1
|
Bowman KA, Kaplonek P, McNamara RP. Understanding Fc function for rational vaccine design against pathogens. mBio 2024; 15:e0303623. [PMID: 38112418 PMCID: PMC10790774 DOI: 10.1128/mbio.03036-23] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023] Open
Abstract
Antibodies represent the primary correlate of immunity following most clinically approved vaccines. However, their mechanisms of action vary from pathogen to pathogen, ranging from neutralization, to opsonophagocytosis, to cytotoxicity. Antibody functions are regulated both by antigen specificity (Fab domain) and by the interaction of their Fc domain with distinct types of Fc receptors (FcRs) present in immune cells. Increasing evidence highlights the critical nature of Fc:FcR interactions in controlling pathogen spread and limiting the disease state. Moreover, variation in Fc-receptor engagement during the course of infection has been demonstrated across a range of pathogens, and this can be further influenced by prior exposure(s)/immunizations, age, pregnancy, and underlying health conditions. Fc:FcR functional variation occurs at the level of antibody isotype and subclass selection as well as post-translational modification of antibodies that shape Fc:FcR-interactions. These factors collectively support a model whereby the immune system actively harnesses and directs Fc:FcR interactions to fight disease. By defining the precise humoral mechanisms that control infections, as well as understanding how these functions can be actively tuned, it may be possible to open new paths for improving existing or novel vaccines.
Collapse
Affiliation(s)
- Kathryn A. Bowman
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
- Division of Infectious Diseases, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Paulina Kaplonek
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
| | - Ryan P. McNamara
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
| |
Collapse
|
2
|
Fakharian F, Thirugnanam S, Welsh DA, Kim WK, Rappaport J, Bittinger K, Rout N. The Role of Gut Dysbiosis in the Loss of Intestinal Immune Cell Functions and Viral Pathogenesis. Microorganisms 2023; 11:1849. [PMID: 37513022 PMCID: PMC10384393 DOI: 10.3390/microorganisms11071849] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/15/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
The gut microbiome plays a critical role in maintaining overall health and immune function. However, dysbiosis, an imbalance in microbiome composition, can have profound effects on various aspects of human health, including susceptibility to viral infections. Despite numerous studies investigating the influence of viral infections on gut microbiome, the impact of gut dysbiosis on viral infection and pathogenesis remains relatively understudied. The clinical variability observed in SARS-CoV-2 and seasonal influenza infections, and the presence of natural HIV suppressors, suggests that host-intrinsic factors, including the gut microbiome, may contribute to viral pathogenesis. The gut microbiome has been shown to influence the host immune system by regulating intestinal homeostasis through interactions with immune cells. This review aims to enhance our understanding of how viral infections perturb the gut microbiome and mucosal immune cells, affecting host susceptibility and response to viral infections. Specifically, we focus on exploring the interactions between gamma delta (γδ) T cells and gut microbes in the context of inflammatory viral pathogenesis and examine studies highlighting the role of the gut microbiome in viral disease outcomes. Furthermore, we discuss emerging evidence and potential future directions for microbiome modulation therapy in the context of viral pathogenesis.
Collapse
Affiliation(s)
- Farzaneh Fakharian
- Department of Microbiology, Faculty of Biological Sciences and Technology, Shahid Beheshti University, Tehran 1983969411, Iran
| | - Siva Thirugnanam
- Tulane National Primate Research Center, Covington, LA 70433, USA
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - David A. Welsh
- Department of Microbiology, Immunology and Parasitology, Louisiana State University School of Medicine, New Orleans, LA 70806, USA
| | - Woong-Ki Kim
- Tulane National Primate Research Center, Covington, LA 70433, USA
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Jay Rappaport
- Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Kyle Bittinger
- Division of Gastroenterology, Hepatology and Nutrition, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Namita Rout
- Tulane National Primate Research Center, Covington, LA 70433, USA
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA
- Tulane Center for Aging, Tulane University School of Medicine, New Orleans, LA 70112, USA
| |
Collapse
|
3
|
Chowdhury RR, Valainis JR, Dubey M, von Boehmer L, Sola E, Wilhelmy J, Guo J, Kask O, Ohanyan M, Sun M, Huang H, Huang X, Nguyen PK, Scriba TJ, Davis MM, Bendall SC, Chien YH. NK-like CD8 + γδ T cells are expanded in persistent Mycobacterium tuberculosis infection. Sci Immunol 2023; 8:eade3525. [PMID: 37000856 PMCID: PMC10408713 DOI: 10.1126/sciimmunol.ade3525] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 03/09/2023] [Indexed: 04/03/2023]
Abstract
The response of gamma delta (γδ) T cells in the acute versus chronic phases of the same infection is unclear. How γδ T cells function in acute Mycobacterium tuberculosis (Mtb) infection is well characterized, but their response during persistent Mtb infection is not well understood, even though most infections with Mtb manifest as a chronic, clinically asymptomatic state. Here, we analyze peripheral blood γδ T cells from a South African adolescent cohort and show that a unique CD8+ γδ T cell subset with features of "memory inflation" expands in chronic Mtb infection. These cells are hyporesponsive to T cell receptor (TCR)-mediated signaling but, like NK cells, can mount robust CD16-mediated cytotoxic responses. These CD8+ γδ T cells comprise a highly focused TCR repertoire, with clonotypes that are Mycobacterium specific but not phosphoantigen reactive. Using multiparametric single-cell pseudo-time trajectory analysis, we identified the differentiation paths that these CD8+ γδ T cells follow to develop into effectors in this infection state. Last, we found that circulating CD8+ γδ T cells also expand in other chronic inflammatory conditions, including cardiovascular disease and cancer, suggesting that persistent antigenic exposure may drive similar γδ T cell effector programs and differentiation fates.
