1
|
Gonelli CA, Khoury G, Center RJ, Purcell DFJ. HIV-1-based Virus-like Particles that Morphologically Resemble Mature, Infectious HIV-1 Virions. Viruses 2019; 11:v11060507. [PMID: 31159488 PMCID: PMC6630479 DOI: 10.3390/v11060507] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/23/2019] [Accepted: 05/29/2019] [Indexed: 01/04/2023] Open
Abstract
A prophylactic vaccine eliciting both broad neutralizing antibodies (bNAbs) to the HIV-1 envelope glycoprotein (Env) and strong T cell responses would be optimal for preventing HIV-1 transmissions. Replication incompetent HIV-1 virus-like particles (VLPs) offer the opportunity to present authentic-structured, virion-associated Env to elicit bNAbs, and also stimulate T cell responses. Here, we optimize our DNA vaccine plasmids as VLP expression vectors for efficient Env incorporation and budding. The original vector that was used in human trials inefficiently produced VLPs, but maximized safety by inactivating RNA genome packaging, enzyme functions that are required for integration into the host genome, and deleting accessory proteins Vif, Vpr, and Nef. These original DNA vaccine vectors generated VLPs with incomplete protease-mediated cleavage of Gag and were irregularly sized. Mutations to restore function within the defective genes revealed that several of the reverse transcriptase (RT) deletions mediated this immature phenotype. Here, we made efficient budding, protease-processed, and mature-form VLPs that resembled infectious virions by introducing alternative mutations that completely removed the RT domain, but preserved most other safety mutations. These VLPs, either expressed from DNA vectors in vivo or purified after expression in vitro, are potentially useful immunogens that can be used to elicit antibody responses that target Env on fully infectious HIV-1 virions.
Collapse
Affiliation(s)
- Christopher A Gonelli
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria 3000, Australia.
| | - Georges Khoury
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria 3000, Australia.
| | - Rob J Center
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria 3000, Australia.
- Viral Entry and Vaccines Laboratory, Disease Elimination, Burnet Institute, Melbourne, Victoria 3004, Australia.
| | - Damian F J Purcell
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria 3000, Australia.
| |
Collapse
|
2
|
Coren LV, Thomas JA, Chertova E, Sowder RC, Gagliardi TD, Gorelick RJ, Ott DE. Mutational analysis of the C-terminal gag cleavage sites in human immunodeficiency virus type 1. J Virol 2007; 81:10047-54. [PMID: 17634233 PMCID: PMC2045408 DOI: 10.1128/jvi.02496-06] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) Gag is expressed as a polyprotein that is cleaved into six proteins by the viral protease in a maturation process that begins during assembly and budding. While processing of the N terminus of Gag is strictly required for virion maturation and infectivity, the necessity for the C-terminal cleavages of Gag is less well defined. To examine the importance of this process, we introduced a series of mutations into the C terminus of Gag that interrupted the cleavage sites that normally produce in the nucleocapsid (NC), spacer 2 (SP2), or p6(Gag) proteins. Protein analysis showed that all of the mutant constructs produced virions efficiently upon transfection of cells and appropriately processed Gag polyprotein at the nonmutated sites. Mutants that produced a p9(NC/SP2) protein exhibited only minor effects on HIV-1 infectivity and replication. In contrast, mutants that produced only the p8(SP2/p6) or p15(NC/SP2/p6) protein had severe defects in infectivity and replication. To identify the key defective step, we quantified reverse transcription and integration products isolated from infected cells by PCR. All mutants tested produced levels of reverse transcription products either similar to or only somewhat lower than that of wild type. In contrast, mutants that failed to cleave the SP2-p6(Gag) site produced drastically less provirus than the wild type. Together, our results show that processing of the SP2-p6(Gag) and not the NC-SP2 cleavage site is important for efficient viral DNA integration during infection in vitro. In turn, this finding suggests an important role for the p9(NC/SP2) species in some aspect of integration.
