8
|
Corenblit D, Decaux O, Delmotte S, Toumazet JP, Arrignon F, André MF, Darrozes J, Davies NS, Julien F, Otto T, Ramillien G, Roussel E, Steiger J, Viles H. Signatures of Life Detected in Images of Rocks Using Neural Network Analysis Demonstrate New Potential for Searching for Biosignatures on the Surface of Mars. ASTROBIOLOGY 2023; 23:308-326. [PMID: 36668995 DOI: 10.1089/ast.2022.0034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Microorganisms play a role in the construction or modulation of various types of landforms. They are especially notable for forming microbially induced sedimentary structures (MISS). Such microbial structures have been considered to be among the most likely biosignatures that might be encountered on the martian surface. Twenty-nine algorithms have been tested with images taken during a laboratory experiment for testing their performance in discriminating mat cracks (MISS) from abiotic mud cracks. Among the algorithms, neural network types produced excellent predictions with similar precision of 0.99. Following that step, a convolutional neural network (CNN) approach has been tested to see whether it can conclusively detect MISS in images of rocks and sediment surfaces taken at different natural sites where present and ancient (fossil) microbial mat cracks and abiotic desiccation cracks were observed. The CNN approach showed excellent prediction of biotic and abiotic structures from the images (global precision, sensitivity, and specificity, respectively, 0.99, 0.99, and 0.97). The key areas of interest of the machine matched well with human expertise for distinguishing biotic and abiotic forms (in their geomorphological meaning). The images indicated clear differences between the abiotic and biotic situations expressed at three embedded scales: texture (size, shape, and arrangement of the grains constituting the surface of one form), form (outer shape of one form), and pattern of form arrangement (arrangement of the forms over a few square meters). The most discriminative components for biogenicity were the border of the mat cracks with their tortuous enlarged and blistered morphology more or less curved upward, sometimes with thin laminations. To apply this innovative biogeomorphological approach to the images obtained by rovers on Mars, the main physical and biological sources of variation in abiotic and biotic outcomes must now be further considered.
Collapse
Affiliation(s)
- Dov Corenblit
- Université Clermont Auvergne, CNRS, GEOLAB, Clermont-Ferrand, France
- CNRS, Laboratoire écologie fonctionnelle et environnement, Université Paul Sabatier, CNRS, INPT, UPS, Toulouse, France
| | | | | | | | | | | | - José Darrozes
- Université Paul Sabatier, CNRS/IRD, GET, Toulouse, France
| | - Neil S Davies
- Department of Earth Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Frédéric Julien
- CNRS, Laboratoire écologie fonctionnelle et environnement, Université Paul Sabatier, CNRS, INPT, UPS, Toulouse, France
| | - Thierry Otto
- CNRS, Laboratoire écologie fonctionnelle et environnement, Université Paul Sabatier, CNRS, INPT, UPS, Toulouse, France
| | | | - Erwan Roussel
- Université Clermont Auvergne, CNRS, GEOLAB, Clermont-Ferrand, France
| | - Johannes Steiger
- Université Clermont Auvergne, CNRS, GEOLAB, Clermont-Ferrand, France
| | - Heather Viles
- School of Geography and the Environment, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
9
|
Chanover NJ, Uckert K, Voelz DG, Boston P. The Development and Demonstration of the Portable Acousto-Optic Spectrometer for Astrobiology in Cave Environments. EARTH AND SPACE SCIENCE (HOBOKEN, N.J.) 2023; 10:e2022EA002370. [PMID: 37033405 PMCID: PMC10078596 DOI: 10.1029/2022ea002370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 12/09/2022] [Accepted: 12/22/2022] [Indexed: 06/19/2023]
Abstract
Planetary caves are desirable environments for the search for biosignatures corresponding to extant or extinct extraterrestrial life due to the protection they offer from surface-level solar radiation and ionizing particles. Near-infrared (NIR) reflectance spectroscopy is one of a multitude of techniques that, when taken together, can provide a comprehensive understanding of the geomicrobiology in planetary subsurface regions. To that end, we developed two portable NIR spectrometers that employ acousto-optic tunable filters and demonstrated them in three geochemically distinct cave environments. The instruments were deployed both as stand-alone spectrometers positioned against the targets manually and as a component of an instrument payload mounted on a quadruped robot capable of vertical excursions of several meters. In situ measurements of calcium carbonates, sulfates, metal oxides, and microbial colonies and mats revealed spectral signatures that enable a distinction between the targets of interest and the underlying substrates. The ruggedness and portability of the instruments, and their low size, weight, and power, spectral agility, and active illumination make AOTF-based spectrometers ideally suited for studies of planetary caves.
Collapse
Affiliation(s)
- N. J. Chanover
- Astronomy DepartmentNew Mexico State UniversityLas CrucesNMUSA
| | - K. Uckert
- Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaCAUSA
| | - D. G. Voelz
- Klipsch School of Electrical and Computer EngineeringNew Mexico State UniversityLas CrucesNMUSA
| | - P. Boston
- NASA Ames Research CenterMoffett FieldCAUSA
| |
Collapse
|
10
|
Osterhout JT, Schopf JW, Kudryavtsev AB, Czaja AD, Williford KH. Deep-UV Raman Spectroscopy of Carbonaceous Precambrian Microfossils: Insights into the Search for Past Life on Mars. ASTROBIOLOGY 2022; 22:1239-1254. [PMID: 36194869 DOI: 10.1089/ast.2021.0135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The current strategy for detecting evidence of ancient life on Mars-a primary goal of NASA's ongoing Mars 2020 mission-is based largely on knowledge of Precambrian life and of its preservation in Earth's early rock record. The fossil record of primitive microorganisms consists mainly of stromatolites and other microbially influenced sedimentary structures, which occasionally preserve microfossils or other geochemical traces of life. Raman spectroscopy is an invaluable tool for identifying such signs of life and is routinely performed on Precambrian microfossils to help establish their organic composition, degree of thermal maturity, and biogenicity. The Mars 2020 rover, Perseverance, is equipped with a deep-ultraviolet (UV) Raman spectrometer as part of the SHERLOC (Scanning Habitable Environments with Raman and Luminescence for Organics and Chemicals) instrument, which will be used in part to characterize the preservation of organic matter in the ancient sedimentary rocks of Jezero crater and therein search for possible biosignatures. To determine the deep-UV Raman spectra characteristic of ancient microbial fossils, this study analyzes individual microfossils from 14 Precambrian cherts using deep-UV (244 nm) Raman spectroscopy. Spectra obtained were measured and calibrated relative to a graphitic standard and categorized according to the morphology and depositional environment of the fossil analyzed and its Raman-indicated thermal maturity. All acquired spectra of the fossil kerogens include a considerably Raman-enhanced and prominent first-order Raman G-band (∼1600 cm-1), whereas its commonly associated D-band (∼1350 cm-1) is restricted to specimens of lower thermal maturity (below greenschist facies) that thus have the less altered biosignature indicative of relatively well-preserved organic matter. If comparably preserved, similar characteristics would be expected to be exhibited by microfossils or ancient organic matter in rock samples collected and cached on Mars in preparation for future sample return to Earth.
Collapse
Affiliation(s)
- Jeffrey T Osterhout
- Department of Earth, Planetary, and Space Sciences, University of California, Los Angeles, California, USA
- Center for the Study of Evolution and the Origin of Life, University of California, Los Angeles, California, USA
| | - J William Schopf
- Department of Earth, Planetary, and Space Sciences, University of California, Los Angeles, California, USA
- Center for the Study of Evolution and the Origin of Life, University of California, Los Angeles, California, USA
| | - Anatoliy B Kudryavtsev
- Department of Earth, Planetary, and Space Sciences, University of California, Los Angeles, California, USA
- Center for the Study of Evolution and the Origin of Life, University of California, Los Angeles, California, USA
| | - Andrew D Czaja
- Department of Geology, University of Cincinnati, Cincinnati, Ohio, USA
| | - Kenneth H Williford
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| |
Collapse
|
11
|
Demaret L, Hutchinson IB, Ingley R, Edwards HGM, Fagel N, Compere P, Javaux EJ, Eppe G, Malherbe C. Fe-Rich Fossil Vents as Mars Analog Samples: Identification of Extinct Chimneys in Miocene Marine Sediments Using Raman Spectroscopy, X-Ray Diffraction, and Scanning Electron Microscopy-Energy Dispersive X-Ray Spectroscopy. ASTROBIOLOGY 2022; 22:1081-1098. [PMID: 35704291 DOI: 10.1089/ast.2021.0128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
On Earth, the circulation of Fe-rich fluids in hydrothermal environments leads to characteristic iron mineral deposits, reflecting the pH and redox chemical conditions of the hydrothermal system, and is often associated with chemotroph microorganisms capable of deriving energy from chemical gradients. On Mars, iron-rich hydrothermal sites are considered to be potentially important astrobiological targets for searching evidence of life during exploration missions, such as the Mars 2020 and the ExoMars 2022 missions. In this study, an extinct hydrothermal chimney from the Jaroso hydrothermal system (SE Spain), considered an interesting geodynamic and mineralogical terrestrial analog for Mars, was analyzed using Raman spectroscopy, X-ray diffraction, and scanning electron microscopy coupled with energy dispersive X-ray spectroscopy. The sample consists of a fossil vent in a Miocene shallow-marine sedimentary deposit composed of a marl substrate, an iron-rich chimney pipe, and a central space filled with backfilling deposits and vent condensates. The iron crust is particularly striking due to the combined presence of molecular and morphological indications of a microbial colonization, including mineral microstructures (e.g., stalks, filaments), iron oxyhydroxide phases (altered goethite, ferrihydrite), and organic signatures (carotenoids, organopolymers). The clear identification of pigments by resonance Raman spectroscopy and the preservation of organics in association with iron oxyhydroxides by Raman microimaging demonstrate that the iron crust was indeed colonized by microbial communities. These analyses confirm that Raman spectroscopy is a powerful tool for documenting the habitability of such historical hydrothermal environments. Finally, based on the results obtained, we propose that the ancient iron-rich hydrothermal pipes should be recognized as singular terrestrial Mars analog specimens to support the preparatory work for robotic in situ exploration missions to Mars, as well as during the subsequent interpretation of data returned by those missions.
Collapse
Affiliation(s)
- Lucas Demaret
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liege, Liege, Belgium
- Early Life Traces & Evolution-Astrobiology, UR Astrobiology, University of Liege, Liege, Belgium
| | - Ian B Hutchinson
- Department of Physics and Astronomy, University of Leicester, Leicester, United Kingdom
| | - Richard Ingley
- Department of Physics and Astronomy, University of Leicester, Leicester, United Kingdom
| | - Howell G M Edwards
- Department of Physics and Astronomy, University of Leicester, Leicester, United Kingdom
| | - Nathalie Fagel
- Laboratory Argiles, Géochimie et Environnements Sédimentaires, University of Liege, Liege, Belgium
| | - Philippe Compere
- Laboratory of Functional and Evolutionary Morphology, UR FOCUS, and Centre for Applied Research and Education in Microscopy (CAREM), University of Liege, Liege, Belgium
| | - Emmanuelle J Javaux
- Early Life Traces & Evolution-Astrobiology, UR Astrobiology, University of Liege, Liege, Belgium
| | - Gauthier Eppe
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liege, Liege, Belgium
| | - Cédric Malherbe
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liege, Liege, Belgium
- Early Life Traces & Evolution-Astrobiology, UR Astrobiology, University of Liege, Liege, Belgium
- Department of Physics and Astronomy, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
12
|
Hickman-Lewis K, Moore KR, Hollis JJR, Tuite ML, Beegle LW, Bhartia R, Grotzinger JP, Brown AJ, Shkolyar S, Cavalazzi B, Smith CL. In Situ Identification of Paleoarchean Biosignatures Using Colocated Perseverance Rover Analyses: Perspectives for In Situ Mars Science and Sample Return. ASTROBIOLOGY 2022; 22:1143-1163. [PMID: 35862422 PMCID: PMC9508457 DOI: 10.1089/ast.2022.0018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
The NASA Mars 2020 Perseverance rover is currently exploring Jezero crater, a Noachian-Hesperian locality that once hosted a delta-lake system with high habitability and biosignature preservation potential. Perseverance conducts detailed appraisals of rock targets using a synergistic payload capable of geological characterization from kilometer to micron scales. The highest-resolution textural and chemical information will be provided by correlated WATSON (imaging), SHERLOC (deep-UV Raman and fluorescence spectroscopy), and PIXL (X-ray lithochemistry) analyses, enabling the distributions of organic and mineral phases within rock targets to be comprehensively established. Herein, we analyze Paleoarchean microbial mats from the ∼3.42 Ga Buck Reef Chert (Barberton greenstone belt, South Africa)-considered astrobiological analogues for a putative ancient martian biosphere-following a WATSON-SHERLOC-PIXL protocol identical to that conducted by Perseverance on Mars during all sampling activities. Correlating deep-UV Raman and fluorescence spectroscopic mapping with X-ray elemental mapping, we show that the Perseverance payload has the capability to detect thermally and texturally mature organic materials of biogenic origin and can highlight organic-mineral interrelationships and elemental colocation at fine spatial scales. We also show that the Perseverance protocol obtains very similar results to high-performance laboratory imaging, Raman spectroscopy, and μXRF instruments. This is encouraging for the prospect of detecting microscale organic-bearing textural biosignatures on Mars using the correlative micro-analytical approach enabled by WATSON, SHERLOC, and PIXL; indeed, laminated, organic-bearing samples such as those studied herein are considered plausible analogues of biosignatures from a potential Noachian-Hesperian biosphere. Were similar materials discovered at Jezero crater, they would offer opportunities to reconstruct aspects of the early martian carbon cycle and search for potential fossilized traces of life in ancient paleoenvironments. Such samples should be prioritized for caching and eventual return to Earth.
