1
|
Shim GJ, Lee CO, Lee JT, Jung HM, Kwon TG. Potentiating effect of AMD3100 on bone morphogenetic protein-2 induced bone regeneration. Maxillofac Plast Reconstr Surg 2024; 46:22. [PMID: 38884872 PMCID: PMC11183024 DOI: 10.1186/s40902-024-00431-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 06/10/2024] [Indexed: 06/18/2024] Open
Abstract
BACKGROUND AMD3100, a CXCR4 antagonist, is currently prescribed for activating the mobilization of hematopoietic stem cells. Recently, AMD3100 was shown to potentiate bone morphogenetic protein-2 (BMP-2)-induced bone formation by stimulating the trafficking of mesenchymal cells. However, optimization of the strategic combination of AMD3100 and BMP-2 has not yet been clearly established. The purpose of this study was to evaluate the effect of AMD3100 on BMP-2-induced bone regeneration in vitro and in a mouse calvarial defect healing model. METHODS In vitro osteoblastic differentiation and cell migration after sequential treatments with AMD3100 and BMP-2 were analyzed by alkaline phosphatase (ALP) activity, ALP staining, and calcium accumulation. Migration capacity was evaluated after treating mesenchymal cells with AMD3100 and/or BMP-2. A critical-size calvarial defect model was used to evaluate bone formation after sequential or continuous treatment with AMD3100 and BMP-2. The degree of bone formation in the defect was analyzed using micro-computed tomography (micro-CT) and histological staining. RESULTS Compared with single treatment using either AMD3100 or BMP-2 alone, sequential treatment with AMD3100 followed by BMP-2 on mesenchymal cells increased osteogenic differentiation. Application of AMD3100 and subsequent BMP-2 significantly activated cell migration on mesenchymal cell than BMP-2 alone or AMD3100 alone. Micro-CT and histomorphometric analysis showed that continuous intraperitoneal (IP) injection of AMD3100 resulted significantly increased new bone formation in BMP-2 loaded scaffold in calvarial defect than control groups without AMD3100 IP injection. Additionally, both single IP injection of AMD3100 and subsequent BMP-2 injection to the scaffold in calvarial defect showed pronounced new bone formation compared to continuous BMP-2 treatment without AMD3100 treatment. CONCLUSION Our data suggest that single or continuous injection of AMD3100 can potentiate BMP-2-induced osteoblastic differentiation and bone regeneration. This strategic combination of AMD3100 and BMP-2 may be a promising therapy for bone regeneration.
Collapse
Affiliation(s)
- Gyu-Jo Shim
- Department of Oral & Maxillofacial Surgery, School of Dentistry, Kyungpook National University, and Institute for Translational Research in Dentistry, Kyungpook National University, Daegu, Republic of Korea
| | - Chung O Lee
- Department of Oral & Maxillofacial Surgery, School of Dentistry, Kyungpook National University, and Institute for Translational Research in Dentistry, Kyungpook National University, Daegu, Republic of Korea
| | - Jung-Tae Lee
- Department of Oral & Maxillofacial Surgery, School of Dentistry, Kyungpook National University, and Institute for Translational Research in Dentistry, Kyungpook National University, Daegu, Republic of Korea
| | - Hong-Moon Jung
- Department of Radiologic Technology, Daegu Health College, Daegu, Republic of Korea
| | - Tae-Geon Kwon
- Department of Oral & Maxillofacial Surgery, School of Dentistry, Kyungpook National University, and Kyungpook National University Institute for Translational Research in Dentistry, 2177 Dalgubeol-daero, Jung-Gu, Daegu, 41940, Republic of Korea.
| |
Collapse
|
2
|
Lu Y, Xing F, Peng S. The effect of CXCL12 on survival outcomes of patients with viral hepatitis-associated hepatocellular carcinoma after hepatectomy. Heliyon 2024; 10:e30782. [PMID: 38756575 PMCID: PMC11096947 DOI: 10.1016/j.heliyon.2024.e30782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 05/05/2024] [Accepted: 05/06/2024] [Indexed: 05/18/2024] Open
Abstract
Background The CXCL12-CXCR4/CXCR7 axis is garnering growing attention. But the comprehension of its function in the progression of HCC remains controversial. The purpose of this study was to investigate the effects of CXCL12 and its receptor on the prognosis of patients with viral hepatitis-associated HCC after hepatectomy. Methods A total of 86 patients had been enrolled who had undergone hepatectomy for HCC and followed up to July 31, 2019, and their clinicopathological and follow-up data were recorded. Tumor and peritumoral tissues were obtained to detect the expression of CXCL12, CXCR4, and CXCR7 using immunohistochemistry. Real-time polymerase chain reaction was utilized to detect hepatitis B or C virus loads, while survival analysis was performed using the Kaplan-Meier method. Furthermore, the Cox proportional hazards regression model was employed to analyze the factors affecting the prognosis. Results The results revealed that the CXCL12, CXCR4, and CXCR7 expression in tumor tissues was lower than in the corresponding non-tumor tissues in 20.93 %, 22.09 %, and 23.26 % of the patients, respectively, and that only CXCL12 was found to be related to the extrahepatic invasion of HCC. The survival analysis and Cox regression showed that only CXCL12 was associated with the postoperative survival of patients with HCC, and that it was an independent prognostic risk factor in the CXCL12-CXCR4/CXCR7 axis. The CXCL12low group represented shorter progression-free survival and lower overall survival rates. However, the subgroup analysis displayed that the survival difference associated with CXCL12 was only manifested in patients with higher expression of CXCR4 or CXCR7 in HCC, as compared to the surrounding tissues. Conclusions Our findings suggest that, when assessing the prognostic significance of CXCL12 in HCC, it is essential to consider the expression level of its receptor. Nevertheless, CXCL12 can potentially serve as a promising prognostic marker for HCC.
Collapse
Affiliation(s)
- Yan Lu
- the Department of Hospital Infection Control and Public Health Management, the Seventh Affiliated Hospital, Sun Yat-sen University, No. 628 Zhenyuan Road, Guangming District, Shenzhen, 518107, China
| | - Fei Xing
- the Department of Oncology, the Shengjing Hospital of China Medical University, Shenyang, No. 36 Sanhao Street, Heping District, 110004, China
| | - Songlin Peng
- the Department of General Surgery, the Seventh Affiliated Hospital, Sun Yat-sen University, No. 628 Zhenyuan Road, Guangming District, Shenzhen, 518107, China
| |
Collapse
|
3
|
Ramos H, Hernández C, Simó R, Simó-Servat O. Inflammation: The Link between Neural and Vascular Impairment in the Diabetic Retina and Therapeutic Implications. Int J Mol Sci 2023; 24:ijms24108796. [PMID: 37240138 DOI: 10.3390/ijms24108796] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 04/25/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
The etiology of diabetic retinopathy (DR) is complex, multifactorial and compromises all the elements of the retinal neurovascular unit (NVU). This diabetic complication has a chronic low-grade inflammatory component involving multiple inflammatory mediators and adhesion molecules. The diabetic milieu promotes reactive gliosis, pro-inflammatory cytokine production and leukocyte recruitment, which contribute to the disruption of the blood retinal barrier. The understanding and the continuous research of the mechanisms behind the strong inflammatory component of the disease allows the design of new therapeutic strategies to address this unmet medical need. In this context, the aim of this review article is to recapitulate the latest research on the role of inflammation in DR and to discuss the efficacy of currently administered anti-inflammatory treatments and those still under development.
Collapse
Affiliation(s)
- Hugo Ramos
- Diabetes and Metabolism Research Unit, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ICSIII), 28029 Madrid, Spain
| | - Cristina Hernández
- Diabetes and Metabolism Research Unit, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ICSIII), 28029 Madrid, Spain
| | - Rafael Simó
- Diabetes and Metabolism Research Unit, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ICSIII), 28029 Madrid, Spain
| | - Olga Simó-Servat
- Diabetes and Metabolism Research Unit, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ICSIII), 28029 Madrid, Spain
| |
Collapse
|
4
|
Autophagy Promotes the Survival of Adipose Mesenchymal Stem/Stromal Cells and Enhances Their Therapeutic Effects in Cisplatin-Induced Liver Injury via Modulating TGF-β1/Smad and PI3K/AKT Signaling Pathways. Cells 2021; 10:cells10092475. [PMID: 34572126 PMCID: PMC8470434 DOI: 10.3390/cells10092475] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/13/2021] [Accepted: 09/13/2021] [Indexed: 02/07/2023] Open
Abstract
Autophagy is a key metabolic process where cells can recycle its proteins and organelles to regenerate its own cellular building blocks. Chemotherapy is indispensable for cancer treatment but associated with various side-effects, including organ damage. Stem cell-based therapy is a promising approach for reducing chemotherapeutic side effects, however, one of its main culprits is the poor survival of transplanted stem cells in damaged tissues. Here, we aimed to test the effects of activating autophagy in adipose-derived mesenchymal stem/stromal cells (ADSCs) on the survival of ADSCs, and their therapeutic value in cisplatin-induced liver injury model. Autophagy was activated in ADSCs by rapamycin (50 nM/L) for two hours before transplantation and were compared to non-preconditioned ADSCs. Rapamycin preconditioning resulted in activated autophagy and improved survival of ADSCs achieved by increased autophagosomes, upregulated autophagy-specific LC3-II gene, decreased protein degradation/ubiquitination by downregulated p62 gene, downregulated mTOR gene, and finally, upregulated antiapoptotic BCL-2 gene. In addition, autophagic ADSCs transplantation in the cisplatin liver injury model, liver biochemical parameters (AST, ALT and albumin), lipid peroxidation (MDA), antioxidant profile (SOD and GPX) and histopathological picture were improved, approaching near-normal conditions. These promising autophagic ADSCs effects were achieved by modulation of components in TGF-β1/Smad and PI3K-AKT signaling pathways, besides reducing NF-κB gene expression (marker for inflammation), reducing TGF-β1 levels (marker for fibrosis) and increasing SDF-1 levels (liver regeneration marker) in liver. Therefore, current results highlight the importance of autophagy in augmenting the therapeutic potential of stem cell therapy in alleviating cisplatin-associated liver damage and opens the path for improved cell-based therapies, in general, and with chemotherapeutics, in particular.
Collapse
|
5
|
Iyer SS, Lagrew MK, Tillit SM, Roohipourmoallai R, Korntner S. The Vitreous Ecosystem in Diabetic Retinopathy: Insight into the Patho-Mechanisms of Disease. Int J Mol Sci 2021; 22:ijms22137142. [PMID: 34281192 PMCID: PMC8269048 DOI: 10.3390/ijms22137142] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/10/2021] [Accepted: 06/14/2021] [Indexed: 12/22/2022] Open
Abstract
Diabetic retinopathy is one of the leading causes of blindness in the world with the incidence of disease ever-increasing worldwide. The vitreous humor represents an extensive and complex interactive arena for cytokines in the diabetic eye. In recent decades, there has been significant progress in understanding this environment and its implications in disease pathophysiology. In this review, we investigate the vitreous ecosystem in diabetic retinopathy at the molecular level. Areas of concentration include: the current level of knowledge of growth factors, cytokine and chemokine mediators, and lipid-derived metabolites in the vitreous. We discuss the molecular patho-mechanisms of diabetic retinopathy based upon current vitreous research.
Collapse
|
6
|
Growth Factors Assessed during Kasai Procedure in Liver and Serum Are Not Predictive for the Postoperative Liver Deterioration in Infants with Biliary Atresia. J Clin Med 2021; 10:jcm10091978. [PMID: 34062967 PMCID: PMC8124311 DOI: 10.3390/jcm10091978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 04/30/2021] [Accepted: 05/03/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Biliary atresia (BA) is a neonatal cholangiopathy characterized by progressive destruction of the biliary system resulting in liver cirrhosis. Residual bile drainage can temporarily be achieved through Kasai portoenterostomy (KPE) and some children show long-term survival with their native liver. However, most children eventually require liver transplantation (LTX). As several growth factors (GF) and chemokines have been shown to promote fibrogenesis in the liver, we assessed whether GF are predictive for the course of disease. Material and Methods: Liver and sera samples were collected from 49 infants with BA during KPE. Levels of 13 different GF were measured by multiplex immunoassay. Patient outcomes were stratified into favorable (bilirubin < 20 µmol/L at 2-year follow-up) and unfavorable (LTX). GF levels were compared between groups by a t-test, correlation coefficients were calculated, and principal component analyses performed. Results: Twenty-two patients showed a favorable and 27 an unfavorable disease course. No relation of GF and outcome could be established. In both groups, high levels of SDF-1alpha/CXCL12 (1473.0 ± 497.5 pg/mL), FGF2 (301.2 ± 207.8 pg/mL), and VEGF-a (209.0 ± 146.4 pg/mL) levels were measured within the liver, followed (in descending order) by PDGF-bb, LIF, GM-CSF, BDNF, VEGF-d, beta-NGF, IL-7, SCF, PIGF-1, and EGF. Serum marker levels showed much higher mean variation compared to hepatic values and no correlation to the protein microenvironment in the liver. Conclusions: Our study demonstrates high amounts of GF in livers from infants with BA at KPE, but no correlation to the outcome or serum values could be established. Our data suggest that local or systemic GF levels are unsuitable for prediction of the disease course. Collectively, we conclude that in BA the degree of proliferative activity caused by GF is a dismissible factor for the further course of disease.