Collapse
Affiliation(s)
- Lori V Coren
- AIDS Vaccine Program, SAIC-Frederick, Inc., National Cancer Institute at Frederick, Frederick, MD 21702-1201, USA.
| | | | | | | | | | | | | |
Collapse
|
3
|
Buxton P, Tachedjian G, Mak J. Analysis of the contribution of reverse transcriptase and integrase proteins to retroviral RNA dimer conformation. J Virol 2005; 79:6338-48. [PMID: 15858017 PMCID: PMC1091692 DOI: 10.1128/jvi.79.10.6338-6348.2005] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
All retroviruses contain two copies of genomic RNA that are linked noncovalently. The dimeric RNA of human immunodeficiency virus type 1 (HIV-1) undergoes rearrangement during virion maturation, whereby the dimeric RNA genome assumes a more stable conformation. Previously, we have shown that the packaging of the HIV-1 polymerase (Pol) proteins reverse transcriptase (RT) and integrase (IN) is essential for the generation of the mature RNA dimer conformation. Analysis of HIV-1 mutants that are defective in processing of Pol showed that these mutant virions contained altered dimeric RNA conformation, indicating that the mature RNA dimer conformation in HIV-1 requires the correct proteolytic processing of Pol. The HIV-1 Pol proteins are multimeric in their mature enzymatically active forms; RT forms a heterodimer, and IN appears to form a homotetramer. Using RT and IN multimerization defective mutants, we have found that dimeric RNA from these mutant virions has the same stability and conformation as wild-type RNA dimers, showing that the mature enzymatically active RT and IN proteins are dispensable for the generation of mature RNA dimer conformation. This also indicated that formation of the mature RNA dimer structure occurs prior to RT or IN maturation. We have also investigated the requirement of Pol for RNA dimerization in both Mason-Pfizer monkey virus (M-PMV) and Moloney murine leukemia virus (MoMuLV) and found that in contrast to HIV-1, Pol is dispensable for RNA dimer maturation in M-PMV and MoMuLV, demonstrating that the requirement of Pol in retroviral RNA dimer maturation is not conserved among all retroviruses.
Collapse
Affiliation(s)
- Penelope Buxton
- The Macfarlane Burnet Institute for Medical Research and Public Health, Cnr Punt & Commercial Rds, Melbourne, Victoria, Australia 3004.
| | | | | |
Collapse
|
4
|
Takahashi RH, Nagashima K, Kurata T, Takahashi H. Analysis of human lymphotropic T-cell virus type II-like particle production by recombinant baculovirus-infected insect cells. Virology 1999; 256:371-80. [PMID: 10191202 DOI: 10.1006/viro.1999.9655] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The molecular processes involved in retrovirus assembly and budding formation remain poorly understood. The gag-pro-pol genes of human lymphotropic T-cell virus type II (HTLV-II) are translated into Gag, Gag-Pro, or Gag-Pro-Pol by frameshift events. In the present study, we investigated the roles of the gag, pro, and pol regions of HTLV-II in viral particle formation using recombinant baculoviruses. In this study we could successfully produce mature HTLV-II viral particles containing core structures using a construct expressing the entire gag-pro-pol region. We also investigated the role of the pol region in particle formation. Deletion of the pol region affects viral particle assembly or release very little, indicating that the gag-pro region is sufficient for viral particle formation and maturation. Expression of the Gag proteins alone or Gag proteins with inactivated viral proteases (Pro) resulted in the formation of viral particles; however, these particles did not contain core structures. These results suggest the intracellular expression of Gag with Pro of HTLV-II is essential for the production of mature virus particles, whereas that of Pol is not.
Collapse
Affiliation(s)
- R H Takahashi
- Department of Pathology, National Institute of Infectious Diseases, Toyama 1-23-1, Shinjuku-ku, Tokyo, 162, Japan.
