1
|
Adeoye B, Nakiyingi L, Moreau Y, Nankya E, Olson AJ, Zhang M, Jacobson KR, Gupta A, Manabe YC, Hosseinipour MC, Kumwenda J, Sagar M. Mycobacterium tuberculosis disease associates with higher HIV-1-specific antibody responses. iScience 2023; 26:106631. [PMID: 37168567 PMCID: PMC10165194 DOI: 10.1016/j.isci.2023.106631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/14/2023] [Accepted: 04/04/2023] [Indexed: 05/13/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb) is the most common infection among people with HIV (PWH). Mtb disease-associated inflammation could affect HIV-directed immune responses in PWH. We show that HIV antibodies are broader and more potent in PWH in the presence as compared to the absence of Mtb disease. With co-existing Mtb disease, the virus in PWH also encounters unique antibody selection pressure. The Mtb-linked HIV antibody enhancement associates with specific mediators important for B cell and antibody development. This Mtb humoral augmentation does not occur due to cross-reactivity, a generalized increase in all antibodies, or differences in duration or amount of antigen exposure. We speculate that the co-localization of Mtb and HIV in lymphatic tissues leads to the emergence of potent HIV antibodies. PWH's Mtb disease status has implications for the future use of HIV broadly neutralizing antibodies as prophylaxis or treatment and the induction of better humoral immunity.
Collapse
Affiliation(s)
- Bukola Adeoye
- Department of Microbiology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Lydia Nakiyingi
- Infectious Diseases Institute, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Yvetane Moreau
- Department of Medicine, Boston Medical Center, Boston, MA 02118, USA
| | - Ethel Nankya
- Division of Computational Biomedicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Alex J. Olson
- Department of Medicine, Boston Medical Center, Boston, MA 02118, USA
| | - Mo Zhang
- Department of Medicine, Boston Medical Center, Boston, MA 02118, USA
| | - Karen R. Jacobson
- Department of Medicine, Boston Medical Center, Boston, MA 02118, USA
| | - Amita Gupta
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yukari C. Manabe
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | | - Manish Sagar
- Department of Microbiology, Boston University School of Medicine, Boston, MA 02118, USA
- Department of Medicine, Boston Medical Center, Boston, MA 02118, USA
| | - AIDS Clinical Trials Group A5274 (REMEMBER) Study Team
- Department of Microbiology, Boston University School of Medicine, Boston, MA 02118, USA
- Infectious Diseases Institute, College of Health Sciences, Makerere University, Kampala, Uganda
- Department of Medicine, Boston Medical Center, Boston, MA 02118, USA
- Division of Computational Biomedicine, Boston University School of Medicine, Boston, MA 02118, USA
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- University of North Carolina School of Medicine, Chapel Hill, NC, USA
- University of Malawi College of Medicine, Blantyre, Malawi
| |
Collapse
|
2
|
Kilpeläinen A, Maya-Hoyos M, Saubí N, Soto CY, Joseph Munne J. Advances and challenges in recombinant Mycobacterium bovis BCG-based HIV vaccine development: lessons learned. Expert Rev Vaccines 2018; 17:1005-1020. [PMID: 30300040 DOI: 10.1080/14760584.2018.1534588] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
INTRODUCTION Human Immunodeficiency Virus/Acquired Immune Deficiency Syndrome, tuberculosis, and malaria are responsible for most human deaths produced by infectious diseases worldwide. Vaccination against HIV requires generation of memory T cells and neutralizing antibodies, mucosal immunity, and stimulation of an innate immune responses. In this context, the use of Mycobacterium bovis bacillus Calmette-Guérin (BCG) as a live vaccine vehicle is a promising approach for T-cell induction. AREAS COVERED In this review, we provide a comprehensive summary of the literature regarding immunogenicity studies in animal models performed since 2005. Furthermore, we provide expert commentary and 5-year view on how the development of potential recombinant BCG-based HIV vaccines involves careful selection of the HIV antigen, expression vectors, promoters, BCG strain, preclinical animal models, influence of preexisting immunity, and safety issues, for the rational design of recombinant BCG:HIV vaccines to prevent HIV transmission in the general population. EXPERT COMMENTARY The three critical issues to be considered when developing a rBCG:HIV vaccine are codon optimization, antigen localization, and plasmid stability in vivo. The use of integrative expression vectors are likely to improve the mycobacterial vaccine stability and immunogenicity to develop not only recombinant BCG-based vaccines expressing second generation of HIV-1 immunogens but also other major pediatric pathogens to prime protective responses shortly following birth.
Collapse
Affiliation(s)
- Athina Kilpeläinen
- a Catalan Center for HIV Vaccine Research and Development, AIDS Research Unit, Infectious Diseases Department, Hospital Clínic/IDIBAPS, School of Medicine , University of Barcelona , Barcelona , Spain
| | - Milena Maya-Hoyos
- b Chemistry Department, Faculty of Sciences , Universidad Nacional de Colombia, Ciudad Universitaria , Bogotá , Colombia
| | - Narcís Saubí
- a Catalan Center for HIV Vaccine Research and Development, AIDS Research Unit, Infectious Diseases Department, Hospital Clínic/IDIBAPS, School of Medicine , University of Barcelona , Barcelona , Spain
| | - Carlos Y Soto
- b Chemistry Department, Faculty of Sciences , Universidad Nacional de Colombia, Ciudad Universitaria , Bogotá , Colombia
| | - Joan Joseph Munne
- a Catalan Center for HIV Vaccine Research and Development, AIDS Research Unit, Infectious Diseases Department, Hospital Clínic/IDIBAPS, School of Medicine , University of Barcelona , Barcelona , Spain
| |
Collapse
|
3
|
Development of novel plant-based adjuvant formulation against rubella and hepatitis B vaccine antigen. HERBA POLONICA 2016. [DOI: 10.1515/hepo-2016-0016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Summary
Introduction: Numerous metabolites present in the aqueous extract from plants are responsible for inducing adjuvant activity against rubella and hepatitis B vaccine antigen (HBsAg). One of the medicinal plants, Adhatoda vasica has been pointed out with great potential of vaccine adjuvant property.