Collapse
Affiliation(s)
- Roshni Roy Chowdhury
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA
- Program in Immunology, Stanford University, Stanford, CA, USA
- Department of Medicine, Section of Genetic Medicine, University of Chicago, Chicago, IL, USA
| | | | - Megha Dubey
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA
| | - Lotta von Boehmer
- Institute for Immunity, Transplantation, and Infection, Stanford University, Stanford, CA, USA
| | - Elsa Sola
- Institute for Immunity, Transplantation, and Infection, Stanford University, Stanford, CA, USA
| | - Julie Wilhelmy
- Institute for Immunity, Transplantation, and Infection, Stanford University, Stanford, CA, USA
| | - Jing Guo
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA
| | - Oliver Kask
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA
| | - Mane Ohanyan
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA
| | - Meng Sun
- Institute for Immunity, Transplantation, and Infection, Stanford University, Stanford, CA, USA
| | - Huang Huang
- Institute for Immunity, Transplantation, and Infection, Stanford University, Stanford, CA, USA
| | - Xianxi Huang
- Division of Cardiovascular Medicine, Stanford University, Stanford, CA, USA
- The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Patricia K. Nguyen
- Division of Cardiovascular Medicine, Stanford University, Stanford, CA, USA
| | - Thomas J. Scriba
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine and Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Mark M. Davis
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA
- Program in Immunology, Stanford University, Stanford, CA, USA
- Institute for Immunity, Transplantation, and Infection, Stanford University, Stanford, CA, USA
- The Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Sean C. Bendall
- Program in Immunology, Stanford University, Stanford, CA, USA
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Yueh-hsiu Chien
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA
- Program in Immunology, Stanford University, Stanford, CA, USA
| |
Collapse
|
4
|
Gay L, Mezouar S, Cano C, Frohna P, Madakamutil L, Mège JL, Olive D. Role of Vγ9vδ2 T lymphocytes in infectious diseases. Front Immunol 2022; 13:928441. [PMID: 35924233 PMCID: PMC9340263 DOI: 10.3389/fimmu.2022.928441] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/27/2022] [Indexed: 12/22/2022] Open
Abstract
The T cell receptor Vγ9Vδ2 T cells bridge innate and adaptive antimicrobial immunity in primates. These Vγ9Vδ2 T cells respond to phosphoantigens (pAgs) present in microbial or eukaryotic cells in a butyrophilin 3A1 (BTN3) and butyrophilin 2A1 (BTN2A1) dependent manner. In humans, the rapid expansion of circulating Vγ9Vδ2 T lymphocytes during several infections as well as their localization at the site of active disease demonstrates their important role in the immune response to infection. However, Vγ9Vδ2 T cell deficiencies have been observed in some infectious diseases such as active tuberculosis and chronic viral infections. In this review, we are providing an overview of the mechanisms of Vγ9Vδ2 T cell-mediated antimicrobial immunity. These cells kill infected cells mainly by releasing lytic mediators and pro-inflammatory cytokines and inducing target cell apoptosis. In addition, the release of chemokines and cytokines allows the recruitment and activation of immune cells, promoting the initiation of the adaptive immune response. Finaly, we also describe potential new therapeutic tools of Vγ9Vδ2 T cell-based immunotherapy that could be applied to emerging infections.
