1
|
Liu Z, Larocque É, Xie Y, Xiao Y, Lemay G, Peloponese JM, Mesnard JM, Rassart É, Lin R, Zhou S, Zeng Y, Gao H, Cen S, Barbeau B. A newly identified interaction between nucleolar NPM1/B23 and the HTLV-I basic leucine zipper factor in HTLV-1 infected cells. Front Microbiol 2022; 13:988944. [PMID: 36532440 PMCID: PMC9753777 DOI: 10.3389/fmicb.2022.988944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 11/08/2022] [Indexed: 08/05/2023] Open
Abstract
Human T-cell leukemia virus type 1 is the causative agent of HTLV-1-associated myelopathy/tropical spastic paraparesis and adult T-cell leukemia-lymphoma (ATL). The HTLV-1 basic leucine zipper factor (HBZ) has been associated to the cancer-inducing properties of this virus, although the exact mechanism is unknown. In this study, we identified nucleophosmin (NPM1/B23) as a new interaction partner of HBZ. We show that sHBZ and the less abundant uHBZ isoform interact with nucleolar NPM1/B23 in infected cells and HTLV-1 positive patient cells, unlike equivalent antisense proteins of related non-leukemogenic HTLV-2, -3 and-4 viruses. We further demonstrate that sHBZ association to NPM1/B23 is sensitive to RNase. Interestingly, sHBZ was shown to interact with its own RNA. Through siRNA and overexpression experiments, we further provide evidence that NPM1/B23 acts negatively on viral gene expression with potential impact on cell transformation. Our results hence provide a new insight over HBZ-binding partners in relation to cellular localization and potential function on cell proliferation and should lead to a better understanding of the link between HBZ and ATL development.
Collapse
Affiliation(s)
- Zhenlong Liu
- Département de chimie, Université du Québec à Montréal, Montréal, QC, Canada
- Centre d’excellence en recherche sur les maladies orphelines-Fondation Courtois, Université du Québec à Montréal, Montréal, QC, Canada
- Lady Davis Institute, Jewish General Hospital & Department of Medicine, McGill University, Montreal, QC, Canada
| | - Émilie Larocque
- Centre d’excellence en recherche sur les maladies orphelines-Fondation Courtois, Université du Québec à Montréal, Montréal, QC, Canada
- Département de microbiologie et immunologie, Université de Montréal, Montréal, QC, Canada
| | - Yongli Xie
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Beijing, China
| | - Yong Xiao
- Département de chimie, Université du Québec à Montréal, Montréal, QC, Canada
- Centre d’excellence en recherche sur les maladies orphelines-Fondation Courtois, Université du Québec à Montréal, Montréal, QC, Canada
| | - Guy Lemay
- Département de microbiologie et immunologie, Université de Montréal, Montréal, QC, Canada
| | - Jean-Marie Peloponese
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS, Université Montpellier, Montpellier, France
| | - Jean-Michel Mesnard
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS, Université Montpellier, Montpellier, France
| | - Éric Rassart
- Centre d’excellence en recherche sur les maladies orphelines-Fondation Courtois, Université du Québec à Montréal, Montréal, QC, Canada
- Département des sciences biologiques, Université du Québec à Montréal, Montréal, QC, Canada
| | - Rongtuan Lin
- Lady Davis Institute, Jewish General Hospital & Department of Medicine, McGill University, Montreal, QC, Canada
| | - Shuang Zhou
- Neurosurgery Department, 2nd Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Yiming Zeng
- Neurosurgery Department, 2nd Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Hongzhi Gao
- Neurosurgery Department, 2nd Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Shan Cen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Beijing, China
| | - Benoit Barbeau
- Département de chimie, Université du Québec à Montréal, Montréal, QC, Canada
- Centre d’excellence en recherche sur les maladies orphelines-Fondation Courtois, Université du Québec à Montréal, Montréal, QC, Canada
- Département de microbiologie et immunologie, Université de Montréal, Montréal, QC, Canada
- Département des sciences biologiques, Université du Québec à Montréal, Montréal, QC, Canada
| |
Collapse
|
2
|
Vallinoto ACR, Rosadas C, Machado LFA, Taylor GP, Ishak R. HTLV: It Is Time to Reach a Consensus on Its Nomenclature. Front Microbiol 2022; 13:896224. [PMID: 35531274 PMCID: PMC9072825 DOI: 10.3389/fmicb.2022.896224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 03/30/2022] [Indexed: 11/24/2022] Open
Affiliation(s)
| | - Carolina Rosadas
- Section of Virology, Department of Infectious Disease, Imperial College London, London, United Kingdom
| | | | - Graham P. Taylor
- Section of Virology, Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Ricardo Ishak
- Section of Virology, Department of Infectious Disease, Imperial College London, London, United Kingdom
| |
Collapse
|
3
|
Vieira BA, Bidinotto AB, Dartora WJ, Pedrotti LG, de Oliveira VM, Wendland EM. Prevalence of human T-lymphotropic virus type 1 and 2 (HTLV-1/-2) infection in pregnant women in Brazil: a systematic review and meta-analysis. Sci Rep 2021; 11:15367. [PMID: 34321555 PMCID: PMC8319321 DOI: 10.1038/s41598-021-94934-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 07/05/2021] [Indexed: 01/17/2023] Open
Abstract
Human T-lymphotropic virus type 1 (HTLV-1) infection may cause serious disease, while pathogenicity of HTLV-2 is less certain. There are no screening or surveillance programs for HTLV-1/-2 infection in Brazil. By performing this systematic review, we aimed to estimate the prevalence of HTLV-1/-2 infections in pregnant women in Brazil. This review included cohort and cross-sectional studies that assessed the presence of either HTLV-1/-2 infection in pregnant women in Brazil. We searched BVS/LILACS, Cochrane Library/CENTRAL, EMBASE, PubMed/MEDLINE, Scopus, Web of Science and gray literature from inception to August 2020. We identified 246 records in total. Twenty-six of those were included in the qualitative synthesis, while 17 of them were included in the meta-analysis. The prevalence of HTLV-1 in Brazilian pregnant women, as diagnosed by a positive screening test and a subsequent positive confirmatory test, was 0.32% (95% CI 0.19-1.54), while of HTLV-2 was 0.04% (95% CI 0.02-0.08). Subgroup analysis by region showed the highest prevalence in the Northeast region (0.60%; 95% CI 0.37-0.97) for HTLV-1 and in the South region (0.16%; 95% CI 0.02-1.10) for HTLV-2. The prevalence of HTLV-1 is much higher than HTLV-2 infection in pregnant Brazilian women with important differences between regions. The prevalence of both HTLV-1/-2 are higher in the Northeast compared to Center-West region.
Collapse
Affiliation(s)
| | | | | | | | | | - Eliana Márcia Wendland
- Hospital Moinhos de Vento, Porto Alegre, Brazil.
