1
|
Olsson O, Søkilde R, Tesfaye F, Karlson S, Skogmar S, Jansson M, Björkman P. Plasma Ribonuclease Activity in Antiretroviral Treatment-Naive People With Human Immunodeficiency Virus and Tuberculosis Disease. J Infect Dis 2024; 230:403-410. [PMID: 38526179 PMCID: PMC12102472 DOI: 10.1093/infdis/jiae143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/26/2024] [Accepted: 03/21/2024] [Indexed: 03/26/2024] Open
Abstract
BACKGROUND The role of ribonucleases in tuberculosis among people with human immunodeficiency virus (HIV; PWH) is unknown. We explored ribonuclease activity in plasma from PWH with and without tuberculosis. METHODS Participants were identified from a cohort of treatment-naive PWH in Ethiopia who had been classified for tuberculosis disease (HIV positive [HIV+]/tuberculosis positive [tuberculosis+] or HIV+/tuberculosis negative [tuberculosis-]). Ribonuclease activity in plasma was investigated by quantification of synthetic spike-in RNAs using sequencing and quantitative polymerase chain reaction and by a specific ribonuclease activity assay. Quantification of ribonuclease 1, 2, 3, 6, 7, and T2 proteins was performed by enzyme-linked immunosorbent assay. Ribonuclease activity and protein concentrations were correlated with markers of tuberculosis and HIV disease severity and with concentrations of inflammatory mediators. RESULTS Ribonuclease activity was significantly higher in plasma of HIV+/tuberculosis+ (n = 51) compared with HIV+/tuberculosis- (n = 78), causing reduced stability of synthetic spike-in RNAs. Concentrations of ribonucleases 2, 3, and T2 were also significantly increased in HIV+/tuberculosis+ compared with HIV+/tuberculosis-. Ribonuclease activity was correlated with HIV viral load, and inversely correlated with CD4 cell count, mid-upper arm circumference, and body mass index. Moreover, ribonuclease activity was correlated with concentrations of interleukin 27, procalcitonin and the kynurenine-tryptophan ratio. CONCLUSIONS PWH with tuberculosis disease have elevated plasma ribonuclease activity, which is also associated with HIV disease severity and systemic inflammation.
Collapse
Affiliation(s)
- Oskar Olsson
- Clinical Infection Medicine, Department of Translational Medicine, Lund University, Malmö, Sweden
- Department of Infectious Diseases, Skåne University Hospital, Malmö/Lund, Sweden
| | - Rolf Søkilde
- Department of Clinical Medicine, Translational Neuropsychiatry Unit, Aarhus University, Aarhus, Denmark
| | - Fregenet Tesfaye
- Clinical Infection Medicine, Department of Translational Medicine, Lund University, Malmö, Sweden
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Sara Karlson
- Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Sten Skogmar
- Clinical Infection Medicine, Department of Translational Medicine, Lund University, Malmö, Sweden
- Department of Infectious Diseases, Skåne University Hospital, Malmö/Lund, Sweden
| | - Marianne Jansson
- Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Per Björkman
- Clinical Infection Medicine, Department of Translational Medicine, Lund University, Malmö, Sweden
- Department of Infectious Diseases, Skåne University Hospital, Malmö/Lund, Sweden
| |
Collapse
|
2
|
Yu Y, Liu X, Xue Y, Li Y. Identification of immune-related genes for the diagnosis of ischemic heart failure based on bioinformatics. iScience 2023; 26:108121. [PMID: 37867954 PMCID: PMC10587531 DOI: 10.1016/j.isci.2023.108121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/14/2023] [Accepted: 09/29/2023] [Indexed: 10/24/2023] Open
Abstract
The role of immune cells in the pathogenesis of ischemic heart failure (IHF) is well-established. However, identifying key genes in patients with IHF remains a challenge. We obtained two IHF datasets from the GEO database (GSE76701 and GSE21610), and identified four potential diagnostic candidate genes for IHF by using bioinformatics and machine learning algorithms, namely RNASE2, MFAP4, CHRDL1, and KCNN3. We constructed nomogram and validated the diagnostic value of these genes on additional GEO datasets (GSE57338). The results showed that these four genes had high diagnostic value (area under the curve value of 0.961). Furthermore, our immune infiltration analysis revealed the presence of three dysregulated immune cells in IHF, namely macrophages M2, monocytes, and T cells gamma delta. We also explored the potential molecular mechanisms of IHF. These findings provide new insights into the pathogenesis, diagnosis, and treatment of IHF.
Collapse
Affiliation(s)
- Yiding Yu
- Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Xiujuan Liu
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Yitao Xue
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Yan Li
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| |
Collapse
|
3
|
Bernard DN, Narayanan C, Hempel T, Bafna K, Bhojane PP, Létourneau M, Howell EE, Agarwal PK, Doucet N. Conformational exchange divergence along the evolutionary pathway of eosinophil-associated ribonucleases. Structure 2023; 31:329-342.e4. [PMID: 36649708 PMCID: PMC9992247 DOI: 10.1016/j.str.2022.12.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 11/24/2022] [Accepted: 12/20/2022] [Indexed: 01/18/2023]
Abstract
The evolutionary role of conformational exchange in the emergence and preservation of function within structural homologs remains elusive. While protein engineering has revealed the importance of flexibility in function, productive modulation of atomic-scale dynamics has only been achieved on a finite number of distinct folds. Allosteric control of unique members within dynamically diverse structural families requires a better appreciation of exchange phenomena. Here, we examined the functional and structural role of conformational exchange within eosinophil-associated ribonucleases. Biological and catalytic activity of various EARs was performed in parallel to mapping their conformational behavior on multiple timescales using NMR and computational analyses. Despite functional conservation and conformational seclusion to a specific domain, we show that EARs can display similar or distinct motional profiles, implying divergence rather than conservation of flexibility. Comparing progressively more distant enzymes should unravel how this subfamily has evolved new functions and/or altered their behavior at the molecular level.
Collapse
Affiliation(s)
- David N Bernard
- Centre Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique (INRS), Université du Québec, 531 Boulevard des Prairies, Laval, QC H7V 1B7, Canada
| | - Chitra Narayanan
- Centre Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique (INRS), Université du Québec, 531 Boulevard des Prairies, Laval, QC H7V 1B7, Canada; Department of Chemistry, New Jersey City University, Jersey City, NJ 07305, USA
| | - Tim Hempel
- Department of Mathematics and Computer Science, Freie Universität Berlin, Arnimallee 12, 14195 Berlin, Germany; Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Khushboo Bafna
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Purva Prashant Bhojane
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Myriam Létourneau
- Centre Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique (INRS), Université du Québec, 531 Boulevard des Prairies, Laval, QC H7V 1B7, Canada
| | - Elizabeth E Howell
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Pratul K Agarwal
- Department of Physiological Sciences and High-Performance Computing Center, Oklahoma State University, Stillwater, OK 74078, USA.
| | - Nicolas Doucet
- Centre Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique (INRS), Université du Québec, 531 Boulevard des Prairies, Laval, QC H7V 1B7, Canada; PROTEO, the Québec Network for Research on Protein Function, Engineering, and Applications, Université Laval, 1045 Avenue de la Médecine, Québec, QC G1V 0A6, Canada.
| |
Collapse
|
4
|
Sultana MF, Abo H, Kawashima H. Human and mouse angiogenins: Emerging insights and potential opportunities. Front Microbiol 2022; 13:1022945. [PMID: 36466652 PMCID: PMC9714274 DOI: 10.3389/fmicb.2022.1022945] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 11/01/2022] [Indexed: 12/27/2023] Open
Abstract
Angiogenin, a well-known angiogenic factor, is crucial to the angiogenesis in gastrointestinal tumors. Human angiogenin has only one gene, whereas the murine angiogenin family has extended to incorporate six genes. Evolutionary studies have suggested functional variations among murine angiogenin paralogs, even though the three-dimensional structures of angiogenin proteins are remarkably similar. In addition to angiogenesis, the ubiquitous pattern of angiogenin expression suggests a variety of functions, such as tumorigenesis, neuroprotective, antimicrobial activity, and innate immunity. Here, we comprehensively reviewed studies on the structures and functions of human and mouse angiogenins. Understanding the structure and function of angiogenins from a broader perspective could facilitate future research related to development of novel therapeutics on its biological processes, especially in gastrointestinal cancers.
Collapse
Affiliation(s)
- Mst. Farzana Sultana
- Laboratory of Microbiology and Immunology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
- Department of Pharmacy, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Hirohito Abo
- Laboratory of Microbiology and Immunology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Hiroto Kawashima
- Laboratory of Microbiology and Immunology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| |
Collapse
|
5
|
Zaongo SD, Harypursat V, Chen Y. Single-Cell Sequencing Facilitates Elucidation of HIV Immunopathogenesis: A Review of Current Literature. Front Immunol 2022; 13:828860. [PMID: 35185920 PMCID: PMC8850777 DOI: 10.3389/fimmu.2022.828860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 01/18/2022] [Indexed: 12/18/2022] Open
Abstract
Knowledge gaps remain in the understanding of HIV disease establishment and progression. Scientists continue to strive in their endeavor to elucidate the precise underlying immunopathogenic mechanisms of HIV-related disease, in order to identify possible preventive and therapeutic targets. A useful tool in the quest to reveal some of the enigmas related to HIV infection and disease is the single-cell sequencing (scRNA-seq) technique. With its proven capacity to elucidate critical processes in cell formation and differentiation, to decipher critical hematopoietic pathways, and to understand the regulatory gene networks that predict immune function, scRNA-seq is further considered to be a potentially useful tool to explore HIV immunopathogenesis. In this article, we provide an overview of single-cell sequencing platforms, before delving into research findings gleaned from the use of single cell sequencing in HIV research, as published in recent literature. Finally, we describe two important avenues of research that we believe should be further investigated using the single-cell sequencing technique.