Collapse
Affiliation(s)
- Keyron Hickman-Lewis
- Department of Earth Sciences, The Natural History Museum, London, United Kingdom
- Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Università di Bologna, Bologna, Italy
| | - Kelsey R. Moore
- NASA Jet Propulsion Laboratory, Pasadena, California, USA
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, USA
| | | | | | | | | | - John P. Grotzinger
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, USA
| | | | - Svetlana Shkolyar
- Department of Astronomy, University of Maryland, College Park, Maryland, USA
- Planetary Geology, Geophysics and Geochemistry Lab, NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
| | - Barbara Cavalazzi
- Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Università di Bologna, Bologna, Italy
- Department of Geology, University of Johannesburg, Johannesburg, South Africa
| | - Caroline L. Smith
- Department of Earth Sciences, The Natural History Museum, London, United Kingdom
- School of Geographical and Earth Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
13
|
Pleyer HL, Moeller R, Fujimori A, Fox S, Strasdeit H. Chemical, Thermal, and Radiation Resistance of an Iron Porphyrin: A Model Study of Biosignature Stability. ASTROBIOLOGY 2022; 22:776-799. [PMID: 35647896 PMCID: PMC9298530 DOI: 10.1089/ast.2021.0144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 01/22/2022] [Indexed: 06/15/2023]
Abstract
Metal complexes of porphyrins and porphyrin-type compounds are ubiquitous in all three domains of life, with hemes and chlorophylls being the best-known examples. Their diagenetic transformation products are found as geoporphyrins, in which the characteristic porphyrin core structure is retained and which can be up to 1.1 billion years old. Because of this, and their relative ease of detection, metalloporphyrins appear attractive as chemical biosignatures in the search for extraterrestrial life. In this study, we investigated the stability of solid chlorido(2,3,7,8,12,13,17,18-octaethylporphyrinato)iron(III) [FeCl(oep)], which served as a model for heme-like molecules and iron geoporphyrins. [FeCl(oep)] was exposed to a variety of astrobiologically relevant extreme conditions, namely: aqueous acids and bases, oxidants, heat, and radiation. Key results are: (1) the [Fe(oep)]+ core is stable over the pH range 0.0-13.5 even at 80°C; (2) the oxidizing power follows the order ClO- > H2O2 > ClO3- > HNO3 > ClO4-; (3) in an inert atmosphere, the iron porphyrin is thermally stable to near 250°C; (4) at high temperatures, carbon dioxide gas is not inert but acts as an oxidant, forming carbon monoxide; (5) a decomposition layer is formed on ultraviolet irradiation and protects the [FeCl(oep)] underneath; (6) an NaCl/NaHCO3 salt mixture has a protective effect against X-rays; and (7) no such effect is observed when [FeCl(oep)] is exposed to iron ion particle radiation. The relevance to potential iron porphyrin biosignatures on Mars, Europa, and Enceladus is discussed.
Collapse
Affiliation(s)
- Hannes Lukas Pleyer
- Department of Bioinorganic Chemistry and Chemical Evolution, Institute of Chemistry, University of Hohenheim, Stuttgart, Germany
| | - Ralf Moeller
- Space Microbiology Research Group, Radiation Biology Department, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Akira Fujimori
- Molecular and Cellular Radiation Biology Group, Department of Charged Particle Therapy Research, Institute for Quantum Medical Science, Chiba, Japan
| | - Stefan Fox
- Department of Bioinorganic Chemistry and Chemical Evolution, Institute of Chemistry, University of Hohenheim, Stuttgart, Germany
| | - Henry Strasdeit
- Department of Bioinorganic Chemistry and Chemical Evolution, Institute of Chemistry, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
14
|
Royle SH, Salter TL, Watson JS, Sephton MA. Mineral Matrix Effects on Pyrolysis Products of Kerogens Infer Difficulties in Determining Biological Provenance of Macromolecular Organic Matter at Mars. ASTROBIOLOGY 2022; 22:520-540. [PMID: 35171040 DOI: 10.1089/ast.2021.0074] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Ancient martian organic matter is likely to take the form of kerogen-like recalcitrant macromolecular organic matter (MOM), existing in close association with reactive mineral surfaces, especially iron oxides. Detecting and identifying a biological origin for martian MOM will therefore be of utmost importance for life-detection efforts at Mars. We show that Type I and Type IV kerogens provide effective analogues for putative martian MOM of biological and abiological (meteoric) provenances, respectively. We analyze the pyrolytic breakdown products when these kerogens are mixed with mineral matrices highly relevant for the search for life on Mars. We demonstrate that, using traditional thermal techniques as generally used by the Sample Analysis at Mars and Mars Organic Molecule Analyser instruments, even the breakdown products of highly recalcitrant MOM are transformed during analysis in the presence of reactive mineral surfaces, particularly iron. Analytical transformation reduces the diagnostic ability of this technique, as detected transformation products of both biological and abiological MOM may be identical (low molecular weight gas phases and benzene) and indistinguishable. The severity of transformational effects increased through calcite < kaolinite < hematite < nontronite < magnetite < goethite. Due to their representation of various habitable aqueous environments and the preservation potential of organic matter by iron, it is not advisable to completely avoid iron-rich strata. We conclude that hematite-rich localities, with evidence of extensive aqueous alteration of originally reducing phases, such as the Vera Rubin Ridge, may be relatively promising targets for identifying martian biologically sourced MOM.
Collapse
Affiliation(s)
- Samuel H Royle
- Department of Earth Science and Engineering, Imperial College London, London, UK
| | - Tara L Salter
- Department of Earth Science and Engineering, Imperial College London, London, UK
| | - Jonathan S Watson
- Department of Earth Science and Engineering, Imperial College London, London, UK
| | - Mark A Sephton
- Department of Earth Science and Engineering, Imperial College London, London, UK
| |
Collapse
|
15
|
Singh D, Sinha RK, Singh P, Roy N, Mukherjee S. Astrobiological Potential of Fe/Mg Smectites with Special Emphasis on Jezero Crater, Mars 2020 Landing Site. ASTROBIOLOGY 2022; 22:579-597. [PMID: 35171004 DOI: 10.1089/ast.2021.0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Life is known to adapt in accordance with its surrounding environment and sustainable resources available to it. Since harsh conditions would have precluded any possible aerobic evolution of life at the martian surface, it is plausible that martian life, should it exist, would have evolved in such a way as to derive energy from more optimum resources. Iron is one of the most abundant elements present in the martian crust and occurs at about twice the amount present on Earth. Clay minerals contribute to about half the iron found in soils and sediments. On Earth, clay acts as an electron donor as well as an acceptor in the carbon cycles and thereby supports a wide variety of metabolic reactions. In this context, we consider the potential of Fe/Mg smectites, one of the most widely reported hydrated minerals on Mars, for preservation of macro- and microscopic biosignatures. We proceed by understanding the environmental conditions during the formation of smectites and various microbes and metabolic processes associated with them as indicated in Earth-based studies. We also explore the possibility of biosignatures and their identification within the Mars 2020 landing site (Jezero Crater) by using the astrobiological payloads on board the Perseverance rover.
Collapse
Affiliation(s)
- Deepali Singh
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | | | - Priyadarshini Singh
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Nidhi Roy
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Saumitra Mukherjee
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
16
|
Gong J, Munoz-Saez C, Wilmeth DT, Myers KD, Homann M, Arp G, Skok JR, van Zuilen MA. Morphogenesis of digitate structures in hot spring silica sinters of the El Tatio geothermal field, Chile. GEOBIOLOGY 2022. [PMID: 34590770 DOI: 10.6084/m9.figshare.12957797.v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
In silica-rich hot spring environments, internally laminated, digitate sinter deposits are often interpreted as bio-mediated structures. The organic components of microbial communities (cell surfaces, sheaths and extracellular polymeric substances) can act as templates for silica precipitation, therefore influencing digitate sinter morphogenesis. In addition to biologic surface-templating effects, various microenvironmental factors (hydrodynamics, local pH and fluctuating wind patterns) can also influence silica precipitation, and therefore the morphology of resulting digitate sinters. Digitate sinter morphology thus depends on the dynamic interplay between microenvironmentally driven silica precipitation and microbial growth, but the relative contributions of both factors are a topic of continuing research. Here we present a detailed study of digitate silica sinters in distal, low-temperature regimes of the El Tatio geothermal field, Chile. This high-altitude geothermal field is extremely arid and windy, and has one of the highest silica precipitation rates found in the world. We find that digitate silica sinters at El Tatio always accrete into the prevailing eastward wind direction and exhibit laminar growth patterns coinciding with day-night cycles of wind- and thermally driven evaporation and rewetting. Subaerial parts of digitate sinters lack preserved organics and sinter textures that would indicate past microbial colonization, while filamentous cyanobacteria with resistant, silicified sheaths only inhabit subaqueous cavities that crosscut the primary laminations. We conclude that, although fragile biofilms of extremophile micro-organisms may have initially been present and templated silica precipitation at the tips of these digitate sinters, the saltation of sand grains and precipitation of silica by recurrent wind- and thermally driven environmental forcing at El Tatio are important, if not dominant factors shaping the morphology of these digitate structures. Our study sheds light on the relative contributions of biogenic and abiogenic factors in sinter formation in geothermal systems, with geobiological implications for the cautious interpretation of stromatolite-like features in ancient silica deposits on Earth and Mars.
Collapse
Affiliation(s)
- Jian Gong
- Université de Paris, Institut de Physique du Globe de Paris, CNRS, F-75005, Paris, France
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | | | - Dylan T Wilmeth
- Université de Paris, Institut de Physique du Globe de Paris, CNRS, F-75005, Paris, France
- Equipe Géomicrobiologie, Institut Universitaire Européen de la Mer, Plouzané, France
| | - Kimberly D Myers
- Université de Paris, Institut de Physique du Globe de Paris, CNRS, F-75005, Paris, France
| | - Martin Homann
- Department of Earth Sciences, University College London, London, UK
| | - Gernot Arp
- Geobiology Division, Geoscience Centre, Georg-August-Universität Göttingen, Göttingen, Germany
| | - John R Skok
- SETI Institute, Mountain View, California, USA
| | - Mark A van Zuilen
- Université de Paris, Institut de Physique du Globe de Paris, CNRS, F-75005, Paris, France
| |
Collapse
|
17
|
Gong J, Munoz‐Saez C, Wilmeth DT, Myers KD, Homann M, Arp G, Skok JR, van Zuilen MA. Morphogenesis of digitate structures in hot spring silica sinters of the El Tatio geothermal field, Chile. GEOBIOLOGY 2022; 20:137-155. [PMID: 34590770 PMCID: PMC9292339 DOI: 10.1111/gbi.12471] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 09/02/2021] [Indexed: 05/19/2023]
Abstract
In silica-rich hot spring environments, internally laminated, digitate sinter deposits are often interpreted as bio-mediated structures. The organic components of microbial communities (cell surfaces, sheaths and extracellular polymeric substances) can act as templates for silica precipitation, therefore influencing digitate sinter morphogenesis. In addition to biologic surface-templating effects, various microenvironmental factors (hydrodynamics, local pH and fluctuating wind patterns) can also influence silica precipitation, and therefore the morphology of resulting digitate sinters. Digitate sinter morphology thus depends on the dynamic interplay between microenvironmentally driven silica precipitation and microbial growth, but the relative contributions of both factors are a topic of continuing research. Here we present a detailed study of digitate silica sinters in distal, low-temperature regimes of the El Tatio geothermal field, Chile. This high-altitude geothermal field is extremely arid and windy, and has one of the highest silica precipitation rates found in the world. We find that digitate silica sinters at El Tatio always accrete into the prevailing eastward wind direction and exhibit laminar growth patterns coinciding with day-night cycles of wind- and thermally driven evaporation and rewetting. Subaerial parts of digitate sinters lack preserved organics and sinter textures that would indicate past microbial colonization, while filamentous cyanobacteria with resistant, silicified sheaths only inhabit subaqueous cavities that crosscut the primary laminations. We conclude that, although fragile biofilms of extremophile micro-organisms may have initially been present and templated silica precipitation at the tips of these digitate sinters, the saltation of sand grains and precipitation of silica by recurrent wind- and thermally driven environmental forcing at El Tatio are important, if not dominant factors shaping the morphology of these digitate structures. Our study sheds light on the relative contributions of biogenic and abiogenic factors in sinter formation in geothermal systems, with geobiological implications for the cautious interpretation of stromatolite-like features in ancient silica deposits on Earth and Mars.
Collapse
Affiliation(s)
- Jian Gong
- Université de Paris, Institut de Physique du Globe de Paris, CNRSF‐75005ParisFrance
- Department of Earth, Atmospheric and Planetary SciencesMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | | | - Dylan T. Wilmeth
- Université de Paris, Institut de Physique du Globe de Paris, CNRSF‐75005ParisFrance
- Equipe GéomicrobiologieInstitut Universitaire Européen de la MerPlouzanéFrance
| | - Kimberly D. Myers
- Université de Paris, Institut de Physique du Globe de Paris, CNRSF‐75005ParisFrance
| | - Martin Homann
- Department of Earth SciencesUniversity College LondonLondonUK
| | - Gernot Arp
- Geobiology DivisionGeoscience CentreGeorg‐August‐Universität GöttingenGöttingenGermany
| | | | - Mark A. van Zuilen
- Université de Paris, Institut de Physique du Globe de Paris, CNRSF‐75005ParisFrance
| |
Collapse
|
18
|
Goodwin A, Papineau D. Biosignatures Associated with Organic Matter in Late Paleoproterozoic Stromatolitic Dolomite and Implications for Martian Carbonates. ASTROBIOLOGY 2022; 22:49-74. [PMID: 34664990 DOI: 10.1089/ast.2021.0010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The documentation of biosignatures in Precambrian rocks is an important requirement in the search for evidence of life on other ancient planetary surfaces. Three major kinds of biosignatures are crucially important: primary microbial sedimentary textures, diagenetic organomineral assemblages, and stable isotope compositions. This study presents new petrographic, mineralogical, and organic geochemical analyses of biosignatures in dolomitic stromatolites from the Pethei Group (N.W.T., Canada) and the Kasegalik Formation of the Belcher Group (Nunavut, Canada). Both are approximately contemporary late Paleoproterozoic stromatolite-bearing dolomitic units deposited after the Great Oxidation Event. Micro-Raman and optical microscopy are used to identify and characterize possible diagenetic biosignatures, which include close spatial association of diagenetic materials (such as ferric-ferrous oxide and anatase) with disseminated organic matter (OM), dolomitic groundmass textures, and mineralized balls. Many of these petrographic relationships point to the oxidation of OM either biotically or abiotically in association with iron reduction and chemically oscillating reactions. Oxidation of OM in these stromatolites is consistent with the widespread oxidation of biomass during the late Paleoproterozoic Shunga-Francevillian Event. Biosignatures identified in this study are also compared with possible carbonate outcrops on Mars, and thereby contribute a basis for comparison with potential biosignatures in ancient martian terrains. Similarities are drawn between the paleoenvironments of the studied units to the Isidis and Chryse planitia as locations for potential extraterrestrial dolomitic stromatolites.