Collapse
|
7
|
Royo F, Azkargorta M, Lavin JL, Clos-Garcia M, Cortazar AR, Gonzalez-Lopez M, Barcena L, Del Portillo HA, Yáñez-Mó M, Marcilla A, Borras FE, Peinado H, Guerrero I, Váles-Gómez M, Cereijo U, Sardon T, Aransay AM, Elortza F, Falcon-Perez JM. Extracellular Vesicles From Liver Progenitor Cells Downregulates Fibroblast Metabolic Activity and Increase the Expression of Immune-Response Related Molecules. Front Cell Dev Biol 2021; 8:613583. [PMID: 33511119 PMCID: PMC7835421 DOI: 10.3389/fcell.2020.613583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 12/07/2020] [Indexed: 11/25/2022] Open
Abstract
Extracellular vesicles (EVs) mediate cell-to-cell crosstalk whose content can induce changes in acceptor cells and their microenvironment. MLP29 cells are mouse liver progenitor cells that release EVs loaded with signaling cues that could affect cell fate. In the current work, we incubated 3T3-L1 mouse fibroblasts with MLP29-derived EVs, and then analyzed changes by proteomics and transcriptomics. Results showed a general downregulation of protein and transcript expression related to proliferative and metabolic routes dependent on TGF-beta. We also observed an increase in the ERBB2 interacting protein (ERBIN) and Cxcl2, together with an induction of ribosome biogenesis and interferon-related response molecules, suggesting the activation of immune system signaling.
Collapse
Affiliation(s)
- Felix Royo
- Center for Cooperative Research in Biosciences, Bizkaia Technology Park, Bizkaia, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Madrid, Spain
| | - Mikel Azkargorta
- Center for Cooperative Research in Biosciences, Bizkaia Technology Park, Bizkaia, Spain
| | - Jose L Lavin
- Center for Cooperative Research in Biosciences, Bizkaia Technology Park, Bizkaia, Spain
| | - Marc Clos-Garcia
- Center for Cooperative Research in Biosciences, Bizkaia Technology Park, Bizkaia, Spain
| | - Ana R Cortazar
- Center for Cooperative Research in Biosciences, Bizkaia Technology Park, Bizkaia, Spain.,Centro de Investigación Biomédica en Red de Cáncer, Instituto de Salud Carlos III, Madrid, Spain
| | - Monika Gonzalez-Lopez
- Center for Cooperative Research in Biosciences, Bizkaia Technology Park, Bizkaia, Spain
| | - Laura Barcena
- Center for Cooperative Research in Biosciences, Bizkaia Technology Park, Bizkaia, Spain
| | - Hernando A Del Portillo
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain.,Health Sciences Research Institute Germans Trias i Pujol, Badalona, Spain.,Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - María Yáñez-Mó
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Instituto de Investigaciones Sanitarias la Princesa, Universidad Autónoma de Madrid, Madrid, Spain
| | - Antonio Marcilla
- Àrea de Parasitologia, Departament de Farmàcia i Tecnologia Farmacèutica i Parasitologia, Universitat de València, Valencia, Spain.,Joint Research Unit on Endocrinology, Nutrition and Clinical Dietetics, Health Research Institute La Fe, Universitat de València, Valencia, Spain
| | - Francesc E Borras
- Department of Cell Biology, Physiology and Immunology, Autonomous University of Barcelona, Barcelona, Spain.,REMAR-IVECAT Group-"Germans Trias i Pujol" Health Science Research Institute (IGTP), Badalona, Spain.,Nephrology Department-"Germans Trias i Pujol" University Hospital, Can Ruti Campus, Badalona, Spain
| | - Hector Peinado
- Microenvironment and Metastasis Laboratory, Molecular Oncology Program, Spanish National Cancer Research Center, Madrid, Spain
| | - Isabel Guerrero
- Tissue and Organ Homeostasis, Centro de Biología Molecular "Severo Ochoa", Universidad Autónoma de Madrid, Madrid, Spain
| | - Mar Váles-Gómez
- Spanish National Centre for Biotechnology, Spanish National Research Council, Madrid, Spain
| | | | | | - Ana M Aransay
- Center for Cooperative Research in Biosciences, Bizkaia Technology Park, Bizkaia, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Madrid, Spain
| | - Felix Elortza
- Center for Cooperative Research in Biosciences, Bizkaia Technology Park, Bizkaia, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Madrid, Spain
| | - Juan M Falcon-Perez
- Center for Cooperative Research in Biosciences, Bizkaia Technology Park, Bizkaia, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Madrid, Spain.,Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
8
|
Hénon P, Lahlil R. CD34+ Stem Cells and Regenerative Medicine. Stem Cells 2021. [DOI: 10.1007/978-3-030-77052-5_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
9
|
Platelets Boost Recruitment of CD133 + Bone Marrow Stem Cells to Endothelium and the Rodent Liver-The Role of P-Selectin/PSGL-1 Interactions. Int J Mol Sci 2020; 21:ijms21176431. [PMID: 32899390 PMCID: PMC7504029 DOI: 10.3390/ijms21176431] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 08/28/2020] [Accepted: 08/31/2020] [Indexed: 02/06/2023] Open
Abstract
We previously demonstrated that clinical administration of mobilized CD133+ bone marrow stem cells (BMSC) accelerates hepatic regeneration. Here, we investigated the potential of platelets to modulate CD133+BMSC homing to hepatic endothelial cells and sequestration to warm ischemic livers. Modulatory effects of platelets on the adhesion of CD133+BMSC to human and mouse liver-sinusoidal- and micro- endothelial cells (EC) respectively were evaluated in in vitro co-culture systems. CD133+BMSC adhesion to all types of EC were increased in the presence of platelets under shear stress. This platelet effect was mostly diminished by antagonization of P-selectin and its ligand P-Selectin-Glyco-Ligand-1 (PSGL-1). Inhibition of PECAM-1 as well as SDF-1 receptor CXCR4 had no such effect. In a model of the isolated reperfused rat liver subsequent to warm ischemia, the co-infusion of platelets augmented CD133+BMSC homing to the injured liver with heightened transmigration towards the extra sinusoidal space when compared to perfusion conditions without platelets. Extravascular co-localization of CD133+BMSC with hepatocytes was confirmed by confocal microscopy. We demonstrated an enhancing effect of platelets on CD133+BMSC homing to and transmigrating along hepatic EC putatively depending on PSGL-1 and P-selectin. Our insights suggest a new mechanism of platelets to augment stem cell dependent hepatic repair.
Collapse
|
10
|
Bellanti F, Pannone G, Tartaglia N, Serviddio G. Redox Control of the Immune Response in the Hepatic Progenitor Cell Niche. Front Cell Dev Biol 2020; 8:295. [PMID: 32435643 PMCID: PMC7218163 DOI: 10.3389/fcell.2020.00295] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 04/06/2020] [Indexed: 02/05/2023] Open
Abstract
The liver commonly self-regenerates by a proliferation of mature cell types. Nevertheless, in case of severe or protracted damage, the organ renewal is mediated by the hepatic progenitor cells (HPCs), adult progenitors capable of differentiating toward the biliary and the hepatocyte lineages. This regeneration process is determined by the formation of a stereotypical niche surrounding the emerging progenitors. The organization of the HPC niche microenvironment is crucial to drive biliary or hepatocyte regeneration. Furthermore, this is the site of a complex immunological activity mediated by several immune and non-immune cells. Indeed, several cytokines produced by monocytes, macrophages and T-lymphocytes may promote the activation of HPCs in the niche. On the other side, HPCs may produce pro-inflammatory cytokines induced by liver inflammation. The inflamed liver is characterized by high generation of reactive oxygen and nitrogen species, which in turn lead to the oxidation of macromolecules and the alteration of signaling pathways. Reactive species and redox signaling are involved in both the immunological and the adult stem cell regeneration processes. It is then conceivable that redox balance may finely regulate the immune response in the HPC niche, modulating the regeneration process and the immune activity of HPCs. In this perspective article, we summarize the current knowledge on the role of reactive species in the regulation of hepatic immunity, suggesting future research directions for the study of redox signaling on the immunomodulatory properties of HPCs.
Collapse
Affiliation(s)
- Francesco Bellanti
- Center for Experimental and Regenerative Medicine, Institute of Internal Medicine, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
- *Correspondence: Francesco Bellanti,
| | - Giuseppe Pannone
- Institute of Anatomical Pathology, Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Nicola Tartaglia
- Institute of General Surgery, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Gaetano Serviddio
- Center for Experimental and Regenerative Medicine, Institute of Internal Medicine, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| |
Collapse
|
11
|
Sun Z, Li X, Zheng X, Cao P, Yu B, Wang W. Stromal cell-derived factor-1/CXC chemokine receptor 4 axis in injury repair and renal transplantation. J Int Med Res 2019; 47:5426-5440. [PMID: 31581874 PMCID: PMC6862890 DOI: 10.1177/0300060519876138] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Stem cell therapy has shown promise in treating a variety of pathologies, such as myocardial infarction, ischaemic stroke and organ transplantation. The stromal cell-derived factor-1 (SDF-1)/CXC chemokine receptor-4 (CXCR4) axis plays a key role in stem cell mobilization. This review describes the important role of SDF-1 in tissue injury and how it works in tissue revascularization and regeneration via CXCR4. Furthermore, factors influencing the SDF-1/CXCR4 axis and its clinical potential in ischaemia reperfusion injury, such as renal transplantation, are discussed. Exploring signalling pathways of the SDF-1/CXCR4 axis will contribute to the development of stem cell therapy so that more clinical problems can be solved. Controlling directional homing of stem cells through the SDF-1/CXCR4 axis is key to improving the efficacy of stem cell therapy for tissue injury. CXCR4 antagonists may also be effective in increasing circulating levels of adult stem cells, thereby exerting beneficial effects on damaged or inflamed tissues in diseases that are currently not treated by standard approaches.
Collapse
Affiliation(s)
- Zejia Sun
- Institute of Urology, Capital Medical University, Department of Urology, Capital Medical University Beijing Chaoyang Hospital, Beijing, China
| | - Xin Li
- Institute of Urology, Capital Medical University, Department of Urology, Capital Medical University Beijing Chaoyang Hospital, Beijing, China
| | - Xiang Zheng
- Institute of Urology, Capital Medical University, Department of Urology, Capital Medical University Beijing Chaoyang Hospital, Beijing, China
| | - Peng Cao
- Institute of Urology, Capital Medical University, Department of Urology, Capital Medical University Beijing Chaoyang Hospital, Beijing, China
| | - Baozhong Yu
- Institute of Urology, Capital Medical University, Department of Urology, Capital Medical University Beijing Chaoyang Hospital, Beijing, China
| | - Wei Wang
- Institute of Urology, Capital Medical University, Department of Urology, Capital Medical University Beijing Chaoyang Hospital, Beijing, China
| |
Collapse
|
12
|
Chinnici CM, Pietrosi G, Iannolo G, Amico G, Cuscino N, Pagano V, Conaldi PG. Mesenchymal stromal cells isolated from human fetal liver release soluble factors with a potential role in liver tissue repair. Differentiation 2018; 105:14-26. [PMID: 30553176 DOI: 10.1016/j.diff.2018.12.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 11/21/2018] [Accepted: 12/04/2018] [Indexed: 02/06/2023]
Abstract
We isolated a population of proliferating cells from cultured human fetal hepatocytes of 16-22 weeks gestational age. The cells shared a similar phenotype to that of mesenchymal stromal cells (MSCs) according to the International Society for Cellular Therapy (ISCT), including plastic adherence, antigen expression profile, and in vitro multilineage differentiation potential. Fetal liver (FL)-MSCs expressed the albumin gene, and harbored a subpopulation of CK18+ cells (20-40%), which defined their hepatic origin. However, when subjected to in vitro hepatic differentiation, FL-MSCs did not acquire significant liver functions. Quantitative analysis of conditioned medium (CM) collected from cultured cells revealed the presence of growth factors and chemokines with potential liver regenerative properties, the most relevant of which (concentration ≥3000 pg/ml) were SDF-1 alpha, IL-6, MCP-1, IL-8, MIP-1 beta, VEGF-A, Gro-alpha, and HGF. Culturing of FL-MSCs as spheroids significantly enhanced the secretion of HGF and bFGF (approximately 5-fold) compared with culture monolayers. Moreover, CM assessed in vitro induced capillary-like organization and migration of human umbilical vein endothelial cells (HUVECs) and fibroblasts as target cells. Interestingly, exosomes isolated from CM induced similar cellular responses in vitro with high efficiency and in a dose-dependent manner. FL-MSCs underwent several in vitro subcultivations, and did not stimulate allogenic T-cell proliferation thus suggesting a low immunogenicity. Furthermore, 5-year cryopreservation did not affect cell viability (approximately 90% of viable post-thawed FL-MSCs). These observations support the feasibility of a cell bank establishment for allogenic transplantation. We concluded that FL-MSCs or they secreted factors may be a valid alternative to hepatocyte transplantation in liver cell-based therapies.
