1
|
Ridgway H, Moore GJ, Gadanec LK, Zulli A, Apostolopoulos V, Hoffmann W, Węgrzyn K, Vassilaki N, Mpekoulis G, Zouridakis M, Giastas P, Vidali VP, Kelaidonis K, Matsoukas MT, Dimitriou M, Mavromoustakos T, Tsiodras S, Gorgoulis VG, Karakasiliotis I, Chasapis CT, Matsoukas JM. Novel benzimidazole angiotensin receptor blockers with anti-SARS-CoV-2 activity equipotent to that of nirmatrelvir: computational and enzymatic studies. Expert Opin Ther Targets 2024; 28:437-459. [PMID: 38828744 DOI: 10.1080/14728222.2024.2362675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 05/29/2024] [Indexed: 06/05/2024]
Abstract
BACKGROUND Hypertension worsens outcomes in SARS-CoV-2 patients. Sartans, a type of antihypertensive angiotensin receptor blocker-(ARB), reduce COVID-19 morbidity and mortality by targeting angiotensin-converting enzyme-2 (ACE2). This study aimed to evaluate the antiviral and antihypertensive effects of nirmatrelvir, commercial sartans (candesartan, losartan, and losartan carboxylic (Exp3174)), and newly synthesized sartans (benzimidazole-N-biphenyl carboxyl (ACC519C) and benzimidazole-N-biphenyl tetrazole (ACC519T)), compared to nirmatrelvir, the antiviral component of Paxlovid. RESEARCH DESIGN AND METHODS Surface plasmon resonance (SPR) and enzymatic studies assessed drug effects on ACE2. Antiviral abilities were tested with SARS-CoV-2-infected Vero E6 cells, and antihypertensive effects were evaluated using angiotensin II-contracted rabbit iliac arteries. RESULTS Benzimidazole-based candesartan and ACC519C showed antiviral activity comparable to nirmatrelvir (95% inhibition). Imidazole-based losartan, Exp3174, and ACC519T were less potent (75%-80% and 50%, respectively), with Exp3174 being the least effective. SPR analysis indicated high sartans-ACE2 binding affinity. Candesartan and nirmatrelvir combined had greater inhibitory and cytopathic effects (3.96%) than individually (6.10% and 5.08%). ACE2 enzymatic assays showed varying effects of novel sartans on ACE2. ACC519T significantly reduced angiotensin II-mediated contraction, unlike nirmatrelvir and ACC519T(2). CONCLUSION This study reports the discovery of a new class of benzimidazole-based sartans that significantly inhibit SARS-CoV-2, likely due to their interaction with ACE2.
Collapse
Affiliation(s)
- Harry Ridgway
- Institute for Sustainable Industries and Liveable Cities, Victoria University, Melbourne, Australia
- AquaMem Consultants, Rodeo, NM, USA
| | - Graham J Moore
- Pepmetics Inc, 772 Murphy Place, Victoria, BC, Canada
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Laura Kate Gadanec
- Institute for Health and Sport, Immunology and Translational Research, Victoria University, Melbourne, Australia
| | - Anthony Zulli
- Institute for Health and Sport, Immunology and Translational Research, Victoria University, Melbourne, Australia
| | - Vasso Apostolopoulos
- Institute for Health and Sport, Immunology and Translational Research, Victoria University, Melbourne, Australia
- Immunology Program, Australian Institute for Musculoskeletal Science (AIMSS), Melbourne, Australia
| | - Weronika Hoffmann
- Laboratory of Molecular Biology, Intercollegiate Faculty of Biotechnology of University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | - Katarzyna Węgrzyn
- Laboratory of Molecular Biology, Intercollegiate Faculty of Biotechnology of University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | - Niki Vassilaki
- Laboratory of Molecular Virology, Hellenic Pasteur Institute, Athens, Greece
| | - George Mpekoulis
- Laboratory of Molecular Virology, Hellenic Pasteur Institute, Athens, Greece
| | - Marios Zouridakis
- Structural Neurobiology Research Group, Laboratory of Molecular Neurobiology and Immunology, Hellenic Pasteur Institute, Athens, Greece
| | - Petros Giastas
- Structural Neurobiology Research Group, Laboratory of Molecular Neurobiology and Immunology, Hellenic Pasteur Institute, Athens, Greece
- Department of Biotechnology, Agricultural University of Athens, Athens, Greece
| | - Veroniki P Vidali
- Natural Products and Bioorganic Chemistry Laboratory, Institute of Nanoscience & Nanotechnology, NCSR "Demokritos", Athens, Greece
| | | | | | - Marios Dimitriou
- Laboratory of Biology, Department of Medicine, Democritus University of Thrace, Xanthi, Greece
| | - Thomas Mavromoustakos
- Department of Chemistry, Laboratory of Organic Chemistry, National Kapodistrian University of Athens, Athens, Greece
| | - Sotirios Tsiodras
- Faculty of Medicine, 4th Department of Internal Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Vassilis G Gorgoulis
- Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
- Department of Histology and Embryology, Faculty of Medicine, National Kapodistrian University of Athens, Athens, Greece
- Faculty Institute for Cancer Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK
- Biomedical Research Foundation, Academy of Athens, Athens, Greece
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, UK
| | - Ioannis Karakasiliotis
- Laboratory of Biology, Department of Medicine, Democritus University of Thrace, Xanthi, Greece
| | - Christos T Chasapis
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
| | - John M Matsoukas
- Institute for Health and Sport, Immunology and Translational Research, Victoria University, Melbourne, Australia
- NewDrug PC, Patras Science Park, Patras, Greece
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Alberta, Canada
- Department of Chemistry, University of Patras, Patras, Greece
| |
Collapse
|
2
|
Wikoff WR, Pendyala G, Siuzdak G, Fox HS. Metabolomic analysis of the cerebrospinal fluid reveals changes in phospholipase expression in the CNS of SIV-infected macaques. J Clin Invest 2008; 118:2661-9. [PMID: 18521184 DOI: 10.1172/jci34138] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2007] [Accepted: 04/16/2008] [Indexed: 11/17/2022] Open
Abstract
HIV infiltrates the CNS soon after an individual has become infected with the virus, and can cause dementia and encephalitis in late-stage disease. Here, a global metabolomics approach was used to find and identify metabolites differentially regulated in the cerebrospinal fluid (CSF) of rhesus macaques with SIV-induced CNS disease, as we hypothesized that this might provide biomarkers of virus-induced CNS damage. The screening platform used a non-targeted, mass-based metabolomics approach beginning with capillary reverse phase chromatography and electrospray ionization with accurate mass determination, followed by novel, nonlinear data alignment and online database screening to identify metabolites. CSF was compared before and after viral infection. Significant changes in the metabolome specific to SIV-induced encephalitis were observed. Metabolites that were increased during infection-induced encephalitis included carnitine, acyl-carnitines, fatty acids, and phospholipid molecules. The elevation in free fatty acids and lysophospholipids correlated with increased expression of specific phospholipases in the brains of animals with encephalitis. One of these, a phospholipase A2 isoenzyme, is capable of releasing a number of the fatty acids identified. It was expressed in different areas of the brain in conjunction with glial activation, rather than linked to regions of SIV infection and inflammation, indicating widespread alterations in infected brains. The identification of specific metabolites as well as mechanisms of their increase illustrates the potential of mass-based metabolomics to address problems in CNS biochemistry and neurovirology, as well as neurodegenerative diseases.
Collapse
Affiliation(s)
- William R Wikoff
- Department of Molecular Biology and Center for Mass Spectrometry, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | |
Collapse
|
3
|
Abstract
Human immunodeficiency virus-1 (HIV-1) neuroinvasion occurs early (during period of initial viremia), leading to infection of a limited amount of susceptible cells with low CD4 expression. Protective cellular and humoral immunity eliminate and suppress viral replication relatively quickly due to peripheral immune responses and the low level of initial central nervous system (CNS) infection. Upregulation of the brain protective mechanisms against lymphocyte entry and survival (related to immune privilege) helps reduce viral load in the brain. The local immune compartment dictates local viral evolution as well as selection of cytotoxic lymphocytes and immunoglobulin G specificity. Such status can be sustained until peripheral immune anti-viral responses fail. Activation of microglia and astrocytes, due to local or peripheral triggers, increases chemokine production, enhances traffic of infected cells into the CNS, upregulates viral replication in resident brain macrophages, and significantly augments the spread of viral species. The combination of these factors leads to the development of HIV-1 encephalitis-associated neurocognitive decline and patient death. Understanding the immune-privileged state created by virus, the brain microenvironment, and the ability to enhance anti-viral immunity offer new therapeutic strategies for treatment of HIV-1 CNS infection.