Collapse
Affiliation(s)
- Laetitia Gay
- Aix-Marseille Univ, Intitut Recherche pour le Développement (IRT), Assistance Publique Hôpitaux de Marseille (APHM), Microbe, Evolution, Phylogeny, Infection (MEPHI), Marseille, France
- Immunology Department, IHU-Méditerranée Infection, Marseille, France
- ImCheck Therapeutics, Marseille, France
| | - Soraya Mezouar
- Aix-Marseille Univ, Intitut Recherche pour le Développement (IRT), Assistance Publique Hôpitaux de Marseille (APHM), Microbe, Evolution, Phylogeny, Infection (MEPHI), Marseille, France
- Immunology Department, IHU-Méditerranée Infection, Marseille, France
| | | | | | | | - Jean-Louis Mège
- Aix-Marseille Univ, Intitut Recherche pour le Développement (IRT), Assistance Publique Hôpitaux de Marseille (APHM), Microbe, Evolution, Phylogeny, Infection (MEPHI), Marseille, France
- Immunology Department, IHU-Méditerranée Infection, Marseille, France
- Aix-Marseille Univ, APHM, Hôpital de la Conception, Laboratoire d’Immunologie, Marseille, France
| | - Daniel Olive
- Centre pour la Recherche sur le Cancer de Marseille (CRCM), Inserm UMR1068, Centre national de la recherche scientifique (CNRS) UMR7258, Institut Paoli Calmettes, Marseille, France
| |
Collapse
|
5
|
Biradar S, Agarwal Y, Lotze MT, Bility MT, Mailliard RB. The BLT Humanized Mouse Model as a Tool for Studying Human Gamma Delta T Cell-HIV Interactions In Vivo. Front Immunol 2022; 13:881607. [PMID: 35669780 PMCID: PMC9164110 DOI: 10.3389/fimmu.2022.881607] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/15/2022] [Indexed: 11/22/2022] Open
Abstract
Gamma-delta (γδ) T cells recognize antigens in a major histocompatibility complex (MHC) independent and have cytotoxic capability. Human immunodeficiency virus (HIV) infection reduces the proportion of the Vδ2 cell subset compared to the Vδ1 cell subset of γδ T cells in the blood in most infected individuals, except for elite controllers. The capacity of Vδ2 T cells to kill HIV-infected targets has been demonstrated in vitro, albeit in vivo confirmatory studies are lacking. Here, we provide the first characterization of γδ T cell-HIV interactions in bone marrow-liver-thymus (BLT) humanized mice and examined the immunotherapeutic potential of Vδ2 T cells in controlling HIV replication in vivo. We demonstrate a reduced proportion of Vδ2 T cells and an increased proportion of Vδ1 T cells in HIV-infected BLT humanized mice, like in HIV-positive individuals. HIV infection in BLT humanized mice also impaired the ex vivo expansion of Vδ2 T cells, like in HIV-positive individuals. Adoptive transfer of activated Vδ2 T cells did not control HIV replication during cell-associated HIV transmission in BLT humanized mice but instead exacerbated viremia, suggesting that Vδ2 T cells may serve as early targets for HIV replication. Our findings demonstrate that BLT humanized mice can model γδ T cell-HIV interactions in vivo.
Collapse
Affiliation(s)
- Shivkumar Biradar
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
| | - Yash Agarwal
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
| | - Michael T. Lotze
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Department of Bioengineering, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Moses T. Bility
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
| | - Robbie B. Mailliard
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
6
|
Kolbe K, Wittner M, Hartjen P, Hüfner AD, Degen O, Ackermann C, Cords L, Stellbrink HJ, Haag F, Schulze zur Wiesch J. Inversed Ratio of CD39/CD73 Expression on γδ T Cells in HIV Versus Healthy Controls Correlates With Immune Activation and Disease Progression. Front Immunol 2022; 13:867167. [PMID: 35529864 PMCID: PMC9074873 DOI: 10.3389/fimmu.2022.867167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/15/2022] [Indexed: 12/16/2022] Open
Abstract
Background γδ T cells are unconventional T cells that have been demonstrated to be crucial for the pathogenesis and potentially for the cure of HIV-1 infection. The ectonucleotidase CD39 is part of the purinergic pathway that regulates immune responses by degradation of pro-inflammatory ATP in concert with CD73. Few studies on the expression of the ectoenzymes CD73 and CD39 on human γδ T cells in HIV have been performed to date. Methods PBMC of n=86 HIV-1-infected patients were compared to PBMC of n=26 healthy individuals using 16-color flow cytometry determining the surface expression of CD39 and CD73 on Vδ1 and Vδ2 T cells in association with differentiation (CD45RA, CD28, CD27), activation and exhaustion (TIGIT, PD-1, CD38, and HLA-DR), and assessing the intracellular production of pro- and anti-inflammatory cytokines (IL-2, TGF-ß, TNF-α, Granzyme B, IL-10, IFN-γ) after in vitro stimulation with PMA/ionomycin. Results CD39 and CD73 expression on γδ T cells were inversed in HIV infection which correlated with HIV disease progression and immune activation. CD39, but not CD73 expression on γδ T cells of ART-treated patients returned to levels comparable with those of healthy individuals. Only a small subset (<1%) of γδ T cells co-expressed CD39 and CD73 in healthy or HIV-infected individuals. There were significantly more exhausted and terminally differentiated CD39+ Vδ1 T cells regardless of the disease status. Functionally, IL-10 was only detectable in CD39+ γδ T cells after in vitro stimulation in all groups studied. Viremic HIV-infected patients showed the highest levels of IL-10 production. The highest percentage of IL-10+ cells was found in the small CD39/CD73 co-expressing γδ T-cell population, both in healthy and HIV-infected individuals. Also, CD39+ Vδ2 T cells produced IL-10 more frequently than their CD39+ Vδ1 counterparts in all individuals regardless of the HIV status. Conclusions Our results point towards a potential immunomodulatory role of CD39+ and CD73+ γδ T cells in the pathogenesis of chronic HIV infection that needs further investigation.