Collapse
Affiliation(s)
- Cinzia Maria Chinnici
- Fondazione Ri.MED, Palermo, Italy; Department of Research, IRCCS-ISMETT, Palermo, Italy.
| | - Giada Pietrosi
- Hepatology Unit, Department for the Treatment and Study of Abdominal Diseases and Abdominal Transplantation, IRCCS-ISMETT, Palermo, Italy
| | | | - Giandomenico Amico
- Fondazione Ri.MED, Palermo, Italy; Department of Research, IRCCS-ISMETT, Palermo, Italy
| | | | | | | |
Collapse
|
13
|
Chalichem NSS, Sai Kiran PSS, Basavan D. Possible role of DPP4 inhibitors to promote hippocampal neurogenesis in Alzheimer’s disease. J Drug Target 2018; 26:670-675. [DOI: 10.1080/1061186x.2018.1433682] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Nehru Sai Suresh Chalichem
- Department of Pharmacognosy and Phytopharmacy, JSS College of Pharmacy (Constituent College of JSS Academy of Higher Education and Research, Mysuru), Ooty, India
| | - Pindiprolu S. S. Sai Kiran
- Department of Pharmacology, JSS College of Pharmacy (Constituent College of JSS Academy of Higher Education and Research, Mysuru), Ooty, India
| | - Duraiswamy Basavan
- Department of Pharmacognosy and Phytopharmacy, JSS College of Pharmacy (Constituent College of JSS Academy of Higher Education and Research, Mysuru), Ooty, India
| |
Collapse
|
14
|
Chen G, Fang T, Qi Y, Yin X, Di T, Feng G, Lei Z, Zhang Y, Huang Z. Combined Use of Mesenchymal Stromal Cell Sheet Transplantation and Local Injection of SDF-1 for Bone Repair in a Rat Nonunion Model. Cell Transplant 2018; 25:1801-1817. [PMID: 26883892 DOI: 10.3727/096368916x690980] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Bone nonunion treatments pose a challenge in orthopedics. This study investigated the joint effects of using mesenchymal stem cell (MSC) sheets with local injection of stromal cell-derived factor-1 (SDF-1) on bone formation. In vitro, we found that migration of MSCs was mediated by SDF-1 in a dose-dependent manner. Moreover, stimulation with SDF-1 had no direct effect on the proliferation or osteogenic differentiation of MSCs. Furthermore, the results indicated elevated expression levels of bone morphogenetic protein 2, alkaline phosphatase, osteocalcin, and vascular endothelial growth factor in MSC sheets compared with MSCs cultured in medium. New bone formation in fractures was evaluated by X-ray, micro-computed tomography (micro-CT), hematoxylin and eosin (H&E) staining, Safranin-O staining, and immunohistochemistry in vivo. In the rat bone fracture model, the MSC sheets transplanted into the injured site along with injection of SDF-1 showed significantly more new bone formation within the gap. Moreover, at 8 weeks, complete bone union was obtained in this group. In contrast, the control group showed nonunion of the bone. Our study suggests a new strategy involving the use of MSC sheets with a local injection of SDF-1 for hard tissue reconstruction, such as the healing of nonunions and bone defects.
Collapse
Affiliation(s)
- Guangnan Chen
- Department of Orthopedic Surgery, Minhang Hospital, Fudan University, Shanghai, P.R. China.,Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, P.R. China
| | - Tingting Fang
- Liver Cancer Institute, Zhongshan Hospital, Shanghai Medical School of Fudan University, Shanghai, P.R. China
| | - Yiying Qi
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, P.R. China
| | - Xiaofan Yin
- Department of Orthopedic Surgery, Minhang Hospital, Fudan University, Shanghai, P.R. China
| | - Tuoyu Di
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, P.R. China
| | - Gang Feng
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, P.R. China
| | - Zhong Lei
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, P.R. China
| | - Yuxiang Zhang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, P.R. China
| | - Zhongming Huang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, P.R. China.,Department of Orthopaedic Surgery, Affiliated Jiangnan Hospital of Zhejiang Chinese Medical University, Hangzhou, P.R. China.,Department of Orthopaedic Surgery, Xiaoshan Chinese Medical Hospital, Hangzhou, P.R. China.,Institute of Orthopaedics and Traumatology of Zhejiang Province, Hangzhou, P.R. China
| |
Collapse
|
15
|
Peyvandi AA, Abbaszadeh HA, Roozbahany NA, Pourbakht A, Khoshsirat S, Niri HH, Peyvandi H, Niknazar S. Deferoxamine promotes mesenchymal stem cell homing in noise-induced injured cochlea through PI3K/AKT pathway. Cell Prolif 2018; 51:e12434. [PMID: 29341316 DOI: 10.1111/cpr.12434] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 12/06/2017] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVE Over 5% of the world's population suffers from disabling hearing loss. Stem cell homing in target tissue is an important aspect of cell-based therapy, which its augmentation increases cell therapy efficiency. Deferoxamine (DFO) can induce the Akt activation, and phosphorylation status of AKT (p-AKT) upregulates CXC chemokine receptor-4 (CXCR4) expression. We examined whether DFO can enhance mesenchymal stem cells (MSCs) homing in noise-induced damaged cochlea by PI3K/AKT dependent mechanism. MATERIALS AND METHODS Mesenchymal stem cells were treated with DFO. AKT, p-AKT protein and hypoxia inducible factor 1- α (HIF-1α) and CXCR4 gene and protein expression was evaluated by RT- PCR and Western blot analysis. For in vivo assay, rats were assigned to control, sham, noise exposure groups without any treatment or receiving normal, DFO-treated and DFO +LY294002 (The PI3K inhibitor)-treated MSCs. Following chronic exposure to 115 dB white noise, MSCs were injected into the rat cochlea through the round window. Number of Hoechst- labelled cells was determined in the endolymph after 24 hours. RESULTS Deferoxamine increased P-AKT, HIF-1α and CXCR4 expression in MSCs compared to non-treated cells. DFO pre-conditioning significantly increased the homing ability of MSCs into injured ear compared to normal MSCs. These effects of DFO were blocked by LY294002. CONCLUSIONS Pre-conditioning of MSCs by DFO before transplantation can improve stem cell homing in the damaged cochlea through PI3K/AKT pathway activation.
Collapse
Affiliation(s)
- A A Peyvandi
- Hearing Disorders Research Center, Loghman Hakim Medical Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - H-A Abbaszadeh
- Hearing Disorders Research Center, Loghman Hakim Medical Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - N Ahmady Roozbahany
- Hearing Disorders Research Center, Loghman Hakim Medical Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,G. Raymond Chang School, Ryerson University, Toronto, Canada
| | - A Pourbakht
- Department of Audiology, School of Rehabilitation Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - S Khoshsirat
- Hearing Disorders Research Center, Loghman Hakim Medical Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - H Haddadzade Niri
- Department of Audiology, School of Rehabilitation Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - H Peyvandi
- Hearing Disorders Research Center, Loghman Hakim Medical Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Yale University, New Haven, CT, USA
| | - S Niknazar
- Hearing Disorders Research Center, Loghman Hakim Medical Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
16
|
Pedone E, Olteanu VA, Marucci L, Muñoz-Martin MI, Youssef SA, de Bruin A, Cosma MP. Modeling Dynamics and Function of Bone Marrow Cells in Mouse Liver Regeneration. Cell Rep 2017; 18:107-121. [PMID: 28052241 PMCID: PMC5236012 DOI: 10.1016/j.celrep.2016.12.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 07/15/2016] [Accepted: 12/01/2016] [Indexed: 12/13/2022] Open
Abstract
In rodents and humans, the liver can efficiently restore its mass after hepatectomy. This is largely attributed to the proliferation and cell cycle re-entry of hepatocytes. On the other hand, bone marrow cells (BMCs) migrate into the liver after resection. Here, we find that a block of BMC recruitment into the liver severely impairs its regeneration after the surgery. Mobilized hematopoietic stem and progenitor cells (HSPCs) in the resected liver can fuse with hepatocytes, and the hybrids proliferate earlier than the hepatocytes. Genetic ablation of the hybrids severely impairs hepatocyte proliferation and liver mass regeneration. Mathematical modeling reveals a key role of bone marrow (BM)-derived hybrids to drive proliferation in the regeneration process, and predicts regeneration efficiency in experimentally non-testable conditions. In conclusion, BM-derived hybrids are essential to trigger efficient liver regeneration after hepatectomy. Bone marrow cell migration after liver hepatectomy is key for liver regeneration Migrated bone marrow cells fuse with hepatocytes Hybrids are essential for liver regeneration Mathematical modeling unveils the hybrid function for liver regeneration
Collapse
Affiliation(s)
- Elisa Pedone
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), Dr Aiguader 88, 08003 Barcelona, Spain
| | - Vlad-Aris Olteanu
- Department of Engineering Mathematics, University of Bristol, Bristol BS8 1UB, UK
| | - Lucia Marucci
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr Aiguader 88, 08003 Barcelona, Spain; Department of Engineering Mathematics, University of Bristol, Bristol BS8 1UB, UK.
| | - Maria Isabel Muñoz-Martin
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr Aiguader 88, 08003 Barcelona, Spain
| | - Sameh A Youssef
- Dutch Molecular Pathology Center, Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, 3584 Utrecht, the Netherlands; Department of Pathology, Alexandria Veterinary College, University of Alexandria-Egypt, 21612 Alexandria, Egypt
| | - Alain de Bruin
- Dutch Molecular Pathology Center, Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, 3584 Utrecht, the Netherlands; University Medical Center Groningen, Department of Pediatrics, University of Groningen, 9713 Groningen, the Netherlands
| | - Maria Pia Cosma
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), Dr Aiguader 88, 08003 Barcelona, Spain; ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain.
| |
Collapse
|
17
|
Baig MT, Ali G, Awan SJ, Shehzad U, Mehmood A, Mohsin S, Khan SN, Riazuddin S. Serum from CCl 4-induced acute rat injury model induces differentiation of ADSCs towards hepatic cells and reduces liver fibrosis. Growth Factors 2017; 35:144-160. [PMID: 29110545 DOI: 10.1080/08977194.2017.1392945] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Cellular therapies hold promise to alleviate liver diseases. This study explored the potential of allogenic serum isolated from rat with acute CCl4 injury to differentiate adipose derived stem cells (ADSCs) towards hepatic lineage. Acute liver injury was induced by CCl4 which caused significant increase in serum levels of VEGF, SDF1α and EGF. ADSCs were preconditioned with 3% serum isolated from normal and acute liver injury models. ADSCs showed enhanced expression of hepatic markers (AFP, albumin, CK8 and CK19). These differentiated ADSCs were transplanted intra-hepatically in CCl4-induced liver fibrosis model. After one month of transplantation, fibrosis and liver functions (alkaline phosphatase, ALAT and bilirubin) showed marked improvement in acute injury group. Elevated expression of hepatic (AFP, albumin, CK 18 and HNF4a) and pro survival markers (PCNA and VEGF) and improvement in liver architecture as deduced from results of alpha smooth muscle actin, Sirius red and Masson's trichome staining was observed.
Collapse
Affiliation(s)
- Maria Tayyab Baig
- a Centre of Excellence in Molecular Biology , University of Punjab , Lahore , Pakistan
| | - Gibran Ali
- a Centre of Excellence in Molecular Biology , University of Punjab , Lahore , Pakistan
| | - Sana Javaid Awan
- a Centre of Excellence in Molecular Biology , University of Punjab , Lahore , Pakistan
| | - Umara Shehzad
- a Centre of Excellence in Molecular Biology , University of Punjab , Lahore , Pakistan
| | - Azra Mehmood
- a Centre of Excellence in Molecular Biology , University of Punjab , Lahore , Pakistan
| | - Sadia Mohsin
- b Cardiovascular Research Centre, Lewis Katz School of Medicine at Temple University , Philadelphia , PA , USA
| | - Shaheen N Khan
- a Centre of Excellence in Molecular Biology , University of Punjab , Lahore , Pakistan
| | - Sheikh Riazuddin
- a Centre of Excellence in Molecular Biology , University of Punjab , Lahore , Pakistan
- c Allama Iqbal Medical College , Lahore , Pakistan
- d Shaheed Zulfiqar Ali Bhutto Medical University (SZABMU) , Islamabad , Pakistan
| |
Collapse
|
18
|
Bria A, Marda J, Zhou J, Sun X, Cao Q, Petersen BE, Pi L. Hepatic progenitor cell activation in liver repair. LIVER RESEARCH 2017; 1:81-87. [PMID: 29276644 PMCID: PMC5739327 DOI: 10.1016/j.livres.2017.08.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The liver possesses an extraordinary ability to regenerate after injury. Hepatocyte-driven liver regeneration is the default pathway in response to mild-to-moderate acute liver damage. When replication of mature hepatocytes is blocked, facultative hepatic progenitor cells (HPCs), also referred to as oval cells (OCs) in rodents, are activated. HPC/OCs have the ability to proliferate clonogenically and differentiate into several lineages including hepatocytes and bile ductal epithelia. This is a conserved liver injury response that has been studied in many species ranging from mammals (rat, mouse, and human) to fish. In addition, improper HPC/OC activation is closely associated with fibrotic responses, characterized by myofibroblast activation and extracellular matrix production, in many chronic liver diseases. Matrix remodeling and metalloprotease activities play an important role in the regulation of HPC/OC proliferation and fibrosis progression. Thus, understanding molecular mechanisms underlying HPC/OC activation has therapeutic implications for rational design of anti-fibrotic therapies.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Liya Pi
- Corresponding author. Pediatric Stem Cell Research and Hepatic Disorders, Child Health Research Institute, Department of Pediatrics, University of Florida, Gainesville, FL, USA, (L. Pi)
| |
Collapse
|
19
|
Chen J, Chen L, Zern MA, Theise ND, Diehl AM, Liu P, Duan Y. The diversity and plasticity of adult hepatic progenitor cells and their niche. Liver Int 2017; 37:1260-1271. [PMID: 28135758 PMCID: PMC5534384 DOI: 10.1111/liv.13377] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Accepted: 01/23/2017] [Indexed: 12/12/2022]
Abstract
The liver is a unique organ for homoeostasis with regenerative capacities. Hepatocytes possess a remarkable capacity to proliferate upon injury; however, in more severe scenarios liver regeneration is believed to arise from at least one, if not several facultative hepatic progenitor cell compartments. Newly identified pericentral stem/progenitor cells residing around the central vein is responsible for maintaining hepatocyte homoeostasis in the uninjured liver. In addition, hepatic progenitor cells have been reported to contribute to liver fibrosis and cancers. What drives liver homoeostasis, regeneration and diseases is determined by the physiological and pathological conditions, and especially the hepatic progenitor cell niches which influence the fate of hepatic progenitor cells. The hepatic progenitor cell niches are special microenvironments consisting of different cell types, releasing growth factors and cytokines and receiving signals, as well as the extracellular matrix (ECM) scaffold. The hepatic progenitor cell niches maintain and regulate stem cells to ensure organ homoeostasis and regeneration. In recent studies, more evidence has been shown that hepatic cells such as hepatocytes, cholangiocytes or myofibroblasts can be induced to be oval cell-like state through transitions under some circumstance, those transitional cell types as potential liver-resident progenitor cells play important roles in liver pathophysiology. In this review, we describe and update recent advances in the diversity and plasticity of hepatic progenitor cell and their niches and discuss evidence supporting their roles in liver homoeostasis, regeneration, fibrosis and cancers.