Objective: The objective of our study is to evaluate the adjuvant potential of aqueous leaves extract of Adhatoda vasica against rubella and hepatitis B vaccine antigen (HBsAg).
Methods: For these studies, our group evaluated the antibody (IgG) titre of HBsAg and rubella vaccine antigen using variable doses (0.625–5 mg) of aqueous leaves extract of Adhatoda vasica and also determined the lymphocyte (splenocyte) proliferation assay (0.625–5 mg; 50 μl) in mice model studies ex vivo (i.e. immunized with HBsAg subcutaneously).
Results: The results showed that aqueous leaves extract showed anti-HBsAg and anti-rubella titre and also enhanced the lymphocyte proliferation assay at higher doses (5 mg) as compared to control.
Conclusion: Aqueous leaves extract of Adhatoda vasica showed adjuvant activity against HBsAg and rubella vaccine antigen.
Collapse
|
4
|
Stable Expression of Lentiviral Antigens by Quality-Controlled Recombinant Mycobacterium bovis BCG Vectors. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2015; 22:726-41. [PMID: 25924766 PMCID: PMC4478521 DOI: 10.1128/cvi.00075-15] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 04/22/2015] [Indexed: 12/14/2022]
Abstract
The well-established safety profile of the tuberculosis vaccine strain, Mycobacterium bovis bacille Calmette-Guérin (BCG), makes it an attractive vehicle for heterologous expression of antigens from clinically relevant pathogens. However, successful generation of recombinant BCG strains possessing consistent insert expression has encountered challenges in stability. Here, we describe a method for the development of large recombinant BCG accession lots which stably express the lentiviral antigens, human immunodeficiency virus (HIV) gp120 and simian immunodeficiency virus (SIV) Gag, using selectable leucine auxotrophic complementation. Successful establishment of vaccine stability stems from stringent quality control criteria which not only screen for highly stable complemented BCG ΔleuCD transformants but also thoroughly characterize postproduction quality. These parameters include consistent production of correctly sized antigen, retention of sequence-pure plasmid DNA, freeze-thaw recovery, enumeration of CFU, and assessment of cellular aggregates. Importantly, these quality assurance procedures were indicative of overall vaccine stability, were predictive for successful antigen expression in subsequent passaging both in vitro and in vivo, and correlated with induction of immune responses in murine models. This study has yielded a quality-controlled BCG ΔleuCD vaccine expressing HIV gp120 that retained stable full-length expression after 10(24)-fold amplification in vitro and following 60 days of growth in mice. A second vaccine lot expressed full-length SIV Gag for >10(68)-fold amplification in vitro and induced potent antigen-specific T cell populations in vaccinated mice. Production of large, well-defined recombinant BCG ΔleuCD lots can allow confidence that vaccine materials for immunogenicity and protection studies are not negatively affected by instability or differences between freshly grown production batches.
Collapse
|
5
|
Chapman R, Bourn WR, Shephard E, Stutz H, Douglass N, Mgwebi T, Meyers A, Chin'ombe N, Williamson AL. The use of directed evolution to create a stable and immunogenic recombinant BCG expressing a modified HIV-1 Gag antigen. PLoS One 2014; 9:e103314. [PMID: 25061753 PMCID: PMC4111510 DOI: 10.1371/journal.pone.0103314] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 06/28/2014] [Indexed: 01/09/2023] Open
Abstract
Numerous features make Mycobacterium bovis BCG an attractive vaccine vector for HIV. It has a good safety profile, it elicits long-lasting cellular immune responses and in addition manufacturing costs are affordable. Despite these advantages it is often difficult to express viral antigens in BCG, which results in genetic instability and low immunogenicity. The aim of this study was to generate stable recombinant BCG (rBCG) that express high levels of HIV antigens, by modification of the HIV genes. A directed evolution process was applied to recombinant mycobacteria that expressed HIV-1 Gag fused to the green fluorescent protein (GFP). Higher growth rates and increased GFP expression were selected for. Through this process a modified Gag antigen was selected. Recombinant BCG that expressed the modified Gag (BCG[pWB106] and BCG[pWB206]) were more stable, produced higher levels of antigen and grew faster than those that expressed the unmodified Gag (BCG[pWB105]). The recombinant BCG that expressed the modified HIV-1 Gag induced 2 to 3 fold higher levels of Gag-specific CD4 T cells than those expressing the unmodified Gag (BCG[pWB105]). Mice primed with 107 CFU BCG[pWB206] and then boosted with MVA-Gag developed Gag-specific CD8 T cells with a frequency of 1343±17 SFU/106 splenocytes, 16 fold greater than the response induced with MVA-Gag alone. Levels of Gag-specific CD4 T cells were approximately 5 fold higher in mice primed with BCG[pWB206] and boosted with MVA-Gag than in those receiving the MVA-Gag boost alone. In addition mice vaccinated with BCG[pWB206] were protected from a surrogate vaccinia virus challenge.
Collapse
Affiliation(s)
- Rosamund Chapman
- Division of Virology, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- * E-mail:
| | - William R. Bourn
- Division of Virology, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Enid Shephard
- Division of Virology, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Medical Research Council, Cape Town, South Africa
- Department of Medicine Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Helen Stutz
- Division of Virology, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Nicola Douglass
- Division of Virology, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Thandi Mgwebi
- Division of Virology, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Ann Meyers
- Department of Molecular and Cell Biology, Faculty Of Science, University of Cape Town, Cape Town, South Africa
| | - Nyasha Chin'ombe
- Division of Virology, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Anna-Lise Williamson
- Division of Virology, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- National Health Laboratory Services, Cape Town, South Africa
| |
Collapse
|
6
|
Nascimento IP, Leite LCC. Recombinant vaccines and the development of new vaccine strategies. Braz J Med Biol Res 2012; 45:1102-11. [PMID: 22948379 PMCID: PMC3854212 DOI: 10.1590/s0100-879x2012007500142] [Citation(s) in RCA: 211] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 08/22/2012] [Indexed: 11/22/2022] Open
Abstract
Vaccines were initially developed on an empirical basis, relying mostly on attenuation or inactivation of pathogens. Advances in immunology, molecular biology, biochemistry, genomics, and proteomics have added new perspectives to the vaccinology field. The use of recombinant proteins allows the targeting of immune responses focused against few protective antigens. There are a variety of expression systems with different advantages, allowing the production of large quantities of proteins depending on the required characteristics. Live recombinant bacteria or viral vectors effectively stimulate the immune system as in natural infections and have intrinsic adjuvant properties. DNA vaccines, which consist of non-replicating plasmids, can induce strong long-term cellular immune responses. Prime-boost strategies combine different antigen delivery systems to broaden the immune response. In general, all of these strategies have shown advantages and disadvantages, and their use will depend on the knowledge of the mechanisms of infection of the target pathogen and of the immune response required for protection. In this review, we discuss some of the major breakthroughs that have been achieved using recombinant vaccine technologies, as well as new approaches and strategies for vaccine development, including potential shortcomings and risks.
