1
|
Monteiro-Alfredo T, Macedo MLR, de Picoli Souza K, Matafome P. New Therapeutic Strategies for Obesity and Its Metabolic Sequelae: Brazilian Cerrado as a Unique Biome. Int J Mol Sci 2023; 24:15588. [PMID: 37958572 PMCID: PMC10648839 DOI: 10.3390/ijms242115588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/21/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Brazil has several important biomes holding impressive fauna and flora biodiversity. Cerrado being one of the richest ones and a significant area in the search for new plant-based products, such as foods, cosmetics, and medicines. The therapeutic potential of Cerrado plants has been described by several studies associating ethnopharmacological knowledge with phytochemical compounds and therapeutic effects. Based on this wide range of options, the Brazilian population has been using these medicinal plants (MP) for centuries for the treatment of various health conditions. Among these, we highlight metabolic diseases, namely obesity and its metabolic alterations from metabolic syndrome to later stages such as type 2 diabetes (T2D). Several studies have shown that adipose tissue (AT) dysfunction leads to proinflammatory cytokine secretion and impaired free fatty acid (FFA) oxidation and oxidative status, creating the basis for insulin resistance and glucose dysmetabolism. In this scenario, the great Brazilian biodiversity and a wide variety of phytochemical compounds make it an important candidate for the identification of pharmacological strategies for the treatment of these conditions. This review aimed to analyze and summarize the current literature on plants from the Brazilian Cerrado that have therapeutic activity against obesity and its metabolic conditions, reducing inflammation and oxidative stress.
Collapse
Affiliation(s)
- Tamaeh Monteiro-Alfredo
- Coimbra Institute of Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal;
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Clinical Academic Center of Coimbra, 3000-075 Coimbra, Portugal
- Research Group on Biotechnology and Bioprospection Applied to Metabolism and Cancer (GEBBAM), Federal University of Grande Dourados, Dourados 79804-970, MS, Brazil;
- Laboratório de Purificação de Proteínas e Suas Funções Biológicas (LPPFB), Federal University of Mato Grosso do Sul, Campo Grande 79070-900, MS, Brazil;
| | - Maria Lígia Rodrigues Macedo
- Laboratório de Purificação de Proteínas e Suas Funções Biológicas (LPPFB), Federal University of Mato Grosso do Sul, Campo Grande 79070-900, MS, Brazil;
| | - Kely de Picoli Souza
- Research Group on Biotechnology and Bioprospection Applied to Metabolism and Cancer (GEBBAM), Federal University of Grande Dourados, Dourados 79804-970, MS, Brazil;
| | - Paulo Matafome
- Coimbra Institute of Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal;
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Clinical Academic Center of Coimbra, 3000-075 Coimbra, Portugal
- Coimbra Health School (ESTeSC), Polytechnic University of Coimbra, Rua 5 de Outubro, 3046-854 Coimbra, Portugal
| |
Collapse
|
2
|
Krawczyk M, Burzynska-Pedziwiatr I, Wozniak LA, Bukowiecka-Matusiak M. Impact of Polyphenols on Inflammatory and Oxidative Stress Factors in Diabetes Mellitus: Nutritional Antioxidants and Their Application in Improving Antidiabetic Therapy. Biomolecules 2023; 13:1402. [PMID: 37759802 PMCID: PMC10526737 DOI: 10.3390/biom13091402] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/10/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Diabetes mellitus is a chronic metabolic disorder characterized by hyperglycaemia and oxidative stress. Oxidative stress plays a crucial role in the development and progression of diabetes and its complications. Nutritional antioxidants derived from dietary sources have gained significant attention due to their potential to improve antidiabetic therapy. This review will delve into the world of polyphenols, investigating their origins in plants, metabolism in the human body, and relevance to the antioxidant mechanism in the context of improving antidiabetic therapy by attenuating oxidative stress, improving insulin sensitivity, and preserving β-cell function. The potential mechanisms of, clinical evidence for, and future perspectives on nutritional antioxidants as adjuvant therapy in diabetes management are discussed.
Collapse
|
3
|
Liu H, Ju A, Dong X, Luo Z, Tang J, Ma B, Fu Y, Luo Y. Young and undamaged recombinant albumin alleviates T2DM by improving hepatic glycolysis through EGFR and protecting islet β cells in mice. J Transl Med 2023; 21:89. [PMID: 36747238 PMCID: PMC9903539 DOI: 10.1186/s12967-023-03957-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/01/2023] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Albumin is the most abundant protein in serum and serves as a transporter of free fatty acids (FFA) in blood vessels. In type 2 diabetes mellitus (T2DM) patients, the reduced serum albumin level is a risk factor for T2DM development and progression, although this conclusion is controversial. Moreover, there is no study on the effects and mechanisms of albumin administration to relieve T2DM. We examined whether the administration of young and undamaged recombinant albumin can alleviate T2DM in mice. METHODS The serum albumin levels and metabolic phenotypes including fasting blood glucose, glucose tolerance tests, and glucose-stimulated insulin secretion were studied in db/db mice or diet-induced obesity mice treated with saline or young, undamaged, and ultrapure rMSA. Apoptosis assays were performed at tissue and cell levels to determine the function of rMSA on islet β cell protection. Metabolic flux and glucose uptake assays were employed to investigate metabolic changes in saline-treated or rMSA-treated mouse hepatocytes and compared their sensitivity to insulin treatments. RESULTS In this study, treatment of T2DM mice with young, undamaged, and ultrapure recombinant mouse serum albumin (rMSA) increased their serum albumin levels, which resulted in a reversal of the disease including reduced fasting blood glucose levels, improved glucose tolerance, increased glucose-stimulated insulin secretion, and alleviated islet atrophy. At the cellular level, rMSA improved glucose uptake and glycolysis in hepatocytes. Mechanistically, rMSA reduced the binding between CAV1 and EGFR to increase EGFR activation leading to PI3K-AKT activation. Furthermore, rMSA extracellularly reduced the rate of fatty acid uptake by islet β-cells, which relieved the accumulation of intracellular ceramide, endoplasmic reticulum stress, and apoptosis. This study provided the first clear demonstration that injections of rMSA can alleviate T2DM in mice. CONCLUSION Our study demonstrates that increasing serum albumin levels can promote glucose homeostasis and protect islet β cells, which alleviates T2DM.