Collapse
Affiliation(s)
- Arthur Goodwin
- Centre for Planetary Sciences, UCL-Birkbeck, London, United Kingdom
| | - Dominic Papineau
- Centre for Planetary Sciences, UCL-Birkbeck, London, United Kingdom
- London Centre for Nanotechnology, University College London, London, United Kingdom
- Department of Earth Sciences, University College London, London, United Kingdom
| |
Collapse
|
19
|
Fernández-Remolar DC, Gomez-Ortiz D, Huang T, Anglés A, Shen Y, Hu Q, Amils R, Rodríguez N, Escudero C, Banerjee NR. The Molecular Record of Metabolic Activity in the Subsurface of the Río Tinto Mars Analog. ASTROBIOLOGY 2021; 21:1387-1405. [PMID: 34449260 DOI: 10.1089/ast.2020.2431] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In the subsurface, the interplay between microbial communities and the surrounding mineral substrate, potentially used as an energy source, results in different mineralized structures. The molecular composition of such structures can record and preserve information about the metabolic pathways that have produced them. To characterize the molecular composition of the subsurface biosphere, we have analyzed some core samples by time-of-flight secondary ion mass spectrometry (ToF-SIMS) that were collected in the borehole BH8 during the operations of the Mars Analog and Technology Experiment (MARTE) project. The molecular analysis at a micron-scale mapped the occurrence of several inorganic complexes bearing PO3-, SOx(2 to 4)-, NOx(2,3)-, FeOx(1,2)-, SiO2-, and Cl-. Their distribution correlates with organic molecules that were tentatively assigned to saturated and monounsaturated fatty acids, polyunsaturated fatty acids, saccharides, phospholipids, sphingolipids, and potential peptide fragments. SOx- appear to be mineralizing some microstructures larger than 25 microns, which have branched morphologies, and that source SO3-bearing adducts. PO3-rich compounds occur in two different groups of microstructures which size, morphology, and composition are different. While a group of >40-micron sized circular micronodules lacks organic compounds, an ovoidal microstructure is associated with m/z of other lipids. The NO2-/NO3- and Cl- ions occur as small microstructure clusters (<20 microns), but their distribution is dissimilar to the mineralized microstructures bearing PO3-, and SO3-. However, they have a higher density in areas with more significant enrichment in iron oxides that are traced by different Fe-bearing anions like FeO2-. The distribution of the organic and inorganic negative ions, which we suggest, resulted from the preservation of at least three microbial consortia (PO4--, and NO2--/NO3--mineralizers PO4-lipid bearing microstructures), would have resulted from different metabolic and preservation pathways.
Collapse
Affiliation(s)
- David C Fernández-Remolar
- SKL Lunar and Planetary Sciences, Macau University of Science and Technology, Taipa, SAR China
- CNSA Macau Center for Space Exploration and Science, Macau, PR China
| | - David Gomez-Ortiz
- ESCET-Área de Geología, Universidad Rey Juan Carlos, Móstoles, Madrid, Spain
| | - Ting Huang
- SKL Lunar and Planetary Sciences, Macau University of Science and Technology, Taipa, SAR China
- CNSA Macau Center for Space Exploration and Science, Macau, PR China
| | - Angélica Anglés
- SKL Lunar and Planetary Sciences, Macau University of Science and Technology, Taipa, SAR China
- CNSA Macau Center for Space Exploration and Science, Macau, PR China
| | - Yan Shen
- SKL Lunar and Planetary Sciences, Macau University of Science and Technology, Taipa, SAR China
- CNSA Macau Center for Space Exploration and Science, Macau, PR China
| | - Qitao Hu
- SKL Lunar and Planetary Sciences, Macau University of Science and Technology, Taipa, SAR China
- CNSA Macau Center for Space Exploration and Science, Macau, PR China
| | - Ricardo Amils
- Centro de Astrobiología (INTA-CSIC), Torrejón de Ardoz, Spain
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | - Nuria Rodríguez
- Centro de Astrobiología (INTA-CSIC), Torrejón de Ardoz, Spain
| | | | - Neil R Banerjee
- Department of Earth Sciences, Faculty of Science, University of Western Ontario, London, Ontario, Canada
- Institute for Earth and Space Exploration, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
20
|
Royle SH, Watson JS, Sephton MA. Transformation of Cyanobacterial Biomolecules by Iron Oxides During Flash Pyrolysis: Implications for Mars Life-Detection Missions. ASTROBIOLOGY 2021; 21:1363-1386. [PMID: 34402652 DOI: 10.1089/ast.2020.2428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Answering the question of whether life ever existed on Mars is a key goal of both NASA's and ESA's imminent Mars rover missions. The obfuscatory effects of oxidizing salts, such as perchlorates and sulfates, on organic matter during thermal decomposition analysis techniques are well established. Less well studied are the transformative effects of iron oxides and (oxy)hydroxides, which are present in great abundances in the martian regolith. We examined the products of flash pyrolysis-gas chromatography-mass spectrometry (a technique analogous to the thermal techniques employed by past, current, and future landed Mars missions) which form when the cyanobacteria Arthrospira platensis are heated in the presence of a variety of Mars-relevant iron-bearing minerals. We found that iron oxides/(oxy)hydroxides have transformative effects on the pyrolytic products of cyanobacterial biomolecules. Both the abundance and variety of molecular species detected were decreased as iron substrates transformed biomolecules, by both oxidative and reductive processes, into lower fidelity alkanes, aromatic and aryl-bonded hydrocarbons. Despite the loss of fidelity, a suite that contains mid-length alkanes and polyaromatic hydrocarbons and/or aryl-bonded molecules in iron-rich samples subjected to pyrolysis may allude to the transformation of cyanobacterially derived mid-long chain length fatty acids (particularly unsaturated fatty acids) originally present in the sample. Hematite was found to be the iron oxide with the lowest transformation potential, and because this iron oxide has a high affinity for codeposition of organic matter and preservation over geological timescales, sampling at Mars should target sediments/strata that have undergone a diagenetic history encouraging the dehydration, dihydroxylation, and oxidation of more reactive iron-bearing phases to hematite by looking for (mineralogical) evidence of the activity of oxidizing, acidic/neutral, and either hot or long-lived fluids.
Collapse
Affiliation(s)
- Samuel H Royle
- Impacts and Astromaterials Research Centre, Department of Earth Science and Engineering, Imperial College London, London, United Kingdom
| | - Jonathan S Watson
- Impacts and Astromaterials Research Centre, Department of Earth Science and Engineering, Imperial College London, London, United Kingdom
| | - Mark A Sephton
- Impacts and Astromaterials Research Centre, Department of Earth Science and Engineering, Imperial College London, London, United Kingdom
| |
Collapse
|
21
|
Green J, Hoehler T, Neveu M, Domagal-Goldman S, Scalice D, Voytek M. Call for a framework for reporting evidence for life beyond Earth. Nature 2021; 598:575-579. [PMID: 34707302 DOI: 10.1038/s41586-021-03804-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 07/06/2021] [Indexed: 11/09/2022]
Abstract
Our generation could realistically be the one to discover evidence of life beyond Earth. With this privileged potential comes responsibility. The magnitude of the question of whether we are alone in the Universe, and the public interest therein, opens the possibility that results may be taken to imply more than the observations support, or than the observers intend. As life-detection objectives become increasingly prominent in space sciences, it is essential to open a community dialogue about how to convey information in a subject matter that is diverse, complicated and has a high potential to be sensationalized. Establishing best practices for communicating about life detection can serve to set reasonable expectations on the early stages of a hugely challenging endeavour, attach value to incremental steps along the path, and build public trust by making clear that false starts and dead ends are an expected and potentially productive part of the scientific process. Here we endeavour to motivate and seed the discussion with basic considerations and offer an example of how such considerations might be incorporated and applied in a proof-of-concept-level framework. Everything mentioned herein, including the name of the confidence scale, is intended not as a prescription, but simply as the beginning of an important dialogue.
Collapse
Affiliation(s)
- James Green
- Office of the Chief Scientist, NASA Headquarters, Washington DC, USA.
| | - Tori Hoehler
- Exobiology Branch, NASA Ames Research Center, Moffett Field, CA, USA
| | - Marc Neveu
- Planetary Environments Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD, USA.,Department of Astronomy, University of Maryland, College Park, MD, USA
| | | | - Daniella Scalice
- NASA Astrobiology Program, Paragon TEC/NASA Headquarters, Washington DC, USA
| | - Mary Voytek
- NASA Astrobiology Program, NASA Headquarters, Washington DC, USA
| |
Collapse
|
22
|
Perl SM, Celestian AJ, Cockell CS, Corsetti FA, Barge LM, Bottjer D, Filiberto J, Baxter BK, Kanik I, Potter-McIntyre S, Weber JM, Rodriguez LE, Melwani Daswani M. A Proposed Geobiology-Driven Nomenclature for Astrobiological In Situ Observations and Sample Analyses. ASTROBIOLOGY 2021; 21:954-967. [PMID: 34357788 PMCID: PMC8403179 DOI: 10.1089/ast.2020.2318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
As the exploration of Mars and other worlds for signs of life has increased, the need for a common nomenclature and consensus has become significantly important for proper identification of nonterrestrial/non-Earth biology, biogenic structures, and chemical processes generated from biological processes. The fact that Earth is our single data point for all life, diversity, and evolution means that there is an inherent bias toward life as we know it through our own planet's history. The search for life "as we don't know it" then brings this bias forward to decision-making regarding mission instruments and payloads. Understandably, this leads to several top-level scientific, theoretical, and philosophical questions regarding the definition of life and what it means for future life detection missions. How can we decide on how and where to detect known and unknown signs of life with a single biased data point? What features could act as universal biosignatures that support Darwinian evolution in the geological context of nonterrestrial time lines? The purpose of this article is to generate an improved nomenclature for terrestrial features that have mineral/microbial interactions within structures and to confirm which features can only exist from life (biotic), features that are modified by biological processes (biogenic), features that life does not affect (abiotic), and properties that can exist or not regardless of the presence of biology (abiogenic). These four categories are critical in understanding and deciphering future returned samples from Mars, signs of potential extinct/ancient and extant life on Mars, and in situ analyses from ocean worlds to distinguish and separate what physical structures and chemical patterns are due to life and which are not. Moreover, we discuss hypothetical detection and preservation environments for extant and extinct life, respectively. These proposed environments will take into account independent active and ancient in situ detection prospects by using previous planetary exploration studies and discuss the geobiological implications within an astrobiological context.
Collapse
Affiliation(s)
- Scott M. Perl
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
- Mineral Sciences, Natural History Museum of Los Angeles County, Los Angeles, California, USA
- Blue Marble Space Institute for Science, Seattle, Washington, USA
- Address correspondence to: Scott M. Perl, NASA Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109, +USA
| | - Aaron J. Celestian
- Mineral Sciences, Natural History Museum of Los Angeles County, Los Angeles, California, USA
| | - Charles S. Cockell
- School of Physics and Astronomy, University of Edinburgh, Edinburgh, Scotland
| | - Frank A. Corsetti
- Department of Earth Sciences, University of Southern California, Los Angeles, California, USA
| | - Laura M. Barge
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
- Blue Marble Space Institute for Science, Seattle, Washington, USA
| | - David Bottjer
- Department of Earth Sciences, University of Southern California, Los Angeles, California, USA
| | | | - Bonnie K. Baxter
- Great Salt Lake Institute, Westminster College, Salt Lake City, Utah, USA
| | - Isik Kanik
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Sally Potter-McIntyre
- School of Earth Systems and Sustainability, Southern Illinois University Carbondale, Carbondale, Illinois, USA
| | - Jessica M. Weber
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Laura E. Rodriguez
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Mohit Melwani Daswani
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| |
Collapse
|
23
|
Zhao Y, Han Z, Yan H, Zhao H, Tucker ME, Gao X, Guo N, Meng R, Owusu DC. Selective Adsorption of Amino Acids in Crystals of Monohydrocalcite Induced by the Facultative Anaerobic Enterobacter ludwigii SYB1. Front Microbiol 2021; 12:696557. [PMID: 34394038 PMCID: PMC8358455 DOI: 10.3389/fmicb.2021.696557] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 06/23/2021] [Indexed: 12/05/2022] Open
Abstract
The morphology, crystal structure, and elemental composition of biominerals are commonly different from chemically synthesized minerals, but the reasons for these are not fully understood. A facultative anaerobic bacterium, Enterobacter ludwigii SYB1, is used in experiments to document the hydrochemistry, mineral crystallization, and cell surface characteristics of biomineralization. It was found that carbonate anhydrase and ammonia production were major factors influencing the alkalinity and saturation of the closed biosystem. X-ray diffraction (XRD) spectra showed that calcite, monohydrocalcite (MHC), and dypingite formed in samples with bacterial cells. It was also found that the (222) plane of MHC was the preferred orientation compared to standard data. Scanning transmission electron microscopy (STEM) analysis of cell slices provides direct evidence of concentrated calcium and magnesium ions on the surface of extracellular polymeric substances (EPS). In addition, high-resolution transmission electron microscopy (HRTEM) showed that crystallized nanoparticles were formed within the EPS. Thus, the mechanism of the biomineralization induced by E. ludwigii SYB1 can be divided into three stages: (i) the production of carbonate anhydrase and ammonia increases the alkalinity and saturation state of the milieu, (ii) free calcium and magnesium ions are adsorbed and chelated onto EPS, and (iii) nanominerals crystallize and grow within the EPS. Seventeen kinds of amino acids were identified within both biotic MHC and the EPS of SYB1, while the percentages of glutamic and aspartic acid in MHC increased significantly (p < 0.05). Furthermore, the adsorption energy was calculated for various amino acids on seven diffracted crystal faces, with preferential adsorption demonstrated on (111) and (222) faces. At the same time, the lowest adsorption energy was always that of glutamic and aspartic acid for the same crystal plane. These results suggest that aspartic and glutamic acid always mix preferentially in the crystal lattice of MHC and that differential adsorption of amino acids on crystal planes can lead to their preferred orientation. Moreover, the mixing of amino acids in the mineral structure may also have a certain influence on the mineral lattice dislocations, thus enhancing the thermodynamic characteristics.