Collapse
Affiliation(s)
- Katharina Kolbe
- First Department of Medicine, Section Infectious Diseases, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg Lübeck Borstel Riems, Hamburg, Germany
| | - Melanie Wittner
- First Department of Medicine, Section Infectious Diseases, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg Lübeck Borstel Riems, Hamburg, Germany
- *Correspondence: Melanie Wittner,
| | - Philip Hartjen
- First Department of Medicine, Section Infectious Diseases, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anja-Dorothee Hüfner
- First Department of Medicine, Section Infectious Diseases, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Infectious Diseases Clinic, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Olaf Degen
- First Department of Medicine, Section Infectious Diseases, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Infectious Diseases Clinic, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christin Ackermann
- First Department of Medicine, Section Infectious Diseases, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Leon Cords
- First Department of Medicine, Section Infectious Diseases, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Friedrich Haag
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Julian Schulze zur Wiesch
- First Department of Medicine, Section Infectious Diseases, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg Lübeck Borstel Riems, Hamburg, Germany
| |
Collapse
|
7
|
Wang L, Shao C, Lu L, Liu J, Yang Z, Zhao F, Liu H, Zheng X, Wang L, Zeng J. A Longitudinal Case Study of Concurrent Infection with Syphilis and Human Immunodeficiency Virus During the Early Phase. AIDS Res Hum Retroviruses 2021; 37:523-528. [PMID: 33913769 DOI: 10.1089/aid.2020.0281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Due to the low incidence of concurrent human immunodeficiency virus (HIV) and syphilis infection identified during the early phase, such as window period (WP), little is known about the clinical manifestations, diagnosis, and treatment efficacy at very early stages. One longitudinal study was conducted in a 42-year-old blood donor who was concurrently infected with syphilis and HIV. This blood donor was treated with a penicillin-based regimen and early antiretroviral therapy (ART). Sequential serological and nucleic acid tests were performed and the results were comparatively analyzed. A regular male donor who had two occasions of high-risk sexual behaviors 41 and 35 days before donation donated whole blood at the Shenzhen Blood Center. ART was initiated at the 28th day after donation (DAD), and syphilis treatment was received at the 49th DAD. Microbiological analysis using a fourth-generation anti-HIV enzyme-linked immunosorbent assay (ELISA) (4th GAHE) and electro-chemiluminesent immunoassay indicated a positive signal at the 6th DAD, while a third-generation anti-HIV ELISA (3rd GAHE) showed positive at the 26th DAD. All nucleic acid testing (NAT) for HIV RNA were reactive except the minipool NAT of 6 pooled samples at 117th DAD. The HIV viral load declined more than 4-log in copies per milliliter over 3 months, until reaching nondetectable levels at 246th DAD. Nevertheless, HIV-1 DNA was still detectable at 403rd DAD. Among all methods utilized, anti-treponema pallidum ELISA detected syphilis infection at the earliest time. A successful serological response to syphilis treatment was reached around the 80th DAD. Concurrent infection with syphilis and HIV during early phases did not significantly change the sensitivity of reagents in detection nor alter the therapeutic efficacy for the treatment of both pathogens, but might result in delayed HIV serological WP.
Collapse
Affiliation(s)
| | - Chaopeng Shao
- Department of Blood Transfusion, The First Affiliated Hospital of Shenzhen University School of Medicine, The Second People's Hospital of Shenzhen, Shenzhen, China
| | - Liang Lu
- Shenzhen Blood Center, Shenzhen, China
| | | | - Zhengrong Yang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Fang Zhao
- Shenzhen Third People's Hospital, Shenzhen, China
| | - Heng Liu
- Shenzhen Blood Center, Shenzhen, China
| | - Xin Zheng
- Shenzhen Blood Center, Shenzhen, China
| | - Lunan Wang
- National Center for Clinical Laboratories, Beijing Hospital, Beijing, China
| | | |
Collapse
|
8
|
Caron J, Ridgley LA, Bodman-Smith M. How to Train Your Dragon: Harnessing Gamma Delta T Cells Antiviral Functions and Trained Immunity in a Pandemic Era. Front Immunol 2021; 12:666983. [PMID: 33854516 PMCID: PMC8039298 DOI: 10.3389/fimmu.2021.666983] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 03/12/2021] [Indexed: 12/23/2022] Open
Abstract
The emergence of viruses with pandemic potential such as the SARS-CoV-2 coronavirus causing COVID-19 poses a global health challenge. There is remarkable progress in vaccine technology in response to this threat, but their design often overlooks the innate arm of immunity. Gamma Delta (γδ) T cells are a subset of T cells with unique features that gives them a key role in the innate immune response to a variety of homeostatic alterations, from cancer to microbial infections. In the context of viral infection, a growing body of evidence shows that γδ T cells are particularly equipped for early virus detection, which triggers their subsequent activation, expansion and the fast deployment of antiviral functions such as direct cytotoxic pathways, secretion of cytokines, recruitment and activation of other immune cells and mobilization of a trained immunity memory program. As such, γδ T cells represent an attractive target to stimulate for a rapid and effective resolution of viral infections. Here, we review the known aspects of γδ T cells that make them crucial component of the immune response to viruses, and the ways that their antiviral potential can be harnessed to prevent or treat viral infection.