Collapse
Affiliation(s)
- Silvere D Zaongo
- Division of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China
| | - Vijay Harypursat
- Division of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China
| | - Yaokai Chen
- Division of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China
| |
Collapse
|
6
|
Zhu Y, Tang X, Xu Y, Wu S, Liu W, Geng L, Ma X, Tsao BP, Feng X, Sun L. RNASE2 Mediates Age-Associated B Cell Expansion Through Monocyte Derived IL-10 in Patients With Systemic Lupus Erythematosus. Front Immunol 2022; 13:752189. [PMID: 35265065 PMCID: PMC8899663 DOI: 10.3389/fimmu.2022.752189] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 02/02/2022] [Indexed: 12/16/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is characterized by the production of pathogenic autoantibodies. Ribonuclease A family member 2 (RNase2) is known to have antiviral activity and immunomodulatory function. Although RNASE2 level has been reported to be elevated in SLE patients based on mRNA microarray detection, its pathologic mechanism remains unclear. Here, we confirmed that RNASE2 was highly expressed in PBMCs from SLE patients and associated with the proportion of CD11c+T-bet+ B cells, a class of autoreactive B cells also known as age-associated B cells (ABCs). We showed that reduction of RNASE2 expression by small interfering RNA led to the decrease of ABCs in vitro, accompanied by total IgG and IL-10 reduction. In addition, we demonstrated that both RNASE2 and IL-10 in peripheral blood of lupus patients were mainly derived from monocytes. RNASE2 silencing in monocytes down-regulated IL-10 production and consequently reduced ABCs numbers in monocyte-B cell co-cultures, which could be restored by the addition of recombinant IL-10. Based on above findings, we concluded that RNASE2 might induce the production of ABCs via IL-10 secreted from monocytes, thus contributing to the pathogenesis of SLE.
Collapse
Affiliation(s)
- Yantong Zhu
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Xiaojun Tang
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Yang Xu
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Si Wu
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Weilin Liu
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Linyu Geng
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Xiaolei Ma
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Betty P Tsao
- Division of Rheumatology and Immunology, Department of Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Xuebing Feng
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Lingyun Sun
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| |
Collapse
|
7
|
Li J, Boix E. Host Defence RNases as Antiviral Agents against Enveloped Single Stranded RNA Viruses. Virulence 2021; 12:444-469. [PMID: 33660566 PMCID: PMC7939569 DOI: 10.1080/21505594.2021.1871823] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/26/2020] [Accepted: 12/30/2020] [Indexed: 02/06/2023] Open
Abstract
Owing to the recent outbreak of Coronavirus Disease of 2019 (COVID-19), it is urgent to develop effective and safe drugs to treat the present pandemic and prevent other viral infections that might come in the future. Proteins from our own innate immune system can serve as ideal sources of novel drug candidates thanks to their safety and immune regulation versatility. Some host defense RNases equipped with antiviral activity have been reported over time. Here, we try to summarize the currently available information on human RNases that can target viral pathogens, with special focus on enveloped single-stranded RNA (ssRNA) viruses. Overall, host RNases can fight viruses by a combined multifaceted strategy, including the enzymatic target of the viral genome, recognition of virus unique patterns, immune modulation, control of stress granule formation, and induction of autophagy/apoptosis pathways. The review also includes a detailed description of representative enveloped ssRNA viruses and their strategies to interact with the host and evade immune recognition. For comparative purposes, we also provide an exhaustive revision of the currently approved or experimental antiviral drugs. Finally, we sum up the current perspectives of drug development to achieve successful eradication of viral infections.
Collapse
Affiliation(s)
- Jiarui Li
- Dpt. Of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma De Barcelona, Spain
| | - Ester Boix
- Dpt. Of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma De Barcelona, Spain
| |
Collapse
|
8
|
Windsor IW, Dudley DM, O'Connor DH, Raines RT. Ribonuclease zymogen induces cytotoxicity upon HIV-1 infection. AIDS Res Ther 2021; 18:77. [PMID: 34702287 PMCID: PMC8549155 DOI: 10.1186/s12981-021-00399-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 10/04/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Targeting RNA is a promising yet underdeveloped modality for the selective killing of cells infected with HIV-1. The secretory ribonucleases (RNases) found in vertebrates have cytotoxic ribonucleolytic activity that is kept in check by a cytosolic ribonuclease inhibitor protein, RI. METHODS We engineered amino acid substitutions that enable human RNase 1 to evade RI upon its cyclization into a zymogen that is activated by the HIV-1 protease. In effect, the zymogen has an HIV-1 protease cleavage site between the termini of the wild-type enzyme, thereby positioning a cleavable linker over the active site that blocks access to a substrate. RESULTS The amino acid substitutions in RNase 1 diminish its affinity for RI by 106-fold and confer high toxicity for T-cell leukemia cells. Pretreating these cells with the zymogen leads to a substantial drop in their viability upon HIV-1 infection, indicating specific toxicity toward infected cells. CONCLUSIONS These data demonstrate the utility of ribonuclease zymogens as biologic prodrugs.
Collapse
Affiliation(s)
- Ian W Windsor
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Laboratory of Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Dawn M Dudley
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - David H O'Connor
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Ronald T Raines
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA.
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA.
- Koch Institute for Integrative Cancer Research at MIT, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA.
| |
Collapse
|
9
|
Nucera F, Lo Bello F, Shen SS, Ruggeri P, Coppolino I, Di Stefano A, Stellato C, Casolaro V, Hansbro PM, Adcock IM, Caramori G. Role of Atypical Chemokines and Chemokine Receptors Pathways in the Pathogenesis of COPD. Curr Med Chem 2021; 28:2577-2653. [PMID: 32819230 DOI: 10.2174/0929867327999200819145327] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 06/11/2020] [Accepted: 06/18/2020] [Indexed: 11/22/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) represents a heightened inflammatory response in the lung generally resulting from tobacco smoking-induced recruitment and activation of inflammatory cells and/or activation of lower airway structural cells. Several mediators can modulate activation and recruitment of these cells, particularly those belonging to the chemokines (conventional and atypical) family. There is emerging evidence for complex roles of atypical chemokines and their receptors (such as high mobility group box 1 (HMGB1), antimicrobial peptides, receptor for advanced glycosylation end products (RAGE) or toll-like receptors (TLRs)) in the pathogenesis of COPD, both in the stable disease and during exacerbations. Modulators of these pathways represent potential novel therapies for COPD and many are now in preclinical development. Inhibition of only a single atypical chemokine or receptor may not block inflammatory processes because there is redundancy in this network. However, there are many animal studies that encourage studies for modulating the atypical chemokine network in COPD. Thus, few pharmaceutical companies maintain a significant interest in developing agents that target these molecules as potential antiinflammatory drugs. Antibody-based (biological) and small molecule drug (SMD)-based therapies targeting atypical chemokines and/or their receptors are mostly at the preclinical stage and their progression to clinical trials is eagerly awaited. These agents will most likely enhance our knowledge about the role of atypical chemokines in COPD pathophysiology and thereby improve COPD management.
Collapse
Affiliation(s)
- Francesco Nucera
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences (BIOMORF), University of Messina, Pugliatti Square 1, 98122 Messina, Italy
| | - Federica Lo Bello
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences (BIOMORF), University of Messina, Pugliatti Square 1, 98122 Messina, Italy
| | - Sj S Shen
- Faculty of Science, Centre for Inflammation, Centenary Institute, University of Technology, Ultimo, Sydney, Australia
| | - Paolo Ruggeri
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences (BIOMORF), University of Messina, Pugliatti Square 1, 98122 Messina, Italy
| | - Irene Coppolino
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences (BIOMORF), University of Messina, Pugliatti Square 1, 98122 Messina, Italy
| | - Antonino Di Stefano
- Division of Pneumology, Cyto- Immunopathology Laboratory of the Cardio-Respiratory System, Clinical Scientific Institutes Maugeri IRCCS, Veruno, Italy
| | - Cristiana Stellato
- Department of Medicine, Surgery and Dentistry, Salerno Medical School, University of Salerno, Salerno, Italy
| | - Vincenzo Casolaro
- Department of Medicine, Surgery and Dentistry, Salerno Medical School, University of Salerno, Salerno, Italy
| | - Phil M Hansbro
- Faculty of Science, Centre for Inflammation, Centenary Institute, University of Technology, Ultimo, Sydney, Australia
| | - Ian M Adcock
- Airway Disease Section, National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Gaetano Caramori
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences (BIOMORF), University of Messina, Pugliatti Square 1, 98122 Messina, Italy
| |
Collapse
|
10
|
Rosenberg HF, Foster PS. Eosinophils and COVID-19: diagnosis, prognosis, and vaccination strategies. Semin Immunopathol 2021; 43:383-392. [PMID: 33728484 PMCID: PMC7962927 DOI: 10.1007/s00281-021-00850-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/02/2021] [Indexed: 02/07/2023]
Abstract
The unprecedented impact of the coronavirus disease 2019 (COVID-19) pandemic has resulted in global challenges to our health-care systems and our economic security. As such, there has been significant research into all aspects of the disease, including diagnostic biomarkers, associated risk factors, and strategies that might be used for its treatment and prevention. Toward this end, eosinopenia has been identified as one of many factors that might facilitate the diagnosis and prognosis of severe COVID-19. However, this finding is neither definitive nor pathognomonic for COVID-19. While eosinophil-associated conditions have been misdiagnosed as COVID-19 and others are among its reported complications, patients with pre-existing eosinophil-associated disorders (e.g., asthma, eosinophilic gastrointestinal disorders) do not appear to be at increased risk for severe disease; interestingly, several recent studies suggest that a diagnosis of asthma may be associated with some degree of protection. Finally, although vaccine-associated aberrant inflammatory responses, including eosinophil accumulation in the respiratory tract, were observed in preclinical immunization studies targeting the related SARS-CoV and MERS-CoV pathogens, no similar complications have been reported clinically in response to the widespread dissemination of either of the two encapsulated mRNA-based vaccines for COVID-19.
