1
|
Yousafzai NA, El Khalki L, Wang W, Szpendyk J, Sossey-Alaoui K. Advances in 3D Culture Models to Study Exosomes in Triple-Negative Breast Cancer. Cancers (Basel) 2024; 16:883. [PMID: 38473244 PMCID: PMC10931050 DOI: 10.3390/cancers16050883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/14/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024] Open
Abstract
Breast cancer, a leading cause of cancer-related deaths globally, exhibits distinct subtypes with varying pathological, genetic, and clinical characteristics. Despite advancements in breast cancer treatments, its histological and molecular heterogeneity pose a significant clinical challenge. Triple-negative breast cancer (TNBC), a highly aggressive subtype lacking targeted therapeutics, adds to the complexity of breast cancer treatment. Recent years have witnessed the development of advanced 3D culture technologies, such as organoids and spheroids, providing more representative models of healthy human tissue and various malignancies. These structures, resembling organs in structure and function, are generated from stem cells or organ-specific progenitor cells via self-organizing processes. Notably, 3D culture systems bridge the gap between 2D cultures and in vivo studies, offering a more accurate representation of in vivo tumors' characteristics. Exosomes, small nano-sized molecules secreted by breast cancer and stromal/cancer-associated fibroblast cells, have garnered significant attention. They play a crucial role in cell-to-cell communication, influencing tumor progression, invasion, and metastasis. The 3D culture environment enhances exosome efficiency compared to traditional 2D cultures, impacting the transfer of specific cargoes and therapeutic effects. Furthermore, 3D exosomes have shown promise in improving therapeutic outcomes, acting as potential vehicles for cancer treatment administration. Studies have demonstrated their role in pro-angiogenesis and their innate therapeutic potential in mimicking cellular therapies without side effects. The 3D exosome model holds potential for addressing challenges associated with drug resistance, offering insights into the mechanisms underlying multidrug resistance and serving as a platform for drug screening. This review seeks to emphasize the crucial role of 3D culture systems in studying breast cancer, especially in understanding the involvement of exosomes in cancer pathology.
Collapse
Affiliation(s)
- Neelum Aziz Yousafzai
- MetroHealth System, Cleveland, OH 44109, USA; (N.A.Y.); (L.E.K.); (W.W.)
- Department of Medicine, Case Western Reserve University, Cleveland, OH 44106-4909, USA
- Case Comprehensive Cancer Center, Cleveland, OH 44106-7285, USA
| | - Lamyae El Khalki
- MetroHealth System, Cleveland, OH 44109, USA; (N.A.Y.); (L.E.K.); (W.W.)
- Department of Medicine, Case Western Reserve University, Cleveland, OH 44106-4909, USA
- Case Comprehensive Cancer Center, Cleveland, OH 44106-7285, USA
| | - Wei Wang
- MetroHealth System, Cleveland, OH 44109, USA; (N.A.Y.); (L.E.K.); (W.W.)
- Case Comprehensive Cancer Center, Cleveland, OH 44106-7285, USA
| | - Justin Szpendyk
- MetroHealth System, Cleveland, OH 44109, USA; (N.A.Y.); (L.E.K.); (W.W.)
| | - Khalid Sossey-Alaoui
- MetroHealth System, Cleveland, OH 44109, USA; (N.A.Y.); (L.E.K.); (W.W.)
- Department of Medicine, Case Western Reserve University, Cleveland, OH 44106-4909, USA
- Case Comprehensive Cancer Center, Cleveland, OH 44106-7285, USA
| |
Collapse
|
2
|
Fu Y, Jiao H, Sun J, Okoye CO, Zhang H, Li Y, Lu X, Wang Q, Liu J. Structure-activity relationships of bioactive polysaccharides extracted from macroalgae towards biomedical application: A review. Carbohydr Polym 2024; 324:121533. [PMID: 37985107 DOI: 10.1016/j.carbpol.2023.121533] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 11/22/2023]
Abstract
Macroalgae are valuable and structurally diverse sources of bioactive compounds among marine resources. The cell walls of macroalgae are rich in polysaccharides which exhibit a wide range of biological activities, such as anticoagulant, antioxidant, antiviral, anti-inflammatory, immunomodulatory, and antitumor activities. Macroalgae polysaccharides (MPs) have been recognized as one of the most promising candidates in the biomedical field. However, the structure-activity relationships of bioactive polysaccharides extracted from macroalgae are complex and influenced by various factors. A clear understanding of these relationships is indeed critical in developing effective biomedical applications with MPs. In line with these challenges and knowledge gaps, this paper summarized the structural characteristics of marine MPs from different sources and relevant functional and bioactive properties and particularly highlighted those essential effects of the structure-bioactivity relationships presented in biomedical applications. This review not only focused on elucidating a particular action mechanism of MPs, but also intended to identify a novel or potential application of these valued compounds in the biomedical field in terms of their structural characteristics. In the last, the challenges and prospects of MPs in structure-bioactivity elucidation were further discussed and predicted, where they were emphasized on exploring modern biotechnology approaches potentially applied to expand their promising biomedical applications.
Collapse
Affiliation(s)
- Yinyi Fu
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; School of Water, Energy, Environment and Agrifood, Cranfield University, Cranfield MK43 0AL, UK
| | - Haixin Jiao
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jianzhong Sun
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Charles Obinwanne Okoye
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Hongxing Zhang
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yan Li
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xuechu Lu
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Qianqian Wang
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jun Liu
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
3
|
Zhu Y, Yang S, Zhang T, Ge Y, Wan X, Liang G. Cardiac Organoids: A 3D Technology for Disease Modeling and Drug Screening. Curr Med Chem 2024; 31:4987-5003. [PMID: 37497713 DOI: 10.2174/0929867331666230727104911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/21/2023] [Accepted: 06/22/2023] [Indexed: 07/28/2023]
Abstract
Cardiovascular diseases remain the leading cause of death worldwide; therefore, there is increasing attention to developing physiological-related in vitro cardiovascular tissue models suitable for personalized healthcare and preclinical test. Recently, more complex and powerful in vitro models have emerged for cardiac research. Human cardiac organoids (HCOs) are three-dimensional (3D) cellular constructs similar to in vivo organs. They are derived from pluripotent stem cells and can replicate the structure, function, and biogenetic information of primitive tissues. High-fidelity HCOs are closer to natural human myocardial tissue than animal and cell models to some extent, which helps to study better the development process of the heart and the occurrence of related diseases. In this review, we introduce the methods for constructing HCOs and the application of them, especially in cardiovascular disease modeling and cardiac drug screening. In addition, we propose the prospects and limitations of HCOs. In summary, we have introduced the research progress of HCOs and described their innovation and practicality of them in the biomedical field.
Collapse
Affiliation(s)
- Yuxin Zhu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Sheng Yang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Tianyi Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Yiling Ge
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Xin Wan
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Geyu Liang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| |
Collapse
|
4
|
Shakiba D, Genin GM, Zustiak SP. Mechanobiology of cancer cell responsiveness to chemotherapy and immunotherapy: Mechanistic insights and biomaterial platforms. Adv Drug Deliv Rev 2023; 196:114771. [PMID: 36889646 PMCID: PMC10133187 DOI: 10.1016/j.addr.2023.114771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/17/2022] [Accepted: 03/03/2023] [Indexed: 03/08/2023]
Abstract
Mechanical forces are central to how cancer treatments such as chemotherapeutics and immunotherapies interact with cells and tissues. At the simplest level, electrostatic forces underlie the binding events that are critical to therapeutic function. However, a growing body of literature points to mechanical factors that also affect whether a drug or an immune cell can reach a target, and to interactions between a cell and its environment affecting therapeutic efficacy. These factors affect cell processes ranging from cytoskeletal and extracellular matrix remodeling to transduction of signals by the nucleus to metastasis of cells. This review presents and critiques the state of the art of our understanding of how mechanobiology impacts drug and immunotherapy resistance and responsiveness, and of the in vitro systems that have been of value in the discovery of these effects.
Collapse
Affiliation(s)
- Delaram Shakiba
- NSF Science and Technology Center for Engineering Mechanobiology, Washington University, St. Louis, MO, USA; Department of Mechanical Engineering and Materials Science, Washington University, St. Louis, MO, USA
| | - Guy M Genin
- NSF Science and Technology Center for Engineering Mechanobiology, Washington University, St. Louis, MO, USA; Department of Mechanical Engineering and Materials Science, Washington University, St. Louis, MO, USA.
| | - Silviya P Zustiak
- NSF Science and Technology Center for Engineering Mechanobiology, Washington University, St. Louis, MO, USA; Department of Biomedical Engineering, School of Science and Engineering, Saint Louis University, St. Louis, MO, USA.
| |
Collapse
|
5
|
Pushparaj K, Balasubramanian B, Pappuswamy M, Anand Arumugam V, Durairaj K, Liu WC, Meyyazhagan A, Park S. Out of Box Thinking to Tangible Science: A Benchmark History of 3D Bio-Printing in Regenerative Medicine and Tissues Engineering. Life (Basel) 2023; 13:life13040954. [PMID: 37109483 PMCID: PMC10145662 DOI: 10.3390/life13040954] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 04/09/2023] Open
Abstract
Advancements and developments in the 3D bioprinting have been promising and have met the needs of organ transplantation. Current improvements in tissue engineering constructs have enhanced their applications in regenerative medicines and other medical fields. The synergistic effects of 3D bioprinting have brought technologies such as tissue engineering, microfluidics, integrated tissue organ printing, in vivo bioprinted tissue implants, artificial intelligence and machine learning approaches together. These have greatly impacted interventions in medical fields, such as medical implants, multi-organ-on-chip models, prosthetics, drug testing tissue constructs and much more. This technological leap has offered promising personalized solutions for patients with chronic diseases, and neurodegenerative disorders, and who have been in severe accidents. This review discussed the various standing printing methods, such as inkjet, extrusion, laser-assisted, digital light processing, and stereolithographic 3D bioprinter models, adopted for tissue constructs. Additionally, the properties of natural, synthetic, cell-laden, dECM-based, short peptides, nanocomposite and bioactive bioinks are briefly discussed. Sequels of several tissue-laden constructs such as skin, bone and cartilage, liver, kidney, smooth muscles, cardiac and neural tissues are briefly analyzed. Challenges, future perspectives and the impact of microfluidics in resolving the limitations in the field, along with 3D bioprinting, are discussed. Certainly, a technology gap still exists in the scaling up, industrialization and commercialization of this technology for the benefit of stakeholders.
Collapse
Affiliation(s)
- Karthika Pushparaj
- Department of Zoology, School of Biosciences, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore 641 043, Tamil Nadu, India
| | | | - Manikantan Pappuswamy
- Department of Life Science, CHRIST (Deemed to be University), Bengaluru 560 076, Karnataka, India
| | - Vijaya Anand Arumugam
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641 046, Tamil Nadu, India
| | - Kaliannan Durairaj
- Department of Infection Biology, School of Medicine, Wonkwang University, lksan 54538, Republic of Korea
| | - Wen-Chao Liu
- Department of Animal Science, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Arun Meyyazhagan
- Department of Life Science, CHRIST (Deemed to be University), Bengaluru 560 076, Karnataka, India
| | - Sungkwon Park
- Department of Food Science and Biotechnology, College of Life Science, Sejong University, Seoul 05006, Republic of Korea
| |
Collapse
|
6
|
Chang C, Yang H, Bi W, Huang C, Xu Z. Cryopreservable Through-Hole Arrays for the High-Throughput Three-Dimensional Smartphone-Based Cell Colorimetric Assay. ACS Sens 2023; 8:543-554. [PMID: 36705290 DOI: 10.1021/acssensors.2c01564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In vitro assays are an important platform for cancer research as they allow high-throughput experimentation that is not possible using in vivo animals. Although various in vitro assays are developed to study cell viability or migration, many of these assays are often limited to two dimensions, involving complex procedures or relying specialized equipment, etc. Here, we designed a simple colorimetric assay that accommodates automatic liquid samples loading, high-throughput generation of chemical concentration gradient, three-dimensional (3D) cell culture establishment, and smartphone-based colorimetric readouts. This assay is based on through-hole arrays in the poly(methyl methacrylate) (PMMA) layers. Liquid samples can be automatically loaded into through-hole arrays in PMMA layers by capillary force. Different drug concentrations can be generated by aligning and stacking to mix the contents of the corresponding through-holes with different volumes. 3D culture of cancer cells can be established by the rapid absorption of cell suspensions into the macroporous gels. After exposing the 3D cultured cells to different drug concentrations, the number of viable cells and migrated cells was reflected by the color change of Alamar blue, which enable on-site readout by a smartphone. This assay can study cell viability as well as cell migration, the two main characteristics of cancer cells, using one device. Interestingly, HeLa cells remained with high viability after cryopreservation at -80 °C, which allows for storage and distribution using dry ice. The simple protocol, along with the cryopreservability at -80 °C facilitates its ease of use to study cell viability together with cell migration in common laboratories or clinical settings.