- Public Health Department, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil.
| |
Collapse
|
4
|
Brites C, Grassi MF, Quaresma JAS, Ishak R, Vallinoto ACR. Pathogenesis of HTLV-1 infection and progression biomarkers: An overview. Braz J Infect Dis 2021; 25:101594. [PMID: 34256025 PMCID: PMC9392164 DOI: 10.1016/j.bjid.2021.101594] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/12/2021] [Accepted: 06/03/2021] [Indexed: 12/12/2022] Open
Abstract
Infection by human T-cell lymphotropic virus type 1 (HTLV-1) occurs in lymphocytes, which travel throughout the body, thus affecting several target organs and causing varied clinical outcomes, particularly in populations that are underserved and do not have access to healthcare. However, the mechanism of pathogenesis is not yet fully understood. The TAX and HTLV-1 basic leucine zipper factor (HBZ) proteins maintain viral persistence and affect pathogenesis through cell proliferation and immune and inflammatory responses that accompany each clinical manifestation. TAX expression leads to inhibition of transcription error control, OX40 overexpression, and cell proliferation in adult T-cell leukemia (ATL). OX40 levels are elevated in the central nervous system (CNS), and the expression of TAX in the CNS causes neuronal damage and loss of immune reactivity among patients with HTLV-1-associated myelopathy (HAM). HBZ reduces viral replication and suppresses the immune response. Its cell compartmentalization has been associated with the pathogenesis of HAM (cytoplasmic localization) and ATL (nuclear localization). TAX and HBZ seem to act antagonistically in immune responses, affecting the pathogenesis of HTLV-1 infection. The progression from HTLV-1 infection to disease is a consequence of HTLV-1 replication in CD4+ T and CD8+ T lymphocytes and the imbalance between proinflammatory and anti-inflammatory cytokines. The compartmentalization of HBZ suggests that this protein may be an additional tool for assessing immune and inflammatory responses, in addition to those already recognized as potential biomarkers associated with progression from infection to disease (including human leukocyte antigen (HLA), killer immunoglobulin-like receptors (KIR), interleukin (IL)-6, IL-10, IL-28, Fas, Fas ligand, interferon (IFN)-γ, tumor necrosis factor (TNF)-α, and mannose-binding lectin).
Collapse
Affiliation(s)
- Carlos Brites
- Federal University of Bahia (UFBA), Professor Edgard Santos University Hospital Complex, Laboratory of Infectious Diseases Research, Salvador, BA, Brazil
| | | | | | - Ricardo Ishak
- Federal University of Pará (UFPA), Institute of Biological Sciences, Laboratory of Virology, Belém, PA, Brazil
| | | |
Collapse
|
5
|
Rosadas C, Brites C, Arakaki-Sanchez D, Casseb J, Ishak R. Brazilian Protocol for Sexually Transmitted Infections 2020: human T-cell lymphotropic virus (HTLV) infection. Rev Soc Bras Med Trop 2021; 54:e2020605. [PMID: 34008723 PMCID: PMC8210483 DOI: 10.1590/0037-8682-605-2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/10/2021] [Indexed: 12/26/2022] Open
Abstract
This article addresses the Human T-lymphotropic virus (HTLV). This subject comprises the Clinical Protocol and Therapeutic Guidelines for Comprehensive Care for People with Sexually Transmitted Infections, published by the Brazilian Ministry of Health. HTLV-1/2 infection is a public health problem globally, and Brazil has the largest number of individuals living with the virus. HTLV-1 causes several clinical manifestations of neoplasm (adult T-cell leukemia/lymphoma) and inflammatory nature, such as HTLV-1-associated myelopathy and other manifestations such as uveitis, arthritis, and infective dermatitis. These pathologies have high morbidity and mortality and negatively impact the quality of life of infected individuals. This review includes relevant information for health authorities professionals regarding viral transmission, diagnosis, treatment, and monitoring of individuals living with HTLV-1 and 2 in Brazil. HTLV-1/2 transmission can occur through blood transfusion and derivatives, injectable drug use, organ transplantation, unprotected sexual intercourse, and vertical transmission.
Collapse
Affiliation(s)
- Carolina Rosadas
- Imperial College London, Department of Infectious Disease, London, United Kingdom
| | - Carlos Brites
- Universidade Federal da Bahia, Faculdade de Medicina, Salvador, BA, Brasil
| | | | - Jorge Casseb
- Universidade de São Paulo, Faculdade de Medicina, São Paulo, SP, Brasil
| | - Ricardo Ishak
- Universidade Federal do Pará, Instituto de Ciências Biológicas, Belém, PA, Brasil
| |
Collapse
|
6
|
Rosadas C, Brites C, Arakaki-Sánchez D, Casseb J, Ishak R. [Brazilian Protocol for Sexually Transmitted Infections 2020: human T cell lymphotropic virus (HTLV) infection]. ACTA ACUST UNITED AC 2021; 30:e2020605. [PMID: 33729406 DOI: 10.1590/s1679-497420200006000015.esp1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 10/07/2020] [Indexed: 11/22/2022]
Abstract
This manuscript is related to the chapter about human T-cell lymphotropic virus (HTLV) that is part of the Clinical Protocol and Therapeutic Guidelines for Comprehensive Care for People with Sexually Transmitted Infections, published by the Brazilian Health Ministry. HTLV-1/2 infection is a worldwide public health problem and Brazil has the largest number of individuals living with the virus. HTLV-1 causes a variety of clinical manifestations of a neoplastic nature, such as adult leukemia/T-cell lymphoma, and also of an inflammatory nature, such as HTLV-1-associated myelopathy, as well as other manifestations such as uveitis, arthritis and infective dermatitis. These pathologies have high morbidity and mortality and negatively impact the quality of life of infected individuals. This review includes relevant information for health service managers and workers regarding virus transmission modes, diagnosis, treatment and monitoring of individuals living with HTLV-1 and 2 in Brazil.
Collapse
Affiliation(s)
- Carolina Rosadas
- Imperial College London, Department of Infectious Disease, Londres, Reino Unido
| | - Carlos Brites
- Universidade Federal da Bahia, Faculdade de Medicina, Salvador, BA, Brasil
| | | | - Jorge Casseb
- Universidade de São Paulo, Faculdade de Medicina, São Paulo, SP, Brasil
| | - Ricardo Ishak
- Universidade Federal do Pará, Instituto de Ciências Biológicas, Belém, PA, Brasil
| |
Collapse
|
7
|
Savoret J, Mesnard JM, Gross A, Chazal N. Antisense Transcripts and Antisense Protein: A New Perspective on Human Immunodeficiency Virus Type 1. Front Microbiol 2021; 11:625941. [PMID: 33510738 PMCID: PMC7835632 DOI: 10.3389/fmicb.2020.625941] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 12/14/2020] [Indexed: 12/13/2022] Open
Abstract
It was first predicted in 1988 that there may be an Open Reading Frame (ORF) on the negative strand of the Human Immunodeficiency Virus type 1 (HIV-1) genome that could encode a protein named AntiSense Protein (ASP). In spite of some controversy, reports began to emerge some years later describing the detection of HIV-1 antisense transcripts, the presence of ASP in transfected and infected cells, and the existence of an immune response targeting ASP. Recently, it was established that the asp gene is exclusively conserved within the pandemic group M of HIV-1. In this review, we summarize the latest findings on HIV-1 antisense transcripts and ASP, and we discuss their potential functions in HIV-1 infection together with the role played by antisense transcripts and ASPs in some other viruses. Finally, we suggest pathways raised by the study of antisense transcripts and ASPs that may warrant exploration in the future.