Collapse
Affiliation(s)
- Helene F Rosenberg
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Paul S Foster
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle and Hunter Medical Research Institute (HMRI), New Lambton Heights, New South Wales, 2300, Australia
| |
Collapse
|
11
|
Abstract
The CD8+ T cell noncytotoxic antiviral response (CNAR) was discovered during studies of asymptomatic HIV-infected subjects more than 30 years ago. In contrast to CD8+ T cell cytotoxic lymphocyte (CTL) activity, CNAR suppresses HIV replication without target cell killing. This activity has characteristics of innate immunity: it acts on all retroviruses and thus is neither epitope specific nor HLA restricted. The HIV-associated CNAR does not affect other virus families. It is mediated, at least in part, by a CD8+ T cell antiviral factor (CAF) that blocks HIV transcription. A variety of assays used to measure CNAR/CAF and the effects on other retrovirus infections are described. Notably, CD8+ T cell noncytotoxic antiviral responses have now been observed with other virus families but are mediated by different cytokines. Characterizing the protein structure of CAF has been challenging despite many biologic, immunologic, and molecular studies. It represents a low-abundance protein that may be identified by future next-generation sequencing approaches. Since CNAR/CAF is a natural noncytotoxic activity, it could provide promising strategies for HIV/AIDS therapy, cure, and prevention.
Collapse
Affiliation(s)
- Maelig G Morvan
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Fernando C Teque
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, San Francisco, California, USA
| | | | - Jay A Levy
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
12
|
Antimicrobial Activity of Human Eosinophil Granule Proteins. Methods Mol Biol 2021; 2241:257-274. [PMID: 33486742 DOI: 10.1007/978-1-0716-1095-4_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Eosinophils secrete a number of proinflammatory mediators that include cytokines, chemokines, and granule proteins which are responsible for the initiation and maintenance of inflammatory responses. The eosinophil granule proteins, ECP, EDN, MBP, and EPO, possess antimicrobial activity against bacteria, helminths, protozoa, and viruses. In this chapter, we describe various assays used to detect and quantitate the antimicrobial activities of eosinophil granule proteins, particularly ECP and EDN. We have taken a model organism for each assay and described the method for antiviral, antihelminthic, antiprotozoan, and antibacterial activity of purified eosinophil granule proteins.
Collapse
|
13
|
Bedenbender K, Schmeck BT. Endothelial Ribonuclease 1 in Cardiovascular and Systemic Inflammation. Front Cell Dev Biol 2020; 8:576491. [PMID: 33015070 PMCID: PMC7500176 DOI: 10.3389/fcell.2020.576491] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 08/14/2020] [Indexed: 12/12/2022] Open
Abstract
The vascular endothelial cell layer forms the inner lining of all blood vessels to maintain proper functioning of the vascular system. However, dysfunction of the endothelium depicts a major issue in context of vascular pathologies, such as atherosclerosis or thrombosis that cause several million deaths per year worldwide. In recent years, the endothelial extracellular endonuclease Ribonuclease 1 (RNase1) was described as a key player in regulation of vascular homeostasis by protecting endothelial cells from detrimental effects of the damage-associated molecular pattern extracellular RNA upon acute inflammation. Despite this protective function, massive dysregulation of RNase1 was observed during prolonged endothelial cell inflammation resulting in progression of several vascular diseases. For the first time, this review article outlines the current knowledge on endothelial RNase1 and its role in function and dysfunction of the endothelium, thereby focusing on the intensive research from recent years: Uncovering the underlying mechanisms of RNase1 function and regulation in response to acute as well as long-term inflammation, the role of RNase1 in context of vascular, inflammatory and infectious diseases and the potential to develop novel therapeutic options to treat these pathologies against the background of RNase1 function in endothelial cells.
Collapse
Affiliation(s)
- Katrin Bedenbender
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Marburg, Germany
| | - Bernd T. Schmeck
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Marburg, Germany
- Department of Pulmonary and Critical Care Medicine, Department of Medicine, University Medical Center Giessen and Marburg, Philipps-University Marburg, Marburg, Germany
- Member of the German Center for Lung Research, Member of the German Center for Infectious Disease Research, Marburg, Germany
- Center for Synthetic Microbiology, Philipps-University Marburg, Marburg, Germany
| |
Collapse
|
14
|
Nguyen S, Sada-Japp A, Petrovas C, Betts MR. Jigsaw falling into place: A review and perspective of lymphoid tissue CD8+ T cells and control of HIV. Mol Immunol 2020; 124:42-50. [PMID: 32526556 PMCID: PMC7279761 DOI: 10.1016/j.molimm.2020.05.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/28/2020] [Accepted: 05/27/2020] [Indexed: 12/18/2022]
Abstract
CD8+ T cells are crucial for immunity against viral infections, including HIV. Several characteristics of CD8+ T cells, such as polyfunctionality and cytotoxicity, have been correlated with effective control of HIV. However, most of these correlates have been established in the peripheral blood. Meanwhile, HIV primarily replicates in lymphoid tissues. Therefore, it is unclear which aspects of CD8+ T cell biology are shared and which are different between blood and lymphoid tissues in the context of HIV infection. In this review, we will recapitulate the latest advancements of our knowledge on lymphoid tissue CD8+ T cells during HIV infection and discuss the insights these advancements might provide for the development of a HIV cure.
Collapse
Affiliation(s)
- Son Nguyen
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Alberto Sada-Japp
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Constantinos Petrovas
- Immunology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Michael R Betts
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
15
|
Kosgey JC, Jia L, Nyamao RM, Zhao Y, Xue T, Yang J, Fang Y, Zhang F. RNase 1, 2, 5 & 8 role in innate immunity: Strain specific antimicrobial activity. Int J Biol Macromol 2020; 160:1042-1049. [PMID: 32504708 DOI: 10.1016/j.ijbiomac.2020.06.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/31/2020] [Accepted: 06/01/2020] [Indexed: 01/26/2023]
Abstract
The increase in microbial resistance to conventional antimicrobial agents is driving research for the discovery of new antibiotics and antifungal agents. The greatest challenge in this endeavor is to find antimicrobial agents with broad antimicrobial activity and low toxicity. Antimicrobial peptides, for example, RNases, are one of the promising areas. The production of RNases increases during infection, but their role is still being explored. Whereas the enzymatic activity of RNases is well documented, their physiological function is still being investigated. This study aimed to evaluate the antimicrobial activity of RNase 1, 2, 5, and 8 against E. coli strains, S. aureus, Streptococcus thermophilus, P. aeruginosa, Candida albicans, and Candida glabrata. The results demonstrated that RNases have a strain-specific antimicrobial activity. RNase 1 had the highest antimicrobial activity compared to other RNases. All the microorganisms screened had varying levels of susceptibility to RNases, except P. aeruginosa and E. coli DR115. RNase 1 showed dose-dependent activity against C. albicans. The RNase killed Candida albicans by lowering the mitochondrial membrane potential but did not damage the cell membrane. We concluded that strain-specific antimicrobial activity is one of the physiological roles of RNases.
Collapse
Affiliation(s)
- Janet Cheruiyot Kosgey
- School of Biological and Life Sciences, The Technical University of Kenya, 52428-00200, Kenya; Department of Microbiology, WU Lien-Teh Institute, Harbin Medical University, Harbin 150086, China
| | - Lina Jia
- Department of Microbiology, WU Lien-Teh Institute, Harbin Medical University, Harbin 150086, China
| | - Rose Magoma Nyamao
- Department of Microbiology, WU Lien-Teh Institute, Harbin Medical University, Harbin 150086, China; School of Medicine, Kenyatta University, 43844, 00100, Kenya
| | - Yi Zhao
- Department of Microbiology, WU Lien-Teh Institute, Harbin Medical University, Harbin 150086, China
| | - Teng Xue
- Department of Microbiology, WU Lien-Teh Institute, Harbin Medical University, Harbin 150086, China
| | - Jianxun Yang
- Department of Microbiology, WU Lien-Teh Institute, Harbin Medical University, Harbin 150086, China; Department of Dermatology, The 2nd Hospital of Harbin Medical University, Harbin 150086, China
| | - Yong Fang
- Department of Microbiology, WU Lien-Teh Institute, Harbin Medical University, Harbin 150086, China
| | - Fengmin Zhang
- Department of Microbiology, WU Lien-Teh Institute, Harbin Medical University, Harbin 150086, China.