Collapse
Affiliation(s)
- Chunqi Chang
- School of Biomedical Engineering Health Science Center, Shenzhen University, Shenzhen 518060, China.,Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Shenzhen University, Shenzhen 518060, China
| | - Haoyi Yang
- School of Biomedical Engineering Health Science Center, Shenzhen University, Shenzhen 518060, China.,Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Shenzhen University, Shenzhen 518060, China
| | - Wenchuan Bi
- School of Biomedical Engineering Health Science Center, Shenzhen University, Shenzhen 518060, China.,Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Shenzhen University, Shenzhen 518060, China
| | - Cuier Huang
- School of Biomedical Engineering Health Science Center, Shenzhen University, Shenzhen 518060, China.,Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Shenzhen University, Shenzhen 518060, China
| | - Zhen Xu
- School of Biomedical Engineering Health Science Center, Shenzhen University, Shenzhen 518060, China.,Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Shenzhen University, Shenzhen 518060, China.,Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, CAS-HK Joint Lab for Biomaterials, Research Laboratory for Biomedical Optics and Molecular Imaging, Shenzhen Key Laboratory for Molecular Imaging, CAS Key Lab for Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
7
|
Moradi S, Kundu S, Saidaminov MI. High-Throughput Synthesis of Thin Films for the Discovery of Energy Materials: A Perspective. ACS MATERIALS AU 2022; 2:516-524. [PMID: 36124002 PMCID: PMC9479136 DOI: 10.1021/acsmaterialsau.2c00028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Thin films are an
integral part of many electronic and optoelectronic
devices. They also provide an excellent platform for material characterization.
Therefore, strategies for the fabrication of thin films are constantly
developed and have significantly benefited from the advent of high-throughput
synthesis (HTS) platforms. This perspective summarizes recent advances
in HTS of thin films from experimentalists’ point of view.
The work analyzes general strategies of HTS and then discusses their
use in developing new energy materials for applications that rely
on thin films, such as solar cells, light-emitting diodes, batteries,
superconductors, and thermoelectrics. The perspective also summarizes
some key challenges and opportunities in the HTS of thin films.
Collapse
Affiliation(s)
- Shahram Moradi
- Department of Electrical & Computer Engineering, University of Victoria, 3800 Finnerty Road, Victoria, British Columbia V8P 5C2, Canada
| | - Soumya Kundu
- Department of Chemistry, University of Victoria, 3800 Finnerty Road, Victoria, British Columbia V8P 5C2, Canada
| | - Makhsud I. Saidaminov
- Department of Electrical & Computer Engineering, University of Victoria, 3800 Finnerty Road, Victoria, British Columbia V8P 5C2, Canada
- Department of Chemistry, University of Victoria, 3800 Finnerty Road, Victoria, British Columbia V8P 5C2, Canada
- Centre for Advanced Materials and Related Technologies (CAMTEC), University of Victoria, 3800 Finnerty Road, Victoria, British Columbia V8P 5C2, Canada
| |
Collapse
|
8
|
De Stefano P, Bianchi E, Dubini G. The impact of microfluidics in high-throughput drug-screening applications. BIOMICROFLUIDICS 2022; 16:031501. [PMID: 35646223 PMCID: PMC9142169 DOI: 10.1063/5.0087294] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 05/02/2022] [Indexed: 05/05/2023]
Abstract
Drug discovery is an expensive and lengthy process. Among the different phases, drug discovery and preclinical trials play an important role as only 5-10 of all drugs that begin preclinical tests proceed to clinical trials. Indeed, current high-throughput screening technologies are very expensive, as they are unable to dispense small liquid volumes in an accurate and quick way. Moreover, despite being simple and fast, drug screening assays are usually performed under static conditions, thus failing to recapitulate tissue-specific architecture and biomechanical cues present in vivo even in the case of 3D models. On the contrary, microfluidics might offer a more rapid and cost-effective alternative. Although considered incompatible with high-throughput systems for years, technological advancements have demonstrated how this gap is rapidly reducing. In this Review, we want to further outline the role of microfluidics in high-throughput drug screening applications by looking at the multiple strategies for cell seeding, compartmentalization, continuous flow, stimuli administration (e.g., drug gradients or shear stresses), and single-cell analyses.
Collapse
Affiliation(s)
- Paola De Stefano
- Laboratory of Biological Structure Mechanics, Department of Chemistry, Materials and Chemical Engineering “G. Natta,” Politecnico di Milano, Italy
| | - Elena Bianchi
- Laboratory of Biological Structure Mechanics, Department of Chemistry, Materials and Chemical Engineering “G. Natta,” Politecnico di Milano, Italy
| | - Gabriele Dubini
- Laboratory of Biological Structure Mechanics, Department of Chemistry, Materials and Chemical Engineering “G. Natta,” Politecnico di Milano, Italy
| |
Collapse
|
9
|
Dzobo K. The Role of Natural Products as Sources of Therapeutic Agents for Innovative Drug Discovery. COMPREHENSIVE PHARMACOLOGY 2022. [PMCID: PMC8016209 DOI: 10.1016/b978-0-12-820472-6.00041-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Emerging threats to human health require a concerted effort in search of both preventive and treatment strategies, placing natural products at the center of efforts to obtain new therapies and reduce disease spread and associated mortality. The therapeutic value of compounds found in plants has been known for ages, resulting in their utilization in homes and in clinics for the treatment of many ailments ranging from common headache to serious conditions such as wounds. Despite the advancement observed in the world, plant based medicines are still being used to treat many pathological conditions or are used as alternatives to modern medicines. In most cases, these natural products or plant-based medicines are used in an un-purified state as extracts. A lot of research is underway to identify and purify the active compounds responsible for the healing process. Some of the current drugs used in clinics have their origins as natural products or came from plant extracts. In addition, several synthetic analogues are natural product-based or plant-based. With the emergence of novel infectious agents such as the SARS-CoV-2 in addition to already burdensome diseases such as diabetes, cancer, tuberculosis and HIV/AIDS, there is need to come up with new drugs that can cure these conditions. Natural products offer an opportunity to discover new compounds that can be converted into drugs given their chemical structure diversity. Advances in analytical processes make drug discovery a multi-dimensional process involving computational designing and testing and eventual laboratory screening of potential drug candidates. Lead compounds will then be evaluated for safety, pharmacokinetics and efficacy. New technologies including Artificial Intelligence, better organ and tissue models such as organoids allow virtual screening, automation and high-throughput screening to be part of drug discovery. The use of bioinformatics and computation means that drug discovery can be a fast and efficient process and enable the use of natural products structures to obtain novel drugs. The removal of potential bottlenecks resulting in minimal false positive leads in drug development has enabled an efficient system of drug discovery. This review describes the biosynthesis and screening of natural products during drug discovery as well as methods used in studying natural products.
Collapse
|
10
|
Minguzzi M, Panichi V, D’Adamo S, Cetrullo S, Cattini L, Flamigni F, Mariani E, Borzì RM. Pleiotropic Roles of NOTCH1 Signaling in the Loss of Maturational Arrest of Human Osteoarthritic Chondrocytes. Int J Mol Sci 2021; 22:ijms222112012. [PMID: 34769441 PMCID: PMC8585104 DOI: 10.3390/ijms222112012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/29/2021] [Accepted: 10/30/2021] [Indexed: 02/07/2023] Open
Abstract
Notch signaling has been identified as a critical regulator of cartilage development and homeostasis. Its pivotal role was established by both several joint specific Notch signaling loss of function mouse models and transient or sustained overexpression. NOTCH1 is the most abundantly expressed NOTCH receptors in normal cartilage and its expression increases in osteoarthritis (OA), when chondrocytes exit from their healthy “maturation arrested state” and resume their natural route of proliferation, hypertrophy, and terminal differentiation. The latter are hallmarks of OA that are easily evaluated in vitro in 2-D or 3-D culture models. The aim of our study was to investigate the effect of NOTCH1 knockdown on proliferation (cell count and Picogreen mediated DNA quantification), cell cycle (flow cytometry), hypertrophy (gene and protein expression of key markers such as RUNX2 and MMP-13), and terminal differentiation (viability measured in 3-D cultures by luminescence assay) of human OA chondrocytes. NOTCH1 silencing of OA chondrocytes yielded a healthier phenotype in both 2-D (reduced proliferation) and 3-D with evidence of decreased hypertrophy (reduced expression of RUNX2 and MMP-13) and terminal differentiation (increased viability). This demonstrates that NOTCH1 is a convenient therapeutic target to attenuate OA progression.
Collapse
Affiliation(s)
- Manuela Minguzzi
- Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, 40138 Bologna, Italy; (M.M.); (S.D.); (E.M.)
| | - Veronica Panichi
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, 40138 Bologna, Italy; (V.P.); (S.C.); (F.F.)
| | - Stefania D’Adamo
- Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, 40138 Bologna, Italy; (M.M.); (S.D.); (E.M.)
| | - Silvia Cetrullo
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, 40138 Bologna, Italy; (V.P.); (S.C.); (F.F.)
| | - Luca Cattini
- Laboratorio di Immunoreumatologia e Rigenerazione Tissutale, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy;
| | - Flavio Flamigni
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, 40138 Bologna, Italy; (V.P.); (S.C.); (F.F.)
| | - Erminia Mariani
- Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, 40138 Bologna, Italy; (M.M.); (S.D.); (E.M.)
- Laboratorio di Immunoreumatologia e Rigenerazione Tissutale, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy;
| | - Rosa Maria Borzì
- Laboratorio di Immunoreumatologia e Rigenerazione Tissutale, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy;
- Correspondence:
| |
Collapse
|
11
|
Miloradovic D, Pavlovic D, Jankovic MG, Nikolic S, Papic M, Milivojevic N, Stojkovic M, Ljujic B. Human Embryos, Induced Pluripotent Stem Cells, and Organoids: Models to Assess the Effects of Environmental Plastic Pollution. Front Cell Dev Biol 2021; 9:709183. [PMID: 34540831 PMCID: PMC8446652 DOI: 10.3389/fcell.2021.709183] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/19/2021] [Indexed: 02/03/2023] Open
Abstract
For a long time, animal models were used to mimic human biology and diseases. However, animal models are not an ideal solution due to numerous interspecies differences between humans and animals. New technologies, such as human-induced pluripotent stem cells and three-dimensional (3D) cultures such as organoids, represent promising solutions for replacing, refining, and reducing animal models. The capacity of organoids to differentiate, self-organize, and form specific, complex, biologically suitable structures makes them excellent in vitro models of development and disease pathogenesis, as well as drug-screening platforms. Despite significant potential health advantages, further studies and considerable nuances are necessary before their clinical use. This article summarizes the definition of embryoids, gastruloids, and organoids and clarifies their appliance as models for early development, diseases, environmental pollution, drug screening, and bioinformatics.