Collapse
Affiliation(s)
- Yanyang Zhao
- Shandong Provincial Key Laboratory of Depositional Mineralization and Sedimentary Minerals, College of Earth Science and Engineering, Shandong University of Science and Technology, Qingdao, China.,Laboratory for Marine Mineral Resources, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Zuozhen Han
- Shandong Provincial Key Laboratory of Depositional Mineralization and Sedimentary Minerals, College of Earth Science and Engineering, Shandong University of Science and Technology, Qingdao, China.,Laboratory for Marine Mineral Resources, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Huaxiao Yan
- Department of Bioengineering, College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, China
| | - Hui Zhao
- Department of Bioengineering, College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, China
| | - Maurice E Tucker
- School of Earth Sciences, University of Bristol, Bristol, United Kingdom.,Cabot Institute, University of Bristol, Bristol, United Kingdom
| | - Xiao Gao
- Shandong Provincial Key Laboratory of Depositional Mineralization and Sedimentary Minerals, College of Earth Science and Engineering, Shandong University of Science and Technology, Qingdao, China
| | - Na Guo
- Shandong Provincial Key Laboratory of Depositional Mineralization and Sedimentary Minerals, College of Earth Science and Engineering, Shandong University of Science and Technology, Qingdao, China
| | - Ruirui Meng
- Shandong Provincial Key Laboratory of Depositional Mineralization and Sedimentary Minerals, College of Earth Science and Engineering, Shandong University of Science and Technology, Qingdao, China
| | - Daniel Cosmos Owusu
- Department of Bioengineering, College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, China
| |
Collapse
|
24
|
Precambrian and early Cambrian palaeobiology of India: Quo Vadis. PROCEEDINGS OF THE INDIAN NATIONAL SCIENCE ACADEMY 2021. [DOI: 10.1007/s43538-021-00029-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
25
|
Rasmussen B, Muhling JR, Fischer WW. Ancient Oil as a Source of Carbonaceous Matter in 1.88-Billion-Year-Old Gunflint Stromatolites and Microfossils. ASTROBIOLOGY 2021; 21:655-672. [PMID: 33684328 DOI: 10.1089/ast.2020.2376] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The 1.88-billion-year-old Gunflint carbonaceous microfossils are renowned for their exceptional morphological and chemical preservation, attributed to early and rapid entombment in amorphous silica. The carbonaceous matter lining and partly filling filamentous and spherical structures is interpreted to be indigenous, representing thermally altered relicts of cellular material (i.e., kerogen). Here we show that stromatolitic black cherts from the Gunflint Formation, Schreiber Beach, Ontario, Canada, were saturated in syn-sedimentary oil. The thermally altered oil (pyrobitumen), which occurs in the stromatolites and intercolumn sediments, fills pores and fractures, and coats detrital and diagenetic grain surfaces. The occurrence of detrital bitumen grains in the stromatolites points to the proximity of shallow seafloor oil seeps and hence the possible existence of chemosynthetic microbes degrading hydrocarbons. We suggest that hydrocarbons that migrated through the silicifying stromatolites infiltrated semi-hollow microbial molds that formed following silica nucleation on the walls or sheaths of decayed cells. Upon heating, the hydrocarbons were transformed to nanoporous pyrobitumen, retarding silica recrystallization and enhancing detailed preservation of the carbon-rich microfossils. Hydrocarbon infiltration of silicified microbes offers a new explanation for the preservation of the Gunflint microfossils and may have played a role in the formation of some of Earth's oldest microfossils.
Collapse
Affiliation(s)
- B Rasmussen
- School of Earth Sciences, The University of Western Australia, Perth, Australia
| | - J R Muhling
- School of Earth Sciences, The University of Western Australia, Perth, Australia
| | - W W Fischer
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, USA
| |
Collapse
|
26
|
Little CTS, Johannessen KC, Bengtson S, Chan CS, Ivarsson M, Slack JF, Broman C, Thorseth IH, Grenne T, Rouxel OJ, Bekker A. A late Paleoproterozoic (1.74 Ga) deep-sea, low-temperature, iron-oxidizing microbial hydrothermal vent community from Arizona, USA. GEOBIOLOGY 2021; 19:228-249. [PMID: 33594795 DOI: 10.1111/gbi.12434] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 01/18/2021] [Accepted: 02/01/2021] [Indexed: 06/12/2023]
Abstract
Modern marine hydrothermal vents occur in a wide variety of tectonic settings and are characterized by seafloor emission of fluids rich in dissolved chemicals and rapid mineral precipitation. Some hydrothermal systems vent only low-temperature Fe-rich fluids, which precipitate deposits dominated by iron oxyhydroxides, in places together with Mn-oxyhydroxides and amorphous silica. While a proportion of this mineralization is abiogenic, most is the result of the metabolic activities of benthic, Fe-oxidizing bacteria (FeOB), principally belonging to the Zetaproteobacteria. These micro-organisms secrete micrometer-scale stalks, sheaths, and tubes with a variety of morphologies, composed largely of ferrihydrite that act as sacrificial structures, preventing encrustation of the cells that produce them. Cultivated marine FeOB generally require neutral pH and microaerobic conditions to grow. Here, we describe the morphology and mineralogy of filamentous microstructures from a late Paleoproterozoic (1.74 Ga) jasper (Fe-oxide-silica) deposit from the Jerome area of the Verde mining district in central Arizona, USA, that resemble the branching tubes formed by some modern marine FeOB. On the basis of this comparison, we interpret the Jerome area filaments as having formed by FeOB on the deep seafloor, at the interface of weakly oxygenated seawater and low-temperature Fe-rich hydrothermal fluids. We compare the Jerome area filaments with other purported examples of Precambrian FeOB and discuss the implications of their presence for existing redox models of Paleoproterozoic oceans during the "Boring Billion."
Collapse
Affiliation(s)
| | | | - Stefan Bengtson
- Department of Palaeobiology, Swedish Museum of Natural History, Stockholm, Sweden
| | - Clara S Chan
- Department of Earth Sciences, University of Delaware, Newark, USA
| | - Magnus Ivarsson
- Department of Palaeobiology, Swedish Museum of Natural History, Stockholm, Sweden
- Department of Biology, University of Southern Denmark, Odense M, Denmark
| | - John F Slack
- U.S. Geological Survey (Emeritus), National Center, Reston, USA
| | - Curt Broman
- Department of Geological Sciences, Stockholm University, Stockholm, Sweden
| | | | - Tor Grenne
- Geological Survey of Norway, Trondheim, Norway
| | | | - Andrey Bekker
- Department of Earth and Planetary Sciences, University of California, Riverside, USA
- Department of Geology, University of Johannesburg, Johannesburg, South Africa
| |
Collapse
|
27
|
Chacon-Baca E, Santos A, Sarmiento AM, Luís AT, Santisteban M, Fortes JC, Dávila JM, Diaz-Curiel JM, Grande JA. Acid Mine Drainage as Energizing Microbial Niches for the Formation of Iron Stromatolites: The Tintillo River in Southwest Spain. ASTROBIOLOGY 2021; 21:443-463. [PMID: 33351707 DOI: 10.1089/ast.2019.2164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The Iberian Pyrite Belt in southwest Spain hosts some of the largest and diverse extreme acidic environments with textural variation across rapidly changing biogeochemical gradients at multiple scales. After almost three decades of studies, mostly focused on molecular evolution and metagenomics, there is an increasing awareness of the multidisciplinary potential of these types of settings, especially for astrobiology. Since modern automatized exploration on extraterrestrial surfaces is essentially based on the morphological recognition of biosignatures, a macroscopic characterization of such sedimentary extreme environments and how they look is crucial to identify life properties, but it is a perspective that most molecular approaches frequently miss. Although acid mine drainage (AMD) systems are toxic and contaminated, they offer at the same time the bioengineering tools for natural remediation strategies. This work presents a biosedimentological characterization of the clastic iron stromatolites in the Tintillo river. They occur as laminated terraced iron formations that are the most distinctive sedimentary facies at the Tintillo river, which is polluted by AMD. Iron stromatolites originate from fluvial abiotic factors that interact with biological zonation. The authigenic precipitation of schwertmannite and jarosite results from microbial-mineral interactions between mineral and organic matrices. The Tintillo iron stromatolites are composed of bacterial filaments and diatoms as Nitzschia aurariae, Pinnularia aljustrelica, Stauroneis kriegeri, and Fragilaria sp. Furthermore, the active biosorption and bioleaching of sulfur are suggested by the black and white coloration of microbial filaments inside stromatolites. AMD systems are hazardous due to physical, chemical, and biological agents, but they also provide biogeochemical sources with which to infer past geochemical conditions on Earth and inform exploration efforts on extraterrestrial surfaces in the future.
Collapse
Affiliation(s)
- Elizabeth Chacon-Baca
- Departamento de Geología, Facultad de Ciencias de la Tierra, Universidad Autónoma de Nuevo Léon (UANL), Linares, México
| | - Ana Santos
- Department of Applied Geosciences, CCTH-Science and Technology Research Centre, University of Huelva, Huelva, Spain
- Applied Geosciences Research Group (RNM276), Departamento de Ciencias de la Tierra, Facultad de Ciencias Experimentales, Universidad de Huelva, Huelva, Spain
| | - Aguasanta Miguel Sarmiento
- Department of Water, Mining and Environment, Scientific and Technological Center of Huelva, University of Huelva, Huelva, Spain
- Sustainable Mining Engineering Research Group, Department of Mining, Mechanic, Energetic and Construction Engineering, Higher Technical School of Engineering, University of Huelva, Huelva, Spain
| | - Ana Teresa Luís
- Department of Water, Mining and Environment, Scientific and Technological Center of Huelva, University of Huelva, Huelva, Spain
- GeoBioTec Research Unit, Department of Geosciences, University of Aveiro, Aveiro, Portugal
| | - Maria Santisteban
- Department of Water, Mining and Environment, Scientific and Technological Center of Huelva, University of Huelva, Huelva, Spain
- Sustainable Mining Engineering Research Group, Department of Mining, Mechanic, Energetic and Construction Engineering, Higher Technical School of Engineering, University of Huelva, Huelva, Spain
| | - Juan Carlos Fortes
- Department of Water, Mining and Environment, Scientific and Technological Center of Huelva, University of Huelva, Huelva, Spain
- Sustainable Mining Engineering Research Group, Department of Mining, Mechanic, Energetic and Construction Engineering, Higher Technical School of Engineering, University of Huelva, Huelva, Spain
| | - José Miguel Dávila
- Department of Water, Mining and Environment, Scientific and Technological Center of Huelva, University of Huelva, Huelva, Spain
- Sustainable Mining Engineering Research Group, Department of Mining, Mechanic, Energetic and Construction Engineering, Higher Technical School of Engineering, University of Huelva, Huelva, Spain
| | - Jesus M Diaz-Curiel
- Departamento de Geología, Escuela Técnica Superior de Ingenieros de Minas, Madrid, Spain
| | - Jose Antonio Grande
- Department of Water, Mining and Environment, Scientific and Technological Center of Huelva, University of Huelva, Huelva, Spain
- Sustainable Mining Engineering Research Group, Department of Mining, Mechanic, Energetic and Construction Engineering, Higher Technical School of Engineering, University of Huelva, Huelva, Spain
| |
Collapse
|
28
|
Ghezzi D, Sauro F, Columbu A, Carbone C, Hong PY, Vergara F, De Waele J, Cappelletti M. Transition from unclassified Ktedonobacterales to Actinobacteria during amorphous silica precipitation in a quartzite cave environment. Sci Rep 2021; 11:3921. [PMID: 33594175 PMCID: PMC7887251 DOI: 10.1038/s41598-021-83416-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 01/27/2021] [Indexed: 01/31/2023] Open
Abstract
The orthoquartzite Imawarì Yeuta cave hosts exceptional silica speleothems and represents a unique model system to study the geomicrobiology associated to silica amorphization processes under aphotic and stable physical-chemical conditions. In this study, three consecutive evolution steps in the formation of a peculiar blackish coralloid silica speleothem were studied using a combination of morphological, mineralogical/elemental and microbiological analyses. Microbial communities were characterized using Illumina sequencing of 16S rRNA gene and clone library analysis of carbon monoxide dehydrogenase (coxL) and hydrogenase (hypD) genes involved in atmospheric trace gases utilization. The first stage of the silica amorphization process was dominated by members of a still undescribed microbial lineage belonging to the Ktedonobacterales order, probably involved in the pioneering colonization of quartzitic environments. Actinobacteria of the Pseudonocardiaceae and Acidothermaceae families dominated the intermediate amorphous silica speleothem and the final coralloid silica speleothem, respectively. The atmospheric trace gases oxidizers mostly corresponded to the main bacterial taxa present in each speleothem stage. These results provide novel understanding of the microbial community structure accompanying amorphization processes and of coxL and hypD gene expression possibly driving atmospheric trace gases metabolism in dark oligotrophic caves.