| |
Collapse
|
16
|
Nguyen S, Deleage C, Darko S, Ransier A, Truong DP, Agarwal D, Japp AS, Wu VH, Kuri-Cervantes L, Abdel-Mohsen M, Del Rio Estrada PM, Ablanedo-Terrazas Y, Gostick E, Hoxie JA, Zhang NR, Naji A, Reyes-Terán G, Estes JD, Price DA, Douek DC, Deeks SG, Buggert M, Betts MR. Elite control of HIV is associated with distinct functional and transcriptional signatures in lymphoid tissue CD8 + T cells. Sci Transl Med 2019; 11:eaax4077. [PMID: 31852798 PMCID: PMC7265335 DOI: 10.1126/scitranslmed.aax4077] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 09/03/2019] [Accepted: 11/11/2019] [Indexed: 12/21/2022]
Abstract
The functional properties of circulating CD8+ T cells have been associated with immune control of HIV. However, viral replication occurs predominantly in secondary lymphoid tissues, such as lymph nodes (LNs). We used an integrated single-cell approach to characterize effective HIV-specific CD8+ T cell responses in the LNs of elite controllers (ECs), defined as individuals who suppress viral replication in the absence of antiretroviral therapy (ART). Higher frequencies of total memory and follicle-homing HIV-specific CD8+ T cells were detected in the LNs of ECs compared with the LNs of chronic progressors (CPs) who were not receiving ART. Moreover, HIV-specific CD8+ T cells potently suppressed viral replication without demonstrable cytolytic activity in the LNs of ECs, which harbored substantially lower amounts of CD4+ T cell-associated HIV DNA and RNA compared with the LNs of CPs. Single-cell RNA sequencing analyses further revealed a distinct transcriptional signature among HIV-specific CD8+ T cells from the LNs of ECs, typified by the down-regulation of inhibitory receptors and cytolytic molecules and the up-regulation of multiple cytokines, predicted secreted factors, and components of the protein translation machinery. Collectively, these results provide a mechanistic framework to expedite the identification of novel antiviral factors, highlighting a potential role for the localized deployment of noncytolytic functions as a determinant of immune efficacy against HIV.
Collapse
Affiliation(s)
- Son Nguyen
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Claire Deleage
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, MD 21702, USA
| | - Samuel Darko
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Amy Ransier
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Duc P Truong
- Department of Mathematics, Southern Methodist University, Dallas, TX 75205, USA
| | - Divyansh Agarwal
- Department of Statistics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alberto Sada Japp
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Vincent H Wu
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Leticia Kuri-Cervantes
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Perla M Del Rio Estrada
- Departamento de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias, Mexico City 14080, Mexico
| | - Yuria Ablanedo-Terrazas
- Departamento de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias, Mexico City 14080, Mexico
| | - Emma Gostick
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, UK
| | - James A Hoxie
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nancy R Zhang
- Department of Statistics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ali Naji
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Gustavo Reyes-Terán
- Departamento de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias, Mexico City 14080, Mexico
| | - Jacob D Estes
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Portland, OR 97239, USA
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health and Science University, Portland, OR 97239, USA
| | - David A Price
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, UK
| | - Daniel C Douek
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Steven G Deeks
- Department of Medicine, University of California, San Francisco General Hospital, San Francisco, CA 94110, USA
| | - Marcus Buggert
- Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital Huddinge, 14186 Stockholm, Sweden
| | - Michael R Betts
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
17
|
Ahmed A, Siman-Tov G, Hall G, Bhalla N, Narayanan A. Human Antimicrobial Peptides as Therapeutics for Viral Infections. Viruses 2019; 11:v11080704. [PMID: 31374901 PMCID: PMC6722670 DOI: 10.3390/v11080704] [Citation(s) in RCA: 152] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/26/2019] [Accepted: 07/30/2019] [Indexed: 12/18/2022] Open
Abstract
Successful in vivo infection following pathogen entry requires the evasion and subversion of multiple immunological barriers. Antimicrobial peptides (AMPs) are one of the first immune pathways upregulated during infection by multiple pathogens, in multiple organs in vivo. In humans, there are many classes of AMPs exhibiting broad antimicrobial activities, with defensins and the human cathelicidin LL-37 being the best studied examples. Whereas historically the efficacy and therapeutic potential of AMPs against bacterial infection has been the primary focus of research, recent studies have begun to elucidate the antiviral properties of AMPs as well as their role in regulation of inflammation and chemoattraction. AMPs as therapeutic tools seem especially promising against emerging infectious viral pathogens for which no approved vaccines or treatments are currently available, such as dengue virus (DENV) and Zika virus (ZIKV). In this review, we summarize recent studies elucidating the efficacy and diverse mechanisms of action of various classes of AMPs against multiple viral pathogens, as well as the potential use of human AMPs in novel antiviral therapeutic strategies.
Collapse
Affiliation(s)
- Aslaa Ahmed
- National Center for Biodefense and Infectious Disease, School of Systems Biology, George Mason University, Manassas, VA 20110, USA
| | - Gavriella Siman-Tov
- National Center for Biodefense and Infectious Disease, School of Systems Biology, George Mason University, Manassas, VA 20110, USA
| | - Grant Hall
- United States Military Academy, West Point, NY 10996, USA
| | - Nishank Bhalla
- National Center for Biodefense and Infectious Disease, School of Systems Biology, George Mason University, Manassas, VA 20110, USA
| | - Aarthi Narayanan
- National Center for Biodefense and Infectious Disease, School of Systems Biology, George Mason University, Manassas, VA 20110, USA.
| |
Collapse
|
18
|
Panić‐Janković T, Mitulović G. Human chorionic gonadotrophin pharmaceutical formulations of urinary origin display high levels of contaminant proteins-A label-free quantitation proteomics study. Electrophoresis 2019; 40:1622-1629. [PMID: 30883802 PMCID: PMC6593423 DOI: 10.1002/elps.201900087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 03/14/2019] [Accepted: 03/15/2019] [Indexed: 12/17/2022]
Abstract
To determine whether there is a measurable protein background in different formulations of urinary and recombinant human chorionic gonadotropin (hCG). Primary outcome measures: identification of contaminant proteins in urinary-derived formulations of hCG; secondary outcome measures: quantitative values of contaminant proteins in different batches of urinary -derived hCG formulations. It was found that urinary-derived batches have high presence of contaminant proteins beside the active substance. The relative amount of contaminant proteins and hCG differs strongly between different batches.
Collapse
Affiliation(s)
- Tanja Panić‐Janković
- Clinical Department of Laboratory MedicineMedical University of ViennaViennaAustria
| | - Goran Mitulović
- Clinical Department of Laboratory MedicineMedical University of ViennaViennaAustria
- Proteomic Core FacilityMedical University of ViennaViennaAustria
| |
Collapse
|
19
|
Aguilar-Jimenez W, Zapata W, Rivero-Juárez A, Pineda JA, Laplana M, Taborda NA, Biasin M, Clerici M, Caruz A, Fibla J, Rugeles MT. Genetic associations of the vitamin D and antiviral pathways with natural resistance to HIV-1 infection are influenced by interpopulation variability. INFECTION GENETICS AND EVOLUTION 2019; 73:276-286. [PMID: 31103723 DOI: 10.1016/j.meegid.2019.05.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 05/14/2019] [Accepted: 05/15/2019] [Indexed: 01/06/2023]
Abstract
Vitamin D (VitD) may modulate anti-HIV-1 responses modifying the risk to acquire the HIV-1-infection. We performed a nested case-control exploratory study involving 413 individuals; HIV-1-exposed seropositives (cases) and seronegatives (HESN) (controls) from three cohorts: sexually-exposed from Colombia and Italy and parenterally-exposed from Spain. The association and interactions of 139 variants in 9 VitD pathway genes, and in 14 antiviral genes with resistance/susceptibility (R/S) to HIV-1 infection was evaluated. Associations between variants and mRNA levels were also analyzed in the Colombian samples. Variants and haplotypes in genes of VitD and antiviral pathways were associated with R/S, but specific associations were not reproduced in all cohorts. Allelic heterogeneity could explain such inconsistency since the associations found in all cohorts were consistently in the same genes: VDR and RXRA of the VitD pathway genes and in TLR2 and RNASE4. Remarkably, the multi-locus genotypes (interacting variants) observed in genes of VitD and antiviral pathways were present in most HESNs of all cohorts. Finally, HESNs carrying resistance-associated variants had higher levels of VitD in plasma, of VDR mRNA in blood cells, and of ELAFIN and defensins mRNA in the oral mucosa. In conclusion, despite allelic heterogeneity, most likely due to differences in the genetic history of the populations, the associations were locus dependent suggesting that genes of the VitD pathway might act in concert with antiviral genes modulating the resistance phenotype of the HESNs. Although these associations were significant after permutation test, only haplotype results remained statistically significant after Bonferroni test, requiring further replications in larger cohorts and functional analyzes to validate these conclusions.