Collapse
Affiliation(s)
- Jiamei Chen
- Shuguang Hospital of Shanghai University of Traditional Chinese Medicine, Key Laboratory of Liver and Kidney Diseases of Ministry of Education of China, Institute of Liver Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai, China,Shanghai key laboratory of Traditional Chinese Medicine, Shanghai 201203, China,E-institutes of Shanghai Municipal Education Commission, Shanghai University of Traditional Chinese Medicine, Shanghai, China,Department of Internal Medicine, University of California Davis Medical Center, Sacramento, California, USA,Institute for Regenerative Cures, University of California Davis Medical Center, Sacramento, California, USA
| | - Long Chen
- Shuguang Hospital of Shanghai University of Traditional Chinese Medicine, Key Laboratory of Liver and Kidney Diseases of Ministry of Education of China, Institute of Liver Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai, China,Shanghai key laboratory of Traditional Chinese Medicine, Shanghai 201203, China
| | - Mark A Zern
- Department of Internal Medicine, University of California Davis Medical Center, Sacramento, California, USA,Institute for Regenerative Cures, University of California Davis Medical Center, Sacramento, California, USA
| | - Neil D. Theise
- Departments of Pathology and Medicine, Beth Israel Medical Center of Albert Einstein College of Medicine, New York, New York, USA,Corresponding Authors: Departments of Pathology and Medicine, Beth Israel Medical Center of Albert Einstein College of Medicine, 350 East 17th Street, Baird Hall, Room 17, New York, NY 10003 USA. Tel: +1 212 420 4246, Fax: +1 212 420 4373. (N.D. Theise). Division of Gastroenterology, Duke University Medical Center, Box 3256 Snydeman/GSRB-1 595 La Salle Street Durham, NC 27710 USA. Tel: +1 919 684 4173, Fax: +1 919 684 4183. (A.M. Diehl). Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Pudong district, Shanghai 201203 China. Tel: +86-21-51322059, Fax: +86 21-51322059. (P. Liu). Department of Dermatology and Internal Medicine, Institute for Regenerative Cures, University of California Davis Medical Center, 2921 Stockton Blvd, Suite 1630, Sacramento, CA 95817 USA. Tel: +1 916 703 9393, Fax: +1 916 703 9396. (Y. Duan)
| | - Ann Mae Diehl
- Division of Gastroenterology, Duke University Medical Center, Durham, North Carolina, USA,Corresponding Authors: Departments of Pathology and Medicine, Beth Israel Medical Center of Albert Einstein College of Medicine, 350 East 17th Street, Baird Hall, Room 17, New York, NY 10003 USA. Tel: +1 212 420 4246, Fax: +1 212 420 4373. (N.D. Theise). Division of Gastroenterology, Duke University Medical Center, Box 3256 Snydeman/GSRB-1 595 La Salle Street Durham, NC 27710 USA. Tel: +1 919 684 4173, Fax: +1 919 684 4183. (A.M. Diehl). Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Pudong district, Shanghai 201203 China. Tel: +86-21-51322059, Fax: +86 21-51322059. (P. Liu). Department of Dermatology and Internal Medicine, Institute for Regenerative Cures, University of California Davis Medical Center, 2921 Stockton Blvd, Suite 1630, Sacramento, CA 95817 USA. Tel: +1 916 703 9393, Fax: +1 916 703 9396. (Y. Duan)
| | - Ping Liu
- Shuguang Hospital of Shanghai University of Traditional Chinese Medicine, Key Laboratory of Liver and Kidney Diseases of Ministry of Education of China, Institute of Liver Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai, China,Shanghai key laboratory of Traditional Chinese Medicine, Shanghai 201203, China,E-institutes of Shanghai Municipal Education Commission, Shanghai University of Traditional Chinese Medicine, Shanghai, China,Corresponding Authors: Departments of Pathology and Medicine, Beth Israel Medical Center of Albert Einstein College of Medicine, 350 East 17th Street, Baird Hall, Room 17, New York, NY 10003 USA. Tel: +1 212 420 4246, Fax: +1 212 420 4373. (N.D. Theise). Division of Gastroenterology, Duke University Medical Center, Box 3256 Snydeman/GSRB-1 595 La Salle Street Durham, NC 27710 USA. Tel: +1 919 684 4173, Fax: +1 919 684 4183. (A.M. Diehl). Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Pudong district, Shanghai 201203 China. Tel: +86-21-51322059, Fax: +86 21-51322059. (P. Liu). Department of Dermatology and Internal Medicine, Institute for Regenerative Cures, University of California Davis Medical Center, 2921 Stockton Blvd, Suite 1630, Sacramento, CA 95817 USA. Tel: +1 916 703 9393, Fax: +1 916 703 9396. (Y. Duan)
| | - Yuyou Duan
- Department of Internal Medicine, University of California Davis Medical Center, Sacramento, California, USA,Institute for Regenerative Cures, University of California Davis Medical Center, Sacramento, California, USA,Department of Dermatology, University of California Davis Medical Center, Sacramento, California, USA,Corresponding Authors: Departments of Pathology and Medicine, Beth Israel Medical Center of Albert Einstein College of Medicine, 350 East 17th Street, Baird Hall, Room 17, New York, NY 10003 USA. Tel: +1 212 420 4246, Fax: +1 212 420 4373. (N.D. Theise). Division of Gastroenterology, Duke University Medical Center, Box 3256 Snydeman/GSRB-1 595 La Salle Street Durham, NC 27710 USA. Tel: +1 919 684 4173, Fax: +1 919 684 4183. (A.M. Diehl). Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Pudong district, Shanghai 201203 China. Tel: +86-21-51322059, Fax: +86 21-51322059. (P. Liu). Department of Dermatology and Internal Medicine, Institute for Regenerative Cures, University of California Davis Medical Center, 2921 Stockton Blvd, Suite 1630, Sacramento, CA 95817 USA. Tel: +1 916 703 9393, Fax: +1 916 703 9396. (Y. Duan)
| |
Collapse
|
20
|
Al-Jokhadar M, Al-Mandily A, Zaid K, Azar Maalouf E. CCR7 and CXCR4 Expression in Primary Head and Neck Squamous Cell Carcinomas and Nodal Metastases – a Clinical and Immunohistochemical Study. Asian Pac J Cancer Prev 2017; 18:1093-1104. [PMID: 28547946 PMCID: PMC5494221 DOI: 10.22034/apjcp.2017.18.4.1093] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Background: Squamous cell carcinomas (SCCs) are common head and neck malignancies demonstrating lymph node LN involvement. Recently chemokine receptor overxpression has been reported in many cancers. Of particular interest, CCR7 appears to be a strong mediator of LN metastases, while CXCR4 may mediate distant metastases. Any relations between their expression in primary HNSCCs and metastatic lymph nodes need to be clarified. Aims: To investigate CCR7 andCXCR4 expression in primary HNSCCs of all tumor sizes, clinical stages and histological grades, as well as involved lymph nodes, then make comparisons, also with control normal oral epithelium. Materials and Methods: The sample consisted of 60 formalin-fixed, paraffin-embedded specimens of primary HNSCCs, 77 others of metastasi-positive lymph nodes, and 10 of control normal oral epithelial tissues. Sections were conventionally stained with H&E and immunohistochemically with monoclonal anti-CCR7 and monoclonal anti-CXCR4 antibodies. Positive cells were counted under microscopic assessment in four fields (X40) per case. Results: There was no variation among primary HNSCC tumors staining positive for CCR7 and CXCR4 with tumor size of for CCR7 with lymph node involvement. However, a difference was noted between primary HNSCC tumors stained by CXCR4 with a single as compared to more numerous node involvement. CXCR4 appear to vary with the clinical stagebut no links were noted with histological grades. Staining for primary HNSCC tumors and metastatic lymph nodes correlated.
Collapse
Affiliation(s)
- Maya Al-Jokhadar
- Department of Oral Histology and Pathology, Faculty of Dentistry, Damascus University, Damascus, Syria.
| | | | | | | |
Collapse
|
21
|
Lukacs-Kornek V, Lammert F. The progenitor cell dilemma: Cellular and functional heterogeneity in assistance or escalation of liver injury. J Hepatol 2017; 66:619-630. [PMID: 27826058 DOI: 10.1016/j.jhep.2016.10.033] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 10/18/2016] [Accepted: 10/31/2016] [Indexed: 12/16/2022]
Abstract
Liver progenitor cells (LPCs) are quiescent cells that are activated during liver injury and thought to give rise to hepatocytes and cholangiocytes in order to support liver regeneration and tissue restitution. While hepatocytes are capable of self-renewal, during most chronic injuries the proliferative capacity of hepatocytes is inhibited, thus LPCs provide main source for regeneration. Despite extensive lineage tracing studies, their role and involvement in these processes are often controversial. Additionally, increasing evidence suggests that the LPC compartment consists of heterogeneous cell populations that are actively involved in cellular interactions with myeloid and lymphoid cells during regeneration. On the other hand, LPC expansion has been associated with an increased fibrogenic response, raising concerns about the therapeutic use of these cells. This review aims to summarize the current understanding of the identity, the cellular interactions and the key pathways affecting the biology of LPCs. Understanding the regulatory circuits and the specific role of LPCs is especially important as it could provide novel therapeutic platforms for the treatment of liver inflammation, fibrosis and regeneration.
Collapse
Affiliation(s)
- Veronika Lukacs-Kornek
- Department of Medicine II, Saarland University Medical Center, Saarland University, Homburg, Germany.
| | - Frank Lammert
- Department of Medicine II, Saarland University Medical Center, Saarland University, Homburg, Germany
| |
Collapse
|
22
|
Proteomic Analysis of Liver Proteins in a Rat Model of Chronic Restraint Stress-Induced Depression. BIOMED RESEARCH INTERNATIONAL 2017; 2017:7508316. [PMID: 28293639 PMCID: PMC5331273 DOI: 10.1155/2017/7508316] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 11/28/2016] [Accepted: 12/22/2016] [Indexed: 01/16/2023]
Abstract
Depression is a global mental disorder disease and greatly threatened human health and stress is considered to be one of the important factors that lead to depression. In this study, we used newly developed iTRAQ labeling and high performance liquid chromatography (HPLC) and mass spectrum united analysis technology obtained the 2176 accurate proteins. Successively, we used the GO analysis and IPA software to analyze the 98 differentially expressed proteins of liver in depression rats due to chronic restraint stress, showing a map of proteomics analysis of liver proteins from the aspects of related functions, disease and function analysis, canonical pathway analysis, and associated network. This study provide important information for comprehensively understanding the mechanisms of dysfunction or injury in the liver in depression.