Collapse
Affiliation(s)
- Dragana Miloradovic
- Department of Genetics, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Dragica Pavlovic
- Department of Genetics, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Marina Gazdic Jankovic
- Department of Genetics, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Sandra Nikolic
- Department of Genetics, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Milos Papic
- Department of Dentistry, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Nevena Milivojevic
- Laboratory for Bioengineering, Department of Science, Institute for Information Technologies, University of Kragujevac, Kragujevac, Serbia
| | - Miodrag Stojkovic
- Department of Genetics, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
- SPEBO Medical Fertility Hospital, Leskovac, Serbia
| | - Biljana Ljujic
- Department of Genetics, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| |
Collapse
|
12
|
Li H, Gao L, Du J, Ma T, Ye Z, Li Z. To Better Generate Organoids, What Can We Learn From Teratomas? Front Cell Dev Biol 2021; 9:700482. [PMID: 34336851 PMCID: PMC8324104 DOI: 10.3389/fcell.2021.700482] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/21/2021] [Indexed: 12/12/2022] Open
Abstract
The genomic profile of animal models is not completely matched with the genomic profile of humans, and 2D cultures do not represent the cellular heterogeneity and tissue architecture found in tissues of their origin. Derived from 3D culture systems, organoids establish a crucial bridge between 2D cell cultures and in vivo animal models. Organoids have wide and promising applications in developmental research, disease modeling, drug screening, precision therapy, and regenerative medicine. However, current organoids represent only single or partial components of a tissue, which lack blood vessels, native microenvironment, communication with near tissues, and a continuous dorsal-ventral axis within 3D culture systems. Although efforts have been made to solve these problems, unfortunately, there is no ideal method. Teratoma, which has been frequently studied in pathological conditions, was recently discovered as a new in vivo model for developmental studies. In contrast to organoids, teratomas have vascularized 3D structures and regions of complex tissue-like organization. Studies have demonstrated that teratomas can be used to mimic multilineage human development, enrich specific somatic progenitor/stem cells, and even generate brain organoids. These results provide unique opportunities to promote our understanding of the vascularization and maturation of organoids. In this review, we first summarize the basic characteristics, applications, and limitations of both organoids and teratomas and further discuss the possibility that in vivo teratoma systems can be used to promote the vascularization and maturation of organoids within an in vitro 3D culture system.
Collapse
Affiliation(s)
- Hongyu Li
- Department of Ophthalmology, The Chinese People's Liberation Army General Hospital, Beijing, China
| | - Lixiong Gao
- Department of Ophthalmology, The Chinese People's Liberation Army General Hospital, Beijing, China
| | - Jinlin Du
- Department of Ophthalmology, The Chinese People's Liberation Army General Hospital, Beijing, China
| | - Tianju Ma
- Department of Ophthalmology, The Chinese People's Liberation Army General Hospital, Beijing, China
| | - Zi Ye
- Department of Ophthalmology, The Chinese People's Liberation Army General Hospital, Beijing, China
| | - Zhaohui Li
- Department of Ophthalmology, The Chinese People's Liberation Army General Hospital, Beijing, China
| |
Collapse
|
13
|
It is time to crowd your cell culture media - Physicochemical considerations with biological consequences. Biomaterials 2021; 275:120943. [PMID: 34139505 DOI: 10.1016/j.biomaterials.2021.120943] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 05/24/2021] [Accepted: 05/29/2021] [Indexed: 12/12/2022]
Abstract
In vivo, the interior and exterior of cells is populated by various macromolecules that create an extremely crowded milieu. Yet again, in vitro eukaryotic cell culture is conducted in dilute culture media that hardly imitate the native tissue density. Herein, the concept of macromolecular crowding is discussed in both intracellular and extracellular context. Particular emphasis is given on how the physicochemical properties of the crowding molecules govern and determine kinetics, equilibria and mechanism of action of biochemical and biological reactions, processes and functions. It is evidenced that we are still at the beginning of appreciating, let alone effectively implementing, the potential of macromolecular crowding in permanently differentiated and stem cell culture systems.
Collapse
|
14
|
Surendran V, Rutledge D, Colmon R, Chandrasekaran A. A novel tumor-immune microenvironment (TIME)-on-Chip mimics three dimensional neutrophil-tumor dynamics and neutrophil extracellular traps (NETs)-mediated collective tumor invasion. Biofabrication 2021; 13:10.1088/1758-5090/abe1cf. [PMID: 33524968 PMCID: PMC8990531 DOI: 10.1088/1758-5090/abe1cf] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 02/01/2021] [Indexed: 12/12/2022]
Abstract
Neutrophils are the most abundant type of leukocytes in the blood, traditionally regarded as the first immune responders to infections and inflammations. In the context of tumors, neutrophils have been shown to possess both tumor-promoting and tumor-limiting properties. A better understanding of the inter-cellular dynamics between the neutrophils and aggregated tumors could possibly shed light on the different modalities of neutrophil involvement in tumor progression. To studyin-vitrothe interactional dynamics of neutrophils and growing tumor aggregates, in this work, we engineered a novel, microfluidics-integrated, three-dimensional (3D) tumor-immune microenvironment (TIME)-on-Chip device, and we investigated the effect of neutrophils on the inception of collective 3D invasion of ovarian tumor cells. Herein, tumor spheroids generated and cultured on hydrogel based multi-microwell plates, and embedded within collagen matrix of defined thickness, were magnetically hybrid-integrated with a 3D bioprinting enabled microfluidic system fabricated on a porous membrane and carrying neutrophils. This setting recreated a typical TIMEin-vitroto model dynamic neutrophil migration and 3D tumor invasion. Using this device, we observed that neutrophils respond to the growing tumor spheroids through both chemotaxis and generation of neutrophil extracellular traps (NETs). The formation of NETs stimulated the reciprocation of tumor cells from their aggregated state to collectively invade into the surrounding collagen matrix, in a manner more significant compared to their response to known tumor-derived stimulants such as transforming growth factor and Interleukin- 8. This effect was reversed by drug-induced inhibition of NETs formation, suggesting that induction of NETs by cancer cells could be a pro-migratory tumor behavior. Further, we additionally report a previously unidentified, location-dictated mechanism of NETosis, in which NETs formation within the stromal extracellular collagen matrix around the spheroids, and not tumor-contacted NETs, is important for the induction of collective invasion of the ovarian tumor cells, thus providing a rationale for new anti-tumor therapeutics research.
Collapse
Affiliation(s)
- Vikram Surendran
- Bioinspired Microengineering Laboratory, Department of Chemical, Biological and Bio Engineering, North Carolina A&T State University, Greensboro 27411, United States of America
| | - Dylan Rutledge
- Bioinspired Microengineering Laboratory, Department of Chemical, Biological and Bio Engineering, North Carolina A&T State University, Greensboro 27411, United States of America
| | - Ramair Colmon
- Bioinspired Microengineering Laboratory, Department of Chemical, Biological and Bio Engineering, North Carolina A&T State University, Greensboro 27411, United States of America
| | - Arvind Chandrasekaran
- Bioinspired Microengineering Laboratory, Department of Chemical, Biological and Bio Engineering, North Carolina A&T State University, Greensboro 27411, United States of America
| |
Collapse
|
15
|
3D Model Characterization by 2D and 3D Imaging in t(14;18)-Positive B-NHL: Perspectives for In Vitro Drug Screens in Follicular Lymphoma. Cancers (Basel) 2021; 13:cancers13071490. [PMID: 33804934 PMCID: PMC8036410 DOI: 10.3390/cancers13071490] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/05/2021] [Accepted: 03/06/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Follicular lymphoma is an indolent B cell lymphoproliferative disorder of transformed follicular center B cells, which accounts for 20–30 percent of all non-Hodgkin lymphoma (NHL) cases. Although huge efforts have been made in the last 10 years, this pathology is still considered as incurable, leaving open the discovery and testing of new therapeutic targets requiring relevant preclinical models. Here, we report a realistic 3D model of t (14;18)-positive B-NHL cell culture (ultra-low attachment (ULA)-multicellular aggregates of lymphoma cells (MALC)), which monitored by state-of-the-art 2D and 3D imaging, allows more robust drug testing. Abstract Follicular lymphoma (FL) is an indolent B cell lymphoproliferative disorder of transformed follicular center B cells, which accounts for 20–30 percent of all non-Hodgkin lymphoma (NHL) cases. Great advances have been made to identify the most relevant targets for precision therapy. However, no relevant models for in vitro studies have been developed or characterized in depth. To this purpose, we generated a 3D cell model from t(14;18)-positive B-NHL cell lines cultured in ultra-low attachment 96-well plates. Morphological features and cell growth behavior were evaluated by classical microscopy (2D imaging) and response to treatment with different drugs was evaluated by a high-content analysis system to determine the robustness of the model. We show that the ultra-low attachment (ULA) method allows the development of regular, spherical and viable ULA-multicellular aggregates of lymphoma cells (MALC). However, discrepancies in the results obtained after 2D imaging analyses on drug-treated ULA-MALC prompted us to develop 3D imaging and specific analyses. We show by using light sheet microscopy and specifically developed 3D imaging algorithms that 3D imaging and dedicated analyses are necessary to characterize morphological properties of 3D models and drug effects. This study proposes a new method, but also imaging tools and informatic solutions, developed for FL necessary for future preclinical studies.
Collapse
|
16
|
Daley SK, Cordell GA. Natural Products, the Fourth Industrial Revolution, and the Quintuple Helix. Nat Prod Commun 2021. [DOI: 10.1177/1934578x211003029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The profound interconnectedness of the sciences and technologies embodied in the Fourth Industrial Revolution is discussed in terms of the global role of natural products, and how that interplays with the development of sustainable and climate-conscious practices of cyberecoethnopharmacolomics within the Quintuple Helix for the promotion of a healthier planet and society.
Collapse
Affiliation(s)
| | - Geoffrey A. Cordell
- Natural Products Inc., Evanston, IL, USA
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| |
Collapse
|
17
|
Lewis PL, Wells JM. Engineering-inspired approaches to study β-cell function and diabetes. Stem Cells 2021; 39:522-535. [PMID: 33497522 DOI: 10.1002/stem.3340] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 01/13/2021] [Indexed: 12/21/2022]
Abstract
Strategies to mitigate the pathologies from diabetes range from simply administering insulin to prescribing complex drug/biologic regimens combined with lifestyle changes. There is a substantial effort to better understand β-cell physiology during diabetes pathogenesis as a means to develop improved therapies. The convergence of multiple fields ranging from developmental biology to microfluidic engineering has led to the development of new experimental systems to better study complex aspects of diabetes and β-cell biology. Here we discuss the available insulin-secreting cell types used in research, ranging from primary human β-cells, to cell lines, to pluripotent stem cell-derived β-like cells. Each of these sources possess inherent strengths and weaknesses pertinent to specific applications, especially in the context of engineered platforms. We then outline how insulin-expressing cells have been used in engineered platforms and how recent advances allow for better mimicry of in vivo conditions. Chief among these conditions are β-cell interactions with other endocrine organs. This facet is beginning to be thoroughly addressed by the organ-on-a-chip community, but holds enormous potential in the development of novel diabetes therapeutics. Furthermore, high throughput strategies focused on studying β-cell biology, improving β-cell differentiation, or proliferation have led to enormous contributions in the field and will no doubt be instrumental in bringing new diabetes therapeutics to the clinic.
Collapse
Affiliation(s)
- Phillip L Lewis
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - James M Wells
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| |
Collapse
|
18
|
García-Posadas L, Diebold Y. Three-Dimensional Human Cell Culture Models to Study the Pathophysiology of the Anterior Eye. Pharmaceutics 2020; 12:E1215. [PMID: 33333869 PMCID: PMC7765302 DOI: 10.3390/pharmaceutics12121215] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/11/2020] [Accepted: 12/13/2020] [Indexed: 02/07/2023] Open
Abstract
In recent decades, the establishment of complex three-dimensional (3D) models of tissues has allowed researchers to perform high-quality studies and to not only advance knowledge of the physiology of these tissues but also mimic pathological conditions to test novel therapeutic strategies. The main advantage of 3D models is that they recapitulate the spatial architecture of tissues and thereby provide more physiologically relevant information. The eye is an extremely complex organ that comprises a large variety of highly heterogeneous tissues that are divided into two asymmetrical portions: the anterior and posterior segments. The anterior segment consists of the cornea, conjunctiva, iris, ciliary body, sclera, aqueous humor, and the lens. Different diseases in these tissues can have devastating effects. To study these pathologies and develop new treatments, the use of cell culture models is instrumental, and the better the model, the more relevant the results. Thus, the development of sophisticated 3D models of ocular tissues is a significant challenge with enormous potential. In this review, we present a comprehensive overview of the latest advances in the development of 3D in vitro models of the anterior segment of the eye, with a special focus on those that use human primary cells.