Collapse
Affiliation(s)
- Wbeimar Aguilar-Jimenez
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, 050010 Medellín, Colombia.
| | - Wildeman Zapata
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, 050010 Medellín, Colombia; Grupo Infettare, Facultad de Medicina, Universidad Cooperativa de Colombia, 050012 Medellín, Colombia
| | - Antonio Rivero-Juárez
- Unidad Clínica de Enfermedades Infecciosas, Instituto Maimonides para la Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofia, 14004 Córdoba, Spain
| | - Juan A Pineda
- Unidad Clínica de Enfermedades Infecciosas y Microbiología, Hospital Universitario de Valme, 41014 Seville, Spain
| | - Marina Laplana
- Unitat de Genètica Humana, Departament de Ciències Mèdiques Bàsiques, IRBLleida, Universitat de Lleida, 25198 Lleida, Spain
| | - Natalia A Taborda
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, 050010 Medellín, Colombia; Grupo de Investigaciones Biomédicas UniRemington, Facultad de Medicina, Corporación Universitaria Remington, 050010 Medellín, Colombia
| | - Mara Biasin
- Dipartimento di Scienze Biomediche e Cliniche-L. Sacco, Università Degli Studi di Milano, 20157 Milan, Italy.
| | - Mario Clerici
- Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Università degli Studi di Milano, 20100 Milan, Italy; Fondazione Don C, Gnocchi IRCCS, 20100 Milan, Italy.
| | - Antonio Caruz
- Unidad de Inmunogenética, Departamento de Biología Experimental, Facultad de Ciencias Experimentales, Universidad de Jaén, 23071 Jaén, Spain.
| | - Joan Fibla
- Unitat de Genètica Humana, Departament de Ciències Mèdiques Bàsiques, IRBLleida, Universitat de Lleida, 25198 Lleida, Spain.
| | - María T Rugeles
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, 050010 Medellín, Colombia.
| |
Collapse
|
20
|
Simon SCS, Utikal J, Umansky V. Opposing roles of eosinophils in cancer. Cancer Immunol Immunother 2019; 68:823-833. [PMID: 30302498 PMCID: PMC11028063 DOI: 10.1007/s00262-018-2255-4] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 09/28/2018] [Indexed: 12/13/2022]
Abstract
Eosinophils are a subset of granulocytes mostly known for their ability to combat parasites and induce allergy. Although they were described to be related to cancer more than 100 years ago, their role in tumors is still undefined. Recent observations revealed that they display regulatory functions towards other immune cell subsets in the tumor microenvironment or direct cytotoxic functions against tumor cells, leading to either antitumor or protumor effects. This paradoxical role of eosinophils was suggested to be dependent on the different factors in the TME. In addition, the clinical relevance of these cells has been recently addressed. In most cases, the accumulation of eosinophils both in the tumor tissue, called tumor-associated tissue eosinophilia, and in the peripheral blood were reported to be prognostic markers for a better outcome of cancer patients. In immunotherapy of cancer, particularly in therapy with immune checkpoint inhibitors, eosinophils were even shown to be a potential predictive marker for a beneficial clinical response. A better understanding of their role in cancer progression will help to establish them as prognostic and predictive markers and to design strategies for targeting eosinophils.
Collapse
Affiliation(s)
- Sonja C S Simon
- Skin Cancer Unit, Clinical Cooperation Unit Dermato-Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
| | - Jochen Utikal
- Skin Cancer Unit, Clinical Cooperation Unit Dermato-Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
| | - Viktor Umansky
- Skin Cancer Unit, Clinical Cooperation Unit Dermato-Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany.
| |
Collapse
|
21
|
The Immunomodulatory and Antimicrobial Properties of the Vertebrate Ribonuclease A Superfamily. Vaccines (Basel) 2018; 6:vaccines6040076. [PMID: 30463297 PMCID: PMC6313885 DOI: 10.3390/vaccines6040076] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 10/31/2018] [Accepted: 11/16/2018] [Indexed: 02/08/2023] Open
Abstract
The Ribonuclease A Superfamily is composed of cationic peptides that are secreted by immune cells and epithelial tissues. Although their physiological roles are unclear, several members of the vertebrate Ribonuclease A Superfamily demonstrate antimicrobial and immune modulation activities. The objective of this review is to provide an overview of the published literature on the Ribonuclease A Superfamily with an emphasis on each peptide’s regulation, antimicrobial properties, and immunomodulatory functions. As additional insights emerge regarding the mechanisms in which these ribonucleases eradicate invading pathogens and modulate immune function, these ribonucleases may have the potential to be developed as a novel class of therapeutics for some human diseases.
Collapse
|
22
|
Lu L, Li J, Moussaoui M, Boix E. Immune Modulation by Human Secreted RNases at the Extracellular Space. Front Immunol 2018; 9:1012. [PMID: 29867984 PMCID: PMC5964141 DOI: 10.3389/fimmu.2018.01012] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 04/23/2018] [Indexed: 12/23/2022] Open
Abstract
The ribonuclease A superfamily is a vertebrate-specific family of proteins that encompasses eight functional members in humans. The proteins are secreted by diverse innate immune cells, from blood cells to epithelial cells and their levels in our body fluids correlate with infection and inflammation processes. Recent studies ascribe a prominent role to secretory RNases in the extracellular space. Extracellular RNases endowed with immuno-modulatory and antimicrobial properties can participate in a wide variety of host defense tasks, from performing cellular housekeeping to maintaining body fluid sterility. Their expression and secretion are induced in response to a variety of injury stimuli. The secreted proteins can target damaged cells and facilitate their removal from the focus of infection or inflammation. Following tissue damage, RNases can participate in clearing RNA from cellular debris or work as signaling molecules to regulate the host response and contribute to tissue remodeling and repair. We provide here an overall perspective on the current knowledge of human RNases’ biological properties and their role in health and disease. The review also includes a brief description of other vertebrate family members and unrelated extracellular RNases that share common mechanisms of action. A better knowledge of RNase mechanism of actions and an understanding of their physiological roles should facilitate the development of novel therapeutics.
Collapse
Affiliation(s)
- Lu Lu
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Jiarui Li
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Mohammed Moussaoui
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Ester Boix
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| |
Collapse
|
23
|
Geng R, Liu H, Wang W. Differential Expression of Six Rnase2 and Three Rnase3 Paralogs Identified in Blunt Snout Bream in Response to Aeromonas hydrophila Infection. Genes (Basel) 2018; 9:E95. [PMID: 29443944 PMCID: PMC5852591 DOI: 10.3390/genes9020095] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 02/05/2018] [Accepted: 02/06/2018] [Indexed: 12/12/2022] Open
Abstract
Ribonucleases (Rnases)2 and Rnase3 belong to the ribonuclease A (RnaseA) superfamily. Apart from their role in molecular evolutionary and functional biological studies, these genes have also been studied in the context of defense against pathogen infection in mammals. However, expression patterns, structures and response to bacterial infection of the two genes in blunt snout bream (Megalobrama amblycephala) remain unknown. In this study, we identified multiple copies of Rnase2 (six) and Rnase3 (three) in the M. amblycephala genome. The nine genes all possess characteristics typical of the RnaseA superfamily. No expression was detected in the early developmental stages, while a weak expression was observed at 120 and 140 h post-fertilization (hpf) for Rnase2b, Rnase2c, Rnase2e and Rnase3a, suggesting that only three copies of Rnase2 and one of Rnase3 are expressed. Interestingly, only Rnase2e was up-regulated in the kidney of M. amblycephala after Aeromonas hydrophila infection, while Rnase3a was significantly up-regulated in liver, gut and blood after the infection. We conclude that the paralogs of Rnase3 are more susceptible to A. hydrophila infection than Rnase2. These results indicate that different Rnase2 and Rnase3 paralogs suggest a role in the innate immune response of M. amblycephala to bacterial infection.
Collapse
Affiliation(s)
- Ruijing Geng
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China.
| | - Han Liu
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China.
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| | - Weimin Wang
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China.
- Collaborative Innovation Center for Efficient and Health Production of Fisheries in Hunan Province, Changde 415000, China.
| |
Collapse
|
24
|
Mohammed I, Said DG, Dua HS. Human antimicrobial peptides in ocular surface defense. Prog Retin Eye Res 2017; 61:1-22. [DOI: 10.1016/j.preteyeres.2017.03.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 03/22/2017] [Accepted: 03/27/2017] [Indexed: 01/17/2023]
|
25
|
Nguyen TV, Osipov AV. A study of ribonuclease activity in venom of vietnam cobra. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2017; 59:20. [PMID: 29021904 PMCID: PMC5611641 DOI: 10.1186/s40781-017-0145-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 06/22/2017] [Indexed: 11/10/2022]
Abstract
BACKGROUND Ribonuclease (RNase) is one of the few toxic proteins that are present constantly in snake venoms of all types. However, to date this RNase is still poorly studied in comparison not only with other toxic proteins of snake venom, but also with the enzymes of RNase group. The objective of this paper was to investigate some properties of RNase from venom of Vietnam cobra Naja atra. METHODS Kinetic methods and gel filtration chromatography were used to investigate RNase from venom of Vietnam cobra. RESULTS RNase from venom of Vietnam cobra Naja atra has some characteristic properties. This RNase is a thermostable enzyme and has high conformational stability. This is the only acidic enzyme of the RNase A superfamily exhibiting a high catalytic activity in the pH range of 1-4, with pHopt = 2.58 ± 0.35. Its activity is considerably reduced with increasing ionic strength of reaction mixture. Venom proteins are separated by gel filtration into four peaks with ribonucleolytic activity, which is abnormally distributed among the isoforms: only a small part of the RNase activity is present in fractions of proteins with molecular weights of 12-15 kDa and more than 30 kDa, but most of the enzyme activity is detected in fractions of polypeptides, having molecular weights of less than 9 kDa, that is unexpected. CONCLUSIONS RNase from the venom of Vietnam cobra is a unique member of RNase A superfamily according to its acidic optimum pH (pHopt = 2.58 ± 0.35) and extremely low molecular weights of its major isoforms (approximately 8.95 kDa for RNase III and 5.93 kDa for RNase IV).