Collapse
Affiliation(s)
- D. Ghezzi
- grid.6292.f0000 0004 1757 1758Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy ,grid.419038.70000 0001 2154 6641Laboratory of NanoBiotechnology, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - F. Sauro
- grid.6292.f0000 0004 1757 1758Department of Biological Geological and Environmental Sciences, University of Bologna, 40126 Bologna, Italy ,La Venta Geographic Explorations Association, 31100 Treviso, Italy ,Teraphosa Exploring Team, Puerto Ordaz, Venezuela
| | - A. Columbu
- grid.6292.f0000 0004 1757 1758Department of Biological Geological and Environmental Sciences, University of Bologna, 40126 Bologna, Italy
| | - C. Carbone
- grid.5606.50000 0001 2151 3065Department of Earth, Environment and Life, University of Genoa, 16132 Genoa, Italy
| | - P.-Y. Hong
- grid.45672.320000 0001 1926 5090Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900 Saudi Arabia
| | - F. Vergara
- La Venta Geographic Explorations Association, 31100 Treviso, Italy ,Teraphosa Exploring Team, Puerto Ordaz, Venezuela
| | - J. De Waele
- grid.6292.f0000 0004 1757 1758Department of Biological Geological and Environmental Sciences, University of Bologna, 40126 Bologna, Italy
| | - M. Cappelletti
- grid.6292.f0000 0004 1757 1758Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
29
|
Rizzo V, Armstrong R, Hua H, Cantasano N, Nicolò T, Bianciardi G. Life on Mars: Clues, Evidence or Proof? SOLAR PLANETS AND EXOPLANETS [WORKING TITLE] 2021. [DOI: 10.5772/intechopen.95531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/23/2023]
Abstract
The search for life on Mars is one of the main objectives of space missions. At “Pahrump Hills Field Site” (Gale Crater, Mojave target), inside the mudstones of the Murray lacustrine sequence, Curiosity rover found organic materials and lozenge shaped laths considered by NASA as pseudomorphic crystals. Besides it detected mineral assemblages suggesting both oxidizing (hematite) and reducing (magnetite) environments, as well as acidic (diagenetic and/or authigenic jarosite) and neutral (apatite) conditions, that might suggest bacterially mediated reactions. Our morphological and morphometrical investigations show that such diagenetic microstructures are unlikely to be lozenge shapes and, in addition to several converging features, they suggest the presence of remnants of complex algal-like biota, similar to terrestrial procaryotes and/or eukaryotes; possible microorganisms that, on the base of absolute dating criteria used by other scholars, lived on Mars about 2.12 +/−0.36 Ga ago.
Collapse
|
30
|
Trace Element Concentrations Associated with Mid-Paleozoic Microfossils as Biosignatures to Aid in the Search for Life. Life (Basel) 2021; 11:life11020142. [PMID: 33668639 PMCID: PMC7918189 DOI: 10.3390/life11020142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 02/03/2021] [Accepted: 02/09/2021] [Indexed: 12/29/2022] Open
Abstract
Identifying microbial fossils in the rock record is a difficult task because they are often simple in morphology and can be mimicked by non-biological structures. Biosignatures are essential for identifying putative fossils as being definitively biological in origin, but are often lacking due to geologic effects which can obscure or erase such signs. As such, there is a need for robust biosignature identification techniques. Here we show new evidence for the application of trace elements as biosignatures in microfossils. We found elevated concentrations of magnesium, aluminum, manganese, iron, and strontium colocalized with carbon and sulfur in microfossils from Drummond Basin, a mid-Paleozoic hot spring deposit in Australia. Our results also suggest that trace element sequestrations from modern hot spring deposits persist through substantial host rock alteration. Because some of the oldest fossils on Earth are found in hot spring deposits and ancient hot spring deposits are also thought to occur on Mars, this biosignature technique may be utilized as a valuable tool to aid in the search for extraterrestrial life.
Collapse
|
31
|
Knuth JM, Potter-McIntyre SL. Stable Isotope Fractionation in a Cold Spring System, Utah, USA: Insights for Sample Selection on Mars. ASTROBIOLOGY 2021; 21:235-245. [PMID: 33021813 DOI: 10.1089/ast.2019.2028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Stable δ13C isotope analysis at hot and cold springs suggests that rapid degassing overprints carbon isotopic biosignatures even when microbial activity produces biogenic textures in the minerals. Mineral precipitation and potential biosignature preservation are evaluated at a cold spring system in Ten Mile Graben, Utah, USA, with scanning electron microscopy, X-ray diffraction, and stable carbon isotopes. Putative biogenic mineral habits such as aragonite microspheres and botryoids, and biologic materials (EPS and diatom tests) are abundant in modern mats, but the δ13C values are between +2‰ and +7.8‰, consistent with rapid CO2 degassing reported by other researchers. Multiple factors, however, influence isotopic signatures of mineral precipitates in this spring system, including rapid degassing, preferential microbial uptake of light carbon isotopes via multiple carboxylation pathways, hydrocarbon-charged fluid, and other inherited isotopic signatures in the fluid, particularly from dissolution of older limestones; therefore, it is not likely that this narrow range of isotopic ratios definitively shows an abiotic signature. A fossil vent preserves biogenic mineral habits, but not microbial body fossils. This study highlights the need for novel biosignature detection methods-and an understanding of what an abiotic signature definitively is-as we prepare for sample caching of carbonate rocks by the Mars2020 mission and future sample return.
Collapse
Affiliation(s)
- Jordan M Knuth
- Department of Geological Sciences, University of Delaware, Newark, Delaware, USA
| | - Sally L Potter-McIntyre
- School of Earth Systems and Sustainability, Southern Illinois University Carbondale, Carbondale, Illinois, USA
| |
Collapse
|
32
|
Kelly H, Spilde MN, Jones DS, Boston PJ. Insights into the Geomicrobiology of Biovermiculations from Rock Billet Incubation Experiments. Life (Basel) 2021; 11:life11010059. [PMID: 33467599 PMCID: PMC7830032 DOI: 10.3390/life11010059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 12/03/2022] Open
Abstract
Biovermiculations are uniquely patterned organic rich sediment formations found on the walls of caves and other subterranean environments. These distinctive worm-like features are the combined result of physical and biological processes. The diverse microbial communities that inhabit biovermiculations may corrode the host rock, form secondary minerals, and produce biofilms that stabilize the sediment matrix, thus altering cave surfaces and contributing to the formation of these wall deposits. In this study, we incubated basalt, limestone, and monzonite rock billets in biovermiculation mixed natural community enrichments for 468–604 days, and used scanning electron microscopy (SEM) to assess surface textures and biofilms that developed over the course of the experiment. We observed alteration of rock billet surfaces associated with biofilms and microbial filaments, particularly etch pits and other corrosion features in olivine and other silicates, calcite dissolution textures, and the formation of secondary minerals including phosphates, clays, and iron oxides. We identified twelve distinct biofilm morphotypes that varied based on rock type and the drying method used in sample preparation. These corrosion features and microbial structures inform potential biological mechanisms for the alteration of cave walls, and provide insight into possible small-scale macroscopically visible biosignatures that could augment the utility of biovermiculations and similarly patterned deposits for astrobiology and life detection applications.
Collapse
Affiliation(s)
- Hilary Kelly
- Earth and Environmental Science, New Mexico Institute of Mining and Technology, Socorro, NM 87801, USA;
| | - Michael N. Spilde
- Institute of Meteoritics, University of New Mexico, Albuquerque, NM 87131, USA;
| | - Daniel S. Jones
- Earth and Environmental Science, New Mexico Institute of Mining and Technology, Socorro, NM 87801, USA;
- National Cave and Karst Research Institute, Carlsbad, NM 88220, USA
- Correspondence: (P.J.B.); (D.S.J.)
| | - Penelope J. Boston
- Earth and Environmental Science, New Mexico Institute of Mining and Technology, Socorro, NM 87801, USA;
- National Cave and Karst Research Institute, Carlsbad, NM 88220, USA
- NASA Ames Research Center, Moffett Field, CA 94035, USA
- Correspondence: (P.J.B.); (D.S.J.)
| |
Collapse
|
33
|
Murphy RJ, Van Kranendonk MJ, Baumgartner R, Ryan C. Biogenicity of Spicular Geyserite from Te Kopia, New Zealand: Integrated Petrography, High-Resolution Hyperspectral and Elemental Analysis. ASTROBIOLOGY 2021; 21:115-135. [PMID: 33085533 DOI: 10.1089/ast.2019.2067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Hyperspectral and micro X-ray fluorescence (μXRF) imagery were used to derive maps of mineralogy and elemental chemistry from a sample of a siliceous hot spring deposit, or sinter, collected from a landslide breccia deposit at the base of the Paeroa fault, which bounds the eastern Taupo Rift at Te Kopia, Taupo Volcanic Zone, New Zealand. The sample is of a known biogenic sinter layer from a paleo-vent area of a recently extinct alkali chloride hot spring. The aim of the study was to distinguish it from other horizons derived from nonbiogenic sources, which is of relevance to early and extraterrestrial life research, specifically to help assess the potential reliability of morphology as an indicator of biology in the geological record. In particular, the distribution of opal, a common mineral in hot springs deposits that is known to preserve microbial features, and the relative abundances of Al-OH clay and water (OH and H2O) were mapped from hyperspectral imagery and element distributions defined by μXRF element mapping. Layers within the sinter sample composed of spicular geyserite-a type of micro-columnar stromatolite-showed contrasting mineralogy and water content in comparison with interspicular clastic sediment. Whereas clay was found to be concentrated in the interspicular sediment, high water contents characterized the spicules. μXRF imagery also showed differences in the composition of the two components of the spicule-bearing layers, with interspicular sediment being enriched in K, Ti, Fe, and Rb relative to the spicules, which are enriched in Ga. The contrasting nature of the mapped components highlights the detailed upward-branching nature of the spicules, identical to those found in living microstromatolites. These discriminants show that the spicular component can be discerned from the geological background through hyperspectral and μXRF mapping and used to define morphological features that may survive burial diagenesis and metamorphism as a biosignature in deep time rocks.
Collapse
Affiliation(s)
- Richard J Murphy
- Australian Centre for Field Robotics, Department of Aerospace, Mechanical & Mechatronic Engineering, The University of Sydney, Sydney, Australia
| | - Martin J Van Kranendonk
- Australian Centre for Astrobiology, and School of Biological and Earth and Environmental Sciences, University of New South Wales, Sydney, Australia
| | - Raphael Baumgartner
- Australian Centre for Astrobiology, and School of Biological and Earth and Environmental Sciences, University of New South Wales, Sydney, Australia
| | - Chris Ryan
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Canberra, Australia
| |
Collapse
|
34
|
Riedo A, de Koning C, Stevens AH, Cockell CS, McDonald A, López AC, Grimaudo V, Tulej M, Wurz P, Ehrenfreund P. The Detection of Elemental Signatures of Microbes in Martian Mudstone Analogs Using High Spatial Resolution Laser Ablation Ionization Mass Spectrometry. ASTROBIOLOGY 2020; 20:1224-1235. [PMID: 33001758 DOI: 10.1089/ast.2019.2087] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The detection and identification of biosignatures on planetary bodies such as Mars in situ is extremely challenging. Current knowledge from space exploration missions suggests that a suite of complementary instruments is required in situ for a successful identification of past or present life. For future exploration missions, new and innovative instrumentation capable of high spatial resolution chemical (elemental and isotope) analysis of solids with improved measurement capabilities is of considerable interest because a multitude of potential signatures of extinct or extant life have dimensions on the micrometer scale. The aim of this study is to extend the current measurement capabilities of a miniature laser ablation ionization mass spectrometer (LIMS) designed for space exploration missions to detect signatures of microbial life. In total, 14 martian mudstone analogue samples were investigated regarding their elemental composition. Half the samples were artificially inoculated with a low number density of microbes, and half were used as abiotic controls. The samples were treated in a number of ways. Some were cultured anaerobically and some aerobically; some abiotic samples were incubated with water, and some remained dry. Some of the samples were exposed to a large dose of γ radiation, and some were left un-irradiated. While no significant elemental differences were observed between the applied sample treatments, the instrument showed the capability to detect biogenic element signatures of the inoculated microbes by monitoring biologically relevant elements, such as hydrogen, carbon, sulfur, iron, and so on. When an enrichment in carbon was measured in the samples but no simultaneous increase in other biologically relevant elements was detected, it suggests, for example, a carbon-containing inclusion; when the enrichment was in carbon and in bio-relevant elements, it suggests the presences of microbes. This study presents first results on the detection of biogenic element patterns of microbial life using a miniature LIMS system designed for space exploration missions.
Collapse
Affiliation(s)
- Andreas Riedo
- Laboratory for Astrophysics, Leiden Observatory, Leiden University, Leiden, The Netherlands
- Space Research and Planetary Sciences, Physics Institute, University of Bern, Bern, Switzerland
| | - Coen de Koning
- Laboratory for Astrophysics, Leiden Observatory, Leiden University, Leiden, The Netherlands
| | - Adam H Stevens
- School of Physics and Astronomy, UK Centre for Astrobiology, University of Edinburgh, Edinburgh, United Kingdom
| | - Charles S Cockell
- School of Physics and Astronomy, UK Centre for Astrobiology, University of Edinburgh, Edinburgh, United Kingdom
| | - Alison McDonald
- School of Engineering, Bioimaging Facility, University of Edinburgh, Edinburgh, United Kingdom
| | - Alena Cedeño López
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| | - Valentine Grimaudo
- Space Research and Planetary Sciences, Physics Institute, University of Bern, Bern, Switzerland
| | - Marek Tulej
- Space Research and Planetary Sciences, Physics Institute, University of Bern, Bern, Switzerland
| | - Peter Wurz
- Space Research and Planetary Sciences, Physics Institute, University of Bern, Bern, Switzerland
| | - Pascale Ehrenfreund
- Laboratory for Astrophysics, Leiden Observatory, Leiden University, Leiden, The Netherlands
- Space Policy Institute, George Washington University, Washington, DC, USA
| |
Collapse
|
35
|
Carrier B, Beaty D, Meyer M, Blank J, Chou L, DasSarma S, Des Marais D, Eigenbrode J, Grefenstette N, Lanza N, Schuerger A, Schwendner P, Smith H, Stoker C, Tarnas J, Webster K, Bakermans C, Baxter B, Bell M, Benner S, Bolivar Torres H, Boston P, Bruner R, Clark B, DasSarma P, Engelhart A, Gallegos Z, Garvin Z, Gasda P, Green J, Harris R, Hoffman M, Kieft T, Koeppel A, Lee P, Li X, Lynch K, Mackelprang R, Mahaffy P, Matthies L, Nellessen M, Newsom H, Northup D, O'Connor B, Perl S, Quinn R, Rowe L, Sauterey B, Schneegurt M, Schulze-Makuch D, Scuderi L, Spilde M, Stamenković V, Torres Celis J, Viola D, Wade B, Walker C, Wiens R, Williams A, Williams J, Xu J. Mars Extant Life: What's Next? Conference Report. ASTROBIOLOGY 2020; 20:785-814. [PMID: 32466662 PMCID: PMC7307687 DOI: 10.1089/ast.2020.2237] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 03/24/2020] [Indexed: 05/19/2023]
Abstract
On November 5-8, 2019, the "Mars Extant Life: What's Next?" conference was convened in Carlsbad, New Mexico. The conference gathered a community of actively publishing experts in disciplines related to habitability and astrobiology. Primary conclusions are as follows: A significant subset of conference attendees concluded that there is a realistic possibility that Mars hosts indigenous microbial life. A powerful theme that permeated the conference is that the key to the search for martian extant life lies in identifying and exploring refugia ("oases"), where conditions are either permanently or episodically significantly more hospitable than average. Based on our existing knowledge of Mars, conference participants highlighted four potential martian refugium (not listed in priority order): Caves, Deep Subsurface, Ices, and Salts. The conference group did not attempt to reach a consensus prioritization of these candidate environments, but instead felt that a defensible prioritization would require a future competitive process. Within the context of these candidate environments, we identified a variety of geological search strategies that could narrow the search space. Additionally, we summarized a number of measurement techniques that could be used to detect evidence of extant life (if present). Again, it was not within the scope of the conference to prioritize these measurement techniques-that is best left for the competitive process. We specifically note that the number and sensitivity of detection methods that could be implemented if samples were returned to Earth greatly exceed the methodologies that could be used at Mars. Finally, important lessons to guide extant life search processes can be derived both from experiments carried out in terrestrial laboratories and analog field sites and from theoretical modeling.