Collapse
Affiliation(s)
- Juliette Savoret
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS, Université de Montpellier, Montpellier, France
| | - Jean-Michel Mesnard
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS, Université de Montpellier, Montpellier, France
| | - Antoine Gross
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS, Université de Montpellier, Montpellier, France
| | - Nathalie Chazal
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS, Université de Montpellier, Montpellier, France
| |
Collapse
|
8
|
Chabay P, Lens D, Hassan R, Rodríguez Pinilla SM, Valvert Gamboa F, Rivera I, Huamán Garaicoa F, Ranuncolo SM, Barrionuevo C, Morales Sánchez A, Scholl V, De Matteo E, Preciado MV, Fuentes-Pananá EM. Lymphotropic Viruses EBV, KSHV and HTLV in Latin America: Epidemiology and Associated Malignancies. A Literature-Based Study by the RIAL-CYTED. Cancers (Basel) 2020; 12:E2166. [PMID: 32759793 PMCID: PMC7464376 DOI: 10.3390/cancers12082166] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/11/2020] [Accepted: 07/15/2020] [Indexed: 02/06/2023] Open
Abstract
The Epstein-Barr virus (EBV), Kaposi sarcoma herpesvirus (KSHV) and human T-lymphotropic virus (HTLV-1) are lymphomagenic viruses with region-specific induced morbidity. The RIAL-CYTED aims to increase the knowledge of lymphoma in Latin America (LA), and, as such, we systematically analyzed the literature to better understand our risk for virus-induced lymphoma. We observed that high endemicity regions for certain lymphomas, e.g., Mexico and Peru, have a high incidence of EBV-positive lymphomas of T/NK cell origin. Peru also carries the highest frequency of EBV-positive classical Hodgkin lymphoma (HL) and EBV-positive diffuse large B cell lymphoma, not otherwise specified (NOS), than any other LA country. Adult T cell lymphoma is endemic to the North of Brazil and Chile. While only few cases of KSHV-positive lymphomas were found, in spite of the close correlation of Kaposi sarcoma and the prevalence of pathogenic types of KSHV. Both EBV-associated HL and Burkitt lymphoma mainly affect young children, unlike in developed countries, in which adolescents and young adults are the most affected, correlating with an early EBV seroconversion for LA population despite of lack of infectious mononucleosis symptoms. High endemicity of KSHV and HTLV infection was observed among Amerindian populations, with differences between Amazonian and Andean populations.
Collapse
Affiliation(s)
- Paola Chabay
- Multidisciplinary Institute for Investigation in Pediatric Pathologies (IMIPP), CONICET-GCBA, Molecular Biology Laboratory, Pathology Division, Ricardo Gutiérrez Children’s Hospital, C1425EFD Buenos Aires, Argentina; (P.C.); (E.D.M.); (M.V.P.)
| | - Daniela Lens
- Flow Cytometry and Molecular Biology Laboratory, Departamento Básico de Medicina, Hospital de Clínicas/Facultad de Medicina, Universidad de la República, CP 11600 Montevideo, Uruguay;
| | - Rocio Hassan
- Oncovirology Laboratory, Bone Marrow Transplantation Center, National Cancer Institute “José Alencar Gomes da Silva” (INCA), Ministry of Health, 20230-130 Rio de Janeiro, Brazil;
| | | | - Fabiola Valvert Gamboa
- Department of Medical Oncology, Cancer Institute and National League against Cancer, 01011 Guatemala City, Guatemala;
| | - Iris Rivera
- Department of Hematology, Salvadoran Institute of Social Security, Medical Surgical and Oncological Hospital (ISSS), 1101 San Salvador, El Salvador;
| | - Fuad Huamán Garaicoa
- Department of Pathology, National Cancer Institute—Society to Fight Cancer (ION-SOLCA), Santiago de Guayaquil Catholic University, Guayaquil 090615, Ecuador;
| | - Stella Maris Ranuncolo
- Cell Biology Department, Institute of Oncology “Angel H. Roffo” School of Medicine, University of Buenos Aires, C1417DTB Buenos Aires, Argentina;
| | - Carlos Barrionuevo
- Department of Pathology, National Institute of Neoplastic Diseases, National University of San Marcos, 15038 Lima, Peru;
| | - Abigail Morales Sánchez
- Research Unit in Virology and Cancer, Children’s Hospital of Mexico Federico Gómez, 06720 Mexico City, Mexico;
| | - Vanesa Scholl
- Department of Integrated Genomic Medicine, Conciencia-Oncohematologic Institute of Patagonia, 8300 Neuquén, Argentina;
| | - Elena De Matteo
- Multidisciplinary Institute for Investigation in Pediatric Pathologies (IMIPP), CONICET-GCBA, Molecular Biology Laboratory, Pathology Division, Ricardo Gutiérrez Children’s Hospital, C1425EFD Buenos Aires, Argentina; (P.C.); (E.D.M.); (M.V.P.)
| | - Ma. Victoria Preciado
- Multidisciplinary Institute for Investigation in Pediatric Pathologies (IMIPP), CONICET-GCBA, Molecular Biology Laboratory, Pathology Division, Ricardo Gutiérrez Children’s Hospital, C1425EFD Buenos Aires, Argentina; (P.C.); (E.D.M.); (M.V.P.)
| | - Ezequiel M. Fuentes-Pananá
- Research Unit in Virology and Cancer, Children’s Hospital of Mexico Federico Gómez, 06720 Mexico City, Mexico;
| |
Collapse
|
9
|
Ishak R, Guimarães Ishak MDO, Azevedo VN, Machado LFA, Vallinoto IMC, Queiroz MAF, Costa GDLC, Guerreiro JF, Vallinoto ACR. HTLV in South America: Origins of a silent ancient human infection. Virus Evol 2020; 6:veaa053. [PMID: 33133639 PMCID: PMC7585626 DOI: 10.1093/ve/veaa053] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The description of the first human retrovirus, human T-lymphotropic virus 1 (HTLV-1), was soon associated with an aggressive lymphoma and a chronic inflammatory neurodegenerative disease. Later, other associated clinical manifestations were described, affecting diverse target organs in the human body and showing the enormous burden carried by the virus and the associated diseases. The epidemiology of HTLV-1 and HTLV-2 showed that they were largely distributed around the world, although it is possible to locate geographical areas with pockets of low and very high prevalence and incidence. Aboriginal Australians and indigenous peoples of Brazil are examples of the large spread of HTLV-1 and HTLV-2, respectively. The epidemiological link of both situations is their occurrence among isolated, epidemiologically closed or semi-closed communities. The origin of the viruses in South America shows two different branches with distinct timing of entry. HTLV-1 made its probable entrance in a more recent route through the east coast of Brazil at the beginning of the slave trade from the African continent, starting in the 16th century and lasting for more than 350 years. HTLV-2 followed the ancient route of human migration from the Asian continent, crossing the Behring Strait and then splitting in South America as the population became separated by the Andes Mountains. By that time, HTLV-2c probably arose and became isolated among the indigenous populations in the Brazilian Amazon. The study of epidemiologically closed communities of indigenous populations in Brazil allowed tracing the most likely route of entry, the generation of a new molecular subtype (HTLV-2c), the elucidation of the vertical transmission of HTLV-2, the intrafamilial aggregation of cases and the escape and spread of the virus to other areas in Brazil and abroad. Despite the burden and impact of both viruses, they are maintained as silent infections among human populations because 1, health authorities in most South American countries in which national surveillance is poor have little interest in the disease, 2, the information is commonly lost as indigenous groups do not have specific policies for HTLV and other sexually transmitted infections, and 3, health access is not feasible or properly delivered.