| | | | | | | |
Collapse
|
5
|
Dulioust A, Paulous S, Guillemot L, Delavalle AM, Boué F, Clavel F. Constrained evolution of human immunodeficiency virus type 1 protease during sequential therapy with two distinct protease inhibitors. J Virol 1999; 73:850-4. [PMID: 9847401 PMCID: PMC103902 DOI: 10.1128/jvi.73.1.850-854.1999] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) variants that have developed protease (PR) inhibitor resistance most often display cross-resistance to several molecules within this class of antiretroviral agents. The clinical benefit of the switch to a second PR inhibitor in the presence of such resistant viruses may be questionable. We have examined the evolution of HIV-1 PR genotypes and phenotypes in individuals having failed sequential treatment with two distinct PR inhibitors: saquinavir (SQV) followed by indinavir (IDV). In viruses where typical SQV resistance mutations were detected before the change to IDV, the corresponding mutations were maintained under IDV, while few additional mutations emerged. In viruses where no SQV resistance mutations were detected before the switch to IDV, typical SQV resistance profiles emerged following the introduction of IDV. We conclude that following suboptimal exposure to a first PR inhibitor, the introduction of a second molecule of this class can lead to rapid selection of cross-resistant virus variants that may not be detectable by current genotyping methods at the time of the inhibitor switch. Viruses committed to resistance to the first inhibitor appear to bear the "imprint" of this initial selection and can further adapt to the selective pressure exerted by the second inhibitor following a pathway that preserves most of the initially selected mutations.
Collapse
Affiliation(s)
- A Dulioust
- Service de Médecine Interne, Hôpital Antoine Béclère, Clamart, Paris, France
| | | | | | | | | | | |
Collapse
|
6
|
Yu Q, Ottmann M, Pechoux C, Le Grice S, Darlix JL. Mutations in the primer grip of human immunodeficiency virus type 1 reverse transcriptase impair proviral DNA synthesis and virion maturation. J Virol 1998; 72:7676-80. [PMID: 9696874 PMCID: PMC110040 DOI: 10.1128/jvi.72.9.7676-7680.1998] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This report describes the effects of mutating highly conserved residues in the primer grip domain of human immunodeficiency virus type 1 reverse transcriptase (RT) on virus formation and infectivity. Among a series of RT mutant viruses, three (M230A, L234D, and W239A) were found to be noninfectious or very poorly infectious. Our data indicate that these mutations in RT caused severe defects in proviral DNA synthesis. Interestingly, assembly and maturation of mutant virus M230A were similar to those of the wild type, while mutants L234D and W239A showed impaired maturation. The immature morphology of RT mutants L234D and W239A is due at least in part to premature cleavage of the gag-pol precursor, prior to virion budding, indicating that intracellular stability of Pr160(gag-pol) is of key importance during virus assembly.
Collapse
Affiliation(s)
- Q Yu
- LaboRetro, Unité de Virologie Humaine INSERM U412, Ecole Normale Supérieure de Lyon, 69364 Lyon Cedex 07, France
| | | | | | | | | |
Collapse
|
7
|
Kong LB, An D, Ackerson B, Canon J, Rey O, Chen IS, Krogstad P, Stewart PL. Cryoelectron microscopic examination of human immunodeficiency virus type 1 virions with mutations in the cyclophilin A binding loop. J Virol 1998; 72:4403-7. [PMID: 9557731 PMCID: PMC109671 DOI: 10.1128/jvi.72.5.4403-4407.1998] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The human immunodeficiency virus type 1 capsid protein contains a conserved P217X4PX2PX5P231 motif. Mutation at Pro-222 decreases virion incorporation of cyclophilin A, while mutation at Pro-231 abolishes infectivity. Although viral RNA incorporation and protease cleavage of the Gag precursor were not affected by these mutations, cryoelectron microscopy revealed a loss of virion maturation in P231A particles.