Collapse
Affiliation(s)
- B.L. Carrier
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - D.W. Beaty
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | | | - J.G. Blank
- NASA Ames Research Center, Moffett Field, California, USA
- Blue Marble Space Institute of Science, Seattle, Washington, USA
| | - L. Chou
- Georgetown University, Washington, DC, USA
- NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
| | - S. DasSarma
- Department of Microbiology and Immunology, Institute of Marine and Environmental Technology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | | | | | | | - N.L. Lanza
- Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| | - A.C. Schuerger
- University of Florida/Space Life Sciences Laboratory, Kennedy Space Center, Florida, USA
| | - P. Schwendner
- University of Florida/Space Life Sciences Laboratory, Kennedy Space Center, Florida, USA
| | - H.D. Smith
- NASA Ames Research Center, Moffett Field, California, USA
| | - C.R. Stoker
- NASA Ames Research Center, Moffett Field, California, USA
| | - J.D. Tarnas
- Brown University, Providence, Rhode Island, USA
| | - K.D. Webster
- Planetary Science Institute, Tucson, Arizona, USA
| | - C. Bakermans
- Pennsylvania State University, Altoona, Pennsylvania, USA
| | - B.K. Baxter
- Westminster College, Salt Lake City, Utah, USA
| | - M.S. Bell
- NASA Johnson Space Center, Houston, Texas, USA
| | - S.A. Benner
- Foundation for Applied Molecular Evolution, Alachua, Florida, USA
| | - H.H. Bolivar Torres
- Universidad Nacional Autonoma de Mexico, Coyoacan, Distrito Federal Mexico, Mexico
| | - P.J. Boston
- NASA Astrobiology Institute, NASA Ames Research Center, Moffett Field, California, USA
| | - R. Bruner
- Denver Museum of Nature and Science, Denver, Colorado, USA
| | - B.C. Clark
- Space Science Institute, Littleton, Colorado, USA
| | - P. DasSarma
- Department of Microbiology and Immunology, Institute of Marine and Environmental Technology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | | | - Z.E. Gallegos
- University of New Mexico, Albuquerque, New Mexico, USA
| | - Z.K. Garvin
- Princeton University, Princeton, New Jersey, USA
| | - P.J. Gasda
- Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| | - J.H. Green
- Texas Tech University, Lubbock, Texas, USA
| | - R.L. Harris
- Princeton University, Princeton, New Jersey, USA
| | - M.E. Hoffman
- University of New Mexico, Albuquerque, New Mexico, USA
| | - T. Kieft
- New Mexico Institute of Mining and Technology, Socorro, New Mexico, USA
| | | | - P.A. Lee
- College of Charleston, Charleston, South Carolina, USA
| | - X. Li
- University of Maryland Baltimore County, Baltimore, Maryland, USA
| | - K.L. Lynch
- Lunar and Planetary Institute/USRA, Houston, Texas, USA
| | - R. Mackelprang
- California State University Northridge, Northridge, California, USA
| | - P.R. Mahaffy
- NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
| | - L.H. Matthies
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | | | - H.E. Newsom
- University of New Mexico, Albuquerque, New Mexico, USA
| | - D.E. Northup
- University of New Mexico, Albuquerque, New Mexico, USA
| | | | - S.M. Perl
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - R.C. Quinn
- NASA Ames Research Center, Moffett Field, California, USA
| | - L.A. Rowe
- Valparaiso University, Valparaiso, Indiana, USA
| | | | | | | | - L.A. Scuderi
- University of New Mexico, Albuquerque, New Mexico, USA
| | - M.N. Spilde
- University of New Mexico, Albuquerque, New Mexico, USA
| | - V. Stamenković
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - J.A. Torres Celis
- Universidad Nacional Autonoma de Mexico, Coyoacan, Distrito Federal Mexico, Mexico
| | - D. Viola
- NASA Ames Research Center, Moffett Field, California, USA
| | - B.D. Wade
- Michigan State University, East Lansing, Michigan, USA
| | - C.J. Walker
- Delaware State University, Dover, Delaware, USA
| | - R.C. Wiens
- Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| | | | - J.M. Williams
- University of New Mexico, Albuquerque, New Mexico, USA
| | - J. Xu
- University of Texas, El Paso, Texas, USA
| |
Collapse
|
36
|
Maldanis L, Hickman-Lewis K, Verezhak M, Gueriau P, Guizar-Sicairos M, Jaqueto P, Trindade RIF, Rossi AL, Berenguer F, Westall F, Bertrand L, Galante D. Nanoscale 3D quantitative imaging of 1.88 Ga Gunflint microfossils reveals novel insights into taphonomic and biogenic characters. Sci Rep 2020; 10:8163. [PMID: 32424216 PMCID: PMC7235231 DOI: 10.1038/s41598-020-65176-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 04/29/2020] [Indexed: 11/17/2022] Open
Abstract
Precambrian cellular remains frequently have simple morphologies, micrometric dimensions and are poorly preserved, imposing severe analytical and interpretational challenges, especially for irrefutable attestations of biogenicity. The 1.88 Ga Gunflint biota is a Precambrian microfossil assemblage with different types and qualities of preservation across its numerous geological localities and provides important insights into the Proterozoic biosphere and taphonomic processes. Here we use synchrotron-based ptychographic X-ray computed tomography to investigate well-preserved carbonaceous microfossils from the Schreiber Beach locality as well as poorly-preserved, iron-replaced fossil filaments from the Mink Mountain locality, Gunflint Formation. 3D nanoscale imaging with contrast based on electron density allowed us to assess the morphology and carbonaceous composition of different specimens and identify the minerals associated with their preservation based on retrieved mass densities. In the Mink Mountain filaments, the identification of mature kerogen and maghemite rather than the ubiquitously described hematite indicates an influence from biogenic organics on the local maturation of iron oxides through diagenesis. This non-destructive 3D approach to microfossil composition at the nanoscale within their geological context represents a powerful approach to assess the taphonomy and biogenicity of challenging or poorly preserved traces of early microbial life, and may be applied effectively to extraterrestrial samples returned from upcoming space missions.
Collapse
Affiliation(s)
- L Maldanis
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), Av. Giuseppe Maximo Scolfaro, 10000, 13083-100, Campinas, Brazil. .,Institute of Physics of São Carlos, University of São Paulo, Av. Trabalhador são-carlense, 400, 13566-590, São Carlos, Brazil. .,ISterre, UGA, CNRS, Observatoire des Sciences de l'Univers, CS 40700, 38058, Grenoble, France.
| | - K Hickman-Lewis
- Centre de Biophysique Moléculaire, CNRS, Rue Charles Sadron, 45071, Orléans, France.,Dipartimento di Scienze Biologiche, Geologiche e Ambientali (BiGeA), Università di Bologna, via Zamboni 67, I-40126, Bologna, Italy
| | - M Verezhak
- Paul Scherrer Institut, Forschungsstrasse 111, 5232, Villigen, Switzerland
| | - P Gueriau
- Université Paris-Saclay, CNRS, ministère de la culture, UVSQ, IPANEMA, 91192, Saint-Aubin, France.,Institute of Earth Sciences (ISTE), University of Lausanne, Lausanne, Switzerland
| | - M Guizar-Sicairos
- Paul Scherrer Institut, Forschungsstrasse 111, 5232, Villigen, Switzerland
| | - P Jaqueto
- Department of Geophysics, Institute of Astronomy, Geophysics and Atmospheric Sciences, University of São Paulo, Rua do Matão, 1226, 05508-090, São Paulo, Brazil
| | - R I F Trindade
- Department of Geophysics, Institute of Astronomy, Geophysics and Atmospheric Sciences, University of São Paulo, Rua do Matão, 1226, 05508-090, São Paulo, Brazil
| | - A L Rossi
- Brazilian Center for Research in Physics (CBPF), R. Dr. Xavier Sigaud, 150, 22290-180, Rio de Janeiro, Brazil
| | - F Berenguer
- Synchrotron Soleil, Saint-Aubin, L'Orme des Merisiers, BP 48 Saint-Aubin, 91192, Gif-sur-Yvette, France
| | - F Westall
- Centre de Biophysique Moléculaire, CNRS, Rue Charles Sadron, 45071, Orléans, France
| | - L Bertrand
- Université Paris-Saclay, CNRS, ministère de la culture, UVSQ, IPANEMA, 91192, Saint-Aubin, France.,Université Paris-Saclay, 91190, Saint-Aubin, France
| | - D Galante
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), Av. Giuseppe Maximo Scolfaro, 10000, 13083-100, Campinas, Brazil
| |
Collapse
|
37
|
Gong J, Myers KD, Munoz-Saez C, Homann M, Rouillard J, Wirth R, Schreiber A, van Zuilen MA. Formation and Preservation of Microbial Palisade Fabric in Silica Deposits from El Tatio, Chile. ASTROBIOLOGY 2020; 20:500-524. [PMID: 31663774 PMCID: PMC7133459 DOI: 10.1089/ast.2019.2025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 09/19/2019] [Indexed: 05/26/2023]
Abstract
Palisade fabric is a ubiquitous texture of silica sinter found in low temperature (<40°C) regimes of hot spring environments, and it is formed when populations of filamentous microorganisms act as templates for silica polymerization. Although it is known that postdepositional processes such as biological degradation and dewatering can strongly affect preservation of these fabrics, the impact of extreme aridity has so far not been studied in detail. Here, we report a detailed analysis of recently silicified palisade fabrics from a geyser in El Tatio, Chile, tracing the progressive degradation of microorganisms within the silica matrix. This is complemented by heating experiments of natural sinter samples to assess the role of diagenesis. Sheathed cyanobacteria, identified as Leptolyngbya sp., were found to be incorporated into silica sinter by irregular cycles of wetting, evaporation, and mineral precipitation. Transmission electron microscopy analyses revealed that nanometer-sized silica particles are filling the pore space within individual cyanobacterial sheaths, giving rise to their structural rigidity to sustain a palisade fabric framework. Diagenesis experiments further show that the sheaths of the filaments are preferentially preserved relative to the trichomes, and that the amount of water present within the sinter is an important factor for overall preservation during burial. This study confirms that palisade fabrics are efficiently generated in a highly evaporative geothermal field, and that these biosignatures can be most effectively preserved under dry diagenetic conditions.
Collapse
Affiliation(s)
- Jian Gong
- Equipe Géomicrobiologie, Université de Paris, Institut de physique du globe de Paris, CNRS, Paris, France
| | - Kimberly D. Myers
- Equipe Géomicrobiologie, Université de Paris, Institut de physique du globe de Paris, CNRS, Paris, France
| | - Carolina Munoz-Saez
- Departamento de Geologia, FCFM, Centro de Excelencia en Geotermia de los Andes (CEGA), Universidad de Chile, Santiago, Chile
| | - Martin Homann
- CNRS-UMR6538 Laboratoire Géosciences Océan, European Institute for Marine Studies, Technopôle Brest-Iroise, Plouzané, France
| | - Joti Rouillard
- Equipe Géomicrobiologie, Université de Paris, Institut de physique du globe de Paris, CNRS, Paris, France
| | - Richard Wirth
- GeoForschungsZentrum, Section 3.5 Interface Geochemistry, D-14473, Potsdam, Germany
| | - Anja Schreiber
- GeoForschungsZentrum, Section 3.5 Interface Geochemistry, D-14473, Potsdam, Germany
| | - Mark A. van Zuilen
- Equipe Géomicrobiologie, Université de Paris, Institut de physique du globe de Paris, CNRS, Paris, France
| |
Collapse
|
38
|
Polgári M, Gyollai I, Fintor K, Horváth H, Pál-Molnár E, Biondi JC. Microbially Mediated Ore-Forming Processes and Cell Mineralization. Front Microbiol 2019; 10:2731. [PMID: 31849883 PMCID: PMC6902787 DOI: 10.3389/fmicb.2019.02731] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 11/11/2019] [Indexed: 11/13/2022] Open
Abstract
Sedimentary black shale-hosted manganese carbonate and oxide ores were studied by high-resolution in situ detailed optical and cathodoluminescence microscopy, Raman spectroscopy, and FTIR spectroscopy to determine microbial contribution in metallogenesis. This study of the Urucum Mn deposit in Brazil is included as a case study for microbially mediated ore-forming processes. The results were compared and interpreted in a comparative way, and the data were elaborated by a complex, structural hierarchical method. The first syngenetic products of microbial enzymatic oxidation were ferrihydrite and lepidocrocite on the Fe side, and vernadite, todorokite, birnessite, and manganite on the Mn side, formed under obligatory oxic (Mn) and suboxic (Fe) conditions and close to neutral pH. Fe- and Mn-oxidizing bacteria played a basic role in metallogenesis based on microtextural features, bioindicator minerals, and embedded variable organic matter. Trace element content is determined by source of elements and microbial activity. The present Urucum (Brazil), Datangpo (China), and Úrkút (Hungary) deposits are the result of complex diagenetic processes, which include the decomposition and mineralization of cell and extracellular polymeric substance (EPS) of Fe and Mn bacteria and cyanobacteria. Heterotrophic cell colonies activated randomly in the microbialite sediment after burial in suboxic neutral/alkaline conditions, forming Mn carbonates and variable cation-bearing oxides side by side with lithification and stabilization of minerals. Deposits of variable geological ages and geographical occurrences show strong similarities and indicate two-step microbial metallogenesis: a primary chemolithoautotrophic, and a diagenetic heterotrophic microbial cycle, influenced strongly by mineralization of cells and EPSs. These processes perform a basic role in controlling major and trace element distribution in sedimentary environments on a global level and place biogeochemical constraints on the element content of natural waters, precipitation of minerals, and water contaminants.