Collapse
Affiliation(s)
- Ricardo Ishak
- Laboratório de Virologia, Instituto de Ciências Biológicas, Universidade Federal do Pará, Rua Augusto Correa no.1, Guama, 66075-110, Belem, Para, Brazil
| | - Marluísa de Oliveira Guimarães Ishak
- Laboratório de Virologia, Instituto de Ciências Biológicas, Universidade Federal do Pará, Rua Augusto Correa no.1, Guama, 66075-110, Belem, Para, Brazil
| | - Vânia Nakauth Azevedo
- Laboratório de Virologia, Instituto de Ciências Biológicas, Universidade Federal do Pará, Rua Augusto Correa no.1, Guama, 66075-110, Belem, Para, Brazil
| | - Luiz Fernando Almeida Machado
- Laboratório de Virologia, Instituto de Ciências Biológicas, Universidade Federal do Pará, Rua Augusto Correa no.1, Guama, 66075-110, Belem, Para, Brazil
| | - Izaura Maria Cayres Vallinoto
- Laboratório de Virologia, Instituto de Ciências Biológicas, Universidade Federal do Pará, Rua Augusto Correa no.1, Guama, 66075-110, Belem, Para, Brazil
| | - Maria Alice Freitas Queiroz
- Laboratório de Virologia, Instituto de Ciências Biológicas, Universidade Federal do Pará, Rua Augusto Correa no.1, Guama, 66075-110, Belem, Para, Brazil
| | - Greice de Lemos Cardoso Costa
- Laboratório de Genética Humana e Médica, Instituto de Ciências Biológicas, Universidade Federal do Pará, Rua Augusto Correa no.1, Guama, 66075-110, Belem, Para, Brazil
| | - João Farias Guerreiro
- Laboratório de Genética Humana e Médica, Instituto de Ciências Biológicas, Universidade Federal do Pará, Rua Augusto Correa no.1, Guama, 66075-110, Belem, Para, Brazil
| | - Antonio Carlos Rosário Vallinoto
- Laboratório de Virologia, Instituto de Ciências Biológicas, Universidade Federal do Pará, Rua Augusto Correa no.1, Guama, 66075-110, Belem, Para, Brazil
| |
Collapse
|
10
|
Ishak R, de Oliveira Guimarães Ishak M, Vallinoto ACR. The challenge of describing the epidemiology of HTLV in the Amazon region of Brazil. Retrovirology 2020; 17:4. [PMID: 32059740 PMCID: PMC7023703 DOI: 10.1186/s12977-020-0512-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 02/09/2020] [Indexed: 12/27/2022] Open
Abstract
HTLV-1 was the first described human retrovirus and was soon found to be associated with severe clinical diseases, including a devastating lymphoma/leukemia and other inflammatory diseases. Although HTLV-2 is not usually pathogenic, it is widely distributed among native Indian populations in Brazil, particularly in the Amazon region of the country. Presently, HTLV spreads mainly by the sexual route and from mother to child, and virus persistence is an active biological factor aiding its transmission. Recently, the use of illicit drugs has been shown to be an additional risk factor, showing the influence of new habits on the epidemiology of HTLV in the region. Despite the detection of the virus in several different populations in the Amazon region of Brazil for almost 30 years, the exact prevalence of HTLV-1/2 is not well defined. The original biases in sampling and the selection of epidemiologically unsuitable populations were commonly repeated in most prevalence studies, generating unreliable and conflicting figures that do not represent the actual prevalence of HTLV. The improvements in clinical and laboratory facilities have resulted in the description of several clinical manifestations that were previously unknown in the region. The extent of the spread of the virus must be defined in this region, which is the largest geographical area of the country. As prophylaxis advances toward the use of vaccines against HTLV-1, it is important to determine who is at risk of being infected and developing a disease to successfully implement preventive measures, particularly as proposals are made to eradicate the virus among humans.
Collapse
Affiliation(s)
- Ricardo Ishak
- Laboratório de Virologia, Instituto de Ciências Biológicas, Universidade Federal do Pará, Rua Augusto Corrêa no.1, Belém, Pará, 66075-110, Brazil.
| | - Marluísa de Oliveira Guimarães Ishak
- Laboratório de Virologia, Instituto de Ciências Biológicas, Universidade Federal do Pará, Rua Augusto Corrêa no.1, Belém, Pará, 66075-110, Brazil
| | - Antonio Carlos R Vallinoto
- Laboratório de Virologia, Instituto de Ciências Biológicas, Universidade Federal do Pará, Rua Augusto Corrêa no.1, Belém, Pará, 66075-110, Brazil
| |
Collapse
|
11
|
Discovery and characterization of auxiliary proteins encoded by type 3 simian T-cell lymphotropic viruses. J Virol 2014; 89:931-51. [PMID: 25355890 DOI: 10.1128/jvi.02150-14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
UNLABELLED Human T-cell lymphotropic virus type 1 (HTLV-1) and HTLV-2 encode auxiliary proteins that play important roles in viral replication, viral latency, and immune escape. The presence of auxiliary protein-encoding open reading frames (ORFs) in HTLV-3, the latest HTLV to be discovered, is unknown. Simian T-cell lymphotropic virus type 3 (STLV-3) is almost identical to HTLV-3. Given the lack of HTLV-3-infected cell lines, we took advantage of STLV-3-infected cells and of an STLV-3 molecular clone to search for the presence of auxiliary transcripts. Using reverse transcriptase PCR (RT-PCR), we first uncovered the presence of three unknown viral mRNAs encoding putative proteins of 5, 8, and 9 kDa and confirmed the presence of the previously reported RorfII transcript. The existence of these viral mRNAs was confirmed by using splice site-specific RT-PCR with ex vivo samples. We showed that p5 is distributed throughout the cell and does not colocalize with a specific organelle. The p9 localization is similar to that of HTLV-1 p12 and induced a strong decrease in the calreticulin signal, similarly to HTLV-1 p12. Although p8, RorfII, and Rex-3 share an N-terminal sequence that is predicted to contain a nucleolar localization signal (NoLS), only p8 is found in the nucleolus. The p8 location in the nucleolus is linked to a bipartite NoLS. p8 and, to a lesser extent, p9 repressed viral expression but did not alter Rex-3-dependent mRNA export. Using a transformation assay, we finally showed that none of the STLV-3 auxiliary proteins had the ability to induce colony formation, while both Tax-3 and antisense protein of HTLV-3 (APH-3) promoted cellular transformation. Altogether, these results complete the characterization of the newly described primate T-lymphotropic virus type 3 (PTLV-3). IMPORTANCE Together with their simian counterparts, HTLVs form the primate T-lymphotropic viruses. HTLVs arose from interspecies transmission between nonhuman primates and humans. HTLV-1 and HTLV-2 encode auxiliary proteins that play important roles in viral replication, viral latency, and immune escape. The presence of ORFs encoding auxiliary proteins in HTLV-3 or STLV-3 genomes was unknown. Using in silico analyses, ex vivo samples, or in vitro experiments, we have uncovered the presence of 3 previously unknown viral mRNAs encoding putative proteins and confirmed the presence of a previously reported viral transcript. We characterized the intracellular localization of the four proteins. We showed that two of these proteins repress viral expression but that none of them have the ability to induce colony formation. However, both Tax and the antisense protein APH-3 promote cell transformation. Our results allowed us to characterize 4 new retroviral proteins for the first time.