Collapse
Affiliation(s)
- L B Kong
- Department of Molecular and Medical Pharmacology and Crump Institute for Biological Imaging, UCLA School of Medicine, Los Angeles, California 90095, USA
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Pettit SC, Sheng N, Tritch R, Erickson-Viitanen S, Swanstrom R. The regulation of sequential processing of HIV-1 Gag by the viral protease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1998; 436:15-25. [PMID: 9561194 DOI: 10.1007/978-1-4615-5373-1_2] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- S C Pettit
- Lineberger Comprehensive Cancer Center, DuPont Merck Pharmaceutical Co., Wilmington, Delaware 19880, USA
| | | | | | | | | |
Collapse
|
9
|
Sheng N, Pettit SC, Tritch RJ, Ozturk DH, Rayner MM, Swanstrom R, Erickson-Viitanen S. Determinants of the human immunodeficiency virus type 1 p15NC-RNA interaction that affect enhanced cleavage by the viral protease. J Virol 1997; 71:5723-32. [PMID: 9223458 PMCID: PMC191824 DOI: 10.1128/jvi.71.8.5723-5732.1997] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
During human immunodeficiency virus type 1 (HIV-1) virion assembly, cleavage of the Gag precursor by the viral protease results in the transient appearance of a nucleocapsid-p1-p6 intermediate product designated p15NC. Utilizing the p15NC precursor protein produced with an in vitro transcription-translation system or purified after expression in Escherichia coli, we have demonstrated that RNA is required for efficient cleavage of HIV p15NC. Gel mobility shift and nitrocellulose filter binding experiments indicate that purified p15NC protein specifically binds its corresponding mRNA with an estimated Kd of 1.5 nM. Binding was not affected by the presence or absence of zinc or EDTA. Moreover, mutagenesis of the cysteine residues within either of the two Cys-His arrays had no effect on RNA binding or on RNA-dependent cleavage by the viral protease. In contrast, decreased binding of RNA and diminished susceptibility to cleavage in vitro were observed with p15NC-containing mutations in one or more residues within the triplet of basic amino acids present in the region between the two zinc fingers. In addition, we found that 21- to 24-base DNA and RNA oligonucleotides of a particular sequence and secondary structure could substitute for p15 RNA in the enhancement of p15NC cleavage. Virus particles carrying a mutation in the triplet of NC basic residues (P3BE) show delayed cleavage of p15NC and a defect in core formation despite the eventual appearance of fully processed virion protein. These results define determinants of the p15NC-RNA interaction that lead to enhanced protease-mediated cleavage and demonstrate the importance of the triplet of basic residues in formation of the virus core.
Collapse
Affiliation(s)
- N Sheng
- Molecular Biology Department, The DuPont Merck Pharmaceutical Co., Wilmington, Delaware 19880-0336, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Huang M, Martin MA. Incorporation of Pr160(gag-pol) into virus particles requires the presence of both the major homology region and adjacent C-terminal capsid sequences within the Gag-Pol polyprotein. J Virol 1997; 71:4472-8. [PMID: 9151838 PMCID: PMC191666 DOI: 10.1128/jvi.71.6.4472-4478.1997] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The determinants critical for the incorporation of Pr160(gag-pol) into human immunodeficiency virus type 1 (HIV-1) particles were examined by cotransfecting cells with (i) a plasmid expressing wild-type Gag protein and (ii) a series of chimeric Gag-Pol expression plasmids in which individual murine leukemia virus (MLV) Gag regions and subdomains precisely replaced their HIV-1 counterparts. The presence of the MLV MA and NC Gag regions in the chimeric Gag-Pol precursor had no detectable effect on the incorporation of Gag-Pol into progeny virions. In contrast, the entire HIV-1 CA region was required to achieve wild-type levels of Gag-Pol assembly into particles; both the CA major homology region and the adjacent C-terminal CA sequences play dominant roles in this process yet, when assayed in the context of a chimeric Gag-Pol polyprotein, restored the defect affecting Gag-Pol incorporation to approximately half of the wild-type level.
Collapse
Affiliation(s)
- M Huang
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
11
|
Zhang H, Dornadula G, Pomerantz RJ. Endogenous reverse transcription of human immunodeficiency virus type 1 in physiological microenviroments: an important stage for viral infection of nondividing cells. J Virol 1996; 70:2809-24. [PMID: 8627755 PMCID: PMC190138 DOI: 10.1128/jvi.70.5.2809-2824.1996] [Citation(s) in RCA: 125] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Endogenous reverse transcription (ERT) of retroviruses has long been considered a somewhat artificial process which only mimics reverse transcription occurring in target cells, as detergents or amphipathic peptides have classically been used to make the envelopes of retroviruses in these reaction systems permeable. Recently, several studies suggested that ERT of human immunodeficiency virus type 1 (HIV-1) might occur without detergent treatment. However, this phenomenon could be due to damage of the retroviral envelope during the process of virion purification or freezing and thawing. In this report, intravirion HIV-1 ERT, without detergent-induced permeabilization, is demonstrated to occur in the natural microenvironments of HIV-1 virions and is not caused by artificial processes. Therefore, this stage of the viral life cycle was termed natural ERT (NERT). The efficiency of NERT in HIV-1 virions was markedly augmented by several physiological substances in the extracellular milieu, such as polyamines and deoxyribonucleoside triphosphates. In addition, HIV-1 virions in seminal plasma samples harbored dramatically higher levels of full-length or nearly full-length reverse transcripts than virions isolated from peripheral blood plasma samples of HIV-1-seropositive men. When HIV-1 virions were incubated with seminal plasma samples, infectivity in initially nondividing cells was also significantly enhanced. Thus, we suggest that HIV-1 virions are actively altered by the extracellular microenvironment and that NERT may play an important role in viral infection of nondividing cells.