Collapse
Affiliation(s)
- Jonathan Caron
- Infection and Immunity Research Institute, St. George's University of London, London, United Kingdom
| | - Laura Alice Ridgley
- Infection and Immunity Research Institute, St. George's University of London, London, United Kingdom
| | - Mark Bodman-Smith
- Infection and Immunity Research Institute, St. George's University of London, London, United Kingdom
| |
Collapse
|
9
|
Biradar S, Lotze MT, Mailliard RB. The Unknown Unknowns: Recovering Gamma-Delta T Cells for Control of Human Immunodeficiency Virus (HIV). Viruses 2020; 12:v12121455. [PMID: 33348583 PMCID: PMC7766279 DOI: 10.3390/v12121455] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/11/2020] [Accepted: 12/15/2020] [Indexed: 12/14/2022] Open
Abstract
Recent advances in γδ T cell biology have focused on the unique attributes of these cells and their role in regulating innate and adaptive immunity, promoting tissue homeostasis, and providing resistance to various disorders. Numerous bacterial and viral pathogens, including human immunodeficiency virus-1 (HIV), greatly alter the composition of γδ T cells in vivo. Despite the effectiveness of antiretroviral therapy (ART) in controlling HIV and restoring health in those affected, γδ T cells are dramatically impacted during HIV infection and fail to reconstitute to normal levels in HIV-infected individuals during ART for reasons that are not clearly understood. Importantly, their role in controlling HIV infection, and the implications of their failure to rebound during ART are also largely unknown and understudied. Here, we review important aspects of human γδ T cell biology, the effector and immunomodulatory properties of these cells, their prevalence and function in HIV, and their immunotherapeutic potential.
Collapse
Affiliation(s)
- Shivkumar Biradar
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, PA 15261, USA;
| | - Michael T. Lotze
- Departments of Surgery, Immunology, and Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261, USA;
| | - Robbie B. Mailliard
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, PA 15261, USA;
- Correspondence:
| |
Collapse
|
10
|
Clohosey ML, Mann BT, Ryan PL, Apanasovich TV, Maggirwar SB, Pennington DJ, Soriano-Sarabia N. Comparable Vδ2 Cell Functional Characteristics in Virally Suppressed People Living with HIV and Uninfected Individuals. Cells 2020; 9:E2568. [PMID: 33271808 PMCID: PMC7760715 DOI: 10.3390/cells9122568] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/26/2020] [Accepted: 11/27/2020] [Indexed: 02/07/2023] Open
Abstract
Crosstalk between innate and adaptive pathways is a critical component to developing an effective, lasting immune response. Among natural effector cells, innate-like γδ T cells promote immunity by facilitating communication between the two compartments and exerting cytotoxic effector functions. Dysregulation of γδ T cell populations is a byproduct of primary Humanimmunodeficiency virus (HIV) infection. This is most pronounced in the depletion and loss of function within cells expressing a Vγ9Vδ2 TCR (Vδ2 cells). Whether or not prolonged viral suppression mediated by antiretroviral therapy (ART) can reverse these effects has yet to be determined. In this study, we present evidence of similar Vδ2 cell functional responses within a cohort of people living with HIV (PLWH) that has been stably suppressed for >1 year and uninfected donors. Through the use of aminobisphosphonate drugs, we were able to generate a comprehensive comparison between ex vivo and expanded Vδ2 cells within each group. Both groups had largely similar compositions of memory and effector phenotypes, post-expansion TCR repertoire diversity, and cytotoxic capabilities. Our findings support the notion that ART promotes the recovery of Vδ2 polyfunctionality and provides insight for strategies aiming to reconstitute the full immune response after infection with HIV.
Collapse
Affiliation(s)
- Matthew L. Clohosey
- UNC-HIV Cure Center, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27009, USA;
| | - Brendan T. Mann
- Department of Microbiology, Immunology, and Tropical Medicine, George Washington University, Washington, DC 98092, USA; (B.T.M.); (S.B.M.)
| | - Paul L. Ryan
- Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK;
| | | | - Sanjay B. Maggirwar
- Department of Microbiology, Immunology, and Tropical Medicine, George Washington University, Washington, DC 98092, USA; (B.T.M.); (S.B.M.)
| | - Daniel J. Pennington
- Centre for Immunobiology, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK;
| | - Natalia Soriano-Sarabia
- Department of Microbiology, Immunology, and Tropical Medicine, George Washington University, Washington, DC 98092, USA; (B.T.M.); (S.B.M.)
| |
Collapse
|
11
|
Sabbaghi A, Miri SM, Keshavarz M, Mahooti M, Zebardast A, Ghaemi A. Role of γδ T cells in controlling viral infections with a focus on influenza virus: implications for designing novel therapeutic approaches. Virol J 2020; 17:174. [PMID: 33183352 PMCID: PMC7659406 DOI: 10.1186/s12985-020-01449-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 11/05/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Influenza virus infection is among the most detrimental threats to the health of humans and some animals, infecting millions of people annually all around the world and in many thousands of cases giving rise to pneumonia and death. All those health crises happen despite previous and recent developments in anti-influenza vaccination, suggesting the need for employing more sophisticated methods to control this malign infection. Main body The innate immunity modules are at the forefront of combating against influenza infection in the respiratory tract, among which, innate T cells, particularly gamma-delta (γδ) T cells, play a critical role in filling the gap needed for adaptive immune cells maturation, linking the innate and adaptive immunity together. Upon infection with influenza virus, production of cytokines and chemokines including CCL3, CCL4, and CCL5 from respiratory epithelium recruits γδ T cells at the site of infection in a CCR5 receptor-dependent fashion. Next, γδ T cells become activated in response to influenza virus infection and produce large amounts of proinflammatory cytokines, especially IL-17A. Regardless of γδ T cells' roles in triggering the adaptive arm of the immune system, they also protect the respiratory epithelium by cytolytic and non-cytolytic antiviral mechanisms, as well as by enhancing neutrophils and natural killer cells recruitment to the infection site. CONCLUSION In this review, we explored varied strategies of γδ T cells in defense to influenza virus infection and how they can potentially provide balanced protective immune responses against infected cells. The results may provide a potential window for the incorporation of intact or engineered γδ T cells for developing novel antiviral approaches or for immunotherapeutic purposes.