Collapse
Affiliation(s)
- Thiet Van Nguyen
- Institute of Biotechnology, Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
| | - A. V. Osipov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences (RAS), Moscow, Russia
| |
Collapse
|
26
|
Abstract
Eosinophils are a minority circulating granulocyte classically viewed as being involved in host defense against parasites and promoting allergic reactions. However, a series of new regulatory functions for these cells have been identified in the past decade. During homeostasis, eosinophils develop in the bone marrow and migrate from the blood into target tissues following an eotaxin gradient, with interleukin-5 being a key cytokine for eosinophil proliferation, survival, and priming. In multiple target tissues, eosinophils actively regulate a variety of immune functions through their vast arsenal of granule products and cytokines, as well as direct cellular interaction with cells in proximity. The immunologic regulation of eosinophils extends from innate immunity to adaptive immunity and also involves non-immune cells. Herein, we summarize recent findings regarding novel roles of murine and human eosinophils, focusing on interactions with other hematopoietic cells. We also review new experimental tools available and remaining questions to uncover a greater understanding of this enigmatic cell.
Collapse
|
27
|
Abstract
BACKGROUND Although the anti-HIV-1 effects of vitamin D (VitD) have been reported, mechanisms behind such protection remain largely unexplored. METHODS The effects of two precursor forms (cholecalciferol/calciol at 0.01, 1 and 100 nM and calcidiol at 100 and 250 nM) on HIV-1 infection, immune activation, and gene expression were analyzed in vitro in cells of Colombian and Italian healthy donors. We quantified levels of released p24 by enzyme-linked immunosorbent assay, of intracellular p24 and cell-surface expression of CD38 and HLA-DR by flow cytometry, and mRNA expression of antiviral and immunoregulatory genes by real-time reverse transcription-polymerase chain reaction. RESULTS Cholecalciferol decreased the frequency of HIV-1-infected p24CD4 T cells and levels of p24 in supernatants in a dose-dependent manner. Moreover, the CD4CD38HLA-DR and CD4CD38HLA-DR subpopulations were more susceptible to infection but displayed the greatest cholecalciferol-induced decreases in infection rate by an X4-tropic strain. Likewise, cholecalciferol at its highest concentration decreased the frequency of CD38HLA-DR but not of CD38HLA-DR T-cell subsets. Analyzing the effects of calcidiol, the main VitD source for immune cells and an R5-tropic strain as the most frequently transmitted virus, a reduction in HIV-1 productive infection was also observed. In addition, an increase in mRNA expression of APOBEC3G and PI3 and a reduction of TRIM22 and CCR5 expression, this latter positively correlated with p24 levels, was noted. CONCLUSIONS VitD reduces HIV-1 infection in T cells possibly by inducing antiviral gene expression, reducing the viral co-receptor CCR5 and, at least at the highest cholecalciferol concentration, by promoting an HIV-1-restrictive CD38HLA-DR immunophenotype.
Collapse
|
28
|
Human Th17 Cells Lack HIV-Inhibitory RNases and Are Highly Permissive to Productive HIV Infection. J Virol 2016; 90:7833-47. [PMID: 27334595 DOI: 10.1128/jvi.02869-15] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 06/14/2016] [Indexed: 12/29/2022] Open
Abstract
UNLABELLED Human immunodeficiency virus (HIV) infects and depletes CD4(+) T cells, but subsets of CD4(+) T cells vary in their susceptibility and permissiveness to infection. For example, HIV preferentially depletes interleukin-17 (IL-17)-producing T helper 17 (Th17) cells and T follicular helper (Tfh) cells. The preferential loss of Th17 cells during the acute phase of infection impairs the integrity of the gut mucosal barrier, which drives chronic immune activation-a key determinant of disease progression. The preferential loss of Th17 cells has been attributed to high CD4, CCR5, and CXCR4 expression. Here, we show that Th17 cells also exhibit heightened permissiveness to productive HIV infection. Primary human CD4(+) T cells were sorted, activated under Th17- or Th0-polarizing conditions and infected, and then analyzed by flow cytometry. Th17-polarizing cytokines increased HIV infection, and HIV infection was disproportionately higher among Th17 cells than among IL-17(-) or gamma interferon-positive (IFN-γ(+)) cells, even upon infection with a replication-defective HIV vector with a pseudotype envelope. Further, Th17-polarized cells produced more viral capsid protein. Our data also reveal that Th17-polarized cells have diminished expression of RNase A superfamily proteins, and we report for the first time that RNase 6 inhibits HIV. Thus, our findings link Th17 polarization to increased HIV replication. IMPORTANCE Our study compares the intracellular replicative capacities of several different HIV isolates among different T cell subsets, providing a link between the differentiation of Th17 cells and HIV replication. Th17 cells are of key importance in mucosal integrity and in the immune response to certain pathogens. Based on our findings and the work of others, we propose a model in which HIV replication is favored by the intracellular environment of two CD4(+) T cell subsets that share several requirements for their differentiation: Th17 and Tfh cells. Characterizing cells that support high levels of viral replication (rather than becoming latently infected or undergoing cell death) informs the search for new therapeutics aimed at manipulating intracellular signaling pathways and/or transcriptional factors that affect HIV replication.
Collapse
|
29
|
Koczera P, Martin L, Marx G, Schuerholz T. The Ribonuclease A Superfamily in Humans: Canonical RNases as the Buttress of Innate Immunity. Int J Mol Sci 2016; 17:ijms17081278. [PMID: 27527162 PMCID: PMC5000675 DOI: 10.3390/ijms17081278] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 07/29/2016] [Accepted: 08/01/2016] [Indexed: 12/18/2022] Open
Abstract
In humans, the ribonuclease A (RNase A) superfamily contains eight different members that have RNase activities, and all of these members are encoded on chromosome 14. The proteins are secreted by a large variety of different tissues and cells; however, a comprehensive understanding of these proteins’ physiological roles is lacking. Different biological effects can be attributed to each protein, including antiviral, antibacterial and antifungal activities as well as cytotoxic effects against host cells and parasites. Different immunomodulatory effects have also been demonstrated. This review summarizes the available data on the human RNase A superfamily and illustrates the significant role of the eight canonical RNases in inflammation and the host defence system against infections.
Collapse
Affiliation(s)
- Patrick Koczera
- Department of Intensive Care and Intermediate Care, University Hospital Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen, Aachen 52074, Germany.
- Department for Experimental Molecular Imaging, University Hospital RWTH Aachen and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen 52074, Germany.
| | - Lukas Martin
- Department of Intensive Care and Intermediate Care, University Hospital Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen, Aachen 52074, Germany.
| | - Gernot Marx
- Department of Intensive Care and Intermediate Care, University Hospital Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen, Aachen 52074, Germany.
| | - Tobias Schuerholz
- Department of Intensive Care and Intermediate Care, University Hospital Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen, Aachen 52074, Germany.
| |
Collapse
|
30
|
Identification of innate immune antiretroviral factors during in vivo and in vitro exposure to HIV-1. Microbes Infect 2015; 18:211-9. [PMID: 26548606 DOI: 10.1016/j.micinf.2015.10.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 08/15/2015] [Accepted: 10/28/2015] [Indexed: 11/20/2022]
Abstract
Defensins, RNases and cytokines are present at mucosal barriers, main ports of HIV entry, and are potential mediators of the resistant phenotype exhibited by HIV-1-exposed seronegative individuals (HESN) during sexual exposure. We aimed to determine the role of soluble factors in natural resistance to HIV-1 infection. Vaginal/endocervical/oral mucosal samples were taken from 60 HESN, 60 seropositive (SP) and 61 healthy controls (HC). Human neutrophil peptide 1 (hNP-1), human beta defensin (hBD) 2 and 3, RNases, MIP-1β and RANTES mRNA transcripts were quantified by qPCR and in vitro single-round, recombinant-based viral infectivity assay was used to evaluate the anti-HIV-1 activity of hBDs and RNases. HESN expressed significantly higher levels of hNP-1, hBDs mRNA in oral mucosa compared to HC (P < 0.05). In genital mucosa, significantly higher mRNA levels of MIP-1β, RANTES and RNases were found in HESN compared to HC (P < 0.05). HBDs and RNases inhibit HIV-1 replication, particularly R5 at entry, reverse transcription and nuclear import of the viral life cycle. hNP-1, hBDs, MIP-1β, RANTES and RNases, collectively could contribute to HIV-1 resistance during sexual exposure. Moreover, the inhibition of HIV-1 infection in vitro by hBDs and RNases suggests that they may be exploited as potential antiretrovirals.
Collapse
|
31
|
Abstract
Milk contains an array of proteins with useful bioactivities. Many milk proteins encompassing native or chemically modified casein, lactoferrin, alpha-lactalbumin, and beta-lactoglobulin demonstrated antiviral activities. Casein and alpha-lactalbumin gained anti-HIV activity after modification with 3-hydroxyphthalic anhydride. Many milk proteins inhibited HIV reverse transcriptase. Bovine glycolactin, angiogenin-1, lactogenin, casein, alpha-lactalbumin, beta-lactoglobulin, bovine lactoferrampin, and human lactoferrampin inhibited HIV-1 protease and integrase. Several mammalian lactoferrins prevented hepatitis C infection. Lactoferrin, methylated alpha-lactalbumin and methylated beta-lactoglobulin inhibited human cytomegalovirus. Chemically modified alpha-lactalbumin, beta-lactoglobulin and lysozyme, lactoferrin and lactoferricin, methylated alpha-lactalbumin, methylated and ethylated beta-lactoglobulins inhibited HSV. Chemically modified bovine beta-lactoglobulin had antihuman papillomavirus activity. Beta-lactoglobulin, lactoferrin, esterified beta-lactoglobulin, and esterified lactoferrindisplayed anti-avian influenza A (H5N1) activity. Lactoferrin inhibited respiratory syncytial virus, hepatitis B virus, adenovirus, poliovirus, hantavirus, sindbis virus, semliki forest virus, echovirus, and enterovirus. Milk mucin, apolactoferrin, Fe3+-lactoferrin, beta-lactoglobulin, human lactadherin, bovine IgG, and bovine kappa-casein demonstrated antihuman rotavirus activity.