Collapse
Affiliation(s)
- I P Nascimento
- Centro de Biotecnologia, Instituto Butantan, São Paulo, SP, Brasil
| | | |
Collapse
|
7
|
Molecular characterization of heterologous HIV-1gp120 gene expression disruption in mycobacterium bovis BCG host strain: a critical issue for engineering mycobacterial based-vaccine vectors. J Biomed Biotechnol 2010; 2010:357370. [PMID: 20617151 PMCID: PMC2896670 DOI: 10.1155/2010/357370] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2010] [Revised: 03/26/2010] [Accepted: 04/22/2010] [Indexed: 11/19/2022] Open
Abstract
Mycobacterium bovis Bacillus Calmette-Guérin (BCG) as a live vector of recombinant bacterial vaccine is a promising system to be used. In this study, we evaluate the disrupted expression of heterologous HIV-1gp120 gene in BCG Pasteur host strain using replicative vectors pMV261 and pJH222. pJH222 carries a lysine complementing gene in BCG lysine auxotrophs. The HIV-1 gp120 gene expression was regulated by BCG hsp60 promoter (in plasmid pMV261) and Mycobacteria spp. α-antigen promoter (in plasmid pJH222). Among 14 rBCG:HIV-1gp120 (pMV261) colonies screened, 12 showed a partial deletion and two showed a complete deletion. However, deletion was not observed in all 10 rBCG:HIV-1gp120 (pJH222) colonies screened. In this study, we demonstrated that E. coli/Mycobacterial expression vectors bearing a weak promoter and lysine complementing gene in a recombinant lysine auxotroph of BCG could prevent genetic rearrangements and disruption of HIV 1gp120 gene expression, a key issue for engineering Mycobacterial based vaccine vectors.
Collapse
|
8
|
Joseph J, Saubi N, Pezzat E, Gatell JM. Progress towards an HIV vaccine based on recombinant bacillus Calmette-Guérin: failures and challenges. Expert Rev Vaccines 2007; 5:827-38. [PMID: 17184220 DOI: 10.1586/14760584.5.6.827] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The need for an affordable, safe and effective HIV vaccine has never been greater. As the immunogenicity of all the vaccine vectors being evaluated currently in human populations is limited, novel vaccine strategies are needed to stimulate the innate immune system, to generate high levels of neutralizing antibodies and to induce strong cell-mediated and mucosal immunity. There is strong evidence for a role for cytotoxic T lymphocytes in the containment of HIV replication. Several vaccine approaches have been tested to elicit anti-HIV cytotoxic T-lymphocyte responses. One promising approach is Bacillus Calmette-Guérin (BCG) as a bacterial live recombinant vaccine vehicle. BCG has a long record of safety in humans and is able to induce long-lasting immunity. In this review, we describe the limitations and challenges of developing a recombinant BCG-based HIV vaccine. We also emphasize possible approaches for overcoming the plasmid instability in vivo and the low levels of gene expression and immunogenicity induction. Today, projects all over the world are focused on the development of an AIDS vaccine. Overcoming the remaining scientific, logistical and financial hurdles to the development of an effective HIV vaccine will require real imagination and firm commitment from all stakeholders.
Collapse
Affiliation(s)
- Joan Joseph
- HIVACAT (Catalan Center for HIV Vaccine Research and Development), AIDS Research Unit, Infectious Diseases Department, Hospital Clínic/IDIBAPS, School of Medicine, University of Barcelona, Barcelona, Spain.
| | | | | | | |
Collapse
|
9
|
Agopian K, Wei BL, Garcia JV, Gabuzda D. CD4 and MHC-I downregulation are conserved in primary HIV-1 Nef alleles from brain and lymphoid tissues, but Pak2 activation is highly variable. Virology 2006; 358:119-35. [PMID: 16979207 PMCID: PMC1995023 DOI: 10.1016/j.virol.2006.07.053] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2006] [Revised: 07/06/2006] [Accepted: 07/27/2006] [Indexed: 01/06/2023]
Abstract
HIV-1 compartmentalization in the CNS has been demonstrated for gag, pol, and env genes. However, little is known about tissue compartmentalization of nef genes and their functional characteristics in brain. We have cloned 97 nef genes and characterized 10 Nef proteins from autopsy brain and lymphoid tissues from 2 patients with AIDS and HIV-1-associated dementia. Distinct compartmentalization of brain versus lymphoid nef genes was demonstrated within each patient. CD4 and MHC-I downregulation were conserved in all tissue-derived Nefs. However, MHC-I downregulation by brain-derived Nefs was weaker than downregulation by lymphoid-derived Nefs. The motifs KEEE- or EKEE- at the PACS-1 binding site represented brain-specific signature patterns in these 2 patients and contributed to the reduced MHC-I downregulation activity of brain-derived Nefs from these patients. Pak2 association was highly variable in Nefs from both patients. Three of 10 tissue-derived Nefs coimmunoprecipitated activated Pak2, with strong association demonstrated for only 2 Nefs. The ability of Nef to associate with activated Pak2 did not correlate with brain or lymphoid tissue origin. Nef genes from viruses isolated from brain by coculture with PBMC were not closely related to sequences amplified directly from brain tissue, suggesting that viral selection or adaptation occurred during coculture. This study of tissue-derived HIV-1 Nefs demonstrates that CD4 and MHC-I downregulation are highly conserved Nef functions, while Pak2 association is variable in late stage AIDS patients.