Collapse
Affiliation(s)
- Hongyi Liu
- grid.12527.330000 0001 0662 3178School of Life Sciences, Tsinghua University, Beijing, 100084 China ,grid.452723.50000 0004 7887 9190Tsinghua-Peking Joint Center for Life Sciences, Beijing, 100084 China ,The National Engineering Research Center for Protein Technology, Beijing, 100084 China ,Beijing Key Laboratory for Protein Therapeutics, Beijing, 100084 China
| | - Anji Ju
- grid.12527.330000 0001 0662 3178School of Life Sciences, Tsinghua University, Beijing, 100084 China ,The National Engineering Research Center for Protein Technology, Beijing, 100084 China ,Beijing Key Laboratory for Protein Therapeutics, Beijing, 100084 China
| | - Xuan Dong
- grid.12527.330000 0001 0662 3178School of Life Sciences, Tsinghua University, Beijing, 100084 China ,The National Engineering Research Center for Protein Technology, Beijing, 100084 China ,Beijing Key Laboratory for Protein Therapeutics, Beijing, 100084 China
| | - Zongrui Luo
- grid.12527.330000 0001 0662 3178School of Life Sciences, Tsinghua University, Beijing, 100084 China ,The National Engineering Research Center for Protein Technology, Beijing, 100084 China ,Beijing Key Laboratory for Protein Therapeutics, Beijing, 100084 China
| | - Jiaze Tang
- grid.12527.330000 0001 0662 3178School of Life Sciences, Tsinghua University, Beijing, 100084 China ,The National Engineering Research Center for Protein Technology, Beijing, 100084 China ,Beijing Key Laboratory for Protein Therapeutics, Beijing, 100084 China
| | - Boyuan Ma
- grid.12527.330000 0001 0662 3178School of Life Sciences, Tsinghua University, Beijing, 100084 China ,The National Engineering Research Center for Protein Technology, Beijing, 100084 China ,Beijing Key Laboratory for Protein Therapeutics, Beijing, 100084 China
| | - Yan Fu
- School of Life Sciences, Tsinghua University, Beijing, 100084, China. .,The National Engineering Research Center for Protein Technology, Beijing, 100084, China. .,Beijing Key Laboratory for Protein Therapeutics, Beijing, 100084, China. .,School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| | - Yongzhang Luo
- School of Life Sciences, Tsinghua University, Beijing, 100084, China. .,Tsinghua-Peking Joint Center for Life Sciences, Beijing, 100084, China. .,The National Engineering Research Center for Protein Technology, Beijing, 100084, China. .,Beijing Key Laboratory for Protein Therapeutics, Beijing, 100084, China. .,School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
4
|
Lee SH, Tsutsui M, Matsunaga A, Oe T. Lipid hydroperoxide-derived insulin resistance and its inhibition by pyridoxamine in skeletal muscle cells. Toxicol Res 2023; 39:147-156. [PMID: 36726824 PMCID: PMC9839902 DOI: 10.1007/s43188-022-00155-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/28/2022] [Accepted: 11/15/2022] [Indexed: 11/30/2022] Open
Abstract
Oxidative stress is strongly associated with the onset and/or progression of diabetes. Under conditions of oxidative stress, lipid hydroperoxides are decomposed to reactive aldehydes that have been reported to induce insulin resistance by modifying proteins involved in insulin signaling. Pyridoxamine (PM) can inhibit the formation of advanced glycation/lipoxidation end products by scavenging reactive carbonyl species. Thus, PM has emerged as a promising drug candidate for various chronic conditions, including diabetic complications. In this study, L6 skeletal muscle cells were treated with 4-oxo-2(E)-nonenal (ONE), one of the most abundant and reactive lipid-derived aldehydes. Cellular insulin resistance was assessed by measuring insulin-stimulated glucose uptake using 2-deoxyglucose. ONE induced a time- and dose-dependent decrease in glucose uptake. Liquid chromatography/electrospray ionization-mass spectrometry analysis of the reaction between ONE and insulin receptor substrate 1 (IRS1) lysate identified multiple modifications that could disturb the interaction between IRS1 and activated IR, leading to insulin resistance. Pretreatment of the cells with PM restored the ONE-induced decrease in glucose uptake. Concomitantly, the formation of PM-ONE adducts in cell culture medium was increased in a PM-dose dependent manner. PM can therefore prevent lipid hydroperoxide-derived insulin resistance by quenching ONE. Supplementary Information The online version contains supplementary material available at 10.1007/s43188-022-00155-z.
Collapse
Affiliation(s)
- Seon Hwa Lee
- Department of Bio-Analytical Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, 980-8578 Japan
| | - Mizuki Tsutsui
- Department of Bio-Analytical Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, 980-8578 Japan
| | - Atsushi Matsunaga
- Department of Bio-Analytical Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, 980-8578 Japan
| | - Tomoyuki Oe
- Department of Bio-Analytical Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, 980-8578 Japan
| |
Collapse
|
5
|
Chen X, Jiang Z, Zhang L, Liu W, Ren X, Nie L, Wu D, Guo Z, Liu W, Yang X, Wu Y, Liang Z, Spencer P, Liu J. Protein pyrrole adducts are associated with elevated glucose indices and clinical features of diabetic diffuse neuropathies. J Diabetes 2022; 14:646-657. [PMID: 36195541 PMCID: PMC9574754 DOI: 10.1111/1753-0407.13318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 08/12/2022] [Accepted: 09/11/2022] [Indexed: 11/29/2022] Open
Abstract
INTRODUCTION Diabetic neuropathy is the most prevalent complication of diabetes mellitus. Although the precise etiology of this neurological disorder has yet to be defined, elevated blood glucose promotes anerobic glycolysis; this produces excess advanced glycation end-products, many of which have a pyrrole structure. Here, we test the hypothesis that protein pyrrole adducts are associated with elevated glucose indices and some clinical features of diabetic diffuse neuropathies. METHOD We investigated the levels of plasma pyrrole adducts and adjusted urinary pyrrole adducts in a group of elderly persons (n = 516, age 60-79) residing in the District of Luohu, Shenzhen, China between 2017 and 2018. Symptoms of distal symmetric polyneuropathy (DSPN) and resting heart rate, a measure of autonomic nervous system function, were collected from participants (n = 258) with elevated glucose indices. RESULT Protein pyrrole adducts showed a strong correlation with glucose indices before and after adjustment for age and estimated glomerular filtration rates. Stratified analysis showed that the medians and interquartile values of pyrrole adducts grew as glucose indices of the subgroups increased. Participants with symptoms of DSPN and sinus tachycardia presented elevated levels of plasma pyrrole adducts. CONCLUSION This study provides a novel link between glucose indices and the etiology of diabetic diffuse neuropathies.
Collapse
Affiliation(s)
- Xiao Chen
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Medical Key Discipline of Health Toxicology (2020‐2024)Shenzhen Center for Disease Control and PreventionShenzhenChina
| | - Zhuyi Jiang
- Department of Endocrinology, Shenzhen People's Hospital (The Second Clinical Medical CollegeJinan University, The First Affiliated Hospital, Southern University of Science and Technology)ShenzhenChina
| | - Lianjing Zhang
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Medical Key Discipline of Health Toxicology (2020‐2024)Shenzhen Center for Disease Control and PreventionShenzhenChina
- School of Public HealthGuangdong Medical UniversityDongguanPeople's Republic of China
| | - Wei Liu
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Medical Key Discipline of Health Toxicology (2020‐2024)Shenzhen Center for Disease Control and PreventionShenzhenChina
| | - Xiaohu Ren
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Medical Key Discipline of Health Toxicology (2020‐2024)Shenzhen Center for Disease Control and PreventionShenzhenChina
| | - Luling Nie
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Medical Key Discipline of Health Toxicology (2020‐2024)Shenzhen Center for Disease Control and PreventionShenzhenChina
| | - Desheng Wu
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Medical Key Discipline of Health Toxicology (2020‐2024)Shenzhen Center for Disease Control and PreventionShenzhenChina
| | - Zhiwei Guo
- Shenzhen Luohu Hospital for Traditional Chinese MedicineShenzhen Luohu Hospital GroupShenzhenChina
| | - Weimin Liu
- Shenzhen Luohu Center for Disease Control and PreventionShenzhenChina
| | - Xifei Yang
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Medical Key Discipline of Health Toxicology (2020‐2024)Shenzhen Center for Disease Control and PreventionShenzhenChina
| | - Yan Wu
- Department of Endocrinology, Shenzhen People's Hospital (The Second Clinical Medical CollegeJinan University, The First Affiliated Hospital, Southern University of Science and Technology)ShenzhenChina
| | - Zhen Liang
- Department of Endocrinology, Shenzhen People's Hospital (The Second Clinical Medical CollegeJinan University, The First Affiliated Hospital, Southern University of Science and Technology)ShenzhenChina
| | - Peter Spencer
- Department of Neurology, School of Medicine, and Oregon Institute for Occupational Health SciencesOregon Health & Science UniversityPortlandOregonUSA
| | - Jianjun Liu
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Medical Key Discipline of Health Toxicology (2020‐2024)Shenzhen Center for Disease Control and PreventionShenzhenChina
- School of Public HealthGuangdong Medical UniversityDongguanPeople's Republic of China
| |
Collapse
|
6
|
De Fano M, Bartolini D, Tortoioli C, Vermigli C, Malara M, Galli F, Murdolo G. Adipose Tissue Plasticity in Response to Pathophysiological Cues: A Connecting Link between Obesity and Its Associated Comorbidities. Int J Mol Sci 2022; 23:ijms23105511. [PMID: 35628322 PMCID: PMC9141504 DOI: 10.3390/ijms23105511] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/10/2022] [Accepted: 05/13/2022] [Indexed: 12/10/2022] Open
Abstract
Adipose tissue (AT) is a remarkably plastic and active organ with functional pleiotropism and high remodeling capacity. Although the expansion of fat mass, by definition, represents the hallmark of obesity, the dysregulation of the adipose organ emerges as the forefront of the link between adiposity and its associated metabolic and cardiovascular complications. The dysfunctional fat displays distinct biological signatures, which include enlarged fat cells, low-grade inflammation, impaired redox homeostasis, and cellular senescence. While these events are orchestrated in a cell-type, context-dependent and temporal manner, the failure of the adipose precursor cells to form new adipocytes appears to be the main instigator of the adipose dysregulation, which, ultimately, poses a deleterious milieu either by promoting ectopic lipid overspill in non-adipose targets (i.e., lipotoxicity) or by inducing an altered secretion of different adipose-derived hormones (i.e., adipokines and lipokines). This “adipocentric view” extends the previous “expandability hypothesis”, which implies a reduced plasticity of the adipose organ at the nexus between unhealthy fat expansion and the development of obesity-associated comorbidities. In this review, we will briefly summarize the potential mechanisms by which adaptive changes to variations of energy balance may impair adipose plasticity and promote fat organ dysfunction. We will also highlight the conundrum with the perturbation of the adipose microenvironment and the development of cardio-metabolic complications by focusing on adipose lipoxidation, inflammation and cellular senescence as a novel triad orchestrating the conspiracy to adipose dysfunction. Finally, we discuss the scientific rationale for proposing adipose organ plasticity as a target to curb/prevent adiposity-linked cardio-metabolic complications.