Collapse
Affiliation(s)
- Márta Polgári
- Research Centre for Astronomy and Geosciences, IGGR, Budapest, Hungary
- Department of Natural Geography and Geoinformatics, Eszterházy Károly University, Eger, Hungary
| | - Ildikó Gyollai
- Research Centre for Astronomy and Geosciences, IGGR, Budapest, Hungary
| | - Krisztián Fintor
- Department of Mineralogy, Geochemistry and Petrology, Szeged University, Szeged, Hungary
| | - Henrietta Horváth
- Department of Mineralogy, Geochemistry and Petrology, Szeged University, Szeged, Hungary
| | - Elemér Pál-Molnár
- Department of Mineralogy, Geochemistry and Petrology, Szeged University, Szeged, Hungary
| | - João Carlos Biondi
- Polytechnic Center, Geology Department, Federal University of Paraná State, Curitiba, Brazil
| |
Collapse
|
39
|
Carrizo D, Sánchez-García L, Rodriguez N, Gómez F. Lipid Biomarker and Carbon Stable Isotope Survey on the Dallol Hydrothermal System in Ethiopia. ASTROBIOLOGY 2019; 19:1474-1489. [PMID: 31112043 PMCID: PMC6921156 DOI: 10.1089/ast.2018.1963] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 04/17/2019] [Indexed: 05/04/2023]
Abstract
The remote Dallol Hot Springs, an active hydrothermal system in the volcanic region of Danakil (Ethiopia), is an interesting yet poorly studied polyextreme environment for investigating the limits of life. Here, we explored the presence of signs of life in five samples of sinter deposits at Dallol, by means of lipid biomarkers and stable isotope composition. The results reveal the existence of biological material with predominance of (presently or recently active) microbial sources, according to the relative abundance of low-over-high molecular weight moieties (n-alkanes, n-carboxylic acids, or n-alkanols), and the detection of diverse microbial-diagnostic compounds (i.e., monomethyl alkanes; C16:1 ω7, C18:1 ω9, C18:1 ω10, C18:2 ω6,9 and iso/anteiso C15 and C17 carboxylic acids; or short-chained dicarboxylic acids). The molecular lipid patterns at Dallol suggest a microbial community largely composed of thermophilic members of the Aquificae, Thermotogae, Chroroflexi, or Proteobacteria phyla, as well as microbial consortia of phototrophs (e.g., Cyanobacteria-Chloroflexi) in lower-temperature and higher-pH niches. Autotrophic sources most likely using the Calvin cycle, together with the acetyl coenzyme A (CoA) pathway, were inferred from the depleted bulk δ13C ratios (-25.9/-22.6‰), while sulfate-reducing bacteria were considered according to enriched sulfate (7.3/11.7‰) and total sulfur (20.5/8.2‰) δ34S ratios. The abundance of functionalized hydrocarbons (i.e., n-carboxylic acids and n-alkanols) and the distinct even-over-odd predominance/preference on the typically odd n-alkanes (CPIalkanes ≤ 1) pointed to active or recent microbial metabolisms. This study documents the detection of biosignatures in the polyextreme environment of Dallol and raises the possibility of finding life or its remnants in other remote locations on Earth, where the harsh environmental conditions would lead to expect otherwise. These findings are relevant for understanding the limits of life and have implications for searching for hypothetical life vestiges in extreme environments beyond Earth.
Collapse
Affiliation(s)
- Daniel Carrizo
- Centro de Astrobiología (CSIC-INTA), Torrejón de Ardoz, Madrid, Spain
| | | | - Nuria Rodriguez
- Centro de Astrobiología (CSIC-INTA), Torrejón de Ardoz, Madrid, Spain
| | - Felipe Gómez
- Centro de Astrobiología (CSIC-INTA), Torrejón de Ardoz, Madrid, Spain
| |
Collapse
|
40
|
Corenblit D, Darrozes J, Julien F, Otto T, Roussel E, Steiger J, Viles H. The Search for a Signature of Life on Mars: A Biogeomorphological Approach. ASTROBIOLOGY 2019; 19:1279-1291. [PMID: 31584307 DOI: 10.1089/ast.2018.1969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Geological evidence shows that life on Earth evolved in line with major concomitant changes in Earth surface processes and landforms. Biogeomorphological characteristics, especially those involving microorganisms, are potentially important facets of biosignatures on Mars and are generating increasing interest in astrobiology. Using Earth as an analog provides reasons to suspect that past or present life on Mars could have resulted in recognizable biogenic landforms. Here, we discuss the potential for, and limitations of, a biogeomorphological approach to identifying the subsets of landforms that are modulated or created through biological processes and thus present signatures of life on Mars. Subsets especially involving microorganisms that are potentially important facets of biosignatures on Mars are proposed: (i) weathering features, biocrusts, patinas, and varnishes; (ii) microbialites and microbially induced sedimentary structures (MISS); (iii) bioaccumulations of skeletal remains; (iv) degassing landforms; (v) cryoconites; (vi) self-organized patterns; (vii) unclassified non-analog landforms. We propose a biogeomorphological frequency histogram approach to identify anomalies/modulations in landform properties. Such detection of anomalies/modulations will help track a biotic origin and lead to the development of an integrative multiproxy and multiscale approach combining morphological, structural, textural, and geochemical expertise. This perspective can help guide the choice of investigation sites for future missions and the types and scales of observations to be made by orbiters and rovers.
Collapse
Affiliation(s)
- Dov Corenblit
- Université Clermont Auvergne, CNRS, GEOLAB - F-63000 Clermont-Ferrand, France
| | - José Darrozes
- Université Paul Sabatier, CNRS/IRD, GET - F-31062 Toulouse, France
| | - Frédéric Julien
- CNRS, ECOLAB, Université Paul Sabatier, CNRS, INPT, UPS, F-31062 Toulouse, France
| | - Thierry Otto
- CNRS, ECOLAB, Université Paul Sabatier, CNRS, INPT, UPS, F-31062 Toulouse, France
| | - Erwan Roussel
- Université Clermont Auvergne, CNRS, GEOLAB - F-63000 Clermont-Ferrand, France
| | - Johannes Steiger
- Université Clermont Auvergne, CNRS, GEOLAB - F-63000 Clermont-Ferrand, France
| | - Heather Viles
- School of Geography and the Environment, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
41
|
Chan MA, Hinman NW, Potter-McIntyre SL, Schubert KE, Gillams RJ, Awramik SM, Boston PJ, Bower DM, Des Marais DJ, Farmer JD, Jia TZ, King PL, Hazen RM, Léveillé RJ, Papineau D, Rempfert KR, Sánchez-Román M, Spear JR, Southam G, Stern JC, Cleaves HJ. Deciphering Biosignatures in Planetary Contexts. ASTROBIOLOGY 2019; 19:1075-1102. [PMID: 31335163 PMCID: PMC6708275 DOI: 10.1089/ast.2018.1903] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 03/10/2019] [Indexed: 05/05/2023]
Abstract
Microbial life permeates Earth's critical zone and has likely inhabited nearly all our planet's surface and near subsurface since before the beginning of the sedimentary rock record. Given the vast time that Earth has been teeming with life, do astrobiologists truly understand what geological features untouched by biological processes would look like? In the search for extraterrestrial life in the Universe, it is critical to determine what constitutes a biosignature across multiple scales, and how this compares with "abiosignatures" formed by nonliving processes. Developing standards for abiotic and biotic characteristics would provide quantitative metrics for comparison across different data types and observational time frames. The evidence for life detection falls into three categories of biosignatures: (1) substances, such as elemental abundances, isotopes, molecules, allotropes, enantiomers, minerals, and their associated properties; (2) objects that are physical features such as mats, fossils including trace-fossils and microbialites (stromatolites), and concretions; and (3) patterns, such as physical three-dimensional or conceptual n-dimensional relationships of physical or chemical phenomena, including patterns of intermolecular abundances of organic homologues, and patterns of stable isotopic abundances between and within compounds. Five key challenges that warrant future exploration by the astrobiology community include the following: (1) examining phenomena at the "right" spatial scales because biosignatures may elude us if not examined with the appropriate instrumentation or modeling approach at that specific scale; (2) identifying the precise context across multiple spatial and temporal scales to understand how tangible biosignatures may or may not be preserved; (3) increasing capability to mine big data sets to reveal relationships, for example, how Earth's mineral diversity may have evolved in conjunction with life; (4) leveraging cyberinfrastructure for data management of biosignature types, characteristics, and classifications; and (5) using three-dimensional to n-D representations of biotic and abiotic models overlain on multiple overlapping spatial and temporal relationships to provide new insights.
Collapse
Affiliation(s)
- Marjorie A. Chan
- Department of Geology & Geophysics, University of Utah, Salt Lake City, Utah
| | - Nancy W. Hinman
- Department of Geosciences, University of Montana, Missoula, Montana
| | | | - Keith E. Schubert
- Department of Electrical and Computer Engineering, Baylor University, Waco, Texas
| | - Richard J. Gillams
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan
- Electronics and Computer Science, Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Stanley M. Awramik
- Department of Earth Science, University of California, Santa Barbara, Santa Barbara, California
| | - Penelope J. Boston
- NASA Astrobiology Institute, NASA Ames Research Center, Moffett Field, California
| | - Dina M. Bower
- Department of Astronomy, University of Maryland College Park (CRESST), College Park, Maryland
- NASA Goddard Space Flight Center, Greenbelt, Maryland
| | | | - Jack D. Farmer
- School of Earth and Space Exploration, Arizona State University, Tempe, Arizona
| | - Tony Z. Jia
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan
| | - Penelope L. King
- Research School of Earth Sciences, The Australian National University, Canberra, Australia
| | - Robert M. Hazen
- Geophysical Laboratory, Carnegie Institution for Science, Washington, District of Columbia
| | - Richard J. Léveillé
- Department of Earth and Planetary Sciences, McGill University, Montreal, Canada
- Geosciences Department, John Abbott College, Sainte-Anne-de-Bellevue, Canada
| | - Dominic Papineau
- London Centre for Nanotechnology, University College London, London, United Kingdom
- Department of Earth Sciences, University College London, London, United Kingdom
- Centre for Planetary Sciences, University College London, London, United Kingdom
- BioGeology and Environmental Geology State Key Laboratory, School of Earth Sciences, China University of Geosciences, Wuhan, China
| | - Kaitlin R. Rempfert
- Department of Geological Sciences, University of Colorado Boulder, Boulder, Colorado
| | - Mónica Sánchez-Román
- Earth Sciences Department, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - John R. Spear
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado
| | - Gordon Southam
- School of Earth and Environmental Sciences, The University of Queensland, St. Lucia, Queensland, Australia
| | | | - Henderson James Cleaves
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan
- Program in Interdisciplinary Studies, Institute for Advanced Study, Princeton, New Jersey
| |
Collapse
|
42
|
Javaux EJ. Challenges in evidencing the earliest traces of life. Nature 2019; 572:451-460. [PMID: 31435057 DOI: 10.1038/s41586-019-1436-4] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 06/21/2019] [Indexed: 11/09/2022]
Abstract
Earth has been habitable for 4.3 billion years, and the earliest rock record indicates the presence of a microbial biosphere by at least 3.4 billion years ago-and disputably earlier. Possible traces of life can be morphological or chemical but abiotic processes that mimic or alter them, or subsequent contamination, may challenge their interpretation. Advances in micro- and nanoscale analyses, as well as experimental approaches, are improving the characterization of these biosignatures and constraining abiotic processes, when combined with the geological context. Reassessing the evidence of early life is challenging, but essential and timely in the quest to understand the origin and evolution of life, both on Earth and beyond.
Collapse
Affiliation(s)
- Emmanuelle J Javaux
- Early Life Traces & Evolution-Astrobiology, UR Astrobiology, Department of Geology, University of Liège, Liège, Belgium.
| |
Collapse
|
43
|
Andreetto F, Dela Pierre F, Gibert L, Natalicchio M, Ferrando S. Potential Fossilized Sulfide-Oxidizing Bacteria in the Upper Miocene Sulfur-Bearing Limestones From the Lorca Basin (SE Spain): Paleoenvironmental Implications. Front Microbiol 2019; 10:1031. [PMID: 31164872 PMCID: PMC6536631 DOI: 10.3389/fmicb.2019.01031] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Accepted: 04/24/2019] [Indexed: 12/26/2022] Open
Abstract
The sulfur-bearing limestones interbedded in the upper Miocene diatomaceous sediments (Tripoli Formation) of the Lorca Basin (SE Spain) are typified, as other Mediterranean coeval carbonate and gypsum deposits, by filamentous, circular and rod-shaped microstructures of controversial origin. These features have been interpreted both as fecal pellets of brine shrimps and/or of copepods, remains of algae or cyanobacteria and fossilized sulfide-oxidizing bacteria. To shed light on their origin, a multidisciplinary study including optical, UV and scanning electron microscopy, Raman microspectroscopy, and geochemical (carbon and oxygen stable isotopes) analyses has been carried out on three carbonate beds exposed along the La Serrata ridge. The different composition of the filamentous and circular objects with respect to the rod-shaped microstructures suggest that the former represent remains of bacteria, while the latter fecal pellets of deposit- or suspension-feeder organisms. Size and shape of the filamentous and circular microfossils are consistent with their assignment to colorless sulfide-oxidizing bacteria like Beggiatoa (or Thioploca) and Thiomargarita, which is further supported by the presence, only within the microfossil body, of tiny pyrite grains. These grains possibly result from early diagenetic transformation of original sulfur globules stored by the bacteria, which are a diagnostic feature of this group of prokaryotes. The development of microbial communities dominated by putative sulfide-oxidizing bacteria at Lorca was favored by hydrogen sulfide flows generated through degradation of organic matter by sulfate-reducing bacteria thriving in underlying organic-rich sediments.