Collapse
Affiliation(s)
- H Zhang
- Division of Infectious Diseases, Department of Medicine, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | |
Collapse
|
12
|
Zhang H, Zhang Y, Spicer T, Henrard D, Poiesz BJ. Nascent human immunodeficiency virus type 1 reverse transcription occurs within an enveloped particle. J Virol 1995; 69:3675-82. [PMID: 7745716 PMCID: PMC189083 DOI: 10.1128/jvi.69.6.3675-3682.1995] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Although a small amount of viral DNA has been shown to be enclosed within human immunodeficiency virus type 1 (HIV-1) virions, the majority of full-length viral DNA is formed after this virus infects target cells. Hence, we undertook investigations to identify the physical characteristics of the HIV-1 replication unit during the early events of infection. In these studies, nascent viral DNA synthesis was found to occur between 15 and 30 min after purified, DNase-treated HIV-1 virions were added to HUT 78 cells. At 1 h postinfection, a large amount of strong-stop viral DNA and some first-strand viral DNA had been synthesized. Several lines of evidence, including purification, nuclease digestion, and immunoprecipitation, indicated that these nascent viral DNAs were located within particles containing components such as reverse transcriptase and p24gag and gp120env proteins and having physical characteristics similar to those of intact virions.
Collapse
Affiliation(s)
- H Zhang
- Department of Medicine, State University of New York Health Science Center at Syracuse 13210, USA
| | | | | | | | | |
Collapse
|
13
|
Dorfman T, Bukovsky A, Ohagen A, Höglund S, Göttlinger HG. Functional domains of the capsid protein of human immunodeficiency virus type 1. J Virol 1994; 68:8180-7. [PMID: 7966609 PMCID: PMC237283 DOI: 10.1128/jvi.68.12.8180-8187.1994] [Citation(s) in RCA: 187] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
A series of deletions was introduced into the CA domain of the human immunodeficiency virus type 1 Gag polyprotein to examine its role in virus particle and core formation. The mutations resulted in two phenotypes, indicating the existence of two functionally distinct regions within the CA domain. Deletions within a conserved stretch of 20 amino acids referred to as the major homology region (MHR) and deletions C terminal to this region blocked virus replication and significantly reduced the ability to form viral particles. Deletions N terminal to the MHR also prevented virus replication, but the mutants retained the ability to assemble and release viral particles with the same efficiency as the wild-type virus. The mutant particles contained circular rather than cone-shaped cores, and while they were of a density similar to that of wild-type particles, they were more heterogeneous in size. These results indicate that CA domain sequences N terminal to the MHR are essential for the morphogenesis of the mature cone-shaped core.
Collapse
Affiliation(s)
- T Dorfman
- Division of Human Retrovirology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115
| | | | | | | | | |
Collapse
|
14
|
Hungate RW, Chen JL, Starbuck KE, Vacca JP, McDaniel SL, Levin RB, Dorsey BD, Guare JP, Holloway MK, Whitter W. Synthesis, antiviral activity, and bioavailability studies of gamma-lactam derived HIV protease inhibitors. Bioorg Med Chem 1994; 2:859-79. [PMID: 7712123 DOI: 10.1016/s0968-0896(00)82037-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Incorporation of a gamma-lactam in hydroxyethylene isosteres results in modest inhibitors of HIV-1 protease. Additional structural activity studies have produced significantly more potent inhibitors with the introduction of the trisubstituted cyclopentane (see compound 20) as the optimum substituent for the C-terminus. This new amino acid amide surrogate can be readily prepared in large scale from (R)-pulegone. Optimized compounds (36) and (60) are potent antiviral agents and are well absorbed (15-20%) in a dog model after oral administration.