Collapse
|
23
|
Du L, Feng R, Ge S. PTH/SDF-1α cotherapy promotes proliferation, migration and osteogenic differentiation of human periodontal ligament stem cells. Cell Prolif 2016; 49:599-608. [PMID: 27523567 DOI: 10.1111/cpr.12286] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 07/11/2016] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVES Stromal cell-derived factor-1α (SDF-1α) plays an important role in tissue regeneration in various tissues including the periodontium. A potential limitation for its use derives from its sensitivity to cleavage by dipeptidyl peptidase-IV (DPP-IV). Parathyroid hormone (PTH) reduces enzymatic activity of DPP-IV and is suggested to be a promising agent for periodontal tissue repair. The purpose of this study was to provide insight into how SDF-1α and intermittent PTH treatment might affect proliferation, migration and osteogenic differentiation of human periodontal ligament stem cells (PDLSCs) in vitro. MATERIALS AND METHODS PDLSCs were isolated by the limiting dilution method. Surface markers were quantified by flow cytometry. Cell-counting kit-8 (CCK8), cell migration assay, alkaline phosphatase (ALP) activity assay, alizarin red staining and RT-PCR were used to determine viability, migration and osteogenic differentiation of PDLSCs. RESULTS PDLSCs were positive for CD44, CD73, CD90, CD105, CD166 and STRO-1 and negative for CD14, CD34 and CD45. PTH/SDF-1α cotherapy significantly promoted cell proliferation, chemotactic capability, ALP activity and mineral deposition (P<.05). Gene expression level of bone sialoprotein (BSP), runt-related transcription factor 2 (Runx2) and osteocalcin (OCN) were all up-regulated (P<.05). CONCLUSIONS PTH/SDF-1α cotherapy promoted proliferation, migration and osteogenic differentiation of PDLSCs in vitro. Cotherapy seemed to have potential to promote periodontal tissue regeneration by facilitating chemotaxis of PDLSCs to the injured site, followed by promoting proliferation and osteogenic differentiation of these cells.
Collapse
Affiliation(s)
- Lingqian Du
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan, China.,Department of Periodontology, School of Stomatology, Shandong University, Jinan, China
| | - Ruijuan Feng
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan, China.,Department of Periodontology, School of Stomatology, Shandong University, Jinan, China
| | - Shaohua Ge
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan, China. .,Department of Periodontology, School of Stomatology, Shandong University, Jinan, China.
| |
Collapse
|
24
|
Dennie D, Louboutin JP, Strayer DS. Migration of bone marrow progenitor cells in the adult brain of rats and rabbits. World J Stem Cells 2016; 8:136-157. [PMID: 27114746 PMCID: PMC4835673 DOI: 10.4252/wjsc.v8.i4.136] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 09/11/2015] [Accepted: 02/16/2016] [Indexed: 02/06/2023] Open
Abstract
Neurogenesis takes place in the adult mammalian brain in three areas: Subgranular zone of the dentate gyrus (DG); subventricular zone of the lateral ventricle; olfactory bulb. Different molecular markers can be used to characterize the cells involved in adult neurogenesis. It has been recently suggested that a population of bone marrow (BM) progenitor cells may migrate to the brain and differentiate into neuronal lineage. To explore this hypothesis, we injected recombinant SV40-derived vectors into the BM and followed the potential migration of the transduced cells. Long-term BM-directed gene transfer using recombinant SV40-derived vectors leads to expression of the genes delivered to the BM firstly in circulating cells, then after several months in mature neurons and microglial cells, and thus without central nervous system (CNS) lesion. Most of transgene-expressing cells expressed NeuN, a marker of mature neurons. Thus, BM-derived cells may function as progenitors of CNS cells in adult animals. The mechanism by which the cells from the BM come to be neurons remains to be determined. Although the observed gradual increase in transgene-expressing neurons over 16 mo suggests that the pathway involved differentiation of BM-resident cells into neurons, cell fusion as the principal route cannot be totally ruled out. Additional studies using similar viral vectors showed that BM-derived progenitor cells migrating in the CNS express markers of neuronal precursors or immature neurons. Transgene-positive cells were found in the subgranular zone of the DG of the hippocampus 16 mo after intramarrow injection of the vector. In addition to cells expressing markers of mature neurons, transgene-positive cells were also positive for nestin and doublecortin, molecules expressed by developing neuronal cells. These cells were actively proliferating, as shown by short term BrdU incorporation studies. Inducing seizures by using kainic acid increased the number of BM progenitor cells transduced by SV40 vectors migrating to the hippocampus, and these cells were seen at earlier time points in the DG. We show that the cell membrane chemokine receptor, CCR5, and its ligands, enhance CNS inflammation and seizure activity in a model of neuronal excitotoxicity. SV40-based gene delivery of RNAi targeting CCR5 to the BM results in downregulating CCR5 in circulating cells, suggesting that CCR5 plays an important role in regulating traffic of BM-derived cells into the CNS, both in the basal state and in response to injury. Furthermore, reduction in CCR5 expression in circulating cells provides profound neuroprotection from excitotoxic neuronal injury, reduces neuroinflammation, and increases neuronal regeneration following this type of insult. These results suggest that BM-derived, transgene-expressing, cells can migrate to the brain and that they become neurons, at least in part, by differentiating into neuron precursors and subsequently developing into mature neurons.
Collapse
|
25
|
Control of Cross Talk between Angiogenesis and Inflammation by Mesenchymal Stem Cells for the Treatment of Ocular Surface Diseases. Stem Cells Int 2016; 2016:7961816. [PMID: 27110252 PMCID: PMC4823508 DOI: 10.1155/2016/7961816] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 02/29/2016] [Indexed: 12/13/2022] Open
Abstract
Angiogenesis is beneficial in the treatment of ischemic heart disease and peripheral artery disease. However, it facilitates inflammatory cell filtration and inflammation cascade that disrupt the immune and angiogenesis privilege of the avascular cornea, resulting in ocular surface diseases and even vision loss. Although great progress has been achieved, healing of severe ocular surface injury and immunosuppression of corneal transplantation are the most difficult and challenging step in the treatment of ocular surface disorders. Mesenchymal stem cells (MSCs), derived from various adult tissues, are able to differentiate into different cell types such as endothelial cells and fat cells. Although it is still under debate whether MSCs could give rise to functional corneal cells, recent results from different study groups showed that MSCs could improve corneal disease recovery through suppression of inflammation and modulation of immune cells. Thus, MSCs could become a promising tool for ocular surface disorders. In this review, we discussed how angiogenesis and inflammation are orchestrated in the pathogenesis of ocular surface disease. We overviewed and updated the knowledge of MSCs and then summarized the therapeutic potential of MSCs via control of angiogenesis, inflammation, and immune response in the treatment of ocular surface disease.
Collapse
|
26
|
Gjymishka A, Pi L, Oh SH, Jorgensen M, Liu C, Protopapadakis Y, Patel A, Petersen BE. miR-133b Regulation of Connective Tissue Growth Factor: A Novel Mechanism in Liver Pathology. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:1092-102. [PMID: 26945106 DOI: 10.1016/j.ajpath.2015.12.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 11/30/2015] [Accepted: 12/28/2015] [Indexed: 02/07/2023]
Abstract
miRNAs are involved in liver regeneration, and their expression is dysregulated in hepatocellular carcinoma (HCC). Connective tissue growth factor (CTGF), a direct target of miR-133b, is crucial in the ductular reaction (DR)/oval cell (OC) response for generating new hepatocyte lineages during liver injury in the context of hepatotoxin-inhibited hepatocyte proliferation. Herein, we investigate whether miR-133b regulation of CTGF influences HCC cell proliferation and migration, and DR/OC response. We analyzed miR-133b expression and found it to be down-regulated in HCC patient samples and induced in the rat DR/OC activation model of 2-acetylaminofluorene with partial hepatectomy. Furthermore, overexpression of miR-133b via adenoviral system in vitro led to decreased CTGF expression and reduced proliferation and Transwell migration of both HepG2 HCC cells and WBF-344 rat OCs. In vivo, overexpression of miR-133b in DR/OC activation models of 2-acetylaminofluorene with partial hepatectomy in rats, and 3,5-diethoxycarbonyl-1,4-dihydrocollidine in mice, led to down-regulation of CTGF expression and OC proliferation. Collectively, these results show that miR-133b regulation of CTGF is a novel mechanism critical for the proliferation and migration of HCC cells and OC response.
Collapse
Affiliation(s)
- Altin Gjymishka
- Department of Pediatrics, University of Florida, Gainesville, Florida
| | - Liya Pi
- Department of Pediatrics, University of Florida, Gainesville, Florida
| | - Seh-Hoon Oh
- Department of Pediatrics, University of Florida, Gainesville, Florida
| | - Marda Jorgensen
- Department of Pediatrics, University of Florida, Gainesville, Florida
| | - Chen Liu
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, Florida
| | | | - Ashnee Patel
- Department of Pediatrics, University of Florida, Gainesville, Florida
| | - Bryon E Petersen
- Department of Pediatrics, University of Florida, Gainesville, Florida.
| |
Collapse
|
27
|
Stromal Derived Factor-1/CXCR4 Axis Involved in Bone Marrow Mesenchymal Stem Cells Recruitment to Injured Liver. Stem Cells Int 2016; 2016:8906945. [PMID: 26880995 PMCID: PMC4737461 DOI: 10.1155/2016/8906945] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 10/10/2015] [Accepted: 10/15/2015] [Indexed: 01/18/2023] Open
Abstract
The molecular mechanism of bone marrow mesenchymal stromal stem cells (BMSCs) mobilization and migration to the liver was poorly understood. Stromal cell-derived factor-1 (SDF-1) participates in BMSCs homing and migration into injury organs. We try to investigate the role of SDF-1 signaling in BMSCs migration towards injured liver. The expression of CXCR4 in BMSCs at mRNA level and protein level was confirmed by RT-PCR, flow cytometry, and immunocytochemistry. The SDF-1 or liver lysates induced BMSCs migration was detected by transwell inserts. CXCR4 antagonist, AMD3100, and anti-CXCR4 antibody were used to inhibit the migration. The Sprague-Dawley rat liver injury model was established by intraperitoneal injection of thioacetamide. The concentration of SDF-1 increased as modeling time extended, which was determined by ELISA method. The Dir-labeled BMSCs were injected into the liver of the rats through portal vein. The cell migration in the liver was tracked by in vivo imaging system and the fluorescent intensity was measured. In vivo, BMSCs migrated into injured liver which was partially blocked by AMD3100 or anti-CXCR4 antibody. Taken together, the results demonstrated that the migration of BMSCs was regulated by SDF-1/CXCR4 signaling which involved in BMSCs recruitment to injured liver.
Collapse
|
28
|
Mesenchymal Stromal Cells and Tissue-Specific Progenitor Cells: Their Role in Tissue Homeostasis. Stem Cells Int 2015; 2016:4285215. [PMID: 26823669 PMCID: PMC4707334 DOI: 10.1155/2016/4285215] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 09/15/2015] [Indexed: 02/07/2023] Open
Abstract
Multipotent mesenchymal stromal/stem cells (MSCs) reside in many human organs and comprise heterogeneous population of cells with self-renewal ability. These cells can be isolated from different tissues, and their morphology, immunophenotype, and differentiation potential are dependent on their tissue of origin. Each organ contains specific population of stromal cells which maintain regeneration process of the tissue where they reside, but some of them have much more wide plasticity and differentiate into multiple cells lineage. MSCs isolated from adult human tissues are ideal candidates for tissue regeneration and tissue engineering. However, MSCs do not only contribute to structurally tissue repair but also MSC possess strong immunomodulatory and anti-inflammatory properties and may influence in tissue repair by modulation of local environment. This paper is presenting an overview of the current knowledge of biology of tissue-resident mesenchymal stromal and progenitor cells (originated from bone marrow, liver, skeletal muscle, skin, heart, and lung) associated with tissue regeneration and tissue homeostasis.
Collapse
|
29
|
Che X, Guo J, Li X, Wang L, Wei S. Intramuscular injection of bone marrow mononuclear cells contributes to bone repair following midpalatal expansion in rats. Mol Med Rep 2015; 13:681-8. [PMID: 26648442 PMCID: PMC4686095 DOI: 10.3892/mmr.2015.4578] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 10/19/2015] [Indexed: 12/21/2022] Open
Abstract
Healing from injury requires the activation and proliferation of stem cells for tissue repair. Previous studies have demonstrated that bone marrow is a central pool of stem cells. The present study aimed to investigate the route undertaken by bone marrow mononuclear cells (BMMCs) following BMMC transplantation by masseter injection in a rat model of midpalatal expansion. The rats were divided into five groups according to the types of midpalatal expansion, incision and BMMC transplantation. Samples of midpalatal bone from the rats in each group were used for histological and immunohistochemical assessments to track and evaluate the differential potentials of the transplanted BMMCs in the masseter muscle and midpalatal bone. Bromodeoxyuridine was used as a BMMC tracing label, and M-cadherin was used to detect muscle satellite cells. The BMMCs injected into the masseter were observed, not only in the masseter, but also in the blood vessels and oral mucosa, and enveloped the midpalatal bone. A number of the BMMCs transformed into osteoblasts at the boundary of the neuromuscular bundle, and were embedded in the newly formed bone during midpalatal bone regeneration. The results of the present study suggested that BMMCs entered the circulation and migrated from muscle to the bone tissue, where they were involved in bone repair. Therefore, BMMCs may prove useful in the treatment of various types of cancer.