Collapse
Affiliation(s)
- Tzi Bun Ng
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China,
| | | | | | | | | | | | | |
Collapse
|
32
|
Eosinophil-Derived Neurotoxin (EDN/RNase 2) and the Mouse Eosinophil-Associated RNases (mEars): Expanding Roles in Promoting Host Defense. Int J Mol Sci 2015; 16:15442-55. [PMID: 26184157 PMCID: PMC4519907 DOI: 10.3390/ijms160715442] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 06/18/2015] [Accepted: 06/30/2015] [Indexed: 12/30/2022] Open
Abstract
The eosinophil-derived neurotoxin (EDN/RNase2) and its divergent orthologs, the mouse eosinophil-associated RNases (mEars), are prominent secretory proteins of eosinophilic leukocytes and are all members of the larger family of RNase A-type ribonucleases. While EDN has broad antiviral activity, targeting RNA viruses via mechanisms that may require enzymatic activity, more recent studies have elucidated how these RNases may generate host defense via roles in promoting leukocyte activation, maturation, and chemotaxis. This review provides an update on recent discoveries, and highlights the versatility of this family in promoting innate immunity.
Collapse
|
33
|
Yadav SK, Batra JK. Ribotoxin restrictocin manifests anti-HIV-1 activity through its specific ribonuclease activity. Int J Biol Macromol 2015; 76:58-62. [PMID: 25709025 DOI: 10.1016/j.ijbiomac.2015.01.062] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 01/23/2015] [Accepted: 01/27/2015] [Indexed: 01/18/2023]
Abstract
Restrictocin, a highly specific ribonuclease produced by Aspergillus restrictus, cleaves a single phosphodiester bond in a universally conserved stem and loop structure termed sarcin/ricin loop within the large ribosomal RNA of all organisms. In the current study, we demonstrate restrictocin to manifest anti-HIV-1 activity in two model cell systems. Using two mutants of restrictocin, we further show that the anti-HIV-1 activity of restrictocin is due to its specific ribonucleolytic activity. The study suggests that restrictocin is able to recognize region(s) within HIV-1 genome as its target. Restrictocin appears to have potential as a therapeutic antiviral agent against HIV-1.
Collapse
Affiliation(s)
- Santosh K Yadav
- Immunochemistry Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Janendra K Batra
- Immunochemistry Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India; Centre for Molecular Medicine, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India.
| |
Collapse
|
34
|
Abstract
Many ribonucleases (RNases) are able to inhibit the reproduction of viruses in infected cell cultures and laboratory animals, but the molecular mechanisms of their antiviral activity remain unclear. The review discusses the well-known RNases that possess established antiviral effects, including both intracellular RNases (RNase L, MCPIP1 protein, and eosinophil-associated RNases) and exogenous RNases (RNase A, BS-RNase, onconase, binase, and synthetic RNases). Attention is paid to two important, but not always obligatory, aspects of molecules of RNases that have antiviral properties, i.e., catalytic activity and ability to dimerize. The hypothetic scheme of virus elimination by exogenous RNases that reflects possible types of interaction of viruses and RNases with a cell is proposed. The evidence for RNases as classical components of immune defense and thus perspective agents for the development of new antiviral therapeutics is proposed.
Collapse
Affiliation(s)
- O. N. Ilinskaya
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, ul. Kremlevskaya 18, Kazan, 420008 Russia
| | - R. Shah Mahmud
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, ul. Kremlevskaya 18, Kazan, 420008 Russia
| |
Collapse
|
35
|
Chopra A, Batra JK. Antimicrobial activity of human eosinophil granule proteins. Methods Mol Biol 2014; 1178:267-281. [PMID: 24986624 DOI: 10.1007/978-1-4939-1016-8_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Eosinophils secrete a number of proinflammatory mediators, like cytokines, chemokines, and granule proteins which are responsible for the initiation and sustenance of inflammatory response caused by them. The eosinophil granule proteins, ECP, EDN, MBP, and EPO possess antimicrobial activity against bacteria, helminths, protozoa, and viruses. In this chapter, we describe various assays used to detect and quantitate the antimicrobial activities of eosinophil granule proteins, particularly ECP and EDN. We have taken a model organism for each assay and described the method for antiviral, antihelminthic, antiprotozoan, and antibacterial activity of purified eosinophil granule proteins.
Collapse
Affiliation(s)
- Anu Chopra
- Immunochemistry Laboratory, National Institute of Immunology, New Delhi, India
| | | |
Collapse
|
36
|
O'Reilly MA, Yee M, Buczynski BW, Vitiello PF, Keng PC, Welle SL, Finkelstein JN, Dean DA, Lawrence BP. Neonatal oxygen increases sensitivity to influenza A virus infection in adult mice by suppressing epithelial expression of Ear1. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 181:441-51. [PMID: 22677423 PMCID: PMC3409430 DOI: 10.1016/j.ajpath.2012.05.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Revised: 04/18/2012] [Accepted: 05/02/2012] [Indexed: 01/10/2023]
Abstract
Oxygen exposure in premature infants is a major risk factor for bronchopulmonary dysplasia and can impair the host response to respiratory viral infections later in life. Similarly, adult mice exposed to hyperoxia as neonates display alveolar simplification associated with a reduced number of alveolar epithelial type II cells and exhibit persistent inflammation, fibrosis, and mortality when infected with influenza A virus. Because type II cells participate in innate immunity and alveolar repair, their loss may contribute to oxygen-mediated sensitivity to viral infection. A genomewide screening of type II cells identified eosinophil-associated RNase 1 (Ear1). Ear1 was also detected in airway epithelium and was reduced in lungs of mice exposed to neonatal hyperoxia. Electroporation-mediated gene delivery of Ear1 to the lung before infection successfully reduced viral replication and leukocyte recruitment during infection. It also diminished the enhanced morbidity and mortality attributed to neonatal hyperoxia. These findings demonstrate that novel epithelial expression of Ear1 functions to limit influenza A virus infection, and its loss contributes to oxygen-associated epithelial injury and fibrosis after infection. People born prematurely may have defects in epithelial innate immunity that increase their risk for respiratory viral infections.
Collapse
Affiliation(s)
- Michael A O'Reilly
- Department of Pediatrics, The University of Rochester, Rochester, New York 14642, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Soluble factors from T cells inhibiting X4 strains of HIV are a mixture of β chemokines and RNases. Proc Natl Acad Sci U S A 2012; 109:5411-6. [PMID: 22431590 DOI: 10.1073/pnas.1202240109] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
T-cell-derived soluble factors that inhibit both X4 and R5 HIV are recognized as important in controlling HIV. Whereas three β chemokines, regulated-on-activation normal T-cell expressed and secreted (RANTES), macrophage inflammatory protein (MIP)-1α, and MIP-1β, account for the suppression of R5 HIV by blockade of HIV entry, the major components responsible for the inhibition of X4 HIV strains have not been identified previously. We identify these factors primarily as a mixture of three β chemokines [macrophage-derived chemokine (MDC), thymus and activation-regulated chemokine (TARC), and I-309] and two RNases (angiogenin and RNase 4) of lesser potency and show that in a clade B population, some correlate with clinical status and are produced by both CD4(+) and CD8(+) T cells (chemokines, angiogenin) or only by CD8(+) T cells (RNase 4). The antiviral mechanisms of these HIV X4-suppressive factors differ from those of the previously described HIV R5-suppressive β chemokines.
Collapse
|
38
|
Malik A, Batra JK. Antimicrobial activity of human eosinophil granule proteins: involvement in host defence against pathogens. Crit Rev Microbiol 2012; 38:168-81. [PMID: 22239733 DOI: 10.3109/1040841x.2011.645519] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Eosinophils have been associated with the pathophysiology of various allergic diseases and asthma. Eosinophils secrete a number of granule proteins that have been identified as effector molecules responsible for many of the actions of eosinophils. The four major eosinophil granule proteins, major basic protein (MBP), eosinophil cationic protein (ECP), eosinophil derived neurotoxin (EDN) and eosinophil peroxidase have been shown to be involved in a number of eosinophil associated functions. EDN possesses antiviral activity against single stranded RNA viruses like respiratory syncytial virus, Hepatitis and HIV, whereas ECP and MBP have antibacterial and antiparasitic properties. This review summarizes the studies on antipathogenic activities of eosinophil granule proteins against bacteria, viruses, protozoans and helminths.
Collapse
Affiliation(s)
- Anu Malik
- Immunochemistry Laboratory, National Institute of Immunology, New Delhi, India
| | | |
Collapse
|
39
|
|
40
|
Henriques ST, Huang YH, Rosengren KJ, Franquelim HG, Carvalho FA, Johnson A, Sonza S, Tachedjian G, Castanho MARB, Daly NL, Craik DJ. Decoding the membrane activity of the cyclotide kalata B1: the importance of phosphatidylethanolamine phospholipids and lipid organization on hemolytic and anti-HIV activities. J Biol Chem 2011; 286:24231-41. [PMID: 21576247 DOI: 10.1074/jbc.m111.253393] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Cyclotides, a large family of cyclic peptides from plants, have a broad range of biological activities, including insecticidal, cytotoxic, and anti-HIV activities. In all of these activities, cell membranes seem likely to be the primary target for cyclotides. However, the mechanistic role of lipid membranes in the activity of cyclotides remains unclear. To determine the role of lipid organization in the activity of the prototypic cyclotide, kalata B1 (kB1), and synthetic analogs, their bioactivities and affinities for model membranes were evaluated. We found that the bioactivity of kB1 is dependent on the lipid composition of target cell membranes. In particular, the activity of kB1 requires specific interactions with phospholipids containing phosphatidylethanolamine (PE) headgroups but is further modulated by nonspecific peptide-lipid hydrophobic interactions, which are favored in raft-like membranes. Negatively charged phospholipids do not favor high kB1 affinity. This lipid selectivity explains trends in antimicrobial and hemolytic activities of kB1; it does not target bacterial cell walls, which are negatively charged and lacking PE-phospholipids but can insert in the membranes of red blood cells, which have a low PE content and raft domains in their outer layer. We further show that the anti-HIV activity of kB1 is the result of its ability to target and disrupt the membranes of HIV particles, which are raft-like membranes very rich in PE-phospholipids.