Collapse
Affiliation(s)
- Michelatonio De Fano
- Department of Internal Medicine, Endocrinology and Metabolism, Azienda Ospedaliera Santa Maria Misericordia, Ospedale di Perugia, Piazzale Gambuli, 06081 Perugia, Italy; (M.D.F.); (C.T.); (C.V.); (M.M.)
| | - Desirèe Bartolini
- Department of Pharmaceutical Sciences, Human Anatomy Laboratory, University of Perugia, 06132 Perugia, Italy; (D.B.); (F.G.)
| | - Cristina Tortoioli
- Department of Internal Medicine, Endocrinology and Metabolism, Azienda Ospedaliera Santa Maria Misericordia, Ospedale di Perugia, Piazzale Gambuli, 06081 Perugia, Italy; (M.D.F.); (C.T.); (C.V.); (M.M.)
| | - Cristiana Vermigli
- Department of Internal Medicine, Endocrinology and Metabolism, Azienda Ospedaliera Santa Maria Misericordia, Ospedale di Perugia, Piazzale Gambuli, 06081 Perugia, Italy; (M.D.F.); (C.T.); (C.V.); (M.M.)
| | - Massimo Malara
- Department of Internal Medicine, Endocrinology and Metabolism, Azienda Ospedaliera Santa Maria Misericordia, Ospedale di Perugia, Piazzale Gambuli, 06081 Perugia, Italy; (M.D.F.); (C.T.); (C.V.); (M.M.)
| | - Francesco Galli
- Department of Pharmaceutical Sciences, Human Anatomy Laboratory, University of Perugia, 06132 Perugia, Italy; (D.B.); (F.G.)
| | - Giuseppe Murdolo
- Department of Internal Medicine, Endocrinology and Metabolism, Azienda Ospedaliera Santa Maria Misericordia, Ospedale di Perugia, Piazzale Gambuli, 06081 Perugia, Italy; (M.D.F.); (C.T.); (C.V.); (M.M.)
- Correspondence: ; Tel.: +39-(0)75-578-3301; Fax: +39-75-573-0855
| |
Collapse
|
7
|
Toyokuni S, Kong Y, Zheng H, Maeda Y, Motooka Y, Akatsuka S. Iron as spirit of life to share under monopoly. J Clin Biochem Nutr 2022; 71:78-88. [PMID: 36213789 PMCID: PMC9519419 DOI: 10.3164/jcbn.22-43] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/11/2022] [Indexed: 01/18/2023] Open
Abstract
Any independent life requires iron to survive. Whereas iron deficiency causes oxygen insufficiency, excess iron is a risk for cancer, generating a double-edged sword. Iron metabolism is strictly regulated via specific systems, including iron-responsive element (IRE)/iron regulatory proteins (IRPs) and the corresponding ubiquitin ligase FBXL5. Here we briefly reflect the history of bioiron research and describe major recent advancements. Ferroptosis, a newly coined Fe(II)-dependent regulated necrosis, is providing huge impact on science. Carcinogenesis is a process to acquire ferroptosis-resistance and ferroptosis is preferred in cancer therapy due to immunogenicity. Poly(rC)-binding proteins 1/2 (PCBP1/2) were identified as major cytosolic Fe(II) chaperone proteins. The mechanism how cells retrieve stored iron in ferritin cores was unraveled as ferritinophagy, a form of autophagy. Of note, ferroptosis may exploit ferritinophagy during the progression. Recently, we discovered that cellular ferritin secretion is through extracellular vesicles (EVs) escorted by CD63 under the regulation of IRE/IRP system. Furthermore, this process was abused in asbestos-induced mesothelial carcinogenesis. In summary, cellular iron metabolism is tightly regulated by multi-system organizations as surplus iron is shared through ferritin in EVs among neighbor and distant cells in need. However, various noxious stimuli dramatically promote cellular iron uptake/storage, which may result in ferroptosis.
Collapse
Affiliation(s)
- Shinya Toyokuni
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine
| | - Yingyi Kong
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine
| | - Hao Zheng
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine
| | - Yuki Maeda
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine
| | - Yashiro Motooka
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine
| | - Shinya Akatsuka
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine
| |
Collapse
|
8
|
Demasi M, Augusto O, Bechara EJH, Bicev RN, Cerqueira FM, da Cunha FM, Denicola A, Gomes F, Miyamoto S, Netto LES, Randall LM, Stevani CV, Thomson L. Oxidative Modification of Proteins: From Damage to Catalysis, Signaling, and Beyond. Antioxid Redox Signal 2021; 35:1016-1080. [PMID: 33726509 DOI: 10.1089/ars.2020.8176] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Significance: The systematic investigation of oxidative modification of proteins by reactive oxygen species started in 1980. Later, it was shown that reactive nitrogen species could also modify proteins. Some protein oxidative modifications promote loss of protein function, cleavage or aggregation, and some result in proteo-toxicity and cellular homeostasis disruption. Recent Advances: Previously, protein oxidation was associated exclusively to damage. However, not all oxidative modifications are necessarily associated with damage, as with Met and Cys protein residue oxidation. In these cases, redox state changes can alter protein structure, catalytic function, and signaling processes in response to metabolic and/or environmental alterations. This review aims to integrate the present knowledge on redox modifications of proteins with their fate and role in redox signaling and human pathological conditions. Critical Issues: It is hypothesized that protein oxidation participates in the development and progression of many pathological conditions. However, no quantitative data have been correlated with specific oxidized proteins or the progression or severity of pathological conditions. Hence, the comprehension of the mechanisms underlying these modifications, their importance in human pathologies, and the fate of the modified proteins is of clinical relevance. Future Directions: We discuss new tools to cope with protein oxidation and suggest new approaches for integrating knowledge about protein oxidation and redox processes with human pathophysiological conditions. Antioxid. Redox Signal. 35, 1016-1080.