Collapse
Affiliation(s)
- Laura García-Posadas
- Instituto de Oftalmobiología Aplicada (IOBA), Universidad de Valladolid, 47011 Valladolid, Spain;
| | - Yolanda Diebold
- Instituto de Oftalmobiología Aplicada (IOBA), Universidad de Valladolid, 47011 Valladolid, Spain;
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
19
|
Janssen AWF, Duivenvoorde LPM, Rijkers D, Nijssen R, Peijnenburg AACM, van der Zande M, Louisse J. Cytochrome P450 expression, induction and activity in human induced pluripotent stem cell-derived intestinal organoids and comparison with primary human intestinal epithelial cells and Caco-2 cells. Arch Toxicol 2020; 95:907-922. [PMID: 33263786 PMCID: PMC7904554 DOI: 10.1007/s00204-020-02953-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 11/12/2020] [Indexed: 12/16/2022]
Abstract
Human intestinal organoids (HIOs) are a promising in vitro model consisting of different intestinal cell types with a 3D microarchitecture resembling native tissue. In the current study, we aimed to assess the expression of the most common intestinal CYP enzymes in a human induced pluripotent stem cell (hiPSC)-derived HIO model, and the suitability of that model to study chemical-induced changes in CYP expression and activity. We compared this model with the commonly used human colonic adenocarcinoma cell line Caco-2 and with a human primary intestinal epithelial cell (IEC)-based model, closely resembling in vivo tissue. We optimized an existing protocol to differentiate hiPSCs into HIOs and demonstrated that obtained HIOs contain a polarized epithelium with tight junctions consisting of enterocytes, goblet cells, enteroendocrine cells and Paneth cells. We extensively characterized the gene expression of CYPs and activity of CYP3A4/5, indicating relatively high gene expression levels of the most important intestinal CYP enzymes in HIOs compared to the other models. Furthermore, we showed that CYP1A1 and CYP1B1 were induced by β-naphtoflavone in all three models, whereas CYP3A4 was induced by phenobarbital and rifampicin in HIOs, in the IEC-based model (although not statistically significant), but not in Caco-2 cells. Interestingly, CYP2B6 expression was not induced in any of the models by the well-known liver CYP2B6 inducer phenobarbital. In conclusion, our study indicates that hiPSC-based HIOs are a useful in vitro intestinal model to study biotransformation of chemicals in the intestine.
Collapse
Affiliation(s)
- Aafke W F Janssen
- Wageningen Food Safety Research (WFSR), Wageningen University and Research, Akkermaalsbos 2, 6708 WB, Wageningen, The Netherlands.
| | - Loes P M Duivenvoorde
- Wageningen Food Safety Research (WFSR), Wageningen University and Research, Akkermaalsbos 2, 6708 WB, Wageningen, The Netherlands
| | - Deborah Rijkers
- Wageningen Food Safety Research (WFSR), Wageningen University and Research, Akkermaalsbos 2, 6708 WB, Wageningen, The Netherlands
| | - Rosalie Nijssen
- Wageningen Food Safety Research (WFSR), Wageningen University and Research, Akkermaalsbos 2, 6708 WB, Wageningen, The Netherlands
| | - Ad A C M Peijnenburg
- Wageningen Food Safety Research (WFSR), Wageningen University and Research, Akkermaalsbos 2, 6708 WB, Wageningen, The Netherlands
| | - Meike van der Zande
- Wageningen Food Safety Research (WFSR), Wageningen University and Research, Akkermaalsbos 2, 6708 WB, Wageningen, The Netherlands
| | - Jochem Louisse
- Wageningen Food Safety Research (WFSR), Wageningen University and Research, Akkermaalsbos 2, 6708 WB, Wageningen, The Netherlands
| |
Collapse
|
20
|
Robust and Scalable Angiogenesis Assay of Perfused 3D Human iPSC-Derived Endothelium for Anti-Angiogenic Drug Screening. Int J Mol Sci 2020; 21:ijms21134804. [PMID: 32645937 PMCID: PMC7370283 DOI: 10.3390/ijms21134804] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/28/2020] [Accepted: 07/02/2020] [Indexed: 12/17/2022] Open
Abstract
To advance pre-clinical vascular drug research, in vitro assays are needed that closely mimic the process of angiogenesis in vivo. Such assays should combine physiological relevant culture conditions with robustness and scalability to enable drug screening. We developed a perfused 3D angiogenesis assay that includes endothelial cells (ECs) from induced pluripotent stem cells (iPSC) and assessed its performance and suitability for anti-angiogenic drug screening. Angiogenic sprouting was compared with primary ECs and showed that the microvessels from iPSC-EC exhibit similar sprouting behavior, including tip cell formation, directional sprouting and lumen formation. Inhibition with sunitinib, a clinically used vascular endothelial growth factor (VEGF) receptor type 2 inhibitor, and 3-(3-pyridinyl)-1-(4-pyridinyl)-2-propen-1-one (3PO), a transient glycolysis inhibitor, both significantly reduced the sprouting of both iPSC-ECs and primary ECs, supporting that both cell types show VEGF gradient-driven angiogenic sprouting. The assay performance was quantified for sunitinib, yielding a minimal signal window of 11 and Z-factor of at least 0.75, both meeting the criteria to be used as screening assay. In conclusion, we have developed a robust and scalable assay that includes physiological relevant culture conditions and is amenable to screening of anti-angiogenic compounds.
Collapse
|
21
|
Xie M, Gao Q, Fu J, Chen Z, He Y. Bioprinting of novel 3D tumor array chip for drug screening. Biodes Manuf 2020. [DOI: 10.1007/s42242-020-00078-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
22
|
Kaushik S, Gandhi S, Chauhan M, Ma S, Das S, Ghosh D, Chandrasekharan A, Alam MB, Parmar AS, Sharma A, Santhoshkumar TR, Suhag D. Water-Templated, Polysaccharide-rich Bioartificial 3D Microarchitectures as Extra-Cellular Matrix Bioautomatons. ACS APPLIED MATERIALS & INTERFACES 2020; 12:20912-20921. [PMID: 32255604 DOI: 10.1021/acsami.0c01012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
This is the first report of exploiting the "quasi-spherical" shape of water molecules for recapitulating a true human extracellular matrix (ECM). Herein, water behaved as a quasi-spherical porogen, for engineering polysaccharide-rich and chemically defined 3D-microarchitecture, with semi-interpenetrating networks (S-IPNs). Furthermore, their viscoelastic behavior along with a heterogeneous, fibroporous morphology, facilitated instructive, self-remodeling of the bioartificial scaffolds, thence effectively permitting and promoting the growth of 3D tumor spheroids of divergent origins. The hybrid composites displayed reproducible, uniform tumor spheroids with a Z-depth of ∼65 ± 2 μm in case of human adenocarcinoma (DLD-1) and ∼54 ± 3 μm for human glioblastoma cells (U-251) (vs. nonuniform spheroids, on Agarose matrix). Thereafter, their capacity for anticancer drug screening was examined using limited cancer drugs. The conflicting drug screening results for Etoposide's reduced efficacy on glioblastoma cells cultured on our 3D matrix could be ascribed to decreased drug access and thus lower ingression. Nonetheless, adenocarcinoma's resistance to Camptothecin was paralleled. Moreover, their potential for real-time, high-content, phenotypic precision oncology was affirmed by the exceptional transparency of the synthesized composite. Since this 3D microarchitecture typifies ECM bioautomaton, this matrix can also be wielded for precision oncology.
Collapse
Affiliation(s)
- Swati Kaushik
- Institute of Nano Science & Technology, Habitat Centre, Phase 10, Sector 64, Sahibzada Ajit Singh Nagar, Mohali-140307, Punjab, India
- Rajiv Gandhi Centre for Biotechnology, Poojapura, Thycaud, Thiruvananthapuram, Kerala-695014, India
| | - Sonu Gandhi
- DBT-National Institute of Animal Biotechnology, Hyderabad-500032, Telangana, India
| | - Mehak Chauhan
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Sector-125, Noida-201313, Uttar Pradesh, India
| | - Shaohua Ma
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, 518055, China
| | - Souvik Das
- Lab MP3CV, EA7517, University Center for Health Research (CURS), University of Picardie Jules Verne, Amiens 80054, France
| | - Deepa Ghosh
- Institute of Nano Science & Technology, Habitat Centre, Phase 10, Sector 64, Sahibzada Ajit Singh Nagar, Mohali-140307, Punjab, India
| | - Aneesh Chandrasekharan
- Rajiv Gandhi Centre for Biotechnology, Poojapura, Thycaud, Thiruvananthapuram, Kerala-695014, India
| | - Md Bayazeed Alam
- Department of Physics, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Avanish Singh Parmar
- Department of Physics, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Alpana Sharma
- Department of Biochemistry, All India Institute of Medical Sciences, Sri Aurobindo Marg, Ansari Nagar, Ansari Nagar East, New Delhi-110029, India
| | - T R Santhoshkumar
- Rajiv Gandhi Centre for Biotechnology, Poojapura, Thycaud, Thiruvananthapuram, Kerala-695014, India
| | - Deepa Suhag
- Amity Institute of Biotechnology, Amity University Haryana, Amity Education Valley Gurugram, Manesar, Panchgaon, Haryana 122413, India
| |
Collapse
|
23
|
Human Colon Organoids and Other Laboratory Strategies to Enhance Patient Treatment Selection. Curr Treat Options Oncol 2020; 21:35. [PMID: 32328818 DOI: 10.1007/s11864-020-00737-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
OPINION STATEMENT Though many advancements in personalized medicine have been made, better methods are still needed to predict treatment benefit for patients with colorectal cancer. Patient-derived cancer organoids (PDCOs) are a major advance towards true personalization of treatment strategies. A growing body of literature is demonstrating the feasibility of PDCOs as an accurate and high-throughput preclinical tool for patient treatment selection. Many studies demonstrate that these cultures are readily generated and represent the tumors they were derived from phenotypically and based on their mutation profile. This includes maintenance of the driver muatations giving the cancer cells a selective growth advantage, and also heterogeneity, including molecular and metabolic heterogeneity. Additionally, PDCOs are now being utilized to develop patient biospecimen repositories, perform high to moderate-throughput drug screening, and to potentially predict treatment response for individual patients that are undergoing anti-cancer treatments. In order to develop PDCOs as a true clinical tool, further studies are required to determine the reproducibility and accuracy of these models to predict patient response.
Collapse
|
24
|
Kasendra M, Luc R, Yin J, Manatakis DV, Kulkarni G, Lucchesi C, Sliz J, Apostolou A, Sunuwar L, Obrigewitch J, Jang KJ, Hamilton GA, Donowitz M, Karalis K. Duodenum Intestine-Chip for preclinical drug assessment in a human relevant model. eLife 2020; 9:50135. [PMID: 31933478 PMCID: PMC6959988 DOI: 10.7554/elife.50135] [Citation(s) in RCA: 142] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 12/18/2019] [Indexed: 12/26/2022] Open
Abstract
Induction of intestinal drug metabolizing enzymes can complicate the development of new drugs, owing to the potential to cause drug-drug interactions (DDIs) leading to changes in pharmacokinetics, safety and efficacy. The development of a human-relevant model of the adult intestine that accurately predicts CYP450 induction could help address this challenge as species differences preclude extrapolation from animals. Here, we combined organoids and Organs-on-Chips technology to create a human Duodenum Intestine-Chip that emulates intestinal tissue architecture and functions, that are relevant for the study of drug transport, metabolism, and DDI. Duodenum Intestine-Chip demonstrates the polarized cell architecture, intestinal barrier function, presence of specialized cell subpopulations, and in vivo relevant expression, localization, and function of major intestinal drug transporters. Notably, in comparison to Caco-2, it displays improved CYP3A4 expression and induction capability. This model could enable improved in vitro to in vivo extrapolation for better predictions of human pharmacokinetics and risk of DDIs.