Collapse
Affiliation(s)
- R W Hungate
- Merck Research Laboratories, West Point, PA 19486
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Freed EO, Orenstein JM, Buckler-White AJ, Martin MA. Single amino acid changes in the human immunodeficiency virus type 1 matrix protein block virus particle production. J Virol 1994; 68:5311-20. [PMID: 8035531 PMCID: PMC236481 DOI: 10.1128/jvi.68.8.5311-5320.1994] [Citation(s) in RCA: 257] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The matrix protein of human immunodeficiency virus type 1 is encoded by the amino-terminal portion of the Gag precursor and is postulated to be involved in a variety of functions in the virus life cycle. To define domains and specific amino acid residues of the matrix protein that are involved in virus particle assembly, we introduced 35 amino acid substitution mutations in the human immunodeficiency virus type 1 matrix protein. Using reverse transcriptase and radioimmunoprecipitation analyses and transmission electron microscopy, we assessed the mutants for their ability to form virus particles and to function in the infection process. This study has identified several domains of the matrix protein in which single amino acid substitutions dramatically reduce the efficiency of virus particle production. These domains include the six amino-terminal residues of matrix, the region of matrix between amino acids 55 and 59, and the region between amino acids 84 and 95. Single amino acid substitutions in one of these domains (between matrix amino acids 84 and 88) result in a redirection of the majority of virus particle formation to sites within cytoplasmic vacuoles.
Collapse
Affiliation(s)
- E O Freed
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland 20892
| | | | | | | |
Collapse
|
16
|
Dru A, Ludosky MA, Cartaud J, Beaud G. Cell line-dependent release of HIV-like gag particles after infection of mammalian cells with recombinant vaccinia viruses. AIDS Res Hum Retroviruses 1994; 10:383-90. [PMID: 7520722 DOI: 10.1089/aid.1994.10.383] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
We investigated the production of Gag particles by Vero, CV-1, or 1D cells infected with different vaccinia virus recombinants expressing HIV gag or gag-pol genes. Immunoblots of (centrifuged) culture media from 1D cells infected with vMM5, a vaccinia virus recombinant expressing the HIV-2 gag-pol genes, revealed the presence of abundant particles that contained (mostly processed) Gag antigens. In contrast, Gag particles were found only in low amounts in the culture medium from Vero cells infected with the same HIV gag-pol vaccinia virus recombinant; the Gag precursor remained associated with the infected Vero cells and was efficiently processed. This low excretion of Gag particles after infection of Vero cells with vMM5 was also demonstrated by assays of reverse transcriptase activity in the pellet of centrifuged culture medium. Cell fractionation showed that Gag proteins were predominantly found in the membrane fraction from both 1D and Vero cells. Electron microscopy observations of 1D or of Vero cells infected with vMM5 vaccinia virus recombinant revealed in both cases the presence of particles budding at the plasma membrane. However, the shape of the budding particles was different in the two cell lines, with immature forms present in the membrane from the infected Vero cells. An inefficient excretion of Gag particles was also observed after infection of Vero cells with different vaccinia virus recombinants expressing either an uncleaved HIV-2 Gag protein or the HIV-1 gag-pol genes, as judged both by immunoblot and reverse transcriptase activity assays.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- A Dru
- Institut Jacques Monod, Paris, France
| | | | | | | |
Collapse
|
17
|
|
18
|
Affiliation(s)
- E Chen
- Department of Biological Chemistry, Merck Research Laboratories, West Point, Pennsylvania 19486
| |
Collapse
|
19
|
Zhang H, Zhang Y, Spicer TP, Abbott LZ, Abbott M, Poiesz BJ. Reverse transcription takes place within extracellular HIV-1 virions: potential biological significance. AIDS Res Hum Retroviruses 1993; 9:1287-96. [PMID: 8142146 DOI: 10.1089/aid.1993.9.1287] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Extracellular HIV-1 virions purified from cell culture supernatants have been found to contain viral DNA that is the result of partial reverse transcription within the virus particles. Our data supported these observations and further indicated that the ratio of genomic RNA to viral DNA was approximately 10(3):1 for the "strong stop" (R-U5) region and 10(5):1 for the gag region. We have shown that, in the absence of detergent, large amounts of DNase-resistant viral DNA can be synthesized within intact HIV-1 virions, indicating that this phenomenon is not dependent on perturbation of the viral envelope. Nascent viral DNA synthesis also occurred in purified virions incubated at 37 degrees C in cell-free human physiological fluids including seminal plasma, blood plasma, breast milk, and fecal fluid. In vitro HIV-1 infection assays, in which HIV-1 DNA synthesis was initiated in HIV-1 virions by prior incubation with deoxyribonucleoside triphosphates, demonstrated that virus particles so treated had an increased infectious titer over untreated virions when incubated with target human T cells. Our data suggest that HIV-1 virion-associated DNA synthesis may occur in vivo and may impact on the efficiency of intra- and interhost virus transmission. If so, this phenomenon should prove to be an important target for antiviral therapeutic strategies.