Collapse
|
12
|
Human T-cell leukemia virus type 3 (HTLV-3) and HTLV-4 antisense-transcript-encoded proteins interact and transactivate Jun family-dependent transcription via their atypical bZIP motif. J Virol 2014; 88:8956-70. [PMID: 24872589 DOI: 10.1128/jvi.01094-14] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Human T-cell leukemia virus types 3 and 4 (HTLV-3 and HTLV-4) are recently isolated retroviruses. We have previously characterized HTLV-3- and HTLV-4-encoded antisense genes, termed APH-3 and APH-4, respectively, which, in contrast to HBZ, the HTLV-1 homologue, do not contain a typical bZIP domain (M. Larocque É Halin, S. Landry, S. J. Marriott, W. M. Switzer, and B. Barbeau, J. Virol. 85:12673-12685, 2011, doi:10.1128/JVI.05296-11). As HBZ differentially modulates the transactivation potential of various Jun family members, the effect of APH-3 and APH-4 on JunD-, c-Jun-, and JunB-mediated transcriptional activation was investigated. We first showed that APH-3 and APH-4 upregulated the transactivation potential of all tested Jun family members. Using an human telomerase catalytic subunit (hTERT) promoter construct, our results also highlighted that, unlike HBZ, which solely modulates hTERT expression via JunD, both APH-3 and APH-4 acted positively on the transactivation of the hTERT promoter mediated by tested Jun factors. Coimmunoprecipitation experiments demonstrated that these Jun proteins interacted with APH-3 and APH-4. Although no activation domain was identified for APH proteins, the activation domain of c-Jun was very important in the observed upregulation of its activation potential. We further showed that APH-3 and APH-4 required their putative bZIP-like domains and corresponding leucine residues for interaction and modulation of the transactivation potential of Jun factors. Our results demonstrate that HTLV-encoded antisense proteins behave differently, and that the bZIP-like domains of both APH-3 and APH-4 have retained their interaction potential for Jun members. These studies are important in assessing the differences between HBZ and other antisense proteins, which might further contribute to determining the role of HBZ in HTLV-1-associated diseases. IMPORTANCE HBZ, the antisense transcript-encoded protein from HTLV-1, is now well recognized as a potential factor for adult T-cell leukemia/lymphoma development. In order to better appreciate the mechanism of action of HBZ, comparison to antisense proteins from other HTLV viruses is important. Little is known in relation to the seemingly nonpathogenic HTLV-3 and HTLV-4 viruses, and studies of their antisense proteins are limited to our previously reported study (M. Larocque É Halin, S. Landry, S. J. Marriott, W. M. Switzer, and B. Barbeau, J. Virol. 85:12673-12685, 2011, doi:10.1128/JVI.05296-11). Here, we demonstrate that Jun transcription factors are differently affected by APH-3 and APH-4 compared to HBZ. These intriguing findings suggest that these proteins act differently on viral replication but also on cellular gene expression, and that highlighting their differences of action might lead to important information allowing us to understand the link between HTLV-1 HBZ and ATL in infected individuals.
Collapse
|
13
|
LeBreton M, Switzer WM, Djoko CF, Gillis A, Jia H, Sturgeon MM, Shankar A, Zheng H, Nkeunen G, Tamoufe U, Nana A, Le Doux Diffo J, Tafon B, Kiyang J, Schneider BS, Burke DS, Wolfe ND. A gorilla reservoir for human T-lymphotropic virus type 4. Emerg Microbes Infect 2014; 3:e7. [PMID: 26038495 PMCID: PMC3913825 DOI: 10.1038/emi.2014.7] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 12/05/2013] [Accepted: 12/10/2013] [Indexed: 12/18/2022]
Abstract
Of the seven known species of human retroviruses only one, human T-cell lymphotropic virus type 4 (HTLV-4), lacks a known animal reservoir. We report the largest screening for simian T-cell lymphotropic virus (STLV-4) to date in a wide range of captive and wild non-human primate (NHP) species from Cameroon. Among the 681 wild and 426 captive NHPs examined, we detected STLV-4 infection only among gorillas by using HTLV-4-specific quantitative polymerase chain reaction. The large number of samples analyzed, the diversity of NHP species examined, the geographic distribution of infected animals relative to the known HTLV-4 case, as well as detailed phylogenetic analyses on partial and full genomes, indicate that STLV-4 is endemic to gorillas, and that rather than being an ancient virus among humans, HTLV-4 emerged from a gorilla reservoir, likely through the hunting and butchering of wild gorillas. Our findings shed further light on the importance of gorillas as keystone reservoirs for the evolution and emergence of human infectious diseases and provide a clear course for preventing HTLV-4 emergence through management of human contact with wild gorillas, the development of improved assays for HTLV-4/STLV-4 detection and the ongoing monitoring of STLV-4 among gorillas and for HTLV-4 zoonosis among individuals exposed to gorilla populations.