Collapse
Affiliation(s)
- Marilene Demasi
- Laboratório de Bioquímica e Biofísica, Instituto Butantan, São Paulo, Brazil
| | - Ohara Augusto
- Departamento de Bioquímica and Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Etelvino J H Bechara
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Renata N Bicev
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Fernanda M Cerqueira
- CENTD, Centre of Excellence in New Target Discovery, Instituto Butantan, São Paulo, Brazil
| | - Fernanda M da Cunha
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Ana Denicola
- Laboratorios Fisicoquímica Biológica-Enzimología, Facultad de Ciencias, Instituto de Química Biológica, Universidad de la República, Montevideo, Uruguay
| | - Fernando Gomes
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Sayuri Miyamoto
- Departamento de Bioquímica and Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Luis E S Netto
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Lía M Randall
- Laboratorios Fisicoquímica Biológica-Enzimología, Facultad de Ciencias, Instituto de Química Biológica, Universidad de la República, Montevideo, Uruguay
| | - Cassius V Stevani
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Leonor Thomson
- Laboratorios Fisicoquímica Biológica-Enzimología, Facultad de Ciencias, Instituto de Química Biológica, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
9
|
Gęgotek A, Atalay S, Skrzydlewska E. UV induced changes in proteome of rats plasma are reversed by dermally applied cannabidiol. Sci Rep 2021; 11:20666. [PMID: 34667212 PMCID: PMC8526570 DOI: 10.1038/s41598-021-00134-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 10/07/2021] [Indexed: 11/20/2022] Open
Abstract
UV radiation is known to induce a multiple changes in the metabolism of skin-building cells, what can affect the functioning not only neighboring cells, but also, following signal transduction releasing into the blood vessels, the entire body. Therefore, the aim of this study was to analyze the proteomic disturbances occurred in plasma of chronically UVA/UVB irradiated rats and define the effect on these changes of skin topically applied cannabidiol (CBD). Obtained results showed significant changes in the expression of numerous anti-inflammatory and signaling proteins including: NFκB inhibitor, 14-3-3 protein, protein kinase C, keratin, and protein S100 after UV irradiation and CBD treatment. Moreover, the effects of UVA and UVB were manifested by increased level of lipid peroxidation products-protein adducts formation. CBD partially prevented all of these changes, but in a various degree depending on the UV radiation type. Moreover, topical treatment with CBD resulted in the penetration of CBD into the blood and, as a consequence, in direct modifications to the plasma protein structure by creating CBD adducts with molecules, such as proline-rich protein 30, transcription factor 19, or N-acetylglucosamine-6-sulfatase, what significantly changed the activity of these proteins. In conclusion, it may be suggested that CBD applied topically may be an effective compound against systemic UV-induced oxidative stress, but its effectiveness requires careful analysis of CBD's effects on other tissues of the living organism.
Collapse
Affiliation(s)
- Agnieszka Gęgotek
- Department of Analytical Chemistry, Medical University of Bialystok, Mickiewicza 2D, 15-222, Bialystok, Poland
| | - Sinemyiz Atalay
- Department of Analytical Chemistry, Medical University of Bialystok, Mickiewicza 2D, 15-222, Bialystok, Poland
| | - Elżbieta Skrzydlewska
- Department of Analytical Chemistry, Medical University of Bialystok, Mickiewicza 2D, 15-222, Bialystok, Poland.
| |
Collapse
|
10
|
Jukić I, Kolobarić N, Stupin A, Matić A, Kozina N, Mihaljević Z, Mihalj M, Šušnjara P, Stupin M, Ćurić ŽB, Selthofer-Relatić K, Kibel A, Lukinac A, Kolar L, Kralik G, Kralik Z, Széchenyi A, Jozanović M, Galović O, Medvidović-Kosanović M, Drenjančević I. Carnosine, Small but Mighty-Prospect of Use as Functional Ingredient for Functional Food Formulation. Antioxidants (Basel) 2021; 10:1037. [PMID: 34203479 PMCID: PMC8300828 DOI: 10.3390/antiox10071037] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/18/2021] [Accepted: 06/22/2021] [Indexed: 11/17/2022] Open
Abstract
Carnosine is a dipeptide synthesized in the body from β-alanine and L-histidine. It is found in high concentrations in the brain, muscle, and gastrointestinal tissues of humans and is present in all vertebrates. Carnosine has a number of beneficial antioxidant properties. For example, carnosine scavenges reactive oxygen species (ROS) as well as alpha-beta unsaturated aldehydes created by peroxidation of fatty acid cell membranes during oxidative stress. Carnosine can oppose glycation, and it can chelate divalent metal ions. Carnosine alleviates diabetic nephropathy by protecting podocyte and mesangial cells, and can slow down aging. Its component, the amino acid beta-alanine, is particularly interesting as a dietary supplement for athletes because it increases muscle carnosine, and improves effectiveness of exercise and stimulation and contraction in muscles. Carnosine is widely used among athletes in the form of supplements, but rarely in the population of cardiovascular or diabetic patients. Much less is known, if any, about its potential use in enriched food. In the present review, we aimed to provide recent knowledge on carnosine properties and distribution, its metabolism (synthesis and degradation), and analytical methods for carnosine determination, since one of the difficulties is the measurement of carnosine concentration in human samples. Furthermore, the potential mechanisms of carnosine's biological effects in musculature, metabolism and on immunomodulation are discussed. Finally, this review provides a section on carnosine supplementation in the form of functional food and potential health benefits and up to the present, neglected clinical use of carnosine.
Collapse
Affiliation(s)
- Ivana Jukić
- Department of Physiology and Immunology, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, HR-31000 Osijek, Croatia; (I.J.); (N.K.); (A.S.); (A.M.); (N.K.); (Z.M.); (M.M.); (P.Š.); (M.S.); (A.K.)
- Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Trg Svetog Trojstva 3, HR-31000 Osijek, Croatia; (Ž.B.Ć.); (K.S.-R.); (A.L.); (L.K.); (G.K.); (Z.K.); (A.S.); (M.J.); (O.G.); (M.M.-K.)
| | - Nikolina Kolobarić
- Department of Physiology and Immunology, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, HR-31000 Osijek, Croatia; (I.J.); (N.K.); (A.S.); (A.M.); (N.K.); (Z.M.); (M.M.); (P.Š.); (M.S.); (A.K.)
- Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Trg Svetog Trojstva 3, HR-31000 Osijek, Croatia; (Ž.B.Ć.); (K.S.-R.); (A.L.); (L.K.); (G.K.); (Z.K.); (A.S.); (M.J.); (O.G.); (M.M.-K.)
| | - Ana Stupin
- Department of Physiology and Immunology, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, HR-31000 Osijek, Croatia; (I.J.); (N.K.); (A.S.); (A.M.); (N.K.); (Z.M.); (M.M.); (P.Š.); (M.S.); (A.K.)
- Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Trg Svetog Trojstva 3, HR-31000 Osijek, Croatia; (Ž.B.Ć.); (K.S.-R.); (A.L.); (L.K.); (G.K.); (Z.K.); (A.S.); (M.J.); (O.G.); (M.M.-K.)
- Department of Pathophysiology, Physiology and Immunology, Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 10E, HR-31000 Osijek, Croatia
| | - Anita Matić
- Department of Physiology and Immunology, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, HR-31000 Osijek, Croatia; (I.J.); (N.K.); (A.S.); (A.M.); (N.K.); (Z.M.); (M.M.); (P.Š.); (M.S.); (A.K.)
- Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Trg Svetog Trojstva 3, HR-31000 Osijek, Croatia; (Ž.B.Ć.); (K.S.-R.); (A.L.); (L.K.); (G.K.); (Z.K.); (A.S.); (M.J.); (O.G.); (M.M.-K.)
| | - Nataša Kozina
- Department of Physiology and Immunology, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, HR-31000 Osijek, Croatia; (I.J.); (N.K.); (A.S.); (A.M.); (N.K.); (Z.M.); (M.M.); (P.Š.); (M.S.); (A.K.)
- Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Trg Svetog Trojstva 3, HR-31000 Osijek, Croatia; (Ž.B.Ć.); (K.S.-R.); (A.L.); (L.K.); (G.K.); (Z.K.); (A.S.); (M.J.); (O.G.); (M.M.-K.)
| | - Zrinka Mihaljević
- Department of Physiology and Immunology, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, HR-31000 Osijek, Croatia; (I.J.); (N.K.); (A.S.); (A.M.); (N.K.); (Z.M.); (M.M.); (P.Š.); (M.S.); (A.K.)
- Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Trg Svetog Trojstva 3, HR-31000 Osijek, Croatia; (Ž.B.Ć.); (K.S.-R.); (A.L.); (L.K.); (G.K.); (Z.K.); (A.S.); (M.J.); (O.G.); (M.M.-K.)
| | - Martina Mihalj
- Department of Physiology and Immunology, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, HR-31000 Osijek, Croatia; (I.J.); (N.K.); (A.S.); (A.M.); (N.K.); (Z.M.); (M.M.); (P.Š.); (M.S.); (A.K.)
- Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Trg Svetog Trojstva 3, HR-31000 Osijek, Croatia; (Ž.B.Ć.); (K.S.-R.); (A.L.); (L.K.); (G.K.); (Z.K.); (A.S.); (M.J.); (O.G.); (M.M.-K.)
- Department of Dermatology and Venereology, University Hospital Osijek, HR-31000 Osijek, Croatia
| | - Petar Šušnjara
- Department of Physiology and Immunology, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, HR-31000 Osijek, Croatia; (I.J.); (N.K.); (A.S.); (A.M.); (N.K.); (Z.M.); (M.M.); (P.Š.); (M.S.); (A.K.)
- Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Trg Svetog Trojstva 3, HR-31000 Osijek, Croatia; (Ž.B.Ć.); (K.S.-R.); (A.L.); (L.K.); (G.K.); (Z.K.); (A.S.); (M.J.); (O.G.); (M.M.-K.)
| | - Marko Stupin
- Department of Physiology and Immunology, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, HR-31000 Osijek, Croatia; (I.J.); (N.K.); (A.S.); (A.M.); (N.K.); (Z.M.); (M.M.); (P.Š.); (M.S.); (A.K.)
- Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Trg Svetog Trojstva 3, HR-31000 Osijek, Croatia; (Ž.B.Ć.); (K.S.-R.); (A.L.); (L.K.); (G.K.); (Z.K.); (A.S.); (M.J.); (O.G.); (M.M.-K.)
- Department for Cardiovascular Disease, University Hospital Osijek, J. Huttlera 4, HR-31000 Osijek, Croatia
| | - Željka Breškić Ćurić
- Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Trg Svetog Trojstva 3, HR-31000 Osijek, Croatia; (Ž.B.Ć.); (K.S.-R.); (A.L.); (L.K.); (G.K.); (Z.K.); (A.S.); (M.J.); (O.G.); (M.M.-K.)
- Department of Internal Medicine, General Hospital Vinkovci, Zvonarska 57, HR-32100 Vinkovci, Croatia
| | - Kristina Selthofer-Relatić
- Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Trg Svetog Trojstva 3, HR-31000 Osijek, Croatia; (Ž.B.Ć.); (K.S.-R.); (A.L.); (L.K.); (G.K.); (Z.K.); (A.S.); (M.J.); (O.G.); (M.M.-K.)
- Department for Cardiovascular Disease, University Hospital Osijek, J. Huttlera 4, HR-31000 Osijek, Croatia
- Department for Internal Medicine, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, HR-31000 Osijek, Croatia
| | - Aleksandar Kibel
- Department of Physiology and Immunology, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, HR-31000 Osijek, Croatia; (I.J.); (N.K.); (A.S.); (A.M.); (N.K.); (Z.M.); (M.M.); (P.Š.); (M.S.); (A.K.)
- Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Trg Svetog Trojstva 3, HR-31000 Osijek, Croatia; (Ž.B.Ć.); (K.S.-R.); (A.L.); (L.K.); (G.K.); (Z.K.); (A.S.); (M.J.); (O.G.); (M.M.-K.)
- Department for Cardiovascular Disease, University Hospital Osijek, J. Huttlera 4, HR-31000 Osijek, Croatia
| | - Anamarija Lukinac
- Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Trg Svetog Trojstva 3, HR-31000 Osijek, Croatia; (Ž.B.Ć.); (K.S.-R.); (A.L.); (L.K.); (G.K.); (Z.K.); (A.S.); (M.J.); (O.G.); (M.M.-K.)
- Department of Rheumatology, Clinical Immunology and Allergology, Clinical Hospital Center Osijek, J. Huttlera 4, HR-31000 Osijek, Croatia
| | - Luka Kolar
- Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Trg Svetog Trojstva 3, HR-31000 Osijek, Croatia; (Ž.B.Ć.); (K.S.-R.); (A.L.); (L.K.); (G.K.); (Z.K.); (A.S.); (M.J.); (O.G.); (M.M.-K.)
- Department of Internal Medicine, Vukovar General Hospital, HR-32000 Vukovar, Croatia
| | - Gordana Kralik
- Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Trg Svetog Trojstva 3, HR-31000 Osijek, Croatia; (Ž.B.Ć.); (K.S.-R.); (A.L.); (L.K.); (G.K.); (Z.K.); (A.S.); (M.J.); (O.G.); (M.M.-K.)
- Nutricin j.d.o.o. Darda, HR-31326 Darda, Croatia
| | - Zlata Kralik
- Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Trg Svetog Trojstva 3, HR-31000 Osijek, Croatia; (Ž.B.Ć.); (K.S.-R.); (A.L.); (L.K.); (G.K.); (Z.K.); (A.S.); (M.J.); (O.G.); (M.M.-K.)
- Department of Animal Production and Biotechnology, Faculty of Agrobiotechnical Sciences, Josip Juraj Strossmayer University of Osijek, Vladimira Preloga 1, HR-31000 Osijek, Croatia
| | - Aleksandar Széchenyi
- Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Trg Svetog Trojstva 3, HR-31000 Osijek, Croatia; (Ž.B.Ć.); (K.S.-R.); (A.L.); (L.K.); (G.K.); (Z.K.); (A.S.); (M.J.); (O.G.); (M.M.-K.)
- Department of Chemistry, Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 8/A, HR-31000 Osijek, Croatia
| | - Marija Jozanović
- Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Trg Svetog Trojstva 3, HR-31000 Osijek, Croatia; (Ž.B.Ć.); (K.S.-R.); (A.L.); (L.K.); (G.K.); (Z.K.); (A.S.); (M.J.); (O.G.); (M.M.-K.)
- Department of Chemistry, Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 8/A, HR-31000 Osijek, Croatia
| | - Olivera Galović
- Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Trg Svetog Trojstva 3, HR-31000 Osijek, Croatia; (Ž.B.Ć.); (K.S.-R.); (A.L.); (L.K.); (G.K.); (Z.K.); (A.S.); (M.J.); (O.G.); (M.M.-K.)
- Department of Chemistry, Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 8/A, HR-31000 Osijek, Croatia
| | - Martina Medvidović-Kosanović
- Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Trg Svetog Trojstva 3, HR-31000 Osijek, Croatia; (Ž.B.Ć.); (K.S.-R.); (A.L.); (L.K.); (G.K.); (Z.K.); (A.S.); (M.J.); (O.G.); (M.M.-K.)