Collapse
Affiliation(s)
- Ailar Sabbaghi
- Department of Influenza and Other Respiratory Viruses, Pasteur Institute of Iran, P.O. Box 1316943551, Tehran, Iran
| | - Seyed Mohammad Miri
- Department of Influenza and Other Respiratory Viruses, Pasteur Institute of Iran, P.O. Box 1316943551, Tehran, Iran
| | - Mohsen Keshavarz
- The Persian Gulf Tropical Medicine Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Mehran Mahooti
- Department of Influenza and Other Respiratory Viruses, Pasteur Institute of Iran, P.O. Box 1316943551, Tehran, Iran
| | - Arghavan Zebardast
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Ghaemi
- Department of Influenza and Other Respiratory Viruses, Pasteur Institute of Iran, P.O. Box 1316943551, Tehran, Iran.
| |
Collapse
|
12
|
Juno JA, Kent SJ. What Can Gamma Delta T Cells Contribute to an HIV Cure? Front Cell Infect Microbiol 2020; 10:233. [PMID: 32509601 PMCID: PMC7248205 DOI: 10.3389/fcimb.2020.00233] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 04/23/2020] [Indexed: 01/19/2023] Open
Abstract
Elimination of the latent HIV reservoir remains a major barrier to achieving an HIV cure. In this review, we discuss the cytolytic nature of human gamma delta T cells and highlight the emerging evidence that they can target and eliminate HIV-infected T cells. Based on observations from human clinical trials assessing gamma delta immunotherapy in oncology, we suggest key questions and research priorities for the study of these unique T cells in HIV cure research.
Collapse
Affiliation(s)
- Jennifer A Juno
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia
| | - Stephen J Kent
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia.,Department of Infectious Diseases, Melbourne Sexual Health Centre, Alfred Health, Central Clinical School, Monash University, Clayton, VIC, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
13
|
Olusola BA, Kabelitz D, Olaleye DO, Odaibo GN. Early HIV infection is associated with reduced proportions of gamma delta T subsets as well as high creatinine and urea levels. Scand J Immunol 2020; 91:e12868. [PMID: 32052490 PMCID: PMC7335456 DOI: 10.1111/sji.12868] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 12/19/2019] [Accepted: 02/01/2020] [Indexed: 01/02/2023]
Abstract
Renal dysfunctions are major predictors of co-morbidities and mortality in HIV-infected individuals. Unconventional T cells have been shown to regulate kidney functions. However, there is dearth of information on the effect of HIV-associated nephropathies on γδ and DN T cells. It is also not clear whether γδ T cell perturbations observed during the early stages of HIV infection occur before immune activation. In this study, we investigated the relationship between creatinine and urea on the number of unconventional T cells in HIV-infected individuals at the early and chronic stages of infection. Persons in the chronic stage of infection were divided into treatment naïve and exposed groups. Treatment exposed individuals were further subdivided into groups with undetectable and detectable HIV-1RNA in their blood. Creatinine and urea levels were significantly higher among persons in the early HIV infection compared with the other groups. Proportions of γδ T, γδ + CD8, γδ + CD16 cells were also significantly reduced in the early stage of HIV infection (P < .01). Markers of immune activation, CD4 + HLA-DR and CD8 + HLA-DR, were also significantly reduced during early HIV infection (P < .01). Taken together, our findings suggest that high levels of renal markers as well as reduced proportions of gamma delta T cells are associated with the early stages of HIV infection. This event likely occurs before systemic immune activation reaches peak levels. This study provides evidence for the need for early HIV infection diagnosis and treatment.