Collapse
Affiliation(s)
- Matthew LeBreton
- Mosaic, (Environment, Health, Data, Technology) , Yaoundé, Cameroon ; Global Viral Cameroon , BP 7039 Yaounde, Cameroon ; Metabiota , San Francisco, CA 94104, USA
| | - William M Switzer
- Laboratory Branch, Division of HIV/AIDS Prevention, National Center for HIV, Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention , Atlanta, GA 30333, USA
| | | | - Amethyst Gillis
- Global Viral Cameroon , BP 7039 Yaounde, Cameroon ; Metabiota , San Francisco, CA 94104, USA
| | - Hongwei Jia
- Laboratory Branch, Division of HIV/AIDS Prevention, National Center for HIV, Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention , Atlanta, GA 30333, USA
| | - Michele M Sturgeon
- Laboratory Branch, Division of HIV/AIDS Prevention, National Center for HIV, Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention , Atlanta, GA 30333, USA
| | - Anupama Shankar
- Laboratory Branch, Division of HIV/AIDS Prevention, National Center for HIV, Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention , Atlanta, GA 30333, USA
| | - Haoqiang Zheng
- Laboratory Branch, Division of HIV/AIDS Prevention, National Center for HIV, Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention , Atlanta, GA 30333, USA
| | | | - Ubald Tamoufe
- Global Viral Cameroon , BP 7039 Yaounde, Cameroon ; Metabiota , San Francisco, CA 94104, USA
| | - Ahmadou Nana
- Global Viral Cameroon , BP 7039 Yaounde, Cameroon
| | | | - Babila Tafon
- Ape Action Africa, Cameroon , BP 20072 Yaounde, Cameroon
| | | | | | - Donald S Burke
- Graduate School of Public Health, University of Pittsburgh , Pittsburgh, PA 15213, USA
| | - Nathan D Wolfe
- Metabiota , San Francisco, CA 94104, USA ; Program in Human Biology, Stanford University , Stanford, CA 94305, USA ; Global Viral , San Francisco, CA 94104, USA
| |
Collapse
|
14
|
Treviño A, Aguilera A, Caballero E, Benito R, Parra P, Eiros JM, Hernandez A, Calderón E, Rodríguez M, Torres A, García J, Ramos JM, Roc L, Marcaida G, Rodríguez C, Trigo M, Gomez C, de Lejarazu RO, de Mendoza C, Soriano V. Trends in the prevalence and distribution of HTLV-1 and HTLV-2 infections in Spain. Virol J 2012; 9:71. [PMID: 22444832 PMCID: PMC3337814 DOI: 10.1186/1743-422x-9-71] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Accepted: 03/23/2012] [Indexed: 11/24/2022] Open
Abstract
Background Although most HTLV infections in Spain have been found in native intravenous drug users carrying HTLV-2, the large immigration flows from Latin America and Sub-Saharan Africa in recent years may have changed the prevalence and distribution of HTLV-1 and HTLV-2 infections, and hypothetically open the opportunity for introducing HTLV-3 or HTLV-4 in Spain. To assess the current seroprevalence of HTLV infection in Spain a national multicenter, cross-sectional, study was conducted in June 2009. Results A total of 6,460 consecutive outpatients attending 16 hospitals were examined. Overall, 12% were immigrants, and their main origin was Latin America (4.9%), Africa (3.6%) and other European countries (2.8%). Nine individuals were seroreactive for HTLV antibodies (overall prevalence, 0.14%). Evidence of HTLV-1 infection was confirmed by Western blot in 4 subjects (prevalence 0.06%) while HTLV-2 infection was found in 5 (prevalence 0.08%). Infection with HTLV types 1, 2, 3 and 4 was discarded by Western blot and specific PCR assays in another two specimens initially reactive in the enzyme immunoassay. All but one HTLV-1 cases were Latin-Americans while all persons with HTLV-2 infection were native Spaniards. Conclusions The overall prevalence of HTLV infections in Spain remains low, with no evidence of HTLV-3 or HTLV-4 infections so far.
Collapse
Affiliation(s)
- Ana Treviño
- Infectious Diseases Department, Hospital Carlos III, Calle Sinesio Delgado 10, Madrid 28029, Spain.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Nyland SB, Krissinger DJ, Clemente MJ, Irby RB, Baab KT, Jarbadan NR, Sokol L, Schaefer E, Liao J, Cuthbertson D, Epling-Burnette P, Paquette R, List AF, Maciejewski JP, Loughran TP. Seroreactivity to LGL leukemia-specific epitopes in aplastic anemia, myelodysplastic syndrome and paroxysmal nocturnal hemoglobinuria: results of a bone marrow failure consortium study. Leuk Res 2012; 36:581-7. [PMID: 22386729 DOI: 10.1016/j.leukres.2012.02.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Revised: 12/02/2011] [Accepted: 02/03/2012] [Indexed: 12/21/2022]
Abstract
Large granular lymphocyte (LGL) leukemia is characterized by clonal expansion of antigen-activated cytotoxic T cells (CTL). Patients frequently exhibit seroreactivity against a human T-cell leukemia virus (HTLV) epitope, BA21. Aplastic anemia, paroxysmal nocturnal hemoglobinuria and myelodysplastic syndrome are bone marrow failure diseases that can also be associated with similar aberrant CTL activation (LGL-BMF). We identified a BA21 peptide that was specifically reactive with LGL leukemia sera and found significantly elevated antibody reactivity against the same peptide in LGL-BMF sera. This finding of shared seroreactivity in LGL-BMF conditions and LGL leukemia suggests that these diseases might share a common pathogenesis.
Collapse
Affiliation(s)
- Susan Bell Nyland
- Penn State Hershey Cancer Institute, Penn State Hershey College of Medicine, Hershey, PA, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Human T-cell lymphotropic virus type 3 (HTLV-3)- and HTLV-4-derived antisense transcripts encode proteins with similar Tax-inhibiting functions but distinct subcellular localization. J Virol 2011; 85:12673-85. [PMID: 21917984 DOI: 10.1128/jvi.05296-11] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The human T-cell lymphotropic virus (HTLV) retrovirus family is composed of the well-known HTLV type 1 (HTLV-1) and HTLV-2 and the most recently discovered HTLV-3 and HTLV-4. Like other retroviruses, HTLV-1 and HTLV-2 gene expression has been thought to be orchestrated through a single transcript. However, recent reports have demonstrated the unique potential of both HTLV-1 and HTLV-2 to produce an antisense transcript. Furthermore, these unexpected and newly identified transcripts lead to the synthesis of viral proteins termed HBZ (HTLV-1 basic leucine zipper) and APH-2 (antisense protein of HTLV-2), respectively. As potential open reading frames are present on the antisense strand of HTLV-3 and HTLV-4, we tested whether in vitro antisense transcription occurred in these viruses and whether these transcripts had a coding potential. Using HTLV-3 and HTLV-4 proviral DNA constructs, antisense transcripts were detected by reverse transcriptase PCR. These transcripts are spliced and polyadenylated and initiate at multiple sites from the 3' long terminal repeat (LTR). The resulting proteins, termed APH-3 and APH-4, are devoid of a typical basic leucine zipper domain but contain basic amino acid-rich regions. Confocal microscopy and Western blotting experiments demonstrated a nucleus-restricted pattern for APH-4, while APH-3 was localized both in the cytoplasm and in the nucleus. Both proteins showed partial colocalization with nucleoli and HBZ-associated structures. Finally, both proteins inhibited Tax1- and Tax3-mediated HTLV-1 and HTLV-3 LTR activation. These results further demonstrate that retroviral antisense transcription is not exclusive to HTLV-1 and HTLV-2 and that APH-3 and APH-4 could impact HTLV-3 and HTLV-4 replication.