Collapse
Affiliation(s)
- Xiaoxia Che
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing 100050, P.R. China
| | - Jie Guo
- Department of Orthodontics, School of Stomatology, Shandong University, Shandong Provincial Key Laboratory of Oral Biomedicine, Jinan, Shandong 250012, P.R. China
| | - Xiangdong Li
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing 100050, P.R. China
| | - Lve Wang
- Department of Microbiology, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Silong Wei
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing 100050, P.R. China
| |
Collapse
|
30
|
Cioffi M, D'Alterio C, Camerlingo R, Tirino V, Consales C, Riccio A, Ieranò C, Cecere SC, Losito NS, Greggi S, Pignata S, Pirozzi G, Scala S. Identification of a distinct population of CD133(+)CXCR4(+) cancer stem cells in ovarian cancer. Sci Rep 2015; 5:10357. [PMID: 26020117 PMCID: PMC4650662 DOI: 10.1038/srep10357] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 04/09/2015] [Indexed: 01/06/2023] Open
Abstract
CD133 and CXCR4 were evaluated in the NCI-60 cell lines to identify cancer stem cell rich populations. Screening revealed that, ovarian OVCAR-3, -4 and -5 and colon cancer HT-29, HCT-116 and SW620 over expressed both proteins. We aimed to isolate cells with stem cell features sorting the cells expressing CXCR4(+)CD133(+) within ovarian cancer cell lines. The sorted population CD133(+)CXCR4(+) demonstrated the highest efficiency in sphere formation in OVCAR-3, OVCAR-4 and OVCAR-5 cells. Moreover OCT4, SOX2, KLF4 and NANOG were highly expressed in CD133(+)CXCR4(+) sorted OVCAR-5 cells. Most strikingly CXCR4(+)CD133(+) sorted OVCAR-5 and -4 cells formed the highest number of tumors when inoculated in nude mice compared to CD133(-)CXCR4(-), CD133(+)CXCR4(-), CD133(-)CXCR4(+) cells. CXCR4(+)CD133(+) OVCAR-5 cells were resistant to cisplatin, overexpressed the ABCG2 surface drug transporter and migrated toward the CXCR4 ligand, CXCL12. Moreover, when human ovarian cancer cells were isolated from 37 primary ovarian cancer, an extremely variable level of CXCR4 and CD133 expression was detected. Thus, in human ovarian cancer cells CXCR4 and CD133 expression identified a discrete population with stem cell properties that regulated tumor development and chemo resistance. This cell population represents a potential therapeutic target.
Collapse
Affiliation(s)
- Michele Cioffi
- Molecular Immunology and Immuneregulation, Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione Giovanni Pascale" IRCCS-ITALIA. Via Mariano Semmola 80131, Naples, Italy
| | - Crescenzo D'Alterio
- Molecular Immunology and Immuneregulation, Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione Giovanni Pascale" IRCCS-ITALIA. Via Mariano Semmola 80131, Naples, Italy
| | - Rosalba Camerlingo
- Stem Cell Unit, Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione Giovanni Pascale" IRCCS-ITALIA. Via Mariano Semmola 80131, Naples, Italy
| | - Virginia Tirino
- Stem Cell Unit, Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione Giovanni Pascale" IRCCS-ITALIA. Via Mariano Semmola 80131, Naples, Italy
| | - Claudia Consales
- Molecular Immunology and Immuneregulation, Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione Giovanni Pascale" IRCCS-ITALIA. Via Mariano Semmola 80131, Naples, Italy
| | - Anna Riccio
- Molecular Immunology and Immuneregulation, Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione Giovanni Pascale" IRCCS-ITALIA. Via Mariano Semmola 80131, Naples, Italy
| | - Caterina Ieranò
- Molecular Immunology and Immuneregulation, Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione Giovanni Pascale" IRCCS-ITALIA. Via Mariano Semmola 80131, Naples, Italy
| | - Sabrina Chiara Cecere
- Uro-Gynecological Oncology, Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione Giovanni Pascale" IRCCS-ITALIA. Via Mariano Semmola 80131, Naples, Italy
| | - Nunzia Simona Losito
- Pathology; Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione Giovanni Pascale" IRCCS-ITALIA. Via Mariano Semmola 80131, Naples, Italy
| | - Stefano Greggi
- Uro-Gynecological Oncology, Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione Giovanni Pascale" IRCCS-ITALIA. Via Mariano Semmola 80131, Naples, Italy
| | - Sandro Pignata
- Uro-Gynecological Oncology, Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione Giovanni Pascale" IRCCS-ITALIA. Via Mariano Semmola 80131, Naples, Italy
| | - Giuseppe Pirozzi
- Stem Cell Unit, Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione Giovanni Pascale" IRCCS-ITALIA. Via Mariano Semmola 80131, Naples, Italy
| | - Stefania Scala
- Molecular Immunology and Immuneregulation, Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione Giovanni Pascale" IRCCS-ITALIA. Via Mariano Semmola 80131, Naples, Italy
| |
Collapse
|
31
|
Wilson GC, Freeman CM, Kuethe JW, Quillin RC, Nojima H, Schuster R, Blanchard J, Edwards MJ, Caldwell CC, Lentsch AB. CXC chemokine receptor-4 signaling limits hepatocyte proliferation after hepatic ischemia-reperfusion in mice. Am J Physiol Gastrointest Liver Physiol 2015; 308:G702-9. [PMID: 25721302 PMCID: PMC4398844 DOI: 10.1152/ajpgi.00257.2014] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 02/18/2015] [Indexed: 01/31/2023]
Abstract
The role of stromal cell-derived factor-1 (SDF-1 or CXCL12) and its receptor CXC chemokine receptor-4 (CXCR4) in ischemic liver injury and recovery has not been studied. Some reports suggest that this chemokine may aid in liver regeneration, but others suggest that it may be profibrotic through its activation of hepatic stellate cells. In this study we sought to elucidate the role of SDF-1 and its receptor CXCR4 during liver injury, recovery, and regeneration after ischemia-reperfusion (I/R). A murine model of partial (70%) I/R was used to induce liver injury and study the reparative and regenerative response. CXCR4 was expressed constitutively in the liver, and hepatic levels of SDF-1 peaked 8 h after reperfusion but remained significantly increased for 96 h. Treatment of mice with the CXCR4 antagonist AMD3100 or agonist SDF-1 had no effect on acute liver injury assessed 8 h after I/R. However, treatment with AMD3100 increased hepatocyte proliferation after 72 and 96 h of reperfusion and reduced the amount of liver necrosis. In contrast, treatment with SDF-1 significantly decreased hepatocyte proliferation. These effects appeared to be dependent on the presence of liver injury, as AMD3100 and SDF-1 had no effect on hepatocyte proliferation or liver mass in mice undergoing 70% partial hepatectomy. The data suggest that signaling through CXCR4 is detrimental to liver recovery and regeneration after I/R and that clinical therapy with a CXCR4 antagonist may improve hepatic recovery following acute liver injury.
Collapse
Affiliation(s)
- Gregory C. Wilson
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | | | - Joshua W. Kuethe
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Ralph C. Quillin
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Hiroyuki Nojima
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Rebecca Schuster
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - John Blanchard
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Michael J. Edwards
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Charles C. Caldwell
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Alex B. Lentsch
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio
| |
Collapse
|
32
|
Chou CH, Lai SL, Ho CM, Lin WH, Chen CN, Lee PH, Peng FC, Kuo SH, Wu SY, Lai HS. Lysophosphatidic acid alters the expression profiles of angiogenic factors, cytokines, and chemokines in mouse liver sinusoidal endothelial cells. PLoS One 2015; 10:e0122060. [PMID: 25822713 PMCID: PMC4379007 DOI: 10.1371/journal.pone.0122060] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 02/08/2015] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND AND AIMS Lysophosphatidic acid (LPA) is a multi-function glycerophospholipid. LPA affects the proliferation of hepatocytes and stellate cells in vitro, and in a partial hepatectomy induced liver regeneration model, the circulating LPA levels and LPA receptor (LPAR) expression levels in liver tissue are significantly changed. Liver sinusoidal endothelial cells (Lsecs) play an important role during liver regeneration. However, the effects of LPA on Lsecs are not well known. Thus, we investigated the effects of LPA on the expression profiles of angiogenic factors, cytokines, and chemokines in Lsecs. METHODS Mouse Lsecs were isolated using CD31-coated magnetic beads. The mRNA expression levels of LPAR's and other target genes were determined by quantitative RT-PCR. The protein levels of angiogenesis factors, cytokines, and chemokines were determined using protein arrays and enzyme immunoassay (EIA). Critical LPAR related signal transduction was verified by using an appropriate chemical inhibitor. RESULTS LPAR1 and LPAR3 mRNA's were expressed in mouse LPA-treated Lsecs. Treating Lsecs with a physiological level of LPA significantly enhanced the protein levels of angiogenesis related proteins (cyr61 and TIMP-1), cytokines (C5/C5a, M-CSF, and SDF-1), and chemokines (MCP-5, gp130, CCL28, and CXCL16). The LPAR1 and LPAR3 antagonist ki16425 significantly inhibited the LPA-enhanced expression of cyr61, TIMP-1, SDF-1, MCP-5, gp130, CCL28, and CXCL16, but not that of C5/C5a or M-CSF. LPA-induced C5/C5a and M-CSF expression may have been through an indirect regulation mechanism. CONCLUSION LPA regulated the expression profiles of angiogenic factors, cytokines, and chemokines in Lsecs that was mediated via LPAR1 and LPAR3 signaling. Most of the factors that were enhanced by LPA have been found to play critical roles during liver regeneration. Thus, these results may prove useful for manipulating LPA effects on liver regeneration.
Collapse
Affiliation(s)
- Chia-Hung Chou
- Department of Surgery, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Shou-Lun Lai
- Department of Surgery, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Cheng-Maw Ho
- Department of Surgery, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Wen-Hsi Lin
- Department of Surgery, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chiung-Nien Chen
- Department of Surgery, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Po-Huang Lee
- Department of Surgery, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Fu-Chuo Peng
- Graduate Institute of Toxicology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Sung-Hsin Kuo
- Department of Oncology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Szu-Yuan Wu
- Department of Radiation-Oncology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Hong-Shiee Lai
- Department of Surgery, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
33
|
Katoonizadeh A, Poustchi H, Malekzadeh R. Hepatic progenitor cells in liver regeneration: current advances and clinical perspectives. Liver Int 2014; 34:1464-72. [PMID: 24750779 DOI: 10.1111/liv.12573] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 04/17/2014] [Indexed: 12/12/2022]
Abstract
When there is a massive loss of hepatocytes and/or an inhibition in the proliferative capacity of the mature hepatocytes, activation of a dormant cell population of resident hepatic progenitor cells (HPCs) occurs. Depending on the type of liver damage HPCs generate new hepatocytes and biliary cells to repopulate the liver placing them as potential candidates for cell therapy in human liver failure. Liver injury specific mechanisms through which HPCs differentiate towards mature epithelial cell types are recently become understood. Such new insights will enable us not only to direct HPCs behaviour for therapeutic purposes, but also to develop clinically feasible methods for in vivo differentiation of other stem cell types towards functional hepatocytes. This review aimed to provide the current improved knowledge of the role of HPCs niche and its signals in directing the behaviour and fate of HPCs and to translate this basic knowledge of HPCs activation/differentiation into its clinical applications.
Collapse
Affiliation(s)
- Aezam Katoonizadeh
- Liver and Pancreatobiliary Diseases Research Center, Digestive Diseases Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | | |
Collapse
|
34
|
Chen CL, Tsukamoto H, Machida K. Oncogenic signaling pathways and origins of tumor-initiating stem-like cells of hepatocellular carcinomas induced by hepatitis C virus, alcohol and/or obesity. Hepatol Int 2014; 8:330-8. [PMID: 26202636 PMCID: PMC10560513 DOI: 10.1007/s12072-014-9545-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 05/13/2014] [Indexed: 12/21/2022]
Abstract
This review article discusses the importance and oncogenic signaling pathways of tumor-initiating cells (TICs) in several etiologies of hepatocellular carcinomas (HCCs) induced by hepatitis C virus (HCV), alcohol, obesity and/or chemicals. Stem cells may be present in cancer tissue, and a hierarchy of cells is formed, as is the case for normal tissue. Tumor formation, growth and propagation are maintained by a small proportion of cells with stem cell-like properties. TICs are present in alcohol-fed HCV transgenic mice, diethylnitrosamine/phenobarbital-treated mice (chemical carcinogenesis) and Spnb2 +/- mice (defective TGF-β signal). Alcohol/obesity-associated endotoxemia induces the stem cell marker Nanog through TLR4 signaling to generate TICs and liver tumors in several HCC models. The oncogenic pathway (such as the STAT3 and TLR4-NANOG pathway) and mechanism of generation of TICs of HCCs associated with HCV, alcohol and obesity are discussed. Understanding the molecular stemness signaling and cellular hierarchy and defining key TIC-specific genes will accelerate the development of novel biomarkers and treatment strategies. This review highlights recent advances in understanding the pathogenesis of liver TICs and discusses unanswered questions about the concept of liver TICs. (This project was supported by NIH grants 1R01AA018857 and P50AA11999).
Collapse
Affiliation(s)
- Chia-Lin Chen
- Department of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, CA, 90033, USA
| | - Hidekazu Tsukamoto
- Southern California Research Center for ALPD and Cirrhosis, Los Angeles, CA, USA
- Department of Pathology, University of Southern California, Los Angeles, CA, 90033, USA
| | - Keigo Machida
- Department of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, CA, 90033, USA.