Collapse
Affiliation(s)
- Kristin Agopian
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, MA, 02115, USA
| | - Bangdong L. Wei
- Department of Internal Medicine, Division of Infectious Diseases, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390, USA
| | - J. Victor Garcia
- Department of Internal Medicine, Division of Infectious Diseases, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390, USA
| | - Dana Gabuzda
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, MA, 02115, USA
- Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
- *Corresponding Author. Mailing Address: Dana-Farber Cancer Institute, JFB 816 44 Binney St. Boston, MA 02115 Phone: (617) 632-2154 Fax: (617) 632 3113 E-mail:
| |
Collapse
|
10
|
Kawahara M, Matsuo K, Honda M. Intradermal and oral immunization with recombinant Mycobacterium bovis BCG expressing the simian immunodeficiency virus Gag protein induces long-lasting, antigen-specific immune responses in guinea pigs. Clin Immunol 2006; 119:67-78. [PMID: 16386958 DOI: 10.1016/j.clim.2005.11.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2005] [Revised: 10/14/2005] [Accepted: 11/09/2005] [Indexed: 11/17/2022]
Abstract
To develop a new recombinant BCG (rBCG) vaccine, we constructed rBCG that expresses the full-length Gag protein of simian immunodeficiency virus (rBCG-SIVGag) at a level of 0.5 ng/mg after 3 weeks of bacterial cell culture. Intradermal (i.d.) inoculation of guinea pigs with 0.1 mg of rBCG-SIVGag resulted in the induction of delayed-type hypersensitivity (DTH) responses to both purified protein derivative (PPD) of tuberculin and SIV Gag p27 protein; responses that were maintained for the duration of the 50-week study. In contrast, guinea pigs orally vaccinated with 160 mg of the same antigen exhibited a long-lasting DTH response to the SIV Gag p27 protein, but mounted no response to PPD. Proliferative responses to SIV Gag p27 and PPD antigens were detected in both i.d. and orally immunized animals; however, the levels of PPD-specific responses were significantly higher in guinea pigs immunized by the i.d. than the oral route. A significant increase in the level of PPD- and SIV Gag p27-specific IFNgamma mRNA expression was also detected in both immunization groups receiving rBCG-SIVGag. In addition, both i.d. and oral immunization with rBCG-SIVGag induced PPD- and SIV Gag p27-specific serum IgG responses. Insertion of the SIV gag gene into BCG did not appear to change the ability of rBCG-immunized animals to elicit PPD-specific immune responses. These results indicate that rBCG-SIVGag has the ability to effectively induce long-lasting, cell-mediated and humoral immunity against both viral and bacterial antigens in guinea pigs, suggesting that rBCG-Gag has the potential to elicit immunities specific not only for tuberculosis but also for HIV at human doses.
Collapse
Affiliation(s)
- Mamoru Kawahara
- National Institute of Infectious Diseases, 1-23-1 Toyama, Tokyo 162-8640, Japan.
| | | | | |
Collapse
|
11
|
Dennehy M, Williamson AL. Factors influencing the immune response to foreign antigen expressed in recombinant BCG vaccines. Vaccine 2005; 23:1209-24. [PMID: 15652663 DOI: 10.1016/j.vaccine.2004.08.039] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2004] [Accepted: 08/26/2004] [Indexed: 11/30/2022]
Abstract
A wide range of recombinant BCG vaccine candidates containing foreign viral, bacterial, parasite or immunomodulatory genetic material have been developed and evaluated, primarily in animal models, for immune response to the foreign antigen. This review considers some of the factors that may influence the immunogenicity of these vaccines. The influence of levels and timing of expression of the foreign antigen and the use of targeting sequences are considered in the first section. Genetic and functional stability of rBCG is reviewed in the second section. In the last section, the influence of dose and route of immunization, strain of BCG and the animal model used are discussed.
Collapse
Affiliation(s)
- Maureen Dennehy
- The Biovac Institute, Private Bag X3, Pinelands, 7430 Cape Town, South Africa.
| | | |
Collapse
|
12
|
Kang SM, Yao Q, Guo L, Compans RW. Mucosal immunization with virus-like particles of simian immunodeficiency virus conjugated with cholera toxin subunit B. J Virol 2003; 77:9823-30. [PMID: 12941891 PMCID: PMC224576 DOI: 10.1128/jvi.77.18.9823-9830.2003] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To enhance the efficiency of antigen uptake at mucosal surfaces, CTB was conjugated to simian immunodeficiency virus (SIV) virus-like particles (VLPs). We characterized the immune responses to the Env and Gag proteins after intranasal administration. Intranasal immunization with a mixture of VLPs and CTB as an adjuvant elicited higher levels of SIV gp160-specific immunoglobulin G (IgG) in sera and IgA in mucosae, including saliva, vaginal-wash samples, lung, and intestine, as well as a higher level of neutralization activities than immunization with VLPs alone. Conjugation of CTB to VLPs also enhanced the SIV VLP-specific antibodies in sera and in mucosae to similar levels. Interestingly, CTB-conjugated VLPs showed higher levels of cytokine (gamma interferon)-producing splenocytes and cytotoxic-T-lymphocyte activities of immune cells than VLPs plus CTB, as well as an increased level of both IgG1 and IgG2a serum antibodies, which indicates enhancement of both Th1- and Th2-type cellular immune responses. These results demonstrate that CTB can be an effective mucosal adjuvant in the context of VLPs to induce enhanced humoral, as well as cellular, immune responses.