- Department of Chemistry, Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 8/A, HR-31000 Osijek, Croatia
| | - Ines Drenjančević
- Department of Physiology and Immunology, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, HR-31000 Osijek, Croatia; (I.J.); (N.K.); (A.S.); (A.M.); (N.K.); (Z.M.); (M.M.); (P.Š.); (M.S.); (A.K.)
- Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Trg Svetog Trojstva 3, HR-31000 Osijek, Croatia; (Ž.B.Ć.); (K.S.-R.); (A.L.); (L.K.); (G.K.); (Z.K.); (A.S.); (M.J.); (O.G.); (M.M.-K.)
| |
Collapse
|
11
|
A Novel ALDH2 Activator AD-9308 Improves Diastolic and Systolic Myocardial Functions in Streptozotocin-Induced Diabetic Mice. Antioxidants (Basel) 2021; 10:antiox10030450. [PMID: 33805825 PMCID: PMC7998151 DOI: 10.3390/antiox10030450] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 12/21/2022] Open
Abstract
Diabetes mellitus has reached epidemic proportion worldwide. One of the diabetic complications is cardiomyopathy, characterized by early left ventricular (LV) diastolic dysfunction, followed by development of systolic dysfunction and ventricular dilation at a late stage. The pathogenesis is multifactorial, and there is no effective treatment yet. In recent years, 4-hydroxy-2-nonenal (4-HNE), a toxic aldehyde generated from lipid peroxidation, is implicated in the pathogenesis of cardiovascular diseases. Its high bioreactivity toward proteins results in cellular damage. Mitochondrial aldehyde dehydrogenase 2 (ALDH2) is the major enzyme that detoxifies 4-HNE. The development of small-molecule ALDH2 activator provides an opportunity for treating diabetic cardiomyopathy. This study found that AD-9308, a water-soluble andhighly selective ALDH2 activator, can improve LV diastolic and systolic functions, and wall remodeling in streptozotocin-induced diabetic mice. AD-9308 treatment dose-dependently lowered serum 4-HNE levels and 4-HNE protein adducts in cardiac tissue from diabetic mice, accompanied with ameliorated myocardial fibrosis, inflammation, and apoptosis. Improvements of mitochondrial functions, sarco/endoplasmic reticulumcalcium handling and autophagy regulation were also observed in diabetic mice with AD-9308 treatment. In conclusion, ADLH2 activation effectively ameliorated diabetic cardiomyopathy, which may be mediated through detoxification of 4-HNE. Our findings highlighted the therapeutic potential of ALDH2 activation for treating diabetic cardiomyopathy.
Collapse
|
12
|
Ben Aissa M, Lewandowski CT, Ratia KM, Lee SH, Layden BT, LaDu MJ, Thatcher GRJ. Discovery of Nonlipogenic ABCA1 Inducing Compounds with Potential in Alzheimer's Disease and Type 2 Diabetes. ACS Pharmacol Transl Sci 2021; 4:143-154. [PMID: 33615168 PMCID: PMC7887740 DOI: 10.1021/acsptsci.0c00149] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Indexed: 02/07/2023]
Abstract
Selective liver X receptor (LXR) agonists have been extensively pursued as therapeutics for Alzheimer's disease and related dementia (ADRD) and, for comorbidities such as type 2 diabetes (T2D) and cerebrovascular disease (CVD), disorders with underlying impaired insulin signaling, glucose metabolism, and cholesterol mobilization. The failure of the LXR-focused approach led us to pursue a novel strategy to discover nonlipogenic ATP-binding cassette transporter A1 (ABCA1) inducers (NLAIs): screening for ABCA1-luciferase activation in astrocytoma cells and counterscreening against lipogenic gene upregulation in hepatocarcinoma cells. Beneficial effects of LXRβ agonists mediated by ABCA1 include the following: control of cholesterol and phospholipid efflux to lipid-poor apolipoproteins forming beneficial peripheral HDL and HDL-like particles in the brain and attenuation of inflammation. While rare, ABCA1 variants reduce plasma HDL and correlate with an increased risk of ADRD and CVD. In secondary assays, NLAI hits enhanced cholesterol mobilization and positively impacted in vitro biomarkers associated with insulin signaling, inflammatory response, and biogenic properties. In vivo target engagement was demonstrated after oral administration of NLAIs in (i) mice fed a high-fat diet, a model for obesity-linked T2D, (ii) mice administered LPS, and (iii) mice with accelerated oxidative stress. The lack of adverse effects on lipogenesis and positive effects on multiple biomarkers associated with T2D and ADRD supports this novel phenotypic approach to NLAIs as a platform for T2D and ADRD drug discovery.
Collapse
Affiliation(s)
- Manel Ben Aissa
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago (UIC), Chicago, Illinois 60612, United States
- UICentre
(Drug Discovery @ UIC), University of Illinois
at Chicago (UIC), Chicago, Illinois 60612, United States
| | - Cutler T. Lewandowski
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago (UIC), Chicago, Illinois 60612, United States
| | - Kiira M. Ratia
- HTS
Screening Facility, Research Resources Center, University of Illinois at Chicago (UIC), Chicago, Illinois 60612, United States
| | - Sue H. Lee
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago (UIC), Chicago, Illinois 60612, United States
| | - Brian T. Layden
- Department
of Medicine, University of Illinois at Chicago
(UIC), Chicago, Illinois 60612, United States
| | - Mary Jo LaDu
- Department
of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago (UIC), Chicago, Illinois 60612, United States
| | - Gregory R. J. Thatcher
- Department
of Pharmacology & Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
13
|
Fu J, Luo Y, Mou M, Zhang H, Tang J, Wang Y, Zhu F. Advances in Current Diabetes Proteomics: From the Perspectives of Label- free Quantification and Biomarker Selection. Curr Drug Targets 2021; 21:34-54. [PMID: 31433754 DOI: 10.2174/1389450120666190821160207] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 07/17/2019] [Accepted: 07/24/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND Due to its prevalence and negative impacts on both the economy and society, the diabetes mellitus (DM) has emerged as a worldwide concern. In light of this, the label-free quantification (LFQ) proteomics and diabetic marker selection methods have been applied to elucidate the underlying mechanisms associated with insulin resistance, explore novel protein biomarkers, and discover innovative therapeutic protein targets. OBJECTIVE The purpose of this manuscript is to review and analyze the recent computational advances and development of label-free quantification and diabetic marker selection in diabetes proteomics. METHODS Web of Science database, PubMed database and Google Scholar were utilized for searching label-free quantification, computational advances, feature selection and diabetes proteomics. RESULTS In this study, we systematically review the computational advances of label-free quantification and diabetic marker selection methods which were applied to get the understanding of DM pathological mechanisms. Firstly, different popular quantification measurements and proteomic quantification software tools which have been applied to the diabetes studies are comprehensively discussed. Secondly, a number of popular manipulation methods including transformation, pretreatment (centering, scaling, and normalization), missing value imputation methods and a variety of popular feature selection techniques applied to diabetes proteomic data are overviewed with objective evaluation on their advantages and disadvantages. Finally, the guidelines for the efficient use of the computationbased LFQ technology and feature selection methods in diabetes proteomics are proposed. CONCLUSION In summary, this review provides guidelines for researchers who will engage in proteomics biomarker discovery and by properly applying these proteomic computational advances, more reliable therapeutic targets will be found in the field of diabetes mellitus.