Collapse
Affiliation(s)
- Babatunde A. Olusola
- Department of Virology, College of Medicine, University of
Ibadan, Ibadan, Oyo State, Nigeria
| | - Dieter Kabelitz
- Institute of Immunology, UKSH Campus Kiel,
Christian-Albrechts-University, Kiel, Germany
| | - David O. Olaleye
- Department of Virology, College of Medicine, University of
Ibadan, Ibadan, Oyo State, Nigeria
| | - Georgina N. Odaibo
- Department of Virology, College of Medicine, University of
Ibadan, Ibadan, Oyo State, Nigeria
| |
Collapse
|
14
|
Dantzler KW, de la Parte L, Jagannathan P. Emerging role of γδ T cells in vaccine-mediated protection from infectious diseases. Clin Transl Immunology 2019; 8:e1072. [PMID: 31485329 PMCID: PMC6712516 DOI: 10.1002/cti2.1072] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 07/04/2019] [Accepted: 07/14/2019] [Indexed: 01/18/2023] Open
Abstract
γδ T cells are fascinating cells that bridge the innate and adaptive immune systems. They have long been known to proliferate rapidly following infection; however, the identity of the specific γδ T cell subsets proliferating and the role of this expansion in protection from disease have only been explored more recently. Several recent studies have investigated γδ T‐cell responses to vaccines targeting infections such as Mycobacterium, Plasmodium and influenza, and studies in animal models have provided further insight into the association of these responses with improved clinical outcomes. In this review, we examine the evidence for a role for γδ T cells in vaccine‐induced protection against various bacterial, protozoan and viral infections. We further discuss results suggesting potential mechanisms for protection, including cytokine‐mediated direct and indirect killing of infected cells, and highlight remaining open questions in the field. Finally, building on current efforts to integrate strategies targeting γδ T cells into immunotherapies for cancer, we discuss potential approaches to improve vaccines for infectious diseases by inducing γδ T‐cell activation and cytotoxicity.
Collapse
|
15
|
Juno JA, Eriksson EM. γδ T-cell responses during HIV infection and antiretroviral therapy. Clin Transl Immunology 2019; 8:e01069. [PMID: 31321033 PMCID: PMC6636517 DOI: 10.1002/cti2.1069] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 06/27/2019] [Accepted: 06/28/2019] [Indexed: 12/16/2022] Open
Abstract
HIV infection is associated with a rapid and sustained inversion of the Vδ1:Vδ2 T‐cell ratio in peripheral blood. Studies of antiretroviral therapy (ART)‐treated cohorts suggest that ART is insufficient to reconstitute either the frequency or function of the γδ T‐cell subset. Recent advances are now beginning to shed light on the relationship between microbial translocation, chronic inflammation, immune ageing and γδ T‐cell immunology. Here, we review the impact of acute, chronic untreated and treated HIV infection on circulating and mucosal γδ T‐cell subsets and highlight novel approaches to harness γδ T cells as components of anti‐HIV immunotherapy.
Collapse
Affiliation(s)
- Jennifer A Juno
- Department of Microbiology and Immunology The University of Melbourne at The Peter Doherty Institute for Infection and Immunity Melbourne VIC Australia
| | - Emily M Eriksson
- Division of Population Health and Immunity Walter and Eliza Hall Institute of Medical Science Melbourne VIC Australia.,Department of Medical Biology The University of Melbourne Melbourne VIC Australia
| |
Collapse
|
16
|
Wang Y, Lu W, Li A, Sun Z, Wang L. Elevated CD3 low double negative T lymphocyte is associated with pneumonia and its severity in pediatric patients. PeerJ 2018; 6:e6114. [PMID: 30588404 PMCID: PMC6302782 DOI: 10.7717/peerj.6114] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 11/15/2018] [Indexed: 11/28/2022] Open
Abstract
Background Previous studies have shown that the adaptive immunity function of T cells in disease states correlates with CD3 surface expression closely. During routine assessment of TBNK subsets in peripheral blood of pediatric patients by flow cytometry, we noticed that variable expression levels of CD3 on CD3+CD4−CD8− double-negative T (DNT) lymphocytes in different patients. The objective of this study was to assess the relationship of CD3 expression levels on DNT cells with disease severity. Methods In this prospective study, we investigated the frequencies of circulating CD4−CD8− DNT cell subsets with CD3low or CD3high phenotype by flow cytometry in 76 pediatric patients with pneumonia, 55 patients with severe pneumonia (SP), and 29 healthy controls (Con). Results The numbers of circulating DNT cells were similar in all groups; however, the frequency of CD3low DNT cell subsets was significantly increased in patients with pneumonia (p < 0.001) and SP (p < 0.001). The elevated CD3low DNT cell frequency showed a positive correlation with the clinical severity of pneumonia. On sub-group analysis, the frequency of CD3low DNT cells was only elevated in children with pneumonia aged <5 years, while no association was observed with the causative pathogen of pneumonia. Conclusions These findings suggest that CD3 expression levels on DNT cell subsets of peripheral lymphocytes may be a valuable biomarker for evaluation of immune response in pediatric infectious disease. CD3low DNT cells were elevated in children with pneumonia aged <5 years, which indicates that it may be an important research target in pediatric infectious diseases.