Collapse
Affiliation(s)
| | | | - Jianyi Yin
- Department of Medicine, Division of Gastroenterology, Johns Hopkins University School of Medicine, Baltimore, United States
| | | | | | | | | | - Athanasia Apostolou
- Emulate Inc, Boston, United States.,Graduate Program, Department of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Laxmi Sunuwar
- Department of Medicine, Division of Gastroenterology, Johns Hopkins University School of Medicine, Baltimore, United States
| | | | | | | | - Mark Donowitz
- Department of Medicine, Division of Gastroenterology, Johns Hopkins University School of Medicine, Baltimore, United States
| | | |
Collapse
|
25
|
Tobias F, McIntosh JC, LaBonia GJ, Boyce MW, Lockett MR, Hummon AB. Developing a Drug Screening Platform: MALDI-Mass Spectrometry Imaging of Paper-Based Cultures. Anal Chem 2019; 91:15370-15376. [PMID: 31755703 DOI: 10.1021/acs.analchem.9b03536] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Many potential chemotherapeutics fail to reach patients. One of the key reasons is that compounds are tested during the drug discovery stage in two-dimensional (2D) cell cultures, which are often unable to accurately model in vivo outcomes. Three-dimensional (3D) in vitro tumor models are more predictive of chemotherapeutic effectiveness than 2D cultures, and thus, their implementation during the drug screening stage has the potential to more accurately evaluate compounds earlier, saving both time and money. Paper-based cultures (PBCs) are an emerging 3D culture platform in which cells suspended in Matrigel are seeded into paper scaffolds and cultured to generate a tissue-like environment. In this study, we demonstrate the potential of matrix-assisted laser desorption/ionization-mass spectrometry imaging with PBCs (MALDI-MSI-PBC) as a drug screening platform. This method discriminated regions of the PBCs with and without cells and/or drugs, indicating that coupling PBCs with MALDI-MSI has the potential to develop rapid, large-scale, and parallel mass spectrometric drug screens.
Collapse
Affiliation(s)
- Fernando Tobias
- Department of Chemistry and Biochemistry and the Comprehensive Cancer Center , The Ohio State University , Columbus , Ohio 43210-1132 , United States
| | - Julie C McIntosh
- Department of Chemistry , The University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | - Gabriel J LaBonia
- Department of Chemistry and Biochemistry and the Harper Cancer Research Institute , University of Notre Dame , Notre Dame , Indiana 46556 , United States
| | - Matthew W Boyce
- Department of Chemistry , The University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | - Matthew R Lockett
- Department of Chemistry , The University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States.,Lineberger Comprehensive Cancer Center , The University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | - Amanda B Hummon
- Department of Chemistry and Biochemistry and the Comprehensive Cancer Center , The Ohio State University , Columbus , Ohio 43210-1132 , United States
| |
Collapse
|
26
|
Schneider P, Walters WP, Plowright AT, Sieroka N, Listgarten J, Goodnow RA, Fisher J, Jansen JM, Duca JS, Rush TS, Zentgraf M, Hill JE, Krutoholow E, Kohler M, Blaney J, Funatsu K, Luebkemann C, Schneider G. Rethinking drug design in the artificial intelligence era. Nat Rev Drug Discov 2019. [DOI: 78495111110.1038/s41573-019-0050-3' target='_blank'>'"<>78495111110.1038/s41573-019-0050-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [78495111110.1038/s41573-019-0050-3','', '10.1089/adt.2015.647')">Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2022]
78495111110.1038/s41573-019-0050-3" />
|
27
|
Rethinking drug design in the artificial intelligence era. Nat Rev Drug Discov 2019; 19:353-364. [DOI: 10.1038/s41573-019-0050-3] [Citation(s) in RCA: 222] [Impact Index Per Article: 44.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2019] [Indexed: 12/17/2022]
|
28
|
Polyamine supplementation reduces DNA damage in adipose stem cells cultured in 3-D. Sci Rep 2019; 9:14269. [PMID: 31582764 PMCID: PMC6776621 DOI: 10.1038/s41598-019-50543-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 09/10/2019] [Indexed: 01/08/2023] Open
Abstract
According to previous research, natural polyamines exert a role in regulating cell committment and differentiation from stemness during skeletal development. In order to assess whether distinct polyamine patterns are associated with different skeletal cell types, primary cultures of stem cells, chondrocytes or osteoblasts were dedicated for HPLC analysis of intracellular polyamines. Spermine (SPM) and Spermidine (SPD) levels were higher in adipose derived stem cells (ASC) compared to mature skeletal cells, i.e. chondrocytes and osteoblasts, confirming the connection of polyamine content with stemness. To establish whether polyamines can protect ASC against oxidative DNA damage in a 3-D differentiation model, the level of γH2AX was measured by western blot, and found to correlate with age and BMI of patients. Addition of either polyamine to ASC was able to hinder DNA damage in the low micromolecular range, with marked reduction of γH2AX level at 10 µM SPM and 5 µM SPD. Molecular analysis of the mechanisms that might underlie the protective effect of polyamine supplementation evidences a possible involvement of autophagy. Altogether, these results support the idea that polyamines are able to manage both stem cell differentiation and cell oxidative damage, and therefore represent appealing tools for regenerative and cell based applications.
Collapse
|
29
|
Ng WL, Yeong WY. The future of skin toxicology testing - Three-dimensional bioprinting meets microfluidics. Int J Bioprint 2019; 5:237. [PMID: 32596546 PMCID: PMC7310273 DOI: 10.18063/ijb.v5i2.1.237] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 07/20/2019] [Indexed: 01/06/2023] Open
Abstract
Over the years, the field of toxicology testing has evolved tremendously from the use of animal models to the adaptation of in vitro testing models. In this perspective article, we aim to bridge the gap between the regulatory authorities who performed the testing and approval of new chemicals and the scientists who designed and fabricated these in vitro testing models. An in-depth discussion of existing toxicology testing guidelines for skin tissue models (definition, testing models, principle, and limitations) is first presented to have a good understanding of the stringent requirements that are necessary during the testing process. Next, the ideal requirements of toxicology testing platform (in terms of fabrication, testing, and screening process) are then discussed. We envisioned that the integration of three-dimensional bioprinting within miniaturized microfluidics platform would bring about a paradigm shift in the field of toxicology testing; providing standardization in the fabrication process, accurate, and rapid deposition of test chemicals, real-time monitoring, and high throughput screening for more efficient skin toxicology testing.
Collapse
Affiliation(s)
- Wei Long Ng
- HP-NTU Digital Manufacturing Corporate Lab, 50 Nanyang Avenue, 639798 Singapore
| | - Wai Yee Yeong
- HP-NTU Digital Manufacturing Corporate Lab, 50 Nanyang Avenue, 639798 Singapore
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore
| |
Collapse
|
30
|
Chen MB, Kamm RD, Moeendarbary E. Engineered Models of Metastasis with Application to Study Cancer Biomechanics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1092:189-207. [PMID: 30368754 DOI: 10.1007/978-3-319-95294-9_10] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Three-dimensional complex biomechanical interactions occur from the initial steps of tumor formation to the later phases of cancer metastasis. Conventional monolayer cultures cannot recapitulate the complex microenvironment and chemical and mechanical cues that tumor cells experience during their metastatic journey, nor the complexity of their interactions with other, noncancerous cells. As alternative approaches, various engineered models have been developed to recapitulate specific features of each step of metastasis with tunable microenvironments to test a variety of mechanistic hypotheses. Here the main recent advances in the technologies that provide deeper insight into the process of cancer dissemination are discussed, with an emphasis on three-dimensional and mechanical factors as well as interactions between multiple cell types.
Collapse
Affiliation(s)
- Michelle B Chen
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Roger D Kamm
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Emad Moeendarbary
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Mechanical Engineering, University College London, London, UK
| |
Collapse
|
31
|
Multivalent Binding of a Ligand-Coated Particle: Role of Shape, Size, and Ligand Heterogeneity. Biophys J 2019; 114:1830-1846. [PMID: 29694862 DOI: 10.1016/j.bpj.2018.03.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 03/05/2018] [Accepted: 03/06/2018] [Indexed: 01/18/2023] Open
Abstract
We utilize a multiscale modeling framework to study the effect of shape, size, and ligand composition on the efficacy of binding of a ligand-coated particle to a substrate functionalized with the target receptors. First, we show how molecular dynamics along with steered molecular dynamics calculations can be used to accurately parameterize the molecular-binding free energy and the effective spring constant for a receptor-ligand pair. We demonstrate this for two ligands that bind to the α5β1-domain of integrin. Next, we show how these effective potentials can be used to build computational models at the meso- and continuum-scales. These models incorporate the molecular nature of the receptor-ligand interactions and yet provide an inexpensive route to study the multivalent interaction of receptors and ligands through the construction of Bell potentials customized to the molecular identities. We quantify the binding efficacy of the ligand-coated-particle in terms of its multivalency, binding free-energy landscape, and the losses in the configurational entropies. We show that 1) the binding avidity for particle sizes less than 350 nm is set by the competition between the enthalpic and entropic contributions, whereas that for sizes above 350 nm is dominated by the enthalpy of binding; 2) anisotropic particles display higher levels of multivalent binding compared to those of spherical particles; and 3) variations in ligand composition can alter binding avidity without altering the average multivalency. The methods and results presented here have wide applications in the rational design of functionalized carriers and also in understanding cell adhesion.
Collapse
|
32
|
Dzobo K, Rowe A, Senthebane DA, AlMazyadi MAM, Patten V, Parker MI. Three-Dimensional Organoids in Cancer Research: The Search for the Holy Grail of Preclinical Cancer Modeling. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2019; 22:733-748. [PMID: 30571609 DOI: 10.1089/omi.2018.0172] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Most solid tumors become therapy resistant and will relapse, with no durable treatment option available. One major impediment to our understanding of cancer biology and finding innovative approaches to cancer treatment stems from the lack of better preclinical tumor models that address and explain tumor heterogeneity and person-to-person differences in therapeutic and toxic responses. Past cancer research has been driven by inadequate in vitro assays utilizing two-dimensional monolayers of cancer cells and animal models. Additionally, animal models do not truly mimic the original human tumor, are time consuming, and usually costly. New preclinical models are needed for innovation in cancer translational research. Hence, it is time to welcome the three-dimensional (3D) organoids: self-organizing cells grown in 3D culture systems mimicking the parent tissues from which the primary cells originate. The 3D organoids offer deeper insights into the crucial cellular processes in tissue and organ formation and pathological processes. Generation of near-perfect physiological microenvironments allow 3D organoids to couple with gene editing tools, such as the clustered regularly interspersed short palindromic repeat (CRISPR)/CRISPR-associated 9 and the transcription activator-like effector nucleases to model human diseases, offering distinct advantages over current models. We explain in this expert review that through recapitulating patients' normal and tumor tissues, organoid technology can markedly advance personalized medicine and help reveal once hidden aspects of cancers. The use of defined tissue- or organ-specific matrices, among other factors, will likely allow organoid technology to realize its potential in innovating many fields of life sciences.