Collapse
Affiliation(s)
- Sang-Moo Kang
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | |
Collapse
|
13
|
Kang SM, Compans RW. Enhancement of mucosal immunization with virus-like particles of simian immunodeficiency virus. J Virol 2003; 77:3615-23. [PMID: 12610137 PMCID: PMC149534 DOI: 10.1128/jvi.77.6.3615-3623.2003] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cholera toxin (CT) is the most potent known mucosal adjuvant, but its toxicity precludes its use in humans. Here, in an attempt to develop safe and effective mucosal adjuvants, we compared immune responses to simian immunodeficiency virus (SIV) virus-like particles (VLPs) after intranasal coimmunization with RANTES, CpG oligodeoxynucleotides (ODN), or CT. Antibody analysis demonstrated that RANTES and CpG ODN had capacities for mucosal adjuvanticity, i.e., for enhancing serum and vaginal antibodies specific to SIV Env, similar to those for CT. RANTES and CpG ODN skewed serum antibodies predominantly to the immunoglobulin G2a isotype. Most importantly, RANTES and CpG ODN were more effective than CT in increasing neutralizing titers of both serum and vaginal antibodies. After intranasal coadministration with VLPs, RANTES or CpG ODN also induced increased levels of gamma interferon (IFN-gamma)-producing lymphocyte and cytotoxic T-lymphocyte activities in both spleen and lymph nodes but did not increase the levels of interleukin-4-producing lymphocytes. The results suggest that RANTES and CpG ODN enhance immune responses in a T-helper-cell-type-1 (Th1)-oriented manner and that they can be used as effective mucosal adjuvants for enhancing both humoral and cellular immune responses in the context of VLPs, which are particulate antigens.
Collapse
Affiliation(s)
- Sang-Moo Kang
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | |
Collapse
|
14
|
Dietrich G, Viret JF, Hess J. Novel vaccination strategies based on recombinant Mycobacterium bovis BCG. Int J Med Microbiol 2003; 292:441-51. [PMID: 12635927 DOI: 10.1078/1438-4221-00227] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In this manuscript, we will review the utilization of Mycobacterium bovis Bacille Calmette-Guerin (BCG) as a vaccine against tuberculosis (TB) and as a carrier system for heterologous antigens. BCG is one of the most widely used vaccines. Novel techniques in genome manipulation allow the construction of virulence-attenuated recombinant (r)-BCG strains that can be employed as homologous vaccines, or as heterologous antigen delivery systems, for priming pathogen-specific immunity against infectious diseases, including TB. Several approaches are available for heterologous antigen expression and compartmentalization in BCG and recent findings show the potential to modulate and direct the immune responses induced by r-BCG strains as desired. Recent achievements in complete genome analysis of various target pathogens, combined with a better understanding of protective pathogen-specific immune responses, form the basis for the rational design of a new generation of recombinant mycobacterial vaccines against a multitude of infectious diseases.
Collapse
MESH Headings
- Animals
- Antigens, Bacterial/genetics
- Antigens, Bacterial/immunology
- Antigens, Protozoan/genetics
- Antigens, Protozoan/immunology
- Antigens, Viral/genetics
- Antigens, Viral/immunology
- BCG Vaccine/genetics
- BCG Vaccine/immunology
- Cattle
- Communicable Disease Control
- Genetic Vectors
- Humans
- Mycobacterium bovis/genetics
- Recombination, Genetic
- Tuberculosis/prevention & control
- Tuberculosis Vaccines/immunology
- Vaccination/methods
- Vaccines, Attenuated/genetics
- Vaccines, Attenuated/immunology
- Vaccines, DNA/immunology
- Vaccines, Synthetic/immunology
Collapse
Affiliation(s)
- Guido Dietrich
- Bacterial Vaccine Research, Berna Biotech Ltd., Berne, Switzerland.
| | | | | |
Collapse
|
15
|
Kawahara M, Matsuo K, Nakasone T, Hiroi T, Kiyono H, Matsumoto S, Yamada T, Yamamoto N, Honda M. Combined intrarectal/intradermal inoculation of recombinant Mycobacterium bovis bacillus Calmette-Guérin (BCG) induces enhanced immune responses against the inserted HIV-1 V3 antigen. Vaccine 2002; 21:158-66. [PMID: 12450689 DOI: 10.1016/s0264-410x(02)00465-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The development of a successful recombinant Mycobacterium bovis bacillus Calmette-Guérin (rBCG) vector-based vaccine for human immunodeficiency virus type 1 (HIV-1) requires the induction of high levels of HIV-1-specific immunity while at the same time maintaining immunity to tuberculosis. To examine a combined vaccination strategy for enhancement of immune responses specific for HIV-1, guinea pigs were inoculated with either a single or combination intradermal (i.d.), intrarectal (i.r.) and intranasal (i.n.) administration of rBCG-pSOV3J1 which secretes a chimeric protein of HIV-1 V3J1 peptide and alpha-antigen. Significant level of delayed-type hypersensitivity to both V3J1 peptide and tuberculin was induced in guinea pigs inoculated with human doses of rBCG-pSOV3J1 by a combination of intrarectal and intradermal routes. Guinea pigs inoculated by combined routes also had significantly higher titers of HIV-1-specific serum IgG and IgA compared with those animals immunized only intrarectally, which led to the enhanced neutralization activity against HIV-1(MN). In addition, the induction of high levels of IFNgamma and interleukin-2 (IL-2) mRNA in PBMC, splenocytes, and intraepithelial lymphocytes from the immunized animals was detected until at least 110 weeks post-inoculation. These results suggest that enhanced immune responses specific for HIV-1 are efficiently induced by combined intrarectal and intradermal immunization with rBCG-HIV, and antigen-specific Th1-type memory cells are maintained for more than 2 years in the immunized animals. Thus, inoculation with rBCG-HIV by combined routes represents an effective vaccination strategy to elicit high levels of HIV-1-specific immune responses.