Collapse
Affiliation(s)
- Sónia Troeira Henriques
- University of Queensland, Institute for Molecular Bioscience, Brisbane, Queensland 4072, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Taborda-Vanegas N, Zapata W, Rugeles MT. Genetic and Immunological Factors Involved in Natural Resistance to HIV-1 Infection. Open Virol J 2011; 5:35-43. [PMID: 21660188 PMCID: PMC3109745 DOI: 10.2174/1874357901105010035] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Revised: 02/24/2011] [Accepted: 03/08/2011] [Indexed: 11/22/2022] Open
Abstract
Infection with Human immunodeficiency virus type-1 (HIV-1) induces severe alterations of the immune system leading to an increased susceptibility to opportunistic infections and malignancies. However, exposure to the virus does not always results in infection. Indeed, there exist individuals who have been repeatedly exposed to HIV-1 but do not exhibit clinical or serological evidence of infection, known as exposed seronegative individuals. Many studies have focused on the different mechanisms involved in natural resistance to HIV-1 infection, and have reported several factors associated with this phenomenon, including the presence of genetic polymorphisms in the viral coreceptors, innate and adaptive immune cells with particular phenotypic and functional features, and molecules such as antibodies and soluble factors that play an important role in defense against infection by HIV-1. The study of these factors could be the key for controlling this viral infection. This review summarizes the main mechanisms involved in resistance to HIV-1 infection.
Collapse
|
42
|
Hochstenbach K, van Leeuwen DM, Gmuender H, Stølevik SB, Nygaard UC, Løvik M, Granum B, Namork E, van Delft JHM, van Loveren H. Transcriptomic profile indicative of immunotoxic exposure: in vitro studies in peripheral blood mononuclear cells. Toxicol Sci 2010; 118:19-30. [PMID: 20702593 DOI: 10.1093/toxsci/kfq239] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Investigating the immunotoxic effects of exposure to chemicals usually comprises evaluation of weight and histopathology of lymphoid tissues, various lymphocyte parameters in the circulation, and immune function. Immunotoxicity assessment is time consuming in humans or requires a high number of animals, making it expensive. Furthermore, reducing the use of animals in research is an important ethical and political issue. Immunotoxicogenomics represents a novel approach to investigate immunotoxicity able of overcoming these limitations. The current research, embedded in the European Union project NewGeneris, aimed to retrieve gene expression profiles that are indicative of exposure to immunotoxicants. To this end, whole-genome gene expression was investigated in human peripheral blood mononuclear cells in response to in vitro exposure to a range of immunotoxic chemicals (4-hydroxy-2-nonenal, aflatoxin B1, benzo[a]pyrene, deoxynivalenol, ethanol, malondialdehyde, polychlorinated biphenyl 153, and 2,3,7,8-tetrachlorodibenzo-p-dioxin) and nonimmunotoxic chemicals (acrylamide, dimethylnitrosamine, 2-amino-3-methyl-3H-imidazo[4,5-F]quinoline, and 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine). Using Agilent oligonucleotide microarrays, whole-genome gene expression profiles were generated, which were analyzed using Genedata's Expressionist software. Using Recursive Feature Elimination and Support Vector Machine, a set of 48 genes was identified that distinguishes the immunotoxic from the nonimmunotoxic compounds. Analysis for enrichment of biological processes showed the gene set to be highly biologically and immunologically relevant. We conclude that we have identified a promising transcriptomic profile indicative of immunotoxic exposure.
Collapse
Affiliation(s)
- Kevin Hochstenbach
- Department of Health Risk Analysis and Toxicology, Maastricht University, 6200 MD Maastricht, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
The porcine ANG, RNASE1 and RNASE6 genes: molecular cloning, polymorphism detection and the association with haematological parameters. Mol Biol Rep 2009; 36:2405-11. [DOI: 10.1007/s11033-009-9471-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2008] [Accepted: 02/17/2009] [Indexed: 02/01/2023]
|
44
|
Turcotte RF, Raines RT. Design and characterization of an HIV-specific ribonuclease zymogen. AIDS Res Hum Retroviruses 2008; 24:1357-63. [PMID: 19025416 PMCID: PMC2888699 DOI: 10.1089/aid.2008.0146] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Ribonucleases are evoking medical interest because of their intrinsic cytotoxic activity. Most notably, ranpirnase, which is an amphibian ribonuclease, is in advanced clinical trials as a chemotherapeutic agent for the treatment of cancer. Here, we describe a strategy to create a novel antiviral agent based on bovine pancreatic ribonuclease (RNase A), a mammalian homologue of ranpirnase. Specifically, we have linked the N- and C-termini of RNase A with an amino acid sequence that is recognized and cleaved by human immunodeficiency virus (HIV) protease. This linkage obstructs the active site, forming an HIV-specific RNase A zymogen. Cleavage by HIV-1 protease increases ribonucleolytic activity by 50-fold. By relying on the proper function of HIV-1 protease, rather than its inhibition, our approach will not engender known mechanisms of resistance. Thus, we report an initial step toward a new class of agents for the treatment of HIV/AIDS.
Collapse
Affiliation(s)
- Rebecca F. Turcotte
- Medical Scientist Training Program and Biophysics Graduate Program, University of Wisconsin–Madison, Madison, Wisconsin 53706
| | - Ronald T. Raines
- Departments of Biochemistry and Chemistry, University of Wisconsin–Madison, Madison, Wisconsin 53706
| |
Collapse
|
45
|
Abstract
The eosinophil-derived neurotoxin (EDN, also known as eosinophil protein-X) is best-known as one of the four major proteins found in the large specific granules of human eosinophilic leukocytes. Although it was named for its discovery and initial characterization as a neurotoxin, it is also expressed constitutively in human liver tissue and its expression can be induced in macrophages by proinflammatory stimuli. EDN and its divergent orthologs in rodents have ribonuclease activity, and are members of the extensive RNase A superfamily, although the relationship between the characterized physiologic functions and enzymatic activity remains poorly understood. Recent explorations into potential physiologic functions for EDN have provided us with some insights into its role in antiviral host defense, as a chemoattractant for human dendritic cells, and most recently, as an endogenous ligand for toll-like receptor (TLR)2.
Collapse
Affiliation(s)
- H F Rosenberg
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA.
| |
Collapse
|
46
|
Osorio DS, Antunes A, Ramos MJ. Structural and functional implications of positive selection at the primate angiogenin gene. BMC Evol Biol 2007; 7:167. [PMID: 17883850 PMCID: PMC2194721 DOI: 10.1186/1471-2148-7-167] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2006] [Accepted: 09/20/2007] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Angiogenesis, the formation of new blood vessels, is a primordial process in development and its dysregulation has a central role in the pathogenesis of many diseases. Angiogenin (ANG), a peculiar member of the RNase A superfamily, is a potent inducer of angiogenesis involved in many different types of cancer, amyotrophic lateral sclerosis and also with a possible role in the innate immune defense. The evolutionary path of this family has been a highly dynamic one, where positive selection has played a strong role. In this work we used a combined gene and protein level approach to determine the main sites under diversifying selection on the primate ANG gene and analyze its structural and functional implications. RESULTS We obtained evidence for positive selection in the primate ANG gene. Site specific analysis pointed out 15 sites under positive selection, most of which also exhibited drastic changes in amino acid properties. The mapping of these sites in the ANG 3D-structure described five clusters, four of which were located in functional regions: two in the active site region, one in the nucleolar location signal and one in the cell-binding site. Eight of the 15 sites under selection in the primate ANG gene were highly or moderately conserved in the RNase A family, suggesting a directed event and not a simple consequence of local structural or functional permissiveness. Moreover, 11 sites were exposed to the surface of the protein indicating that they may influence the interactions performed by ANG. CONCLUSION Using a maximum likelihood gene level analysis we identified 15 sites under positive selection in the primate ANG genes, that were further corroborated through a protein level analysis of radical changes in amino acid properties. These sites mapped onto the main functional regions of the ANG protein. The fact that evidence for positive selection is present in all ANG regions required for angiogenesis may be a good indication that angiogenesis is the process under selection. However, other possibilities to be considered arise from the possible involvement of ANG in innate immunity and the potential influence or co-evolution with its interacting proteins and ligands.
Collapse
Affiliation(s)
- Daniel S Osorio
- REQUIMTE, Departamento de Química, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal
- INSERM UMR S 787-Groupe Myologie, Faculté de Médecine – Pitié-Salpétrière, UPMC Paris VI, 105 bd. de l'Hôpital, 75634, Paris Cedex 13, France
| | - Agostinho Antunes
- REQUIMTE, Departamento de Química, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal
- CIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Rua dos Bragas, 177, 4050-123 Porto, Portugal
| | - Maria J Ramos
- REQUIMTE, Departamento de Química, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal
| |
Collapse
|