Collapse
|
17
|
Treviño A, Benito R, Caballero E, Ramos JM, Parra P, Roc L, Eiros JM, Aguilera A, García J, Cifuentes C, Marcaida G, Rodríguez C, Trigo M, Arroyo LA, de Mendoza C, de Lejarazu RO, Soriano V. HTLV infection among foreign pregnant women living in Spain. J Clin Virol 2011; 52:119-22. [PMID: 21782504 DOI: 10.1016/j.jcv.2011.06.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Revised: 05/23/2011] [Accepted: 06/24/2011] [Indexed: 12/25/2022]
Abstract
BACKGROUND The overall seroprevalence of HTLV infection among pregnant women in Spain is below 0.02% and accordingly universal antenatal screening is not recommended. However, as the number of immigrants has significantly increased during the last decade, this population might warrant specific considerations. OBJECTIVE To evaluate the seroprevalence of HTLV infection among immigrant pregnant women living in Spain. METHODS From January 2009 to December 2010 a cross-sectional study was carried out in all foreign pregnant women attended at 14 Spanish clinics. All were tested for HTLV antibodies using a commercial enzyme-immunoassay, being reactive samples confirmed by Western blot or PCR. RESULTS A total of 3337 foreign pregnant women were examined. Their origin was as follows: Latin America 1579 (47%), North Africa 507 (16%), East Europe 606 (18%), Sub-Saharan Africa 316 (9%), North America and West Europe 116 (3.5%) and Asia and Australia 163 (5%). A total of 7 samples were confirmed as HTLV positive, of which 6 were HTLV-1 and 1 HTLV-2. HTLV-1 infection was found in 5 women coming from Latin America and 1 from Morocco. The only woman with HTLV-2 came from Ghana. The overall HTLV seroprevalence was 0.2%, being 0.3% among Latin Americans and 0.2% among Africans. It was absent among women coming from other regions. CONCLUSIONS The seroprevalence of HTLV infection among foreign pregnant women in Spain is 0.2%, being all cases found in immigrants from Latin America and Africa. Given the benefit of preventing vertical transmission, antenatal screening should be recommended in pregnant women coming from these regions.
Collapse
Affiliation(s)
- Ana Treviño
- Infectious Diseases Department, Hospital Carlos III, Calle Sinesio Delgado 10, Madrid, Spain.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Mahieux R, Gessain A. HTLV-3/STLV-3 and HTLV-4 viruses: discovery, epidemiology, serology and molecular aspects. Viruses 2011; 3:1074-90. [PMID: 21994771 PMCID: PMC3185789 DOI: 10.3390/v3071074] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Revised: 06/21/2011] [Accepted: 07/06/2011] [Indexed: 12/28/2022] Open
Abstract
Human T cell leukemia/lymphoma virus Type 1 and 2 (HTLV-1 and HTLV-2), together with their simian counterparts (STLV-1, STLV-2), belong to the Primate T lymphotropic viruses group (PTLV). The high percentage of homologies between HTLV-1 and STLV-1 strains, led to the demonstration that most HTLV-1 subtypes arose from interspecies transmission between monkeys and humans. STLV-3 viruses belong to the third PTLV type and are equally divergent from both HTLV-1 and HTLV-2. They are endemic in several monkey species that live in West, Central and East Africa. In 2005, we, and others reported the discovery of the human homolog (HTLV-3) of STLV-3 in two asymptomatic inhabitants from South Cameroon whose sera exhibited HTLV indeterminate serologies. More recently, two other cases of HTLV-3 infection in persons living in Cameroon were reported suggesting that this virus is not extremely rare in the human population living in Central Africa. Together with STLV-3, these human viral strains belong to the PTLV-3 group. A fourth HTLV type (HTLV-4) was also discovered in the same geographical area. The overall PTLV-3 and PTLV-4 genomic organization is similar to that of HTLV-1 and HTLV-2 with the exception of their long terminal repeats (LTRs) that contain only two 21 bp repeats. As in HTLV-1, HTLV-3 Tax contains a PDZ binding motif while HTLV-4 does not. An antisense transcript was also described in HTLV-3 transfected cells. PTLV-3 molecular clones are now available and will allow scientists to study the viral cycle, the tropism and the possible pathogenicity in vivo. Current studies are also aimed at determining the prevalence, distribution, and modes of transmission of these viruses, as well as their possible association with human diseases. Here we will review the characteristics of these new simian and human retroviruses, whose discovery has opened new avenues of research in the retrovirology field.
Collapse
Affiliation(s)
- Renaud Mahieux
- Equipe Oncogenèse Rétrovirale, INSERM-U758 Virologie Humaine, 69364 Lyon cedex 07, France; E-Mail:
- Ecole Normale Supérieure de Lyon, 69364 Lyon cedex 07, France
- IFR 128 Biosciences Lyon-Gerland, 69364 Lyon cedex 07, France
| | - Antoine Gessain
- Unité d'Epidémiologie et Physiopathologie des Virus Oncogènes, Département de Virologie, Institut Pasteur, 28 rue du Dr Roux, 75015 Paris, France
- CNRS URA 3015, Institut Pasteur, 28 rue du Dr Roux, 75015 Paris, France
| |
Collapse
|
19
|
Perzova R, Benz P, Abbott L, Welch C, Thomas A, Ghoul RE, Sanghi S, Nara P, Glaser J, Siegal FP, Dosik H, Poiesz BJ. Short communication: no evidence of HTLV-3 and HTLV-4 infection in New York State subjects at risk for retroviral infection. AIDS Res Hum Retroviruses 2010; 26:1229-31. [PMID: 20929392 DOI: 10.1089/aid.2010.0079] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The primate T-cell lymphoma viruses (PTLV) are divided into six distinct species. The biology and epidemiology of PTLV-1 and PTLV-2 are very well understood. However, that of PTLV-3, 4, 5, and 6 are not. Recently, in Cameroon, three and one humans were shown to be infected with HTLV-3 and HTLV-4, respectively. We undertook a study to ascertain whether any of these two retroviruses were present in the peripheral blood mononuclear cell DNA of New York State subjects deemed at risk for PTLV infection. Samples were analyzed by PTLV-3 and PTLV-4 specific PCR assays from the following human and simian subject types: African-American medical clinic patients; HTLV EIA+, WB indeterminate blood donors; intravenous drug users; patients with leukemia, lymphoma, myelopathy, polymyositis, or AIDS; and African chimpanzees. None of the 1200 subjects was positive for HTLV-3 or 4. The data indicate that, at the time of sample collection, no evidence exists for the dissemination of HTLV-3 or 4 to New York State. Continued epidemiological studies are warranted to explore the worldwide prevalence rates and dissemination patterns of HTLV-3 and 4 infections, and their possible disease associations.