Collapse
Affiliation(s)
- Mamoru Kawahara
- AIDS Research Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Kawahara M, Hashimoto A, Toida I, Honda M. Oral recombinant Mycobacterium bovis bacillus Calmette-Guérin expressing HIV-1 antigens as a freeze-dried vaccine induces long-term, HIV-specific mucosal and systemic immunity. Clin Immunol 2002; 105:326-31. [PMID: 12498814 DOI: 10.1006/clim.2002.5292] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Induction of HIV-1-specific immune responses was evaluated using a recombinant BCG (rBCG) vector-based vaccine expressing HIV-1 Env V3 peptide (rBCG-pSOV3J1). rBCG-pSOV3J1 was manufactured as a freeze-dried preparation based on good laboratory practice guidelines. Guinea pigs were immunized with the freeze-dried rBCG vaccine by oral administration to test the effectiveness of what is generally considered the most convenient and practical route for vaccination. While delayed-type hypersensitivity (DTH) skin reactions to purified protein derivative were not detected in any of the animals receiving oral rBCG-pSOV3J1, HIV-1 V3J1 antigen-specific DTH responses were detected in all of the immunized guinea pigs 1.5 years after immunization. In addition, significant proliferative responses against HIV-1 V3J1 antigen were measured in peripheral blood mononuclear cells and splenocytes from all animals receiving oral rBCG. Interestingly, intestinal intraepithelial lymphocytes from the animals also exhibited high levels of proliferative activity against HIV-1 V3J1 antigen. These results suggest that oral vaccination of guinea pigs with freeze-dried rBCG-pSOV3J1 induces high levels of functional T cells specific for HIV-1 antigens in both mucosal and systemic compartments and suggest that this approach has potential for use as a vaccine against HIV-1.
Collapse
Affiliation(s)
- Mamoru Kawahara
- National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan
| | | | | | | |
Collapse
|
17
|
Novitsky V, Cao H, Rybak N, Gilbert P, McLane MF, Gaolekwe S, Peter T, Thior I, Ndung'u T, Marlink R, Lee TH, Essex M. Magnitude and frequency of cytotoxic T-lymphocyte responses: identification of immunodominant regions of human immunodeficiency virus type 1 subtype C. J Virol 2002; 76:10155-68. [PMID: 12239290 PMCID: PMC136554 DOI: 10.1128/jvi.76.20.10155-10168.2002] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2002] [Accepted: 06/27/2002] [Indexed: 11/20/2022] Open
Abstract
A systematic analysis of immune responses on a population level is critical for a human immunodeficiency virus type 1 (HIV-1) vaccine design. Our studies in Botswana on (i) molecular analysis of the HIV-1 subtype C (HIV-1C) epidemic, (ii) frequencies of major histocompatibility complex class I HLA types, and (iii) cytotoxic T-lymphocyte (CTL) responses in the course of natural infection allowed us to address HIV-1C-specific immune responses on a population level. We analyzed the magnitude and frequency of the gamma interferon ELISPOT-based CTL responses and translated them into normalized cumulative CTL responses. The introduction of population-based cumulative CTL responses reflected both (i) essentials of the predominant virus circulating locally in Botswana and (ii) specificities of the genetic background of the Botswana population, and it allowed the identification of immunodominant regions across the entire HIV-1C. The most robust and vigorous immune responses were found within the HIV-1C proteins Gag p24, Vpr, Tat, and Nef. In addition, moderately strong responses were scattered across Gag p24, Pol reverse transcriptase and integrase, Vif, Tat, Env gp120 and gp41, and Nef. Assuming that at least some of the immune responses are protective, these identified immunodominant regions could be utilized in designing an HIV vaccine candidate for the population of southern Africa. Targeting multiple immunodominant regions should improve the overall vaccine immunogenicity in the local population and minimize viral escape from immune recognition. Furthermore, the analysis of HIV-1C-specific immune responses on a population level represents a comprehensive systematic approach in HIV vaccine design and should be considered for other HIV-1 subtypes and/or different geographic areas.
Collapse
Affiliation(s)
- V Novitsky
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, FXB-402, 651 Huntington Avenue, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Yao Q, Vuong V, Li M, Compans RW. Intranasal immunization with SIV virus-like particles (VLPs) elicits systemic and mucosal immunity. Vaccine 2002; 20:2537-45. [PMID: 12057610 DOI: 10.1016/s0264-410x(02)00160-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
By using a baculovirus expression system, we have successfully produced simian immunodeficiency virus (SIV)-like particles (VLPs) with high levels of biologically active SIV envelope (Env) incorporated on their surfaces. To study whether SIV VLPs represent effective mucosal immunogens, we immunized groups of mice with VLPs alone or VLPs plus the mucosal adjuvant cholera toxin (CT) by the intranasal (i.n.) route. High levels of serum IgG antibody production were achieved in mice immunized intranasally with SIV VLPs, and the antibody response was found to be antigen dose-dependent. The IgG1 and IgG2a ratio indicates that immune responses induced by SIV VLPs are Th1 oriented. Mice immunized with VLPs plus CT were found to exhibit higher serum antibody responses than those immunized with VLPs alone (P<0.001). Furthermore, IgA antibody production was detected in both saliva and vaginal fluid from mice mucosally immunized with SIV VLPs. Higher levels of IgA were found in vaginal fluid than in saliva in animals immunized with SIV VLPs plus CT (P<0.05). Higher neutralizing activity to SIV 1A11 was also found in serum of animals immunized with SIV VLPs plus CT. Moreover, increased numbers of MHC I-restricted peptide-specific IFN-gamma and IL-4 producing T cells were detected in both splenocytes and lymph nodes by intranasal immunization of SIV VLP plus CT. These results suggest that VLPs are effective mucosal antigens that can induce both humoral and cellular immune responses at systemic and mucosal sites.
Collapse
Affiliation(s)
- Qizhi Yao
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | | | | | | |
Collapse
|
19
|
Méderlé I, Bourguin I, Ensergueix D, Badell E, Moniz-Peireira J, Gicquel B, Winter N. Plasmidic versus insertional cloning of heterologous genes in Mycobacterium bovis BCG: impact on in vivo antigen persistence and immune responses. Infect Immun 2002; 70:303-14. [PMID: 11748196 PMCID: PMC127622 DOI: 10.1128/iai.70.1.303-314.2002] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Bivalent recombinant strains of Mycobacterium bovis BCG (rBCG) expressing the early regulatory nef and the structural gag(p26) genes from the simian immunodeficiency virus (SIV) SIVmac251 were engineered so that both genes were cotranscribed from a synthetic operon. The expression cassette was cloned into a multicopy-replicating vector, and the expression levels of both nef and gag in the bivalent rBCG(nef-gag) strain were found to be comparable to those of monovalent rBCG(nef) or rBCG(gag) strains. However, extrachromosomal cloning of the nef-gag operon into a replicative plasmid resulted in strains of low genetic stability that rapidly lost the plasmid in vivo. Thus, the nef-gag operon was inserted site specifically into the BCG chromosome by means of mycobacteriophage Ms6-derived vectors. The resulting integrative rBCG(nef-gag) strains showed very high genetic stability both in vitro and in vivo. The in vivo expression of the heterologous genes was much longer lived when the expression cassette was inserted into the BCG chromosome. In one of the strains obtained, integrative cloning did not reduce the expression levels of the genes even though a single copy was present. Accordingly, this strain induced cellular immune responses of the same magnitude as that of the replicative rBCG strain containing several copies of the genes.