Collapse
Affiliation(s)
- Kevin Dzobo
- 1 International Center for Genetic Engineering and Biotechnology (ICGEB) , Cape Town Component, Cape Town, South Africa .,2 Division of Medical Biochemistry and Institute of Infectious Disease and Molecular Medicine, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town , Cape Town, South Africa
| | - Arielle Rowe
- 1 International Center for Genetic Engineering and Biotechnology (ICGEB) , Cape Town Component, Cape Town, South Africa
| | - Dimakatso A Senthebane
- 1 International Center for Genetic Engineering and Biotechnology (ICGEB) , Cape Town Component, Cape Town, South Africa .,2 Division of Medical Biochemistry and Institute of Infectious Disease and Molecular Medicine, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town , Cape Town, South Africa
| | - Mousa A M AlMazyadi
- 3 Al-Ahsa College of Medicine, King Faisal University , Al-Ahsa, Kingdom of Saudi Arabia
| | - Victoria Patten
- 2 Division of Medical Biochemistry and Institute of Infectious Disease and Molecular Medicine, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town , Cape Town, South Africa
| | - M Iqbal Parker
- 2 Division of Medical Biochemistry and Institute of Infectious Disease and Molecular Medicine, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town , Cape Town, South Africa
| |
Collapse
|
33
|
Pascoal JF, Fernandes TG, Nierode GJ, Diogo MM, Dordick JS, Cabral JMS. Three-Dimensional Cell-Based Microarrays: Printing Pluripotent Stem Cells into 3D Microenvironments. Methods Mol Biol 2019; 1771:69-81. [PMID: 29633205 DOI: 10.1007/978-1-4939-7792-5_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
Cell-based microarrays are valuable platforms for the study of cytotoxicity and cellular microenvironment because they enable high-throughput screening of large sets of conditions at reduced reagent consumption. However, most of the described microarray technologies have been applied to two-dimensional cultures, which do not accurately emulate the in vivo three-dimensional (3D) cell-cell and cell-extracellular matrix interactions.Herein, we describe the methodology for production of alginate- and Matrigel-based 3-D cell microarrays for the study of mouse and human pluripotent stem cells on two different chip-based platforms. We further provide protocols for on-chip proliferation/viability analysis and the assessment of protein expression by immunofluorescence.
Collapse
Affiliation(s)
- Jorge F Pascoal
- Department of Bioengineering, Institute for Bioengineering and Biosciences (iBB), Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.,Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Tiago G Fernandes
- Department of Bioengineering, Institute for Bioengineering and Biosciences (iBB), Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal. .,Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA.
| | - Gregory J Nierode
- Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Maria Margarida Diogo
- Department of Bioengineering, Institute for Bioengineering and Biosciences (iBB), Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Jonathan S Dordick
- Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA.
| | - Joaquim M S Cabral
- Department of Bioengineering, Institute for Bioengineering and Biosciences (iBB), Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
34
|
Abstract
A wide variety of organs are in a dynamic state, continuously undergoing renewal as a result of constant growth and differentiation. Stem cells are required during these dynamic events for continuous tissue maintenance within the organs. In a steady state of production and loss of cells within these tissues, new cells are constantly formed by differentiation from stem cells. Today, organoids derived from either adult stem cells or pluripotent stem cells can be grown to resemble various organs. As they are similar to their original organs, organoids hold great promise for use in medical research and the development of new treatments. Furthermore, they have already been utilized in the clinic, enabling personalized medicine for inflammatory bowel disease. In this review, I provide an update on current organoid technology and summarize the application of organoids in basic research, disease modeling, drug development, personalized treatment, and regenerative medicine.
Collapse
Affiliation(s)
- Toshio Takahashi
- Suntory Foundation for Life Sciences, Bioorganic Research Institute, Kyoto 619-0284, Japan;
| |
Collapse
|
35
|
Bielecka MK, Elkington P. Advanced cellular systems to study tuberculosis treatment. Curr Opin Pharmacol 2018; 42:16-21. [PMID: 29990957 DOI: 10.1016/j.coph.2018.06.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 06/05/2018] [Accepted: 06/20/2018] [Indexed: 01/11/2023]
Abstract
Mycobacterium tuberculosis (Mtb) kills more humans than any other infection and drug resistant strains are progressively emerging. Whilst the successful development of new agents for multi-drug resistant Mtb represents a major step forward, this progress must be balanced against recent disappointments in treatment-shortening trials. Consequently, there is a pressing need to strengthen the pipeline of drugs to treat tuberculosis (TB) and develop innovative therapeutic regimes. Approaches that bridge diverse disciplines are likely to be required to provide systems that address the limitations of current experimental models. Mtb is an obligate human pathogen that has undergone extensive co-evolution, resulting in a complex interplay between the host and pathogen. This chronic interaction involves multiple micro-environments, which may underlie some of the challenges in developing new drugs. The authors propose that advanced cell culture models of TB are likely to be an important addition to the experimental armamentarium in developing new approaches to TB, and here we review recent progress in this area and discuss the principal challenges.
Collapse
Affiliation(s)
- Magdalena K Bielecka
- NIHR Biomedical Research Centre, Clinical and Experimental Sciences Academic Unit, Faculty of Medicine, University of Southampton, UK.
| | - Paul Elkington
- NIHR Biomedical Research Centre, Clinical and Experimental Sciences Academic Unit, Faculty of Medicine, University of Southampton, UK; Institute for Life Sciences, University of Southampton, UK.
| |
Collapse
|
36
|
Challenges in Bio-fabrication of Organoid Cultures. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1107:53-71. [DOI: 10.1007/5584_2018_216] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
37
|
Thomford NE, Senthebane DA, Rowe A, Munro D, Seele P, Maroyi A, Dzobo K. Natural Products for Drug Discovery in the 21st Century: Innovations for Novel Drug Discovery. Int J Mol Sci 2018; 19:E1578. [PMID: 29799486 PMCID: PMC6032166 DOI: 10.3390/ijms19061578] [Citation(s) in RCA: 593] [Impact Index Per Article: 98.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 05/16/2018] [Accepted: 05/18/2018] [Indexed: 12/12/2022] Open
Abstract
The therapeutic properties of plants have been recognised since time immemorial. Many pathological conditions have been treated using plant-derived medicines. These medicines are used as concoctions or concentrated plant extracts without isolation of active compounds. Modern medicine however, requires the isolation and purification of one or two active compounds. There are however a lot of global health challenges with diseases such as cancer, degenerative diseases, HIV/AIDS and diabetes, of which modern medicine is struggling to provide cures. Many times the isolation of "active compound" has made the compound ineffective. Drug discovery is a multidimensional problem requiring several parameters of both natural and synthetic compounds such as safety, pharmacokinetics and efficacy to be evaluated during drug candidate selection. The advent of latest technologies that enhance drug design hypotheses such as Artificial Intelligence, the use of 'organ-on chip' and microfluidics technologies, means that automation has become part of drug discovery. This has resulted in increased speed in drug discovery and evaluation of the safety, pharmacokinetics and efficacy of candidate compounds whilst allowing novel ways of drug design and synthesis based on natural compounds. Recent advances in analytical and computational techniques have opened new avenues to process complex natural products and to use their structures to derive new and innovative drugs. Indeed, we are in the era of computational molecular design, as applied to natural products. Predictive computational softwares have contributed to the discovery of molecular targets of natural products and their derivatives. In future the use of quantum computing, computational softwares and databases in modelling molecular interactions and predicting features and parameters needed for drug development, such as pharmacokinetic and pharmacodynamics, will result in few false positive leads in drug development. This review discusses plant-based natural product drug discovery and how innovative technologies play a role in next-generation drug discovery.
Collapse
Affiliation(s)
- Nicholas Ekow Thomford
- Pharmacogenomics and Drug Metabolism Group, Division of Human Genetics, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town 7925, South Africa.
- School of Medical Sciences, University of Cape Coast, PMB, Cape Coast, Ghana.
| | - Dimakatso Alice Senthebane
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Wernher and Beit Building (South), University of Cape Town Medical Campus, Anzio Road, Observatory, Cape Town 7925, South Africa.
- Division of Medical Biochemistry and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town 7925, South Africa.
| | - Arielle Rowe
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Wernher and Beit Building (South), University of Cape Town Medical Campus, Anzio Road, Observatory, Cape Town 7925, South Africa.
| | - Daniella Munro
- Pharmacogenomics and Drug Metabolism Group, Division of Human Genetics, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town 7925, South Africa.
| | - Palesa Seele
- Division of Chemical and Systems Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town 7925, South Africa.
| | - Alfred Maroyi
- Department of Botany, University of Fort Hare, Private Bag, Alice X1314, South Africa.
| | - Kevin Dzobo
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Wernher and Beit Building (South), University of Cape Town Medical Campus, Anzio Road, Observatory, Cape Town 7925, South Africa.
- Division of Medical Biochemistry and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town 7925, South Africa.
| |
Collapse
|
38
|
Yan X, Zhou L, Wu Z, Wang X, Chen X, Yang F, Guo Y, Wu M, Chen Y, Li W, Wang J, Du Y. High throughput scaffold-based 3D micro-tumor array for efficient drug screening and chemosensitivity testing. Biomaterials 2018; 198:167-179. [PMID: 29807624 DOI: 10.1016/j.biomaterials.2018.05.020] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 05/04/2018] [Accepted: 05/13/2018] [Indexed: 12/23/2022]
Abstract
Oncology drug development is greatly hampered by inefficient drug screening using 2D culture. Herein, we present ready-to-use micro-scaffolds in 384-well format to generate uniform 3D micro-tumor array (3D-MTA, CV < 0.15) that predicts in vivo drug responses more accurately than 2D monolayer. 3D-MTA generated from both cell lines and primary cells achieved high screen quality (Z' > 0.5), and were compatible with standard high throughput and high content instruments. Doxorubicin identified by 3D-MTA and 2D successfully inhibited tumor growth in mice bearing lung cancer cell line (H226) xenografts, but not gemcitabine and vinorelbine, which were selected solely by 2D. Resistance towards targeted therapy was modeled on 3D-MTA, which elicited SK-BR-3 to express higher proliferation-related genes in response to gefitinb, as compared to 2D. Screening of 56 MAPK inhibitors identified pisamertib to synergistically improve cytotoxicity effect in combination with gefitinib. Primary tumor cells derived from patient-derived xenografts further attested concordance of drug response in 3D-MTA with in vivo response. 3D-MTA was further extended to realize chemosensitivity testing using patient-derived cells. Overall, 3D-MTA demonstrated strong potential to accelerate drug discovery and improve cancer treatment by providing efficient drug screening.
Collapse
Affiliation(s)
- Xiaojun Yan
- Department of Biomedical Engineering, School of Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Tsinghua University, Beijing, 100084, PR China
| | - Lyu Zhou
- Department of Biomedical Engineering, School of Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Tsinghua University, Beijing, 100084, PR China; School of Life Sciences, Tsinghua University, Beijing, 100084, PR China
| | - Zhaozhao Wu
- Department of Biomedical Engineering, School of Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Tsinghua University, Beijing, 100084, PR China
| | - Xun Wang
- Department of Thoracic Surgery, Peking University People's Hospital, Peking University, Beijing, 100044, PR China
| | - Xiuyuan Chen
- Department of Thoracic Surgery, Peking University People's Hospital, Peking University, Beijing, 100044, PR China
| | - Fan Yang
- Department of Thoracic Surgery, Peking University People's Hospital, Peking University, Beijing, 100044, PR China
| | - Yanan Guo
- Beijing Biocytogen Co., Ltd, Beijing, 100176, PR China
| | - Min Wu
- Beijing Biocytogen Co., Ltd, Beijing, 100176, PR China
| | - Yuyang Chen
- Department of Biomedical Engineering, School of Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Tsinghua University, Beijing, 100084, PR China
| | - Wenjing Li
- Department of Biomedical Engineering, School of Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Tsinghua University, Beijing, 100084, PR China
| | - Jun Wang
- Department of Thoracic Surgery, Peking University People's Hospital, Peking University, Beijing, 100044, PR China.
| | - Yanan Du
- Department of Biomedical Engineering, School of Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Tsinghua University, Beijing, 100084, PR China.
| |
Collapse
|
39
|
Onozato D, Yamashita M, Nakanishi A, Akagawa T, Kida Y, Ogawa I, Hashita T, Iwao T, Matsunaga T. Generation of Intestinal Organoids Suitable for Pharmacokinetic Studies from Human Induced Pluripotent Stem Cells. Drug Metab Dispos 2018; 46:1572-1580. [PMID: 29615438 DOI: 10.1124/dmd.118.080374] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 03/29/2018] [Indexed: 11/22/2022] Open
Abstract
Intestinal organoids morphologically resemble intestinal tissues and are expected to be used in both regenerative medicine and drug development studies, including pharmacokinetic studies. However, the pharmacokinetic properties of these organoids remain poorly characterized. In this study, we aimed to generate pharmacokinetically functional intestinal organoids from human induced pluripotent stem (iPS) cells. Human iPS cells were induced to differentiate into the midgut and then seeded on EZSPHERE plates (AGC Techno Glass Inc., Shizuoka, Japan) to generate uniform spheroids, and the floating spheroids were subsequently differentiated into intestinal organoids using small-molecule compounds. Exposure to the small-molecule compounds potently increased the expression of intestinal markers and pharmacokinetic-related genes in the organoids, and the organoids also included various intestinal cells such as enterocytes, intestinal stem cells, goblet cells, enteroendocrine cells, Paneth cells, smooth muscle cells, and fibroblasts. Moreover, microvilli and tight junctions were observed in the organoids. Furthermore, we detected not only the expression of drug transporters but also efflux transport activity through ABCB1/MDR1 and the induction of the drug-metabolizing enzyme CYP3A4 by ligands of nuclear receptors. Our results demonstrated the successful generation of pharmacokinetically functional intestinal organoids from human iPS cells. Thus, these intestinal organoids could be used as a pharmacokinetic evaluation system in drug development studies.