Collapse
Affiliation(s)
- H Zhang
- Department of Microbiology/Immunology, SUNY Health Science Center at Syracuse, New York 13210
| | | | | | | | | | | |
Collapse
|
20
|
Quillent C, Dumey N, Dauguet C, Clavel F. Reversion of a polymerase-defective integrated HIV-1 genome. AIDS Res Hum Retroviruses 1993; 9:1031-7. [PMID: 7506552 DOI: 10.1089/aid.1993.9.1031] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The 8E5 clonal cell line, derived from HIV-1-infected CEM cells, carries a single, reverse transcriptase (RT)-defective copy of an integrated HIV genome. The absence of RT production is a consequence of a frame shift in the pol gene, due to the addition of a single base at position 3241. We report here that 8E5 cells produce an infectious virus that can be serially passaged on CD4+ lymphoid cells. This virus (8E5R) is RT positive, but displays a slow replication profile, together with a reduced cytopathic effect. The nucleotide sequence of a segment of the pol region produced by PCR amplification of DNA from 8E5R-infected cells shows that the single nucleotide insertion characteristic of the 8E5 genome had been corrected. The same reversion event was also found to occur in most single-cell clones derived from the 8E5 cell line. Because this cell line is used in many laboratories, notably as a standard for PCR quantitation, and is generally considered as unable to produce infectious virus, our findings should prompt investigators to use particular care in the handling of these cells.
Collapse
Affiliation(s)
- C Quillent
- Département SIDA et Rétrovirus, Institut Pasteur, Paris, France
| | | | | | | |
Collapse
|
21
|
Parkin NT, Chamorro M, Varmus HE. Human immunodeficiency virus type 1 gag-pol frameshifting is dependent on downstream mRNA secondary structure: demonstration by expression in vivo. J Virol 1992; 66:5147-51. [PMID: 1321294 PMCID: PMC241392 DOI: 10.1128/jvi.66.8.5147-5151.1992] [Citation(s) in RCA: 126] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The human immunodeficiency virus type 1 (HIV-1) Gag-Pol fusion polyprotein is produced via ribosomal frameshifting. Previous studies in vitro and in Saccharomyces cerevisiae have argued against a significant role for RNA secondary structure 3' of the shift site, in contrast with other systems, in which such structure has been shown to be required. Here we show, by expressing the HIV-1 gag-pol domain in cultured vertebrate cells, that a stem-loop structure 3' of the HIV-1 shift site is indeed important for wild-type levels of frameshifting in vivo.
Collapse
Affiliation(s)
- N T Parkin
- Department of Microbiology and Immunology, University of California, San Francisco 94143-0502
| | | | | |
Collapse
|
22
|
Abstract
The electron microscope has been used with great skill in many aspects of the acquired immunodeficiency syndrome. It has played a critical role in classifying the human immunodeficiency virus, in characterizing the morphogenesis and gene products of the virus, and in elucidating the host cell targets and interactions. With the aid of the electron microscope, new opportunistic pathogens are being identified, and particularly difficult diagnoses are being made. Extrapolations from observations made at the ultrastructural level to the light microscopic level have provided criteria for the diagnosis of several infectious agents. As with any powerful scientific tool, observations must be interpreted with great care by scientists experienced in electron microscopy.
Collapse
Affiliation(s)
- J M Orenstein
- Department of Pathology, George Washington University Medical Center, Washington, DC 20037
| |
Collapse
|