Collapse
Affiliation(s)
- Raisa Perzova
- Division of Hematology/Oncology, Department of Medicine, State University of New York, Upstate Medical University, Syracuse, N.Y
| | - Patricia Benz
- Division of Hematology/Oncology, Department of Medicine, State University of New York, Upstate Medical University, Syracuse, N.Y
| | - Lynn Abbott
- Division of Hematology/Oncology, Department of Medicine, State University of New York, Upstate Medical University, Syracuse, N.Y
| | - Caitlin Welch
- Division of Hematology/Oncology, Department of Medicine, State University of New York, Upstate Medical University, Syracuse, N.Y
| | - Anish Thomas
- Division of Hematology/Oncology, Department of Medicine, State University of New York, Upstate Medical University, Syracuse, N.Y
| | - Rawad El Ghoul
- Division of Hematology/Oncology, Department of Medicine, State University of New York, Upstate Medical University, Syracuse, N.Y
| | - Swathi Sanghi
- Division of Hematology/Oncology, Department of Medicine, State University of New York, Upstate Medical University, Syracuse, N.Y
| | - Peter Nara
- Biological Mimetics, Inc., Frederick, Maryland
| | - Jordon Glaser
- Division of Infectious Disease, Department of Medicine, Staten Island Hospital, New York, New York
| | - Frederick P. Siegal
- Internal Medicine, Division of Infectious Diseases, and Comprehensive HIV Center, St. Vincent's Hospital, New York, New York
| | - Harvey Dosik
- Park Slope Hematology/Oncology, New York Methodist Hospital, Brooklyn, New York
| | - Bernard J. Poiesz
- Division of Hematology/Oncology, Department of Medicine, State University of New York, Upstate Medical University, Syracuse, N.Y
| |
Collapse
|
20
|
Soriano V, Treviño A. Nuevos retrovirus humanos. Med Clin (Barc) 2010; 135:65-6. [DOI: 10.1016/j.medcli.2010.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2010] [Revised: 02/03/2010] [Accepted: 02/04/2010] [Indexed: 11/30/2022]
|
21
|
Bagossi P, Bander P, Bozóki B, Tözsér J. Discovery and significance of new human T-lymphotropic viruses: HTLV-3 and HTLV-4. Expert Rev Anti Infect Ther 2010; 7:1235-49. [PMID: 19968515 DOI: 10.1586/eri.09.97] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Human T-lymphotropic virus type 1 (HTLV-1) and type 2 (HTLV-2) were discovered approximately 30 years ago and they are associated with various lymphoproliferative and neurological diseases. The estimated number of infected people is 10-20 million worldwide. In 2005, two new HTLV-1/HTLV-2-related viruses were detected, HTLV-3 and HTLV-4, from the same geographical area of Africa. In the last 4 years, their complete genomic sequences were determined and some of their characteristic features were studied in detail. These newly discovered retroviruses alongside their human (HTLV-1 and -2) and animal relatives (simian T-lymphotropic virus type 1-3) are reviewed. The potential risks associated with these viruses and the potential antiretroviral therapies are also discussed.
Collapse
Affiliation(s)
- Péter Bagossi
- Department of Biochemistry and Molecular Biology, University of Debrecen, Debrecen, Hungary.
| | | | | | | |
Collapse
|
22
|
Thomas A, Perzova R, Abbott L, Benz P, Poiesz MJ, Dube S, Loughran T, Ferrer J, Sheremata W, Glaser J, Leon-Ponte M, Poiesz BJ. LGL leukemia and HTLV. AIDS Res Hum Retroviruses 2010; 26:33-40. [PMID: 20047475 DOI: 10.1089/aid.2009.0124] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Samples were obtained from 53 large granular lymphocytic leukemia (LGLL) patients and 10,000 volunteer blood donors (VBD). Sera were screened in an HTLV-1 enzyme immunoassay (EIA) and further analyzed in peptide-specific Western blots (WB). DNAs were analyzed by HTLV-1, -2, -3, and -4-specific PCR. Forty four percent of LGLL patients vs. 0.12 % of VBD had anti-HTLV antibodies via EIA (p < 0.001). WB and PCR revealed that four LGLL patients (7.5%) vs. one VBD patient (0.01%) were infected with HTLV-2 (p < 0.001), suggesting an HTLV-2 etiology in a minority of cases. No LGLL patient was positive for HTLV-1, -3, or -4, whereas only one EIA-positive VBD was positive for HTLV-1 and none for HTLV-3 or -4. The HTLV EIA-positive, PCR-negative LGLL patients' sera reacted to epitopes within HTLV p24 gag and gp21 env. Other then the PTLV/BLV viruses, human endogenous retroviral element HERV K10 was the only sequence homologous to these two HTLV peptides, raising the possibility of cross-reactivity. Although three LGLL patients (5.7%) vs. none of 110 VBD patients tested positive for antibodies to the homologous HERV K10 peptide (p = 0.03), the significance of the anti-HTLV seroreactivity observed in many LGLL patients remains unclear. Interestingly, out of 36 HTLV-1-positive control subjects, 3 (8%) (p = 0.014) were positive for antibodies to HERV K10; all three had myelopathy. Out of 64 HTLV-2-positive control subjects 16 (25%) (p = <0.001) were positive for HERV K10 antibodies, and 4 (6%) of these had myelopathy. Out of 22 subjects with either HTLV-1 or -2 myelopathy, 7 (31.8%) were positive for HERV K10 antibodies, and out of 72 HTLV-infected subjects without myelopathy, 12 (16.7%) were positive for anti-HERV K10 antibodies (p = 0.11). The prevalence of anti-HERV K10 antibodies in these populations and the clinical implications thereof need to be pursued further.
Collapse
Affiliation(s)
- Anish Thomas
- Division of Hematology/Oncology, Department of Medicine, State University of New York, Upstate Medical University, Syracuse, New York 13202
| | - Raisa Perzova
- Division of Hematology/Oncology, Department of Medicine, State University of New York, Upstate Medical University, Syracuse, New York 13202
| | - Lynn Abbott
- Division of Hematology/Oncology, Department of Medicine, State University of New York, Upstate Medical University, Syracuse, New York 13202
| | - Patricia Benz
- Division of Hematology/Oncology, Department of Medicine, State University of New York, Upstate Medical University, Syracuse, New York 13202
| | - Michael J. Poiesz
- Department of Medicine, New York University Medical Center, New York, New York 13210
| | - Syamalima Dube
- Division of Hematology/Oncology, Department of Medicine, State University of New York, Upstate Medical University, Syracuse, New York 13202
| | - Thomas Loughran
- Penn State Cancer Institute, Penn State Milton S. Hershey Medical Center, Hershey, Pennsylvania 17103
| | - Jorge Ferrer
- Comparative Leukemia and Retroviruses Unit, New Bolton Center University of Pennsylvania, Kennett Square, Pennsylvania 19348
| | | | - Jordan Glaser
- Division of Infectious Disease, Department of Medicine, Staten Island Hospital, New York, New York 10305
| | - Matilde Leon-Ponte
- Robarts Research Institute, University of Western Ontario, London, Ontario, Canada
| | - Bernard J. Poiesz
- Division of Hematology/Oncology, Department of Medicine, State University of New York, Upstate Medical University, Syracuse, New York 13202
| |
Collapse
|