Collapse
Affiliation(s)
- Yuri Persidsky
- Center for Neurovirology and Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE 68198-5215, USA.
| | | |
Collapse
|
4
|
Stone TW, Mackay GM, Forrest CM, Clark CJ, Darlington LG. Tryptophan metabolites and brain disorders. Clin Chem Lab Med 2003; 41:852-9. [PMID: 12940508 DOI: 10.1515/cclm.2003.129] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Tryptophan is metabolised primarily along the kynurenine pathway, of which two components are now known to have marked effects on neurons in the central nervous system. Quinolinic acid is an agonist at the population of glutamate receptors which are sensitive to N-methyl-D-aspartate (NMDA), and kynurenic acid is an antagonist at several glutamate receptors. Consequently quinolinic acid can act as a neurotoxin while kynurenic acid is neuroprotectant. A third kynurenine, 3-hydroxykynurenine, can generate free radicals and contribute to, or exacerbate, neuronal damage. Changes in the absolute or relative concentrations of these kynurenines have been implicated in a variety of central nervous system disorders such as the AIDS-dementia complex and Huntington's disease, raising the possibility that interference with their actions or synthesis could lead to new forms of pharmacotherapy for these conditions.
Collapse
Affiliation(s)
- Trevor W Stone
- Institute of Biomedical & Life Sciences,Division of Neuroscience & Biomedical Systems, West Medical Building, University of Glasgow, Glasgow, UK.
| | | | | | | | | |
Collapse
|
5
|
Burudi EME, Marcondes MCG, Watry DD, Zandonatti M, Taffe MA, Fox HS. Regulation of indoleamine 2,3-dioxygenase expression in simian immunodeficiency virus-infected monkey brains. J Virol 2002; 76:12233-41. [PMID: 12414962 PMCID: PMC136861 DOI: 10.1128/jvi.76.23.12233-12241.2002] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human immunodeficiency virus type 1-associated cognitive-motor disorder, including the AIDS dementia complex, is characterized by brain functional abnormalities that are associated with injury initiated by viral infection of the brain. Indoleamine 2,3-dioxygenase (IDO), the first and rate-limiting enzyme in tryptophan catabolism in extrahepatic tissues, can lead to neurotoxicity through the generation of quinolinic acid and immunosuppression and can alter brain chemistry via depletion of tryptophan. Using the simian immunodeficiency virus (SIV)-infected rhesus macaque model of AIDS, we demonstrate that cells of the macrophage lineage are the main source for expression of IDO in the SIV-infected monkey brain. Animals with SIV encephalitis have the highest levels of IDO mRNA, and the level of IDO correlates with gamma interferon (IFN-gamma) and viral load levels. In vitro studies on mouse microglia reveal that IFN-gamma is the primary inducer of IDO expression. These findings demonstrate the link between IDO expression, IFN-gamma levels, and brain pathology signs observed in neuro-AIDS.
Collapse
Affiliation(s)
- E M E Burudi
- Department of Neuropharmacology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | | | |
Collapse
|
8
|
Abstract
In most tissues, including brain, a major proportion of the tryptophan which is not used for protein synthesis is metabolised along the kynurenine pathway. Long regarded as the route by which many mammals generate adequate amounts of the essential co-factor nicotinamide adenine dinucleotide, two components of the pathway are now known to have marked effects on neurones. Quinolinic acid is an agonist at the N-methyl-D-aspartate sensitive subtype of glutamate receptors in the brain, while kynurenic acid is an antagonist and, thus, a potential neuroprotectant. A third kynurenine, 3-hydroxykynurenine, is involved in the generation of free radicals which can also damage neurones. Quinolinic acid is increasingly implicated in neurodegenerative disorders, most especially the AIDS-dementia complex and Huntington's disease, while kynurenic acid has become a standard for the identification of glutamate-releasing synapses, and has been used as the parent for several groups of compounds now being developed as drugs for the treatment of epilepsy and stroke.