- Southern California Research Center for ALPD and Cirrhosis, Los Angeles, CA, USA.
| |
Collapse
|
35
|
Yang T, Li ZN, Chen G, Gu Q, Ni XH, Zhao ZH, Ye J, Meng XM, Liu ZH, Xiong CM, He JG. Increased levels of plasma CXC-Chemokine Ligand 10, 12 and 16 are associated with right ventricular function in patients with idiopathic pulmonary arterial hypertension. Heart Lung 2014; 43:322-7. [PMID: 24856224 DOI: 10.1016/j.hrtlng.2014.04.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 04/16/2014] [Accepted: 04/17/2014] [Indexed: 12/21/2022]
Abstract
OBJECTIVE To investigate plasma levels of CXC-Chemokine Ligand 10 (CXCL10), CXC-Chemokine Ligand 12 (CXCL12) and CXC-Chemokine Ligand 16 (CXCL16) in patients with idiopathic pulmonary arterial hypertension (IPAH). METHODS Plasma levels of biomarkers were measured by enzyme-linked immunosorbent assay in 61 patients with IPAH and 20 healthy volunteers. RESULTS Plasma CXCL10, CXCL12 and CXCL16 concentrations were increased significantly in IPAH patients compared with controls, and significantly correlated with N-terminal pro-brain natriuretic peptide, tricuspid annulus plane systolic excursion and right ventricular ejection fraction. CONCLUSIONS Increased levels of CXCL10, CXCL12 and CXCL16 are associated with right ventricular dysfunction in patients with IPAH.
Collapse
Affiliation(s)
- Tao Yang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College and Chinese Academy of Medical Sciences, Beilishi Road, Xicheng District, Beijing 100037, China
| | - Zhen-Nan Li
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College and Chinese Academy of Medical Sciences, Beilishi Road, Xicheng District, Beijing 100037, China
| | - Guo Chen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College and Chinese Academy of Medical Sciences, Beilishi Road, Xicheng District, Beijing 100037, China
| | - Qing Gu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College and Chinese Academy of Medical Sciences, Beilishi Road, Xicheng District, Beijing 100037, China
| | - Xin-Hai Ni
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College and Chinese Academy of Medical Sciences, Beilishi Road, Xicheng District, Beijing 100037, China
| | - Zhi-Hui Zhao
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College and Chinese Academy of Medical Sciences, Beilishi Road, Xicheng District, Beijing 100037, China
| | - Jue Ye
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College and Chinese Academy of Medical Sciences, Beilishi Road, Xicheng District, Beijing 100037, China
| | - Xian-Min Meng
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College and Chinese Academy of Medical Sciences, Beilishi Road, Xicheng District, Beijing 100037, China
| | - Zhi-Hong Liu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College and Chinese Academy of Medical Sciences, Beilishi Road, Xicheng District, Beijing 100037, China
| | - Chang-Ming Xiong
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College and Chinese Academy of Medical Sciences, Beilishi Road, Xicheng District, Beijing 100037, China.
| | - Jian-Guo He
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College and Chinese Academy of Medical Sciences, Beilishi Road, Xicheng District, Beijing 100037, China.
| |
Collapse
|
36
|
The effect of simvastatin on chemotactic capability of SDF-1α and the promotion of bone regeneration. Biomaterials 2014; 35:4489-98. [DOI: 10.1016/j.biomaterials.2014.02.025] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 02/13/2014] [Indexed: 12/29/2022]
|
37
|
Lehwald N, Duhme C, Wildner M, Kuhn S, Fürst G, Forbes SJ, Jonas S, Robson SC, Knoefel WT, Schmelzle M, Schulte Am Esch J. HGF and SDF-1-mediated mobilization of CD133+ BMSC for hepatic regeneration following extensive liver resection. Liver Int 2014; 34:89-101. [PMID: 23701640 DOI: 10.1111/liv.12195] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2012] [Accepted: 04/04/2013] [Indexed: 02/13/2023]
Abstract
BACKGROUND The molecular mechanisms of haematopoietic stem cells (HSC) mobilization and homing to the liver after partial hepatectomy (PH) remain largely unexplored. METHODS Functional liver volume loss and regain was determined by computerized tomography (CT) volumetry in 30 patients following PH. Peripheral HSC mobilization was investigated by fluorescence-activated cell sorting (FACS) analyses and cytokine enzyme-linked immunosorbent assay assays. Migration of purified HSC towards hepatic growth factor (HGF) and stroma-derived factor-1 (SDF-1) gradients was tested in vitro. Mice after 70% PH were examined for HSC mobilization by FACS and cytokine mRNA expression in the liver. FACS-sorted HSC were administered after PH and hepatocyte proliferation was evaluated by immunohistochemical staining for Ki67. RESULTS Impaired liver function was noted after extended hepatic resection when compared to smaller resections. Patients with large liver resections were characterized by significantly higher levels of peripheral HSC which were positively correlated with the extent of resected liver volume and its regain after 3 weeks. Increased plasma levels of HGF, SDF-1 and insulin like growth factor (IGF-1) were evident within the first 6 hours post resection. Migration assays of human HSC in vitro showed a specific target-demonstrated migration towards recombinant HGF and SDF-1 gradients in a concentration and specific receptor (c-Met and CXCR4) dependent manner. The evaluation of peripheral human alpha foetoprotein expression demonstrated pronounced stemness following increased CD133(+) HSC in the course of liver regeneration following PH. Our human data were further validated in a murine model of PH and furthermore demonstrated increased hepatocyte proliferation subsequent to CD133(+) HSC treatment. CONCLUSION HGF and SDF-1 are required for effective HSC mobilization and homing to the liver after hepatic resection. These findings have significant implications for potential therapeutic strategies targeting chemotactant modulation and stem cell mobilization for liver protection and regeneration.
Collapse
Affiliation(s)
- Nadja Lehwald
- Department of Surgery, University Hospital Düsseldorf, Düsseldorf, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Newsome PN. SOS liver damage; calling all haematopoietic stem cells. Liver Int 2014; 34:1-3. [PMID: 24321056 DOI: 10.1111/liv.12302] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 07/24/2013] [Indexed: 12/13/2022]
Affiliation(s)
- Philip N Newsome
- Centre for Liver Research and NIHR Biomedical Research Unit in Liver Disease, Institute of Biomedical Research, University of Birmingham, Birmingham, UK; Liver Unit, Queen Elizabeth University Hospital Birmingham, Birmingham, UK
| |
Collapse
|
39
|
Zhang WJ, Guo Y. Mechanisms of liver repair following injury. Shijie Huaren Xiaohua Zazhi 2013; 21:3369-3375. [DOI: 10.11569/wcjd.v21.i31.3369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Liver injury caused by a variety of physical or chemical factors is a common disease, and severe or persistent liver injury can ultimately lead to acute liver failure. Its treatment is still a formidable challenge to clinicians. Elucidation of mechanisms underlying liver repair following injury is the cornerstone of treatment of hepatic diseases. Despite many research efforts over the past decades, the mechanisms behind liver repair following injury are still not clear. Recent studies have demonstrated that oval cells and bone marrow stem cells are involved in this complex process. A variety of cells and factors may play a role in different stages of this process. In this paper, we will review mechanisms of liver repair following injury.
Collapse
|
40
|
Best J, Dollé L, Manka P, Coombes J, van Grunsven LA, Syn WK. Role of liver progenitors in acute liver injury. Front Physiol 2013; 4:258. [PMID: 24133449 PMCID: PMC3783932 DOI: 10.3389/fphys.2013.00258] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 09/03/2013] [Indexed: 12/13/2022] Open
Abstract
Acute liver failure (ALF) results from the acute and rapid loss of hepatocyte function and frequently exhibits a fulminant course, characterized by high mortality in the absence of immediate state-of-the-art intensive care and/or emergency liver transplantation (ELT). The role of hepatocyte-mediated liver regeneration during acute and chronic liver injury has been extensively investigated, and recent studies suggest that hepatocytes are not exclusively responsible for the regeneration of the injured liver during fulminant liver injury. Liver progenitor cells (LPC) (or resident liver stem cells) are quiescent in the healthy liver, but may be activated under conditions where the regenerative capacity of mature hepatocytes is severely impaired. This review aims to provide an overview of the role of the LPC population during ALF, and the role of putative cytokines, growth factors, mitogens, and hormones in the LPC response. We will highlight the potential interaction among cellular compartments during ALF, and discuss the possible prognostic value of the LPC response on ALF outcomes.
Collapse
Affiliation(s)
- Jan Best
- Department of Gastroenterology and Hepatology, University Hospital Essen Essen, Germany ; Liver Cell Biology Lab (LIVR), Department of Cell Biology (CYTO), Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel Brussels, Belgium
| | | | | | | | | | | |
Collapse
|
41
|
Lee J, Marrero L, Yu L, Dawson LA, Muneoka K, Han M. SDF-1α/CXCR4 signaling mediates digit tip regeneration promoted by BMP-2. Dev Biol 2013; 382:98-109. [PMID: 23916851 DOI: 10.1016/j.ydbio.2013.07.020] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 06/29/2013] [Accepted: 07/23/2013] [Indexed: 12/16/2022]
Abstract
Previously we demonstrated that BMP signaling is required for endogenous digit tip regeneration, and that treatment with BMP-2 or -7 induces a regenerative response following amputation at regeneration-incompetent levels (Yu et al., 2010, 2012). Both endogenous regeneration and BMP-induced regeneration are associated with the transient formation of a blastema, however the formation of a regeneration blastema in mammals is poorly understood. In this study, we focus on how blastema cells respond to BMP signaling during neonatal digit regeneration in mice. First, we show that blastema cells retain regenerative properties after expansion in vitro, and when re-introduced into the amputated digit, these cells display directed migration in response to BMP-2. However, in vitro studies demonstrate that BMP-2 alone does not influence blastema cell migration, suggesting a requirement of another pivotal downstream factor for cell recruitment. We show that blastema cell migration is stimulated by the cytokine, SDF-1α, and that SDF-1α is expressed by the wound epidermis as well as endothelial cells of the blastema. Blastema cells express both SDF-1α receptors, CXCR4 and CXCR7, although the migration response is inhibited by the CXCR4-specific antagonist, AMD3100. Mice treated with AMD3100 display a partial inhibition of skeletal regrowth associated with the regeneration response. We provide evidence that BMP-2 regulates Sdf-1α expression in endothelial cells but not cells of the wound epidermis. Finally, we show that SDF-1α-expressing COS1 cells engrafted into a regeneration-incompetent digit amputation wound resulted in a locally enhanced population of CXCR4 positive cells, and induced a partial regenerative response. Taken together, this study provides evidence that one downstream mechanism of BMP signaling during mammalian digit regeneration involves activation of SDF-1α/CXCR4 signaling by endothelial cells to recruit blastema cells.
Collapse
Affiliation(s)
- Jangwoo Lee
- Division of Developmental Biology, Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA
| | | | | | | | | | | |
Collapse
|
42
|
Rao MS, Sasikala M, Reddy DN. Thinking outside the liver: induced pluripotent stem cells for hepatic applications. World J Gastroenterol 2013; 19:3385-96. [PMID: 23801830 PMCID: PMC3683676 DOI: 10.3748/wjg.v19.i22.3385] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Revised: 12/06/2011] [Accepted: 12/15/2011] [Indexed: 02/06/2023] Open
Abstract
The discovery of induced pluripotent stem cells (iPSCs) unraveled a mystery in stem cell research, after identification of four re-programming factors for generating pluripotent stem cells without the need of embryos. This breakthrough in generating iPSCs from somatic cells has overcome the ethical issues and immune rejection involved in the use of human embryonic stem cells. Hence, iPSCs form a great potential source for developing disease models, drug toxicity screening and cell-based therapies. These cells have the potential to differentiate into desired cell types, including hepatocytes, under in vitro as well as under in vivo conditions given the proper microenvironment. iPSC-derived hepatocytes could be useful as an unlimited source, which can be utilized in disease modeling, drug toxicity testing and producing autologous cell therapies that would avoid immune rejection and enable correction of gene defects prior to cell transplantation. In this review, we discuss the induction methods, role of reprogramming factors, and characterization of iPSCs, along with hepatocyte differentiation from iPSCs and potential applications. Further, we discuss the location and detection of liver stem cells and their role in liver regeneration. Although tumor formation and genetic mutations are a cause of concern, iPSCs still form a promising source for clinical applications.
Collapse
|
43
|
Machida K. Tumor-initiating stem-like cells and drug resistance: carcinogenesis through Toll-like receptors, environmental factors, and virus. Drug Deliv Transl Res 2013; 3:152-64. [PMID: 25787983 PMCID: PMC10578060 DOI: 10.1007/s13346-012-0115-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neoplasms contain distinct subpopulations of cells known as tumor-initiating stem-like cells (TICs) that have been identified as key drivers of tumor growth and malignant progression with drug resistance. Stem cells normally proliferate through self-renewing divisions in which the two daughter cells differ markedly in their proliferative potential, with one displaying the differentiation phenotypes and another retaining self-renewing activity. Therefore, understanding the molecular mechanisms of hepatocarcinogenesis will be required for the eventual development of improved therapeutic modalities for treating hepatocellular carcinoma (HCC). Hepatitis C virus (HCV) and hepatitis B virus is a major cause of HCC. Compelling epidemiologic evidence identifies obesity and alcohol as co-morbidity factors that can increase the risk of HCV patients for HCC, especially in alcoholics or obese patients. The mechanisms underlying liver oncogenesis, and how environmental factors contribute to this process, are not yet understood. The HCV-Toll-like receptor 4 (TLR4)-Nanog signaling network is established since alcohol/obesity-associated endotoxemia then activates TLR4 signaling, resulting in the induction of the stem cell marker Nanog expression and liver tumors. Liver TICs are highly sensitized to leptin and exposure of TICs to leptin increases the expression and activity of an intrinsic pluripotency-associated transcriptional network comprised of signal transducer and activator of transcription 3, SOX2, OCT4, and Nanog. Stimulation of the pluripotency network may have significant implications for hepatocellular oncogenesis via genesis and maintenance of TICs. It is important to understand how HCV induces liver cancer through genesis of TICs so that better prevention and treatment can be found. This article reviews the oncogenic pathways to generate TICs.