Collapse
Affiliation(s)
- Daichi Onozato
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences (D.O., M.Y., A.N., T.H., T.I., T.M.), and Educational Research Center for Clinical Pharmacy, Faculty of Pharmaceutical Sciences (T.A., Y.K., I.O., T.H., T.I., T.M.), Nagoya City University, Nagoya, Japan
| | - Misaki Yamashita
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences (D.O., M.Y., A.N., T.H., T.I., T.M.), and Educational Research Center for Clinical Pharmacy, Faculty of Pharmaceutical Sciences (T.A., Y.K., I.O., T.H., T.I., T.M.), Nagoya City University, Nagoya, Japan
| | - Anna Nakanishi
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences (D.O., M.Y., A.N., T.H., T.I., T.M.), and Educational Research Center for Clinical Pharmacy, Faculty of Pharmaceutical Sciences (T.A., Y.K., I.O., T.H., T.I., T.M.), Nagoya City University, Nagoya, Japan
| | - Takumi Akagawa
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences (D.O., M.Y., A.N., T.H., T.I., T.M.), and Educational Research Center for Clinical Pharmacy, Faculty of Pharmaceutical Sciences (T.A., Y.K., I.O., T.H., T.I., T.M.), Nagoya City University, Nagoya, Japan
| | - Yuriko Kida
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences (D.O., M.Y., A.N., T.H., T.I., T.M.), and Educational Research Center for Clinical Pharmacy, Faculty of Pharmaceutical Sciences (T.A., Y.K., I.O., T.H., T.I., T.M.), Nagoya City University, Nagoya, Japan
| | - Isamu Ogawa
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences (D.O., M.Y., A.N., T.H., T.I., T.M.), and Educational Research Center for Clinical Pharmacy, Faculty of Pharmaceutical Sciences (T.A., Y.K., I.O., T.H., T.I., T.M.), Nagoya City University, Nagoya, Japan
| | - Tadahiro Hashita
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences (D.O., M.Y., A.N., T.H., T.I., T.M.), and Educational Research Center for Clinical Pharmacy, Faculty of Pharmaceutical Sciences (T.A., Y.K., I.O., T.H., T.I., T.M.), Nagoya City University, Nagoya, Japan
| | - Takahiro Iwao
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences (D.O., M.Y., A.N., T.H., T.I., T.M.), and Educational Research Center for Clinical Pharmacy, Faculty of Pharmaceutical Sciences (T.A., Y.K., I.O., T.H., T.I., T.M.), Nagoya City University, Nagoya, Japan
| | - Tamihide Matsunaga
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences (D.O., M.Y., A.N., T.H., T.I., T.M.), and Educational Research Center for Clinical Pharmacy, Faculty of Pharmaceutical Sciences (T.A., Y.K., I.O., T.H., T.I., T.M.), Nagoya City University, Nagoya, Japan
| |
Collapse
|
40
|
The Coordinated Activities of nAChR and Wnt Signaling Regulate Intestinal Stem Cell Function in Mice. Int J Mol Sci 2018; 19:ijms19030738. [PMID: 29510587 PMCID: PMC5877599 DOI: 10.3390/ijms19030738] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 02/27/2018] [Accepted: 03/03/2018] [Indexed: 12/14/2022] Open
Abstract
Cholinergic signaling, which modulates cell activities via nicotinic and muscarinic acetylcholine receptors (n- and mAChRs) in response to internal or external stimuli, has been demonstrated in mammalian non-neuronal cells that synthesize acetylcholine (ACh). One of the major pathways of excitatory transmission in the enteric nervous system (ENS) is mediated by cholinergic transmission, with the transmitter ACh producing excitatory potentials in postsynaptic effector cells. In addition to ACh-synthesizing and ACh-metabolizing elements in the ENS, the presence of non-neuronal ACh machinery has been reported in epithelial cells of the small and large intestines of rats and humans. However, little is known about how non-neuronal ACh controls physiological function in the intestine. Here, experiments using crypt-villus organoids that lack nerve and immune cells in culture suggest that endogenous ACh is synthesized in the intestinal epithelium to drive organoid growth and differentiation through activation of nAChRs. Treatment of organoids with nicotine enhanced cell growth and the expression of marker genes for stem and epithelial cells. On the other hand, the nAChR antagonist mecamylamine strongly inhibited the growth and differentiation of organoids, suggesting the involvement of nAChRs in the regulation of proliferation and differentiation of Lgr5-positive stem cells. More specifically, RNA sequencing analysis revealed that Wnt5a expression was dramatically upregulated after nicotine treatment, and Wnt5a rescued organoid growth and differentiation in response to mecamylamine. Taken together, our results indicate that coordinated activities of nAChR and Wnt signaling maintain Lgr5-positive stem cell activity and balanced differentiation. Furthermore, we could clearly separate the two groups, neuronal ACh in the ENS and non-neuronal ACh in the intestinal epithelium. Dysfunction of the non-neuronal cholinergic system is involved in the pathogenesis of disease. The data will increase our understanding of the cholinergic properties of non-neuronal cells and lead to optimization of drug therapy.
Collapse
|
41
|
Abstract
Small-molecule drug discovery can be viewed as a challenging multidimensional problem in which various characteristics of compounds - including efficacy, pharmacokinetics and safety - need to be optimized in parallel to provide drug candidates. Recent advances in areas such as microfluidics-assisted chemical synthesis and biological testing, as well as artificial intelligence systems that improve a design hypothesis through feedback analysis, are now providing a basis for the introduction of greater automation into aspects of this process. This could potentially accelerate time frames for compound discovery and optimization and enable more effective searches of chemical space. However, such approaches also raise considerable conceptual, technical and organizational challenges, as well as scepticism about the current hype around them. This article aims to identify the approaches and technologies that could be implemented robustly by medicinal chemists in the near future and to critically analyse the opportunities and challenges for their more widespread application.
Collapse
|
42
|
Shelper TB, Lovitt CJ, Avery VM. Assessing Drug Efficacy in a Miniaturized Pancreatic Cancer In Vitro 3D Cell Culture Model. Assay Drug Dev Technol 2017; 14:367-80. [PMID: 27552143 DOI: 10.1089/adt.2016.737] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Pancreatic cancer continues to have one of the poorest prognoses among all cancers. The drug discovery efforts for this disease have largely failed, with no significant improvement in survival outcomes for advanced pancreatic cancer patients over the past 20 years. Traditional in vitro cell culture techniques have been used extensively in both basic and early drug discovery; however, these systems offer poor models to assess emerging therapeutics. More predictive cell-based models, which better capture the cellular heterogeneity and complexities of solid pancreatic tumors, are urgently needed not only to improve drug discovery success but also to provide insight into the tumor biology. Pancreatic tumors are characterized by a unique micro-environment that is surrounded by a dense stroma. A complex network of interactions between extracellular matrix (ECM) components and the effects of cell-to-cell contacts may enhance survival pathways within in vivo tumors. This biological and physical complexity is lost in traditional cell monolayer models. To explore the predictive potential of a more complex cellular system, a three-dimensional (3D) micro-tumor assay was evaluated. Efficacy of six current chemotherapeutics was determined against a panel of primary and metastatic pancreatic tumor cell lines in a miniaturized ECM-based 3D cell culture system. Suitability for potential use in high-throughput screening applications was assessed, including ascertaining the effects that miniaturization and automation had on assay robustness. Cellular health was determined by utilizing an indirect population-based metabolic activity assay and a direct imaging-based cell viability assay.
Collapse
Affiliation(s)
- Todd B Shelper
- Discovery Biology, Eskitis Institute for Drug Discovery, Griffith University , Nathan, Australia
| | - Carrie J Lovitt
- Discovery Biology, Eskitis Institute for Drug Discovery, Griffith University , Nathan, Australia
| | - Vicky M Avery
- Discovery Biology, Eskitis Institute for Drug Discovery, Griffith University , Nathan, Australia
| |
Collapse
|
43
|
Glycogen Synthase Kinase-3β Inhibition Links Mitochondrial Dysfunction, Extracellular Matrix Remodelling and Terminal Differentiation in Chondrocytes. Sci Rep 2017; 7:12059. [PMID: 28935982 PMCID: PMC5608843 DOI: 10.1038/s41598-017-12129-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 07/14/2017] [Indexed: 12/11/2022] Open
Abstract
Following inflammatory stimuli, GSK3 inhibition functions as a hub with pleiotropic effects leading to cartilage degradation. However, little is known about the effects triggered by its direct inhibition as well as the effects on mitochondrial pathology, that contributes to osteoarthritis pathogenesis. To this aim we assessed the molecular mechanisms triggered by GSK3β inactivating stimuli on 3-D (micromass) cultures of human articular chondrocytes. Stimuli were delivered either at micromass seeding (long term) or after maturation (short term) to explore “late” effects on terminal differentiation or “early” mitochondrial effects, respectively. GSK3β inhibition significantly enhanced mitochondrial oxidative stress and damage and endochondral ossification based on increased nuclear translocation of Runx-2 and β-catenin, calcium deposition, cell death and enhanced remodelling of the extracellular matrix as demonstrated by the increased collagenolytic activity of supernatants, despite unmodified (MMP-1) or even reduced (MMP-13) collagenase gene/protein expression. Molecular dissection of the underlying mechanisms showed that GSK3β inhibition achieved with pharmacological/silencing strategies impacted on the control of collagenolytic activity, via both decreased inhibition (reduced TIMP-3) and increased activation (increased MMP-10 and MMP-14). To conclude, the inhibition of GSK3β enhances terminal differentiation via concerted effects on ECM and therefore its activity represents a tool to keep articular cartilage homeostasis.