Collapse
Affiliation(s)
- Ying Wang
- Institute of Pediatrics, The First Hospital of Jilin University, Changchun, China
| | - Wenting Lu
- Department of Molecular Biology, Norman Bethune College of Medicine, Jilin University, Changchun, China
| | - Aipeng Li
- Department of Ophthalmology, The First Hospital of Jilin University, Changchun, China
| | - Zhengyi Sun
- Institute of Pediatrics, The First Hospital of Jilin University, Changchun, China
| | - Liying Wang
- Institute of Pediatrics, The First Hospital of Jilin University, Changchun, China.,Department of Molecular Biology, Norman Bethune College of Medicine, Jilin University, Changchun, China
| |
Collapse
|
17
|
Zhao Y, Lin L, Xiao Z, Li M, Wu X, Li W, Li X, Zhao Q, Wu Y, Zhang H, Yin J, Zhang L, Cho CH, Shen J. Protective Role of γδ T Cells in Different Pathogen Infections and Its Potential Clinical Application. J Immunol Res 2018; 2018:5081634. [PMID: 30116753 PMCID: PMC6079409 DOI: 10.1155/2018/5081634] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 06/10/2018] [Indexed: 12/24/2022] Open
Abstract
γδ T cells, a subgroup of T cells based on the γδ TCR, when compared with conventional T cells (αβ T cells), make up a very small proportion of T cells. However, its various subgroups are widely distributed in different parts of the human body and are attractive effectors for infectious disease immunity. γδ T cells are activated and expanded by nonpeptidic antigens (P-Ags), major histocompatibility complex (MHC) molecules, and lipids which are associated with different kinds of pathogen infections. Activation and proliferation of γδ T cells play a significant role in diverse infectious diseases induced by viruses, bacteria, and parasites and exert their potential effector function to effectively eliminate infection. It is well known that many types of infectious diseases are detrimental to human life and health and give rise to high incidence of illnesses and death rate all over the world. To date, there is no comprehensive understanding of the correlation between γδ T cells and infectious diseases. In this review, we will focus on the various subgroups of γδ T cells (mainly Vδ1 T cells and Vδ2 T cells) which can induce multiple immune responses or effective functions to fight against common pathogen infections, such as Mycobacterium tuberculosis, Listeria monocytogenes, influenza viruses, HIV, EBV, and HBV. Hopefully, the gamma-delta T cell study will provide a novel effective way to treat infectious diseases.
Collapse
Affiliation(s)
- Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Ling Lin
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Wanping Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Xiaobing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Qijie Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Yuanlin Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Hanyu Zhang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Jianhua Yin
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Lingling Zhang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Chi Hin Cho
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
18
|
Farrington LA, Jagannathan P, McIntyre TI, Vance HM, Bowen K, Boyle MJ, Nankya F, Wamala S, Auma A, Nalubega M, Sikyomu E, Naluwu K, Bigira V, Kapisi J, Dorsey G, Kamya MR, Feeney ME. Frequent Malaria Drives Progressive Vδ2 T-Cell Loss, Dysfunction, and CD16 Up-regulation During Early Childhood. J Infect Dis 2015; 213:1483-90. [PMID: 26667315 DOI: 10.1093/infdis/jiv600] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 12/04/2015] [Indexed: 12/13/2022] Open
Abstract
γδ T cells expressing Vδ2 may be instrumental in the control of malaria, because they inhibit the replication of blood-stage parasites in vitro and expand during acute malaria infection. However, Vδ2 T-cell frequencies and function are lower among children with heavy prior malaria exposure. It remains unclear whether malaria itself is driving this loss. Here we measure Vδ2 T-cell frequency, cytokine production, and degranulation longitudinally in Ugandan children enrolled in a malaria chemoprevention trial from 6 to 36 months of age. We observed a progressive attenuation of the Vδ2 response only among children incurring high rates of malaria. Unresponsive Vδ2 T cells were marked by expression of CD16, which was elevated in the setting of high malaria transmission. Moreover, chemoprevention during early childhood prevented the development of dysfunctional Vδ2 T cells. These observations provide insight into the role of Vδ2 T cells in the immune response to chronic malaria.
Collapse
Affiliation(s)
| | | | - Tara I McIntyre
- Departments of Medicine, University of California San Francisco
| | - Hilary M Vance
- Departments of Medicine, University of California San Francisco
| | - Katherine Bowen
- Departments of Medicine, University of California San Francisco
| | - Michelle J Boyle
- Departments of Medicine, University of California San Francisco Center for Biomedical Research, The Burnet Institute, Melbourne, Victoria, Australia
| | - Felistas Nankya
- Infectious Diseases Research Collaboration, Makerere University College of Health Sciences, Kampala, Uganda
| | - Samuel Wamala
- Infectious Diseases Research Collaboration, Makerere University College of Health Sciences, Kampala, Uganda
| | - Ann Auma
- Infectious Diseases Research Collaboration, Makerere University College of Health Sciences, Kampala, Uganda
| | - Mayimuna Nalubega
- Infectious Diseases Research Collaboration, Makerere University College of Health Sciences, Kampala, Uganda
| | - Esther Sikyomu
- Infectious Diseases Research Collaboration, Makerere University College of Health Sciences, Kampala, Uganda
| | - Kate Naluwu
- Infectious Diseases Research Collaboration, Makerere University College of Health Sciences, Kampala, Uganda
| | - Victor Bigira
- Infectious Diseases Research Collaboration, Makerere University College of Health Sciences, Kampala, Uganda
| | - James Kapisi
- Infectious Diseases Research Collaboration, Makerere University College of Health Sciences, Kampala, Uganda
| | - Grant Dorsey
- Departments of Medicine, University of California San Francisco
| | - Moses R Kamya
- Department of Medicine, Makerere University College of Health Sciences, Kampala, Uganda
| | - Margaret E Feeney
- Departments of Medicine, University of California San Francisco Pediatrics, University of California San Francisco
| |
Collapse
|