Collapse
Affiliation(s)
- Keigo Machida
- Department of Molecular Microbiology and Immunology, Research Center for ALPD and Cirrhosis, University of Southern California School of Medicine, 503C-HMR, Los Angeles, CA, 90033, USA,
| |
Collapse
|
44
|
Du Z, Wei C, Yan J, Han B, Zhang M, Peng C, Liu Y. Mesenchymal stem cells overexpressing C-X-C chemokine receptor type 4 improve early liver regeneration of small-for-size liver grafts. Liver Transpl 2013. [PMID: 23193024 DOI: 10.1002/lt.23577] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mesenchymal stem cell (MSC) therapy can prevent hepatic parenchymal cell loss and promote tissue repair. However, poor MSC engraftment is one of the primary barriers to the effectiveness of cell therapy because culture-expanded MSCs progressively down-regulate C-X-C chemokine receptor type 4 (CXCR4) expression and lose their ability to migrate toward a concentration gradient of stromal cell-derived factor 1a (SDF1a). In this study, we investigated whether a CXCR4-MSC infusion could protect hepatocytes and stimulate regeneration in 50% reduced size liver transplantation (RSLT). Rats that underwent 50% RSLT were randomly divided into 3 groups: a phosphate-buffered solution group (PBS), a green fluorescent protein (GFP)-MSC group, and a CXCR4-MSC group. Rats received 1 mL of PBS with or without a resuspension of GFP-MSCs or CXCR4-MSCs. The factors secreted by MSCs, the graft function, the apoptosis and proliferation of hepatocytes, the efficacy of MSC engraftment, and the expression of SDF1α, albumin (Alb), and cytokeratin 18 (CK18) in engrafted GFP-positive MSCs were assessed. A systemic infusion of GFP-MSCs led to a reduction of the release of liver injury biomarkers and apoptosis of hepatocytes; CXCR4 overexpression did not further reduce the liver injury. However, CXCR4 overexpression enhanced MSC engraftment in liver grafts, improved the effect on the proliferation of hepatocytes, and thus provided a significant 1-week survival benefit. SDF1α expression in grafts was elevated after transplanted CXCR4-MSCs were recruited to the remnant liver. However, engrafted MSCs did not express the markers of hepatocytes, including Alb and CK18, in vivo 168 hours after transplantation. CXCR4 overexpression enhanced the mobilization and engraftment of MSCs into small-for-size liver grafts, in which these cells promoted the early regeneration of the remnant liver not by direct differentiation but perhaps by a paracrine mechanism.
Collapse
Affiliation(s)
- Zhiyong Du
- Department of General Surgery, Xinhua Hospital, Shanghai, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
45
|
Sun J, Yuan Y, Qin H, Ying C, Liu W, Zhang J, He Y, Liu Z. Serum from hepatectomized rats induces the differentiation of adipose tissue mesenchymal stem cells into hepatocyte-like cells and upregulates the expression of hepatocyte growth factor and interleukin-6 in vitro. Int J Mol Med 2013; 31:667-75. [PMID: 23353936 DOI: 10.3892/ijmm.2013.1257] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2012] [Accepted: 12/19/2012] [Indexed: 11/06/2022] Open
Abstract
Adipose tissue-derived mesenchymal stem cells (AT-MSCs) are an attractive alternative for clinical application due to their minimally invasive accessibility and availability in the body. However, the hepatic differentiation efficiency of AT-MSCs is insufficient for therapeutic application and the role of extrahepatic stem cells in liver regeneration remains poorly understood. This study was designed to investigate the effects of serum from rats subjected to 70% partial hepatectomy (PH) on the differentiation ability of rat AT-MSCs in vitro, and to explore the potential role of AT-MSCs in vivo following PH injury. Results showed that AT-MSCs treated with serum collected from rats 24 h after 70% PH differen-tiated into hepatocyte-like cells, resembled hepatocyte-like cells with round or polygonal shape, expressed α-fetoprotein, secreted albumin, synthesized urea and acquired cytochrome P450 type 3A4 enzyme activity, and upregulated the expression of interleukin (IL)-6 and hepatocyte growth factor (HGF) transiently in vitro, although the hepatic differentiation efficiency was extremely low. AT-MSC transplantation after 70% PH ameliorated liver injury and promoted liver regeneration, but did not increase the serum levels of IL-6 and HGF in vivo. This result suggests that the therapeutic effect of AT-MSCs in vivo after 24 h of 70% PH does not increase IL-6 and HGF expression.
Collapse
Affiliation(s)
- Jiangyang Sun
- Department of General Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, PR China
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Weiss ID, Jacobson O. Molecular imaging of chemokine receptor CXCR4. Am J Cancer Res 2013; 3:76-84. [PMID: 23382787 PMCID: PMC3563082 DOI: 10.7150/thno.4835] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2012] [Accepted: 08/28/2012] [Indexed: 01/13/2023] Open
Abstract
CXCR4 was found to be expressed by many different types of human cancers and its expression has been correlated with tumor aggressiveness, poor prognosis and resistance to chemotherapy. CXCR4 was also shown to contribute to metastatic seeding of organs that express its ligand CXCL12 and support the survival of these cells. These findings suggest that CXCR4 is a potentially attractive therapeutic target, and several antagonists and antibodies for this receptor were developed and are under clinical evaluation. Quantifying CXCR4 expression non-invasively might aid in prognostication as a mean for personalized therapy and post treatment monitoring. Multiple attempts were done over the recent years to develop imaging agents for CXCR4 using different technologies including PET, SPECT, fluorescent and bioluminescence, and will be reviewed in this paper.
Collapse
|
47
|
Implication for bone marrow derived stem cells in hepatocyte regeneration after orthotopic liver transplantation. Int J Hepatol 2013; 2013:310612. [PMID: 24109514 PMCID: PMC3784276 DOI: 10.1155/2013/310612] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 08/05/2013] [Accepted: 08/12/2013] [Indexed: 12/15/2022] Open
Abstract
The liver has the outstanding ability to regenerate itself and restore parenchymal tissue after injury. The most common cell source in liver growth/regeneration is replication of preexisting hepatocytes although liver progenitor cells have been postulated to participate in liver regeneration in cases of massive injury. Bone marrow derived hematopoietic stem cells (BM-HSC) have the formal capacity to act as a source for hepatic regeneration under special circumstances; however, the impact of this process in liver tissue maintenance and regeneration remains controversial. Whether BM-HSC are involved in liver regeneration or not would be of particular interest as the cells have been suggested to be an alternative donor source for the treatment of liver failure. Data from murine models of liver disease show that BM-HSC can repopulate liver tissue and restore liver function; however, data obtained from human liver transplantation show only little evidence for liver regeneration by this mechanism. The cell source for liver regeneration seems to depend on the nature of regeneration process and the extent of injury; however, the precise mechanisms still need to be resolved. Current data suggest, that in human orthotopic liver transplantation, liver regeneration by BM-HSC is a rather rare event and therefore not of clinical relevance.
Collapse
|
48
|
Kordes C, Sawitza I, Götze S, Häussinger D. Stellate cells from rat pancreas are stem cells and can contribute to liver regeneration. PLoS One 2012; 7:e51878. [PMID: 23272184 PMCID: PMC3521726 DOI: 10.1371/journal.pone.0051878] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Accepted: 11/13/2012] [Indexed: 12/13/2022] Open
Abstract
The identity of pancreatic stem/progenitor cells is still under discussion. They were suggested to derive from the pancreatic ductal epithelium and/or islets. Here we report that rat pancreatic stellate cells (PSC), which are thought to contribute to pancreatic fibrosis, have stem cell characteristics. PSC reside in islets and between acini and display a gene expression pattern similar to umbilical cord blood stem cells and mesenchymal stem cells. Cytokine treatment of isolated PSC induced the expression of typical hepatocyte markers. The PSC-derived hepatocyte-like cells expressed endodermal proteins such as bile salt export pump along with the mesodermal protein vimentin. The transplantation of culture-activated PSC from enhanced green fluorescent protein-expressing rats into wild type rats after partial hepatectomy in the presence of 2-acetylaminofluorene revealed that PSC were able to reconstitute large areas of the host liver through differentiation into hepatocytes and cholangiocytes. This developmental fate of transplanted PSC was confirmed by fluorescence in situ hybridization of chromosome Y after gender-mismatched transplantation of male PSC into female rats. Transplanted PSC displayed long-lasting survival, whereas muscle fibroblasts were unable to integrate into the host liver. The differentiation potential of PSC was further verified by the transplantation of clonally expanded PSC. PSC clones maintained the expression of stellate cell and stem cell markers and preserved their differentiation potential, which indicated self-renewal potential of PSC. These findings demonstrate that PSC have stem cell characteristics and can contribute to the regeneration of injured organs through differentiation across tissue boundaries.
Collapse
Affiliation(s)
- Claus Kordes
- Clinic of Gastroenterology, Hepatology and Infectious Diseases, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Iris Sawitza
- Clinic of Gastroenterology, Hepatology and Infectious Diseases, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Silke Götze
- Clinic of Gastroenterology, Hepatology and Infectious Diseases, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Dieter Häussinger
- Clinic of Gastroenterology, Hepatology and Infectious Diseases, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- * E-mail:
| |
Collapse
|
49
|
Hisada M, Ota Y, Zhang X, Cameron AM, Gao B, Montgomery RA, Williams GM, Sun Z. Successful transplantation of reduced-sized rat alcoholic fatty livers made possible by mobilization of host stem cells. Am J Transplant 2012; 12:3246-56. [PMID: 22994609 PMCID: PMC4461878 DOI: 10.1111/j.1600-6143.2012.04265.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Livers from Lewis rats fed with 7% alcohol for 5 weeks were used for transplantation. Reduced sized (50%) livers or whole livers were transplanted into normal DA recipients, which, in this strain combination, survive indefinitely when the donor has not been fed alcohol. However, none of the rats survived a whole fatty liver transplant while six of seven recipients of reduced sized alcoholic liver grafts survived long term. SDF-1 and HGF were significantly increased in reduced size liver grafts compared to whole liver grafts. Lineage-negative Thy-1+CXCR4+CD133+ stem cells were significantly increased in the peripheral blood and in allografts after reduced size fatty liver transplantation. In contrast, there were meager increases in cells reactive with anti Thy-1, CXCR4 and CD133 in peripheral blood and allografts in whole alcoholic liver recipients. The provision of plerixafor, a stem cell mobilizer, salvaged 5 of 10 whole fatty liver grafts. Conversely, blocking SDF-1 activity with neutralizing antibodies diminished stem cell recruitment and four of five reduced sized fatty liver recipients died. Thus chemokine insufficiency was associated with transplant failure of whole grafts, which was overcome by the increased regenerative requirements promoted by the small grafts and mediated by SDF-1 resulting in stem cell influx.
Collapse
Affiliation(s)
- Masayuki Hisada
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Yoshihiro Ota
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Xiuying Zhang
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Andrew M Cameron
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Bin Gao
- Laboratory of Liver Diseases, NIAAA, NIH, Bethesda, Maryland, USA
| | - Robert A Montgomery
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | - Zhaoli Sun
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
50
|
Abstract
The liver has an enormous potential to restore the parenchymal tissue loss due to injury. This is accomplished by the proliferation of either the hepatocytes or liver progenitor cells in cases where massive damage prohibits hepatocytes from entering the proliferative response. Under debate is still whether hepatic stem cells are involved in liver tissue maintenance and regeneration or even whether they exist at all. The definition of an adult tissue-resident stem cell comprises basic functional stem cell criteria like the potential of self-renewal, multipotent, i.e. at least bipotent differentiation capacity and serial transplantability featuring the ability of functional tissue repopulation. The relationship between a progenitor and its progeny should exemplify the lineage commitment from the putative stem cell to the differentiated cell. This is mainly assessed by lineage tracing and immunohistochemical identification of markers specific to progenitors and their descendants. Flow cytometry approaches revealed that the liver stem cell population in animals is likely to be heterogeneous giving rise to progeny with different molecular signatures, depending on the stimulus to activate the putative stem cell compartment. The stem cell criteria are met by a variety of cells identified in the fetal and adult liver both under normal and injury conditions. It is the purpose of this review to verify hepatic stem cell candidates in the light of the stem cell definition criteria mentioned. Also from this point of view adult stem cells from non-hepatic tissues such as bone marrow, umbilical cord blood or adipose tissue, have the potential to differentiate into cells featuring functional hepatocyte characteristics. This has great impact because it opens the possibility of generating hepatocyte-like cells from adult stem cells in a sufficient amount and quality for their therapeutical application to treat end-stage liver diseases by stem cell-based hepatocytes in place of whole organ transplantation.
Collapse
Affiliation(s)
- Bruno Christ
- Translational Centre for Regenerative Medicine-TRM, University of Leipzig, Philipp-Rosenthal-Straße 55, D-04103 Leipzig, Germany.
| | | |
Collapse
|