Collapse
Affiliation(s)
- T W Stone
- Institute of Biomedical & Life Sciences, West Medical Building, University of Glasgow, Glasgow G12 8QQ, UK.
| |
Collapse
|
9
|
Luabeya MK, Dallasta LM, Achim CL, Pauza CD, Hamilton RL. Blood-brain barrier disruption in simian immunodeficiency virus encephalitis. Neuropathol Appl Neurobiol 2000; 26:454-62. [PMID: 11054186 DOI: 10.1046/j.1365-2990.2000.00275.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Infected monocyte-derived macrophages (MDM) are thought by some investigators to play a central role in the neuropathogenesis of human immunodeficiency virus encephalitis (HIVE). It was recently proposed that these cells gain access to the central nervous system (CNS) through disruptions in blood-brain barrier (BBB) tight junctions, which occur in HIVE in association with accumulation of activated, HIV-1-infected, perivascular macrophages and serum protein extravasation (Am J Pathol 1999, 155: 1915-27). The present study tested this hypothesis in basal ganglia tissue from simian immunodeficiency virus (SIV)-infected macaques with encephalitis by examining vessels for immunohistochemical alterations in the tight junction-associated proteins, occludin and zonula occludens-1 (ZO-1). Compared to non-infected macaques and SIV-infected macaques without encephalitis, cerebral vessels from macaques with SIVE showed fragmentation and decreased immunoreactivity for both tight junction proteins. These alterations were associated with accumulation of perivascular macrophages and aberrant occludin and ZO-1 immunoreactivity within these cells. In addition, perivascular extravasation of fibrinogen, a plasma protein, and a change from a strong linear staining pattern to a more irregular pattern of glucose transporter isoform-1 (GLUT-1), a metabolic BBB marker, were observed in regions with vascular tight junction protein alterations. These findings demonstrate that tight junction disruption occurs in SIVE in association with perivascular macrophage accumulation. While it cannot be ascertained from these studies whether such changes precede macrophage infiltration, or are secondary to the chronic presence of macrophages around cerebral vessels, disruptions in BBB integrity could serve as portals for additional accumulation of perivascular macrophages in SIVE.
Collapse
Affiliation(s)
- M K Luabeya
- Department of Pathology (Division of Neuropathology), University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | | | | | | |
Collapse
|
10
|
Sopper S, Sauer U, Hemm S, Demuth M, Müller J, Stahl-Hennig C, Hunsmann G, ter Meulen V, Dörries R. Protective role of the virus-specific immune response for development of severe neurologic signs in simian immunodeficiency virus-infected macaques. J Virol 1998; 72:9940-7. [PMID: 9811731 PMCID: PMC110507 DOI: 10.1128/jvi.72.12.9940-9947.1998] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The pathogenesis of human immunodeficiency virus-associated motor and cognitive disorders is poorly understood. In this context both a protective and a harmful role of the immune system has been discussed. This question was addressed in the present study by correlating the occurrence of neurologic disease in simian immunodeficiency virus (SIV)-infected macaques with disease progression and the humoral and cellular intrathecal antiviral immune response. Overt neurologic signs consisting of ataxia and apathy were observed at a much higher frequency in rapid progressor animals (6 of 12) than in slow progressors (1 of 7). Whereas slow progressors mounted a strong antiviral antibody (Ab) response as evidenced by enzyme-linked immunosorbent and immunospot assays, neither virus-specific Ab titers nor Ab-secreting cells could be found in the cerebrospinal fluid (CSF) or brain parenchyma of rapid progressors. Similarly, increased infiltration of CD8(+) T cells and cytotoxic T lymphocytes specific for viral antigens were detected only in the CSF of slow progressors. The finding that neurologic signs develop frequently in SIV-infected macaques in the absence of an antiviral immune response demonstrates that the immune system does not contribute to the development of motor disorders in these animals. Moreover, the lower incidence of neurologic symptoms in slow progressors with a strong intrathecal immune response suggests a protective role of the virus-specific immunity in immunodeficiency virus-induced central nervous system disease.
Collapse
Affiliation(s)
- S Sopper
- Institut für Virologie und Immunbiologie, Julius-Maximilians-Universität, Würzburg, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|