Collapse
Affiliation(s)
- Federico Andreetto
- Dipartimento di Scienze della Terra, Università degli Studi di Torino, Turin, Italy
| | | | - Luis Gibert
- Departament de Mineralogia, Petrologia i Geologia Aplicada, Universitat de Barcelona, Barcelona, Spain
| | - Marcello Natalicchio
- Dipartimento di Scienze della Terra, Università degli Studi di Torino, Turin, Italy
| | - Simona Ferrando
- Dipartimento di Scienze della Terra, Università degli Studi di Torino, Turin, Italy
| |
Collapse
|
44
|
Sapers HM, Razzell Hollis J, Bhartia R, Beegle LW, Orphan VJ, Amend JP. The Cell and the Sum of Its Parts: Patterns of Complexity in Biosignatures as Revealed by Deep UV Raman Spectroscopy. Front Microbiol 2019; 10:679. [PMID: 31156562 PMCID: PMC6527968 DOI: 10.3389/fmicb.2019.00679] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 03/18/2019] [Indexed: 01/27/2023] Open
Abstract
The next NASA-led Mars mission (Mars 2020) will carry a suite of instrumentation dedicated to investigating Martian history and the in situ detection of potential biosignatures. SHERLOC, a deep UV Raman/Fluorescence spectrometer has the ability to detect and map the distribution of many organic compounds, including the aromatic molecules that are fundamental building blocks of life on Earth, at concentrations down to 1 ppm. The mere presence of organic compounds is not a biosignature: there is widespread distribution of reduced organic molecules in the Solar System. Life utilizes a select few of these molecules creating conspicuous enrichments of specific molecules that deviate from the distribution expected from purely abiotic processes. The detection of far from equilibrium concentrations of a specific subset of organic molecules, such as those uniquely enriched by biological processes, would comprise a universal biosignature independent of specific terrestrial biochemistry. The detectability and suitability of a small subset of organic molecules to adequately describe a living system is explored using the bacterium Escherichia coli as a model organism. The DUV Raman spectra of E. coli cells are dominated by the vibrational modes of the nucleobases adenine, guanine, cytosine, and thymine, and the aromatic amino acids tyrosine, tryptophan, and phenylalanine. We demonstrate that not only does the deep ultraviolet (DUV) Raman spectrum of E. coli reflect a distinct concentration of specific organic molecules, but that a sufficient molecular complexity is required to deconvolute the cellular spectrum. Furthermore, a linear combination of the DUV resonant compounds is insufficient to fully describe the cellular spectrum. The residual in the cellular spectrum indicates that DUV Raman spectroscopy enables differentiating between the presence of biomolecules and the complex uniquely biological organization and arrangements of these molecules in living systems. This study demonstrates the ability of DUV Raman spectroscopy to interrogate a complex biological system represented in a living cell, and differentiate between organic detection and a series of Raman features that derive from the molecular complexity inherent to life constituting a biosignature.
Collapse
Affiliation(s)
- Haley M. Sapers
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, United States
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, United States
| | - Joseph Razzell Hollis
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States
| | - Rohit Bhartia
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States
| | - Luther W. Beegle
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States
| | - Victoria J. Orphan
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, United States
| | - Jan P. Amend
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, United States
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
45
|
Neveu M, Hays LE, Voytek MA, New MH, Schulte MD. The Ladder of Life Detection. ASTROBIOLOGY 2018; 18:1375-1402. [PMID: 29862836 PMCID: PMC6211372 DOI: 10.1089/ast.2017.1773] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 03/23/2018] [Indexed: 05/04/2023]
Abstract
We describe the history and features of the Ladder of Life Detection, a tool intended to guide the design of investigations to detect microbial life within the practical constraints of robotic space missions. To build the Ladder, we have drawn from lessons learned from previous attempts at detecting life and derived criteria for a measurement (or suite of measurements) to constitute convincing evidence for indigenous life. We summarize features of life as we know it, how specific they are to life, and how they can be measured, and sort these features in a general sense based on their likelihood of indicating life. Because indigenous life is the hypothesis of last resort in interpreting life-detection measurements, we propose a small but expandable set of decision rules determining whether the abiotic hypothesis is disproved. In light of these rules, we evaluate past and upcoming attempts at life detection. The Ladder of Life Detection is not intended to endorse specific biosignatures or instruments for life-detection measurements, and is by no means a definitive, final product. It is intended as a starting point to stimulate discussion, debate, and further research on the characteristics of life, what constitutes a biosignature, and the means to measure them.
Collapse
Affiliation(s)
- Marc Neveu
- NASA Postdoctoral Management Program Fellow, Universities Space Research Association, Columbia, Maryland
- NASA Headquarters, Washington, DC
| | - Lindsay E. Hays
- NASA Headquarters, Washington, DC
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
| | | | | | | |
Collapse
|
46
|
A Systematic Way to Life Detection: Combining Field, Lab and Space Research in Low Earth Orbit. ACTA ACUST UNITED AC 2018. [DOI: 10.1007/978-3-319-96175-0_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
|
47
|
Kraus EA, Beeler SR, Mors RA, Floyd JG, Stamps BW, Nunn HS, Stevenson BS, Johnson HA, Shapiro RS, Loyd SJ, Spear JR, Corsetti FA. Microscale Biosignatures and Abiotic Mineral Authigenesis in Little Hot Creek, California. Front Microbiol 2018; 9:997. [PMID: 29887837 PMCID: PMC5981138 DOI: 10.3389/fmicb.2018.00997] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 04/27/2018] [Indexed: 11/13/2022] Open
Abstract
Hot spring environments can create physical and chemical gradients favorable for unique microbial life. They can also include authigenic mineral precipitates that may preserve signs of biological activity on Earth and possibly other planets. The abiogenic or biogenic origins of such precipitates can be difficult to discern, therefore a better understanding of mineral formation processes is critical for the accurate interpretation of biosignatures from hot springs. Little Hot Creek (LHC) is a hot spring complex located in the Long Valley Caldera, California, that contains mineral precipitates composed of a carbonate base (largely submerged) topped by amorphous silica (largely emergent). The precipitates occur in close association with microbial mats and biofilms. Geological, geochemical, and microbiological data are consistent with mineral formation via degassing and evaporation rather than direct microbial involvement. However, the microfabric of the silica portion is stromatolitic in nature (i.e., wavy and finely laminated), suggesting that abiogenic mineralization has the potential to preserve textural biosignatures. Although geochemical and petrographic evidence suggests the calcite base was precipitated via abiogenic processes, endolithic microbial communities modified the structure of the calcite crystals, producing a textural biosignature. Our results reveal that even when mineral precipitation is largely abiogenic, the potential to preserve biosignatures in hot spring settings is high. The features found in the LHC structures may provide insight into the biogenicity of ancient Earth and extraterrestrial rocks.
Collapse
Affiliation(s)
- Emily A Kraus
- Geo- Environmental- Microbiology Laboratory, Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO, United States
| | - Scott R Beeler
- Department of Earth and Planetary Sciences, Washington University in St. Louis, St. Louis, MO, United States
| | - R Agustin Mors
- Laboratorio de Paleobiología y Geomicrobiología Experimental, Centro de Investigaciones en Ciencias de la Tierra (CONICET-UNC), Córdoba, Argentina
| | - James G Floyd
- Department of Microbiology and Plant Biology, The University of Oklahoma, Norman, OK, United States
| | | | - Blake W Stamps
- Geo- Environmental- Microbiology Laboratory, Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO, United States
| | - Heather S Nunn
- Department of Microbiology and Plant Biology, The University of Oklahoma, Norman, OK, United States
| | - Bradley S Stevenson
- Department of Microbiology and Plant Biology, The University of Oklahoma, Norman, OK, United States
| | - Hope A Johnson
- Department of Biological Sciences, California State University, Fullerton, Fullerton, CA, United States
| | - Russell S Shapiro
- Geological and Environmental Sciences, California State University, Chico, Chico, CA, United States
| | - Sean J Loyd
- Department of Geological Sciences, California State University, Fullerton, Fullerton, CA, United States
| | - John R Spear
- Geo- Environmental- Microbiology Laboratory, Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO, United States
| | - Frank A Corsetti
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
48
|
Cabrol NA. The Coevolution of Life and Environment on Mars: An Ecosystem Perspective on the Robotic Exploration of Biosignatures. ASTROBIOLOGY 2018; 18:1-27. [PMID: 29252008 PMCID: PMC5779243 DOI: 10.1089/ast.2017.1756] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 11/27/2017] [Indexed: 05/09/2023]
Abstract
Earth's biological and environmental evolution are intertwined and inseparable. This coevolution has become a fundamental concept in astrobiology and is key to the search for life beyond our planet. In the case of Mars, whether a coevolution took place is unknown, but analyzing the factors at play shows the uniqueness of each planetary experiment regardless of similarities. Early Earth and early Mars shared traits. However, biological processes on Mars, if any, would have had to proceed within the distinctive context of an irreversible atmospheric collapse, greater climate variability, and specific planetary characteristics. In that, Mars is an important test bed for comparing the effects of a unique set of spatiotemporal changes on an Earth-like, yet different, planet. Many questions remain unanswered about Mars' early environment. Nevertheless, existing data sets provide a foundation for an intellectual framework where notional coevolution models can be explored. In this framework, the focus is shifted from planetary-scale habitability to the prospect of habitats, microbial ecotones, pathways to biological dispersal, biomass repositories, and their meaning for exploration. Critically, as we search for biosignatures, this focus demonstrates the importance of starting to think of early Mars as a biosphere and vigorously integrating an ecosystem approach to landing site selection and exploration. Key Words: Astrobiology-Biosignatures-Coevolution of Earth and life-Mars. Astrobiology 18, 1-27.
Collapse
|
49
|
Marshall SM, Murray ARG, Cronin L. A probabilistic framework for identifying biosignatures using Pathway Complexity. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2017; 375:rsta.2016.0342. [PMID: 29133442 PMCID: PMC5686400 DOI: 10.1098/rsta.2016.0342] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/18/2017] [Indexed: 05/18/2023]
Abstract
One thing that discriminates living things from inanimate matter is their ability to generate similarly complex or non-random structures in a large abundance. From DNA sequences to folded protein structures, living cells, microbial communities and multicellular structures, the material configurations in biology can easily be distinguished from non-living material assemblies. Many complex artefacts, from ordinary bioproducts to human tools, though they are not living things, are ultimately produced by biological processes-whether those processes occur at the scale of cells or societies, they are the consequences of living systems. While these objects are not living, they cannot randomly form, as they are the product of a biological organism and hence are either technological or cultural biosignatures. A generalized approach that aims to evaluate complex objects as possible biosignatures could be useful to explore the cosmos for new life forms. However, it is not obvious how it might be possible to create such a self-contained approach. This would require us to prove rigorously that a given artefact is too complex to have formed by chance. In this paper, we present a new type of complexity measure, which we call 'Pathway Complexity', that allows us not only to threshold the abiotic-biotic divide, but also to demonstrate a probabilistic approach based on object abundance and complexity which can be used to unambiguously assign complex objects as biosignatures. We hope that this approach will not only open up the search for biosignatures beyond the Earth, but also allow us to explore the Earth for new types of biology, and to determine when a complex chemical system discovered in the laboratory could be considered alive.This article is part of the themed issue 'Reconceptualizing the origins of life'.
Collapse
Affiliation(s)
| | | | - Leroy Cronin
- School of Chemistry, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
50
|
Tice MM, Quezergue K, Pope MC. Microbialite Biosignature Analysis by Mesoscale X-ray Fluorescence (μXRF) Mapping. ASTROBIOLOGY 2017; 17:1161-1172. [PMID: 29135301 DOI: 10.1089/ast.2016.1494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
As part of its biosignature detection package, the Mars 2020 rover will carry PIXL, the Planetary Instrument for X-ray Lithochemistry, a spatially resolved X-ray fluorescence (μXRF) spectrometer. Understanding the types of biosignatures detectable by μXRF and the rock types μXRF is most effective at analyzing is therefore an important goal in preparation for in situ Mars 2020 science and sample selection. We tested mesoscale chemical mapping for biosignature interpretation in microbialites. In particular, we used μXRF to identify spatial distributions and associations between various elements ("fluorescence microfacies") to infer the physical, biological, and chemical processes that produced the observed compositional distributions. As a test case, elemental distributions from μXRF scans of stromatolites from the Mesoarchean Nsuze Group (2.98 Ga) were analyzed. We included five fluorescence microfacies: laminated dolostone, laminated chert, clotted dolostone and chert, stromatolite clast breccia, and cavity fill. Laminated dolostone was formed primarily by microbial mats that trapped and bound loose sediment and likely precipitated carbonate mud at a shallow depth below the mat surface. Laminated chert was produced by the secondary silicification of microbial mats. Clotted dolostone and chert grew as cauliform, cryptically laminated mounds similar to younger thrombolites and was likely formed by a combination of mat growth and patchy precipitation of early-formed carbonate. Stromatolite clast breccias formed as lag deposits filling erosional scours and interstromatolite spaces. Cavities were filled by microquartz, Mn-rich dolomite, and partially dolomitized calcite. Overall, we concluded that μXRF is effective for inferring genetic processes and identifying biosignatures in compositionally heterogeneous rocks. Key Words: Stromatolites-Biosignatures-Spectroscopy-Archean. Astrobiology 17, 1161-1172.
Collapse
Affiliation(s)
- Michael M Tice
- Department of Geology & Geophysics, Texas A&M University , College Station, Texas
| | - Kimbra Quezergue
- Department of Geology & Geophysics, Texas A&M University , College Station, Texas
| | - Michael C Pope
- Department of Geology & Geophysics, Texas A&M University , College Station, Texas
| |
Collapse
|