Collapse
Affiliation(s)
- Jianbo Fu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yongchao Luo
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Minjie Mou
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hongning Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jing Tang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.,School of Pharmaceutical Sciences and Innovative Drug Research Centre, Chongqing University, Chongqing 401331, China
| | - Yunxia Wang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Feng Zhu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.,School of Pharmaceutical Sciences and Innovative Drug Research Centre, Chongqing University, Chongqing 401331, China
| |
Collapse
|
14
|
Dham D, Roy B, Gowda A, Pan G, Sridhar A, Zeng X, Thandavarayan RA, Palaniyandi SS. 4-Hydroxy-2-nonenal, a lipid peroxidation product, as a biomarker in diabetes and its complications: challenges and opportunities. Free Radic Res 2021; 55:547-561. [PMID: 33336611 DOI: 10.1080/10715762.2020.1866756] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Over 30 million Americans are diagnosed with diabetes and this number is only expected to increase. There are various causes that induce complications with diabetes, including oxidative stress. In oxidative stress, lipid peroxidation-derived reactive carbonyl species such as 4-hydroxy-2-nonenal (4-HNE) is shown to cause damage in organs that leads to diabetic complications. We provided evidence to show that 4-HNE or/and 4-HNE-protein adducts are elevated in various organ systems of diabetic patients and animal models. We then discussed the advantages and disadvantages of different methodologies used for the detection of 4-HNE in diabetic tissues. We also discussed how novel approaches such as electrochemistry and nanotechnology can be used for monitoring 4-HNE levels in biological systems in real-time. Thus, this review enlightens the involvement of 4-HNE in the pathogenesis of diabetes and its complications and efficient methods to identify it. Furthermore, the article presents that 4-HNE can be developed as a biomarker for end-organ damage in diabetes such as diabetic cardiac complications.
Collapse
Affiliation(s)
- Deiva Dham
- Division of Hypertension and Vascular Research, Department of Internal Medicine, Henry Ford Health System, Detroit, MI, USA
| | - Bipradas Roy
- Division of Hypertension and Vascular Research, Department of Internal Medicine, Henry Ford Health System, Detroit, MI, USA
| | - Amita Gowda
- Division of Hypertension and Vascular Research, Department of Internal Medicine, Henry Ford Health System, Detroit, MI, USA
| | - Guodong Pan
- Division of Hypertension and Vascular Research, Department of Internal Medicine, Henry Ford Health System, Detroit, MI, USA
| | - Arun Sridhar
- Department of Chemistry, Oakland University, Rochester, MI, USA
| | - Xiangqun Zeng
- Department of Chemistry, Oakland University, Rochester, MI, USA
| | - Rajarajan A Thandavarayan
- Department of Cardiovascular Sciences, Centre for Cardiovascular Regeneration, Houston Methodist Research Institute, Houston, TX, USA
| | - Suresh Selvaraj Palaniyandi
- Division of Hypertension and Vascular Research, Department of Internal Medicine, Henry Ford Health System, Detroit, MI, USA.,Department of Physiology, Wayne State University, Detroit, MI, USA
| |
Collapse
|
15
|
Fuloria S, Subramaniyan V, Karupiah S, Kumari U, Sathasivam K, Meenakshi DU, Wu YS, Guad RM, Udupa K, Fuloria NK. A Comprehensive Review on Source, Types, Effects, Nanotechnology, Detection, and Therapeutic Management of Reactive Carbonyl Species Associated with Various Chronic Diseases. Antioxidants (Basel) 2020; 9:E1075. [PMID: 33147856 PMCID: PMC7692604 DOI: 10.3390/antiox9111075] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 10/26/2020] [Accepted: 10/28/2020] [Indexed: 12/12/2022] Open
Abstract
Continuous oxidation of carbohydrates, lipids, and amino acids generate extremely reactive carbonyl species (RCS). Human body comprises some important RCS namely hexanal, acrolein, 4-hydroxy-2-nonenal, methylglyoxal, malondialdehyde, isolevuglandins, and 4-oxo-2- nonenal etc. These RCS damage important cellular components including proteins, nucleic acids, and lipids, which manifests cytotoxicity, mutagenicity, multitude of adducts and crosslinks that are connected to ageing and various chronic diseases like inflammatory disease, atherosclerosis, cerebral ischemia, diabetes, cancer, neurodegenerative diseases and cardiovascular disease. The constant prevalence of RCS in living cells suggests their importance in signal transduction and gene expression. Extensive knowledge of RCS properties, metabolism and relation with metabolic diseases would assist in development of effective approach to prevent numerous chronic diseases. Treatment approaches for RCS associated diseases involve endogenous RCS metabolizers, carbonyl metabolizing enzyme inducers, and RCS scavengers. Limited bioavailability and bio efficacy of RCS sequesters suggest importance of nanoparticles and nanocarriers. Identification of RCS and screening of compounds ability to sequester RCS employ several bioassays and analytical techniques. Present review describes in-depth study of RCS sources, types, properties, identification techniques, therapeutic approaches, nanocarriers, and their role in various diseases. This study will give an idea for therapeutic development to combat the RCS associated chronic diseases.
Collapse
Affiliation(s)
- Shivkanya Fuloria
- Faculty of Pharmacy, AIMST University, Kedah, Bedong 08100, Malaysia;
| | - Vetriselvan Subramaniyan
- Faculty of Medicine, Bioscience and Nursing, MAHSA University, Kuala Lumpur 42610, Malaysia; (V.S.); (Y.S.W.)
| | - Sundram Karupiah
- Faculty of Pharmacy, AIMST University, Kedah, Bedong 08100, Malaysia;
| | - Usha Kumari
- Faculty of Medicine, AIMST University, Kedah, Bedong 08100, Malaysia;
| | | | | | - Yuan Seng Wu
- Faculty of Medicine, Bioscience and Nursing, MAHSA University, Kuala Lumpur 42610, Malaysia; (V.S.); (Y.S.W.)
| | - Rhanye Mac Guad
- Faculty of Medicine and Health Science, University Malaysia Sabah, Kota Kinabalu 88400, Malaysia;
| | - Kaviraja Udupa
- Department of Neurophysiology, NIMHANS, Bangalore 560029, India;
| | | |
Collapse
|
16
|
Sa L, Wei X, Huang Q, Cai Y, Lu D, Mei R, Hu X. Contribution of salidroside to the relieve of symptom and sign in the early acute stage of osteoarthritis in rat model. JOURNAL OF ETHNOPHARMACOLOGY 2020; 259:112883. [PMID: 32315736 DOI: 10.1016/j.jep.2020.112883] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 04/08/2020] [Accepted: 04/13/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The genus Rhodiola has been used to treat cough, hemoptysis, fever, pain, bruise and other symptoms which are related to injury and inflammation over a thousand years in traditional Tibetan medicine. Salidroside (p-hydroxyphenethyl-β-D-glucoside) is one of the most potent bioactive ingredients of the genus Rhodiola. AIM OF STUDY The present study aimed to explore whether salidroside could alleviate the clinical symptom and sign in the early acute stage of osteoarthritis (OA) in monosodium iodoacetate (MIA) rat model, and its underlying mechanisms. MATERIALS AND METHODS Osteoarthritis (OA) was induced in rat knees by intra-articular injection of MIA; simultaneously salidroside was administered by intravenous injection. Pain behaviors were evaluated by knee-bend test, hind limb weight-bearing asymmetry and hind paw mechanical withdrawal threshold. The joint swelling was determined by the difference of knee joint diameter. Inflammatory exudates in synovial fluid were evaluated by leukocyte counting and protein content. Cytokines, chemokines, reactive oxygen species (ROS) and reactive nitrogen species (RNS) markers were determined by Enzyme-linked immunosorbent assay (ELISA) and colorimetric assay in synovial fluid. Pro-inflammatory gene expressions in synovial tissue were detected by quantitative real time RT-PCR (qRT-PCR). Nuclear factor kappa-B (NF-κB) DNA binding assay and western blot were used to determine NF-κB activation and ROS marker protein expression in synovial tissue. Glycosaminoglycan (GAG) content in the cartilage was measured by dimethylmethylene blue method. Hematoxylin and eosin (H&E), Safranin O-fast green and a modified Mankin grading system were used to evaluate the histology of articular cartilage. RESULTS Salidroside could alleviate pain and joint swelling in the early acute stage of OA in rat model, reduced the number of leukocytes, total protein content, proinflammatory mediators and ROS/RNS markers in synovial fluid, down regulated the expression of proinflammatory genes in synovium, inhibited the activation of NF- κ B and oxidative stress response in synovium, promoted the synthesis of cartilage GAG, prevented the loss of proteoglycan and chondrocyte degeneration. CONCLUSIONS Salidroside effectively alleviates acute symptom and sign of OA in rat model by its anti-inflammatory and antioxidant affects to inhibit synovial inflammation, which provides a new strategy to prevent the onset and progression of OA.