Collapse
|
44
|
Peng W, Datta P, Ayan B, Ozbolat V, Sosnoski D, Ozbolat IT. 3D bioprinting for drug discovery and development in pharmaceutics. Acta Biomater 2017; 57:26-46. [PMID: 28501712 DOI: 10.1016/j.actbio.2017.05.025] [Citation(s) in RCA: 166] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Revised: 05/05/2017] [Accepted: 05/09/2017] [Indexed: 02/08/2023]
Abstract
Successful launch of a commercial drug requires significant investment of time and financial resources wherein late-stage failures become a reason for catastrophic failures in drug discovery. This calls for infusing constant innovations in technologies, which can give reliable prediction of efficacy, and more importantly, toxicology of the compound early in the drug discovery process before clinical trials. Though computational advances have resulted in more rationale in silico designing, in vitro experimental studies still require gaining industry confidence and improving in vitro-in vivo correlations. In this quest, due to their ability to mimic the spatial and chemical attributes of native tissues, three-dimensional (3D) tissue models have now proven to provide better results for drug screening compared to traditional two-dimensional (2D) models. However, in vitro fabrication of living tissues has remained a bottleneck in realizing the full potential of 3D models. Recent advances in bioprinting provide a valuable tool to fabricate biomimetic constructs, which can be applied in different stages of drug discovery research. This paper presents the first comprehensive review of bioprinting techniques applied for fabrication of 3D tissue models for pharmaceutical studies. A comparative evaluation of different bioprinting modalities is performed to assess the performance and ability of fabricating 3D tissue models for pharmaceutical use as the critical selection of bioprinting modalities indeed plays a crucial role in efficacy and toxicology testing of drugs and accelerates the drug development cycle. In addition, limitations with current tissue models are discussed thoroughly and future prospects of the role of bioprinting in pharmaceutics are provided to the reader. STATEMENT OF SIGNIFICANCE Present advances in tissue biofabrication have crucial role to play in aiding the pharmaceutical development process achieve its objectives. Advent of three-dimensional (3D) models, in particular, is viewed with immense interest by the community due to their ability to mimic in vivo hierarchical tissue architecture and heterogeneous composition. Successful realization of 3D models will not only provide greater in vitro-in vivo correlation compared to the two-dimensional (2D) models, but also eventually replace pre-clinical animal testing, which has their own shortcomings. Amongst all fabrication techniques, bioprinting- comprising all the different modalities (extrusion-, droplet- and laser-based bioprinting), is emerging as the most viable fabrication technique to create the biomimetic tissue constructs. Notwithstanding the interest in bioprinting by the pharmaceutical development researchers, it can be seen that there is a limited availability of comparative literature which can guide the proper selection of bioprinting processes and associated considerations, such as the bioink selection for a particular pharmaceutical study. Thus, this work emphasizes these aspects of bioprinting and presents them in perspective of differential requirements of different pharmaceutical studies like in vitro predictive toxicology, high-throughput screening, drug delivery and tissue-specific efficacies. Moreover, since bioprinting techniques are mostly applied in regenerative medicine and tissue engineering, a comparative analysis of similarities and differences are also expounded to help researchers make informed decisions based on contemporary literature.
Collapse
|
45
|
Walsh AJ, Cook RS, Skala MC. Functional Optical Imaging of Primary Human Tumor Organoids: Development of a Personalized Drug Screen. J Nucl Med 2017; 58:1367-1372. [PMID: 28588148 DOI: 10.2967/jnumed.117.192534] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 05/26/2017] [Indexed: 12/24/2022] Open
Abstract
Primary tumor organoids are a robust model of individual human cancers and present a unique platform for patient-specific drug testing. Optical imaging is uniquely suited to assess organoid function and behavior because of its subcellular resolution, penetration depth through the entire organoid, and functional endpoints. Specifically, optical metabolic imaging (OMI) is highly sensitive to drug response in organoids, and OMI in tumor organoids correlates with primary tumor drug response. Therefore, an OMI organoid drug screen could enable accurate testing of drug response for individualized cancer treatment. The objective of this perspective is to introduce OMI and tumor organoids to a general audience in order to foster the adoption of these techniques in diverse clinical and laboratory settings.
Collapse
Affiliation(s)
- Alex J Walsh
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
| | - Rebecca S Cook
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee.,Department of Cancer Biology, Vanderbilt University, Nashville, Tennessee
| | - Melissa C Skala
- Department of Biomedical Engineering, University of Wisconsin, Madison, Wisconsin; and .,Morgridge Institute for Research, Madison, Wisconsin
| |
Collapse
|
46
|
Lovitt CJ, Shelper TB, Avery VM. Cancer drug discovery: recent innovative approaches to tumor modeling. Expert Opin Drug Discov 2017; 11:885-94. [PMID: 27454169 DOI: 10.1080/17460441.2016.1214562] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
INTRODUCTION Cell culture models have been at the heart of anti-cancer drug discovery programs for over half a century. Advancements in cell culture techniques have seen the rapid evolution of more complex in vitro cell culture models investigated for use in drug discovery. Three-dimensional (3D) cell culture research has become a strong focal point, as this technique permits the recapitulation of the tumor microenvironment. Biologically relevant 3D cellular models have demonstrated significant promise in advancing cancer drug discovery, and will continue to play an increasing role in the future. AREAS COVERED In this review, recent advances in 3D cell culture techniques and their application in tumor modeling and anti-cancer drug discovery programs are discussed. The topics include selection of cancer cells, 3D cell culture assays (associated endpoint measurements and analysis), 3D microfluidic systems and 3D bio-printing. EXPERT OPINION Although advanced cancer cell culture models and techniques are becoming commonplace in many research groups, the use of these approaches has yet to be fully embraced in anti-cancer drug applications. Furthermore, limitations associated with analyzing information-rich biological data remain unaddressed.
Collapse
Affiliation(s)
- Carrie J Lovitt
- a Discovery Biology, Eskitis Institute for Drug Discovery , Griffith University , Nathan , Australia
| | - Todd B Shelper
- a Discovery Biology, Eskitis Institute for Drug Discovery , Griffith University , Nathan , Australia
| | - Vicky M Avery
- a Discovery Biology, Eskitis Institute for Drug Discovery , Griffith University , Nathan , Australia
| |
Collapse
|
47
|
Gul S. Epigenetic assays for chemical biology and drug discovery. Clin Epigenetics 2017; 9:41. [PMID: 28439316 PMCID: PMC5399855 DOI: 10.1186/s13148-017-0342-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Accepted: 04/12/2017] [Indexed: 12/27/2022] Open
Abstract
The implication of epigenetic abnormalities in many diseases and the approval of a number of compounds that modulate specific epigenetic targets in a therapeutically relevant manner in cancer specifically confirms that some of these targets are druggable by small molecules. Furthermore, a number of compounds are currently in clinical trials for other diseases including cardiovascular, neurological and metabolic disorders. Despite these advances, the approved treatments for cancer only extend progression-free survival for a relatively short time and being associated with significant side effects. The current clinical trials involving the next generation of epigenetic drugs may address the disadvantages of the currently approved epigenetic drugs. The identification of chemical starting points of many drugs often makes use of screening in vitro assays against libraries of synthetic or natural products. These assays can be biochemical (using purified protein) or cell-based (using for example, genetically modified, cancer cell lines or primary cells) and performed in microtiter plates, thus enabling a large number of samples to be tested. A considerable number of such assays are available to monitor epigenetic target activity, and this review provides an overview of drug discovery and chemical biology and describes assays that monitor activities of histone deacetylase, lysine-specific demethylase, histone methyltransferase, histone acetyltransferase and bromodomain. It is of critical importance that an appropriate assay is developed and comprehensively validated for a given drug target prior to screening in order to improve the probability of the compound progressing in the drug discovery value chain.
Collapse
Affiliation(s)
- Sheraz Gul
- Fraunhofer Institute for Molecular Biology and Applied Ecology - ScreeningPort, Schnackenburgallee 114, 22525 Hamburg, Germany
| |
Collapse
|
48
|
Ravi M, Ramesh A, Pattabhi A. Contributions of 3D Cell Cultures for Cancer Research. J Cell Physiol 2017; 232:2679-2697. [PMID: 27791270 DOI: 10.1002/jcp.25664] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 10/26/2016] [Indexed: 12/24/2022]
Abstract
Cancer cell lines have contributed immensely in understanding the complex physiology of cancers. They are excellent material for studies as they offer homogenous samples without individual variations and can be utilised with ease and flexibility. Also, the number of assays and end-points one can study is almost limitless; with the advantage of improvising, modifying or altering several variables and methods. Literally, a new dimension to cancer research has been achieved by the advent of 3Dimensional (3D) cell culture techniques. This approach increased many folds the ways in which cancer cell lines can be utilised for understanding complex cancer biology. 3D cell culture techniques are now the preferred way of using cancer cell lines to bridge the gap between the 'absolute in vitro' and 'true in vivo'. The aspects of cancer biology that 3D cell culture systems have contributed include morphology, microenvironment, gene and protein expression, invasion/migration/metastasis, angiogenesis, tumour metabolism and drug discovery, testing chemotherapeutic agents, adaptive responses and cancer stem cells. We present here, a comprehensive review on the applications of 3D cell culture systems for these aspects of cancers. J. Cell. Physiol. 232: 2679-2697, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Maddaly Ravi
- Faculty of Biomedical Sciences, Technology and Research, Department of Human Genetics, Sri Ramachandra University, Porur, Chennai, India
| | - Aarthi Ramesh
- Faculty of Biomedical Sciences, Technology and Research, Department of Human Genetics, Sri Ramachandra University, Porur, Chennai, India
| | - Aishwarya Pattabhi
- Faculty of Biomedical Sciences, Technology and Research, Department of Human Genetics, Sri Ramachandra University, Porur, Chennai, India
| |
Collapse
|
49
|
Arora N, Imran Alsous J, Guggenheim JW, Mak M, Munera J, Wells JM, Kamm RD, Asada HH, Shvartsman SY, Griffith LG. A process engineering approach to increase organoid yield. Development 2017; 144:1128-1136. [PMID: 28174251 DOI: 10.1242/dev.142919] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 01/25/2017] [Indexed: 12/15/2022]
Abstract
Temporal manipulation of the in vitro environment and growth factors can direct differentiation of human pluripotent stem cells into organoids - aggregates with multiple tissue-specific cell types and three-dimensional structure mimicking native organs. A mechanistic understanding of early organoid formation is essential for improving the robustness of these methods, which is necessary prior to use in drug development and regenerative medicine. We investigated intestinal organoid emergence, focusing on measurable parameters of hindgut spheroids, the intermediate step between definitive endoderm and mature organoids. We found that 13% of spheroids were pre-organoids that matured into intestinal organoids. Spheroids varied by several structural parameters: cell number, diameter and morphology. Hypothesizing that diameter and the morphological feature of an inner mass were key parameters for spheroid maturation, we sorted spheroids using an automated micropipette aspiration and release system and monitored the cultures for organoid formation. We discovered that populations of spheroids with a diameter greater than 75 μm and an inner mass are enriched 1.5- and 3.8-fold for pre-organoids, respectively, thus providing rational guidelines towards establishing a robust protocol for high quality intestinal organoids.
Collapse
Affiliation(s)
- Natasha Arora
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139, USA
| | - Jasmin Imran Alsous
- Department of Chemical and Biological Engineering, Princeton University, Washington Road, Princeton, NJ 08540, USA
| | - Jacob W Guggenheim
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139, USA
| | - Michael Mak
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139, USA
| | - Jorge Munera
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - James M Wells
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Roger D Kamm
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139, USA.,Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139, USA
| | - H Harry Asada
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139, USA
| | - Stanislav Y Shvartsman
- Department of Chemical and Biological Engineering, Princeton University, Washington Road, Princeton, NJ 08540, USA
| | - Linda G Griffith
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139, USA .,Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139, USA
| |
Collapse
|
50
|
Santo VE, Rebelo SP, Estrada MF, Alves PM, Boghaert E, Brito C. Drug screening in 3D in vitro tumor models: overcoming current pitfalls of efficacy read-outs. Biotechnol J 2016; 12. [PMID: 27966285 DOI: 10.1002/biot.201600505] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 10/24/2016] [Accepted: 11/10/2016] [Indexed: 12/13/2022]
Abstract
There is cumulating evidence that in vitro 3D tumor models with increased physiological relevance can improve the predictive value of pre-clinical research and ultimately contribute to achieve decisions earlier during the development of cancer-targeted therapies. Due to the role of tumor microenvironment in the response of tumor cells to therapeutics, the incorporation of different elements of the tumor niche on cell model design is expected to contribute to the establishment of more predictive in vitro tumor models. This review is focused on the several challenges and adjustments that the field of oncology research is facing to translate these advanced tumor cells models to drug discovery, taking advantage of the progress on culture technologies, imaging platforms, high throughput and automated systems. The choice of 3D cell model, the experimental design, choice of read-outs and interpretation of data obtained from 3D cell models are critical aspects when considering their implementation in drug discovery. In this review, we foresee some of these aspects and depict the potential directions of pre-clinical oncology drug discovery towards improved prediction of drug efficacy.
Collapse
Affiliation(s)
- Vítor E Santo
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Sofia P Rebelo
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Marta F Estrada
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Paula M Alves
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | | | - Catarina Brito
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| |
Collapse
|