Collapse
MESH Headings
- Animals
- Antibodies, Viral/immunology
- Antigens, Viral/genetics
- Antigens, Viral/immunology
- Bacteriophages
- Cells, Cultured
- Chromosomes, Bacterial
- Cloning, Molecular/methods
- DNA, Viral
- Female
- Gene Expression
- Gene Products, gag/genetics
- Gene Products, gag/immunology
- Gene Products, nef/genetics
- Gene Products, nef/immunology
- Genetic Vectors/genetics
- Macrophages/cytology
- Macrophages/immunology
- Mice
- Mice, Inbred BALB C
- Mutagenesis, Insertional/methods
- Mutagenesis, Site-Directed
- Mycobacterium bovis/genetics
- Mycobacterium bovis/virology
- Operon
- Plasmids
- Simian Immunodeficiency Virus/genetics
- Simian Immunodeficiency Virus/immunology
- T-Lymphocytes/immunology
Collapse
Affiliation(s)
- I Méderlé
- Unité de Génétique Mycobactérienne, Institut Pasteur, 75724 Paris Cedex 15, France
| | | | | | | | | | | | | |
Collapse
|
20
|
Mooij P, Heeney JL. Rational development of prophylactic HIV vaccines based on structural and regulatory proteins. Vaccine 2001; 20:304-21. [PMID: 11672892 DOI: 10.1016/s0264-410x(01)00373-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The severity of the AIDS epidemic clearly emphasises the urgent need to expedite HIV vaccine candidates into clinical trials. Prophylactic HIV vaccine candidates have been evaluated in non-human primates. Based on specific proof of principle studies the first phase III clinical studies have recently begun in humans. However, a truly effective HIV vaccine is not yet at hand and many problems related to specific properties of the virus remain to be overcome. Previously proven empirical approaches have largely failed and now rational thinking based on an understanding of immunity to lentiviral infections is needed. This review addresses the scientific problems and complications facing the development of an HIV vaccine as well as the possible strategies currently available to overcome these problems. Recent attention has focussed on identifying the immune correlates and mechanisms of protection from either HIV infection or protection from disease progression. Based on these observations, the logic and rational behind the development of multiple component vaccine strategies are highlighted.
Collapse
Affiliation(s)
- P Mooij
- Department of Virology, Biomedical Primate Research Centre, P.O. Box 3306, 2288 Rijswijk, The Netherlands
| | | |
Collapse
|
21
|
Affiliation(s)
- N Ohara
- Nagasaki University School of Dentistry, Sakamoto 1-7-1, 852-8588, Nagasaki, Japan.
| | | |
Collapse
|
22
|
Hess J, Schaible U, Raupach B, Kaufmann SH. Exploiting the immune system: toward new vaccines against intracellular bacteria. Adv Immunol 2001; 75:1-88. [PMID: 10879281 DOI: 10.1016/s0065-2776(00)75001-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- J Hess
- Department of Immunology, Max-Planck-Institute for Infection Biology, Berlin, Germany
| | | | | | | |
Collapse
|
23
|
Gotch F, Rutebemberwa A, Jones G, Imami N, Gilmour J, Kaleebu P, Whitworth J. Vaccines for the control of HIV/AIDS. Trop Med Int Health 2000; 5:A16-21. [PMID: 10964278 DOI: 10.1046/j.1365-3156.2000.00593.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
This review discusses the feasibility of an HIV vaccine and describes the history, efficacy and potential to succeed of old and new vaccine concepts.
Collapse
Affiliation(s)
- F Gotch
- Department of Immunology, Imperial College of Science and Medicine, London, UK.
| | | | | | | | | | | | | |
Collapse
|
24
|
Himmelrich H, Lo-Man R, Winter N, Guermonprez P, Sedlik C, Rojas M, Monnaie D, Gheorghiu M, Lagranderie M, Hofnung M, Gicquel B, Clément JM, Leclerc C. Immune responses induced by recombinant BCG strains according to level of production of a foreign antigen: malE. Vaccine 2000; 18:2636-47. [PMID: 10781849 DOI: 10.1016/s0264-410x(00)00070-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
A variety of viral, bacterial and parasitic antigens have been expressed in BCG and the capacity of these recombinant bacteria to induce immune responses has been well documented. However, little is known about the parameters influencing the induction of immune responses by recombinant BCG (rBCG), such as level of production and localization of the recombinant antigen. In the present study, we have constructed several rBCG strains expressing the malE gene from Escherichia coli which is either secreted or targeted to the cytoplasm or plasma membrane. Expression of malE was quantified by ELISA and localization was analyzed by flow cytometry. Even when using the same promoter, levels of cytoplasmic or membrane MalE production were far less than those from secreting strains using either mycobacterial or E. coli secretion signals. Stronger and more rapid immune responses were induced by rBCG strains with the highest levels of secreted MalE compared to cytoplasmic or membrane constructs, including both good humoral and proliferative responses in BALB/c, C57BL6 and even C3H mice, previously shown to be poor MalE responders. These results suggest that the levels of foreign antigen production play an important role in the induction of immune responses by rBCG strains.
Collapse
Affiliation(s)
- H Himmelrich
- Unité de Génétique Mycobactérienne, CNRS URA 1444, Institut Pasteur, 25 rue du Docteur Roux, 75724, Paris Cedex, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Leung NJ, Aldovini A, Young R, Jarvis MA, Smith JM, Meyer D, Anderson DE, Carlos MP, Gardner MB, Torres JV. The kinetics of specific immune responses in rhesus monkeys inoculated with live recombinant BCG expressing SIV Gag, Pol, Env, and Nef proteins. Virology 2000; 268:94-103. [PMID: 10683331 DOI: 10.1006/viro.1999.0131] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Development of an effective preventive or therapeutic vaccine against HIV-1 is an important goal in the fight against AIDS. Effective virus clearance and inhibition of spread to target organs depends principally on the cellular immune response. Therefore, a vaccine against HIV-1 should elicit virus-specific cytotoxic lymphocyte (CTL) responses to eliminate the virus during the cell-associated stages of its life cycle. The vaccine should also be capable of inducing immunity at the mucosal surfaces, the primary route of transmission. Recombinant Bacille Calmette-Guérin (BCG) expressing viral proteins offers an excellent candidate vaccine in view of its safety and ability to persist intracellularly, resulting in the induction of long-lasting immunity and stimulation of the cellular immune response. BCG can be administered orally to induce HIV-specific immunity at the mucosal surfaces. The immunogenicity of four recombinant BCG constructs expressing simian immunodeficiency virus (SIV) Gag, Pol, Env, and Nef proteins was tested in rhesus macaques. A single simultaneous inoculation of all four recombinants elicited SIV-specific IgA and IgG antibody, and cellular immune responses, including CTL and helper T cell proliferation. Our results demonstrate that BCG recombinant vectors can induce concomitant humoral and cellular immune responses to the major proteins of SIV.
Collapse
MESH Headings
- Animals
- Antibodies, Viral/blood
- BCG Vaccine/genetics
- BCG Vaccine/immunology
- Blotting, Western
- Cloning, Molecular
- Cytotoxicity, Immunologic
- Gene Products, env/genetics
- Gene Products, env/immunology
- Gene Products, env/metabolism
- Gene Products, gag/genetics
- Gene Products, gag/immunology
- Gene Products, gag/metabolism
- Gene Products, nef/genetics
- Gene Products, nef/immunology
- Gene Products, nef/metabolism
- Gene Products, pol/genetics
- Gene Products, pol/immunology
- Gene Products, pol/metabolism
- Immunoglobulin A/blood
- Immunoglobulin G/blood
- Lymphocyte Activation
- Macaca mulatta
- SAIDS Vaccines/genetics
- SAIDS Vaccines/immunology
- Simian Acquired Immunodeficiency Syndrome/prevention & control
- Simian Immunodeficiency Virus/genetics
- Simian Immunodeficiency Virus/immunology
- Simian Immunodeficiency Virus/metabolism
- T-Lymphocytes, Cytotoxic/immunology
- Vaccination
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/immunology
- Viral Proteins/genetics
- Viral Proteins/immunology
- Viral Proteins/metabolism
Collapse
Affiliation(s)
- N J Leung
- Department of Medical Microbiology, School of Medicine, University of California, Davis, California, 95616, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Falk LA, Goldenthal KL, Esparza J, Aguado MT, Osmanov S, Ballou WR, Beddows S, Bhamarapravati N, Biberfeld G, Ferrari G, Hoft D, Honda M, Jackson A, Lu Y, Marchal G, McKinney J, Yamazaki S. Recombinant bacillus Calmette-Guérin as a potential vector for preventive HIV type 1 vaccines. AIDS Res Hum Retroviruses 2000; 16:91-8. [PMID: 10659047 DOI: 10.1089/088922200309421] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In August 1997, the World Health Organization (WHO) and the Joint United Nations Programme on HIV/AIDS (UNAIDS) convened an expert working group to discuss current strategies for the development of HIV type 1 vaccines. Based on the recent findings of investigators from Japan's National Institute of Infectious Diseases (NIID) in Tokyo using recombinant bacillus Calmette-Guérin (rBCG) as a potential vectored vaccine for HIV, a recommendation was made that further work in this area is a priority. As a result, the working group reconvened in September 1998 to discuss the progress to date with this vaccine approach, as well as areas of related research to assess the feasibility of a BCG-vectored HIV vaccine. This report summarizes the discussions addressing the available scientific data on the potential use of rBCG as a vector for preventive HIV vaccines, the work necessary to move such candidate vaccines into Phase 1 clinical trials, and recommendations targeted at facilitating the long-term development of rBCG-vectored HIV vaccines.
Collapse
Affiliation(s)
- L A Falk
- U.S. Food and Drug Administration, Center for Biologics Evaluation and Research, Office of Vaccines Research and Review, Rockville, Maryland 20852-1448, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Lagranderie M, Winter N, Balazuc AM, Gicquel B, Gheorghiu M. A cocktail of Mycobacterium bovis BCG recombinants expressing the SIV Nef, Env, and Gag antigens induces antibody and cytotoxic responses in mice vaccinated by different mucosal routes. AIDS Res Hum Retroviruses 1998; 14:1625-33. [PMID: 9870315 DOI: 10.1089/aid.1998.14.1625] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Recombinant live Mycobacterium bovis BCG strains (rBCG) expressing different human immunodeficiency virus (HIV) or simian immunodeficiency (SIV) antigens could be good candidates for the development of vaccines against AIDS. To develop effective HIV/SIV vaccines, humoral and cellular immune responses directed against multiple antigens may be essential for the control of the infection. In this study we immunized BALB/c mice via different mucosal routes (oral, aerogenic, nasal, and rectal) with a mixture of three rBCG strains expressing, respectively, the entire SIVmac251 Nef protein, and large fragments of the Env and Gag proteins. All routes of immunization studied induced immunoglobulin A (IgA) antibodies against mycobacterial PPD, SIV Env, and SIV Gag antigens in feces and bronchial lavages as well as specific immunoglobulin G (IgG) in serum. Strong, specific cytotoxic responses of splenocytes against Nef, Env, and Gag was observed whatever the mucosal route of immunization. Therefore, mucosal vaccination with a cocktail of rBCG strains induces local, specific IgA, systemic IgG, and systemic CTLs against the three SIV antigens expressed. Rectal and oral routes seemed the most appropriate route of vaccination to be used to protect against SIV infection.
Collapse
|