Collapse
Affiliation(s)
- Lina Sa
- Department of Physiology, Zhejiang University School of Medicine, NO.866, Yuhangtang Road, Hangzhou, Zhejiang Province, 310058, China
| | - Xiaoli Wei
- Medical Experiment Center, Zhejiang University School of Medicine, NO.866, Yuhangtang Road, Hangzhou, Zhejiang Province, 310058, China
| | - Qian Huang
- Research Center for Clinical Pharmacy, State Key Laboratory for Diagnosis and Treatment of Infectious Disease, First Affifiliated Hospital, Zhejiang University School of Medicine, NO.79, Qingchun Road, Hangzhou, Zhejiang Province, 310003, China
| | - Yanchun Cai
- Department of Physiology, Zhejiang University School of Medicine, NO.866, Yuhangtang Road, Hangzhou, Zhejiang Province, 310058, China
| | - Daigang Lu
- Department of Orthopaedic Surgery, Honghui Hospital, Xi'an Jiaotong University School of Medicine, NO.555, Youyi East Road, Xi'an, Shaanxi Province, 710054, China
| | - Ruhuan Mei
- Medical Experiment Center, Zhejiang University School of Medicine, NO.866, Yuhangtang Road, Hangzhou, Zhejiang Province, 310058, China
| | - Xiaolan Hu
- Department of Physiology, Zhejiang University School of Medicine, NO.866, Yuhangtang Road, Hangzhou, Zhejiang Province, 310058, China.
| |
Collapse
|
17
|
Li LQ, Yao MY, Ma JX, Xue P, Li YK. Continuous subcutaneous insulin infusion combined with liraglutide reduced glycemic variability and oxidative stress in type 2 diabetes mellitus: a study based on the flash glucose monitoring system. Endocr J 2019; 66:871-880. [PMID: 31243192 DOI: 10.1507/endocrj.ej19-0016] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
We aimed to explore the use of the flash glucose monitoring (FGM) system in hospitalized newly diagnosed type 2 diabetes mellitus (T2DM) patients and to evaluate a new combination therapy of continuous subcutaneous insulin infusion (CSII) with or without liraglutide. This was an open-label, randomized study that was conducted in 60 newly diagnosed T2DM patients. The patients were randomized to receive either CSII (n = 30) or CSII + liraglutide (n = 30). The FGM system was used to assess the glycemic control and glycemic variability (GV) indices for 2 weeks. Mean blood glucose concentration (MBG), estimated hemoglobin A1c (HbA1c), and measures of GV, including the standard deviation of the mean glucose (SD), coefficient of variation (CV), interquartile range (IQR), mean amplitude of glycemic excursions (MAGE), largest amplitude of glycemic excursions (LAGE), and mean of daily difference (MODD) were compared between the two groups. Two oxidative stress biomarkers, 4-hydroxynonenal (4-HNE) and 8-hydroxydeoxyguanosine (8-OHdG), were measured before and after treatment. The estimated HbA1c and MBG decreased in both groups, especially the CSII + liraglutide group. SD, IQR, LAGE, and MODD were significantly lower in the CSII + liraglutide group than in the CSII group (all p < 0.05); there was no difference in CV or MAGE (p > 0.05). Similarly, the 4-HNE and 8-OHdG levels were significantly lower in the CSII + liraglutide group (p < 0.05). Our findings suggest that CSII with liraglutide was superior to CSII monotherapy in improving glycemic control and glycemic variability and in decreasing oxidative stress markers. Flash glucose monitoring can successfully provide ambulatory glucose profile data in the real world.
Collapse
Affiliation(s)
- Li-Qin Li
- Department of Endocrinology, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, China
- Department of Endocrinology, Baoding No.1 Central Hospital, Baoding 071000, China
| | - Ming-Yan Yao
- Department of Endocrinology, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, China
- Department of Endocrinology, Baoding No.1 Central Hospital, Baoding 071000, China
| | - Jian-Xia Ma
- Department of Endocrinology, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, China
| | - Peng Xue
- Department of Endocrinology, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, China
| | - Yu-Kun Li
- Department of Endocrinology, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, China
| |
Collapse
|
18
|
El-Maghrabey M, Kishikawa N, Kuroda N. Novel Isotope-Coded Derivatization Method for Aldehydes Using 14N/15N-Ammonium Acetate and 9,10-Phenanthrenequinone. Anal Chem 2018; 90:13867-13875. [DOI: 10.1021/acs.analchem.8b02458] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mahmoud El-Maghrabey
- Course of Pharmaceutical Sciences, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Naoya Kishikawa
- Course of Pharmaceutical Sciences, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Naotaka Kuroda
- Course of Pharmaceutical Sciences, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| |
Collapse
|
19
|
Anderson EJ, Vistoli G, Katunga LA, Funai K, Regazzoni L, Monroe TB, Gilardoni E, Cannizzaro L, Colzani M, De Maddis D, Rossoni G, Canevotti R, Gagliardi S, Carini M, Aldini G. A carnosine analog mitigates metabolic disorders of obesity by reducing carbonyl stress. J Clin Invest 2018; 128:5280-5293. [PMID: 30226473 DOI: 10.1172/jci94307] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 09/11/2018] [Indexed: 12/15/2022] Open
Abstract
Sugar- and lipid-derived aldehydes are reactive carbonyl species (RCS) frequently used as surrogate markers of oxidative stress in obesity. A pathogenic role for RCS in metabolic diseases of obesity remains controversial, however, partly because of their highly diffuse and broad reactivity and the lack of specific RCS-scavenging therapies. Naturally occurring histidine dipeptides (e.g., anserine and carnosine) show RCS reactivity, but their therapeutic potential in humans is limited by serum carnosinases. Here, we present the rational design, characterization, and pharmacological evaluation of carnosinol, i.e., (2S)-2-(3-amino propanoylamino)-3-(1H-imidazol-5-yl)propanol, a derivative of carnosine with high oral bioavailability that is resistant to carnosinases. Carnosinol displayed a suitable ADMET (absorption, distribution, metabolism, excretion, and toxicity) profile and was determined to have the greatest potency and selectivity toward α,β-unsaturated aldehydes (e.g., 4-hydroxynonenal, HNE, ACR) among all others reported thus far. In rodent models of diet-induced obesity and metabolic syndrome, carnosinol dose-dependently attenuated HNE adduct formation in liver and skeletal muscle, while simultaneously mitigating inflammation, dyslipidemia, insulin resistance, and steatohepatitis. These improvements in metabolic parameters with carnosinol were not due to changes in energy expenditure, physical activity, adiposity, or body weight. Collectively, our findings illustrate a pathogenic role for RCS in obesity-related metabolic disorders and provide validation for a promising new class of carbonyl-scavenging therapeutic compounds rationally derived from carnosine.
Collapse
Affiliation(s)
- Ethan J Anderson
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa, USA.,Department of Pharmacology and Toxicology, East Carolina University, Greenville, North Carolina, USA
| | - Giulio Vistoli
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Lalage A Katunga
- Department of Pharmacology and Toxicology, East Carolina University, Greenville, North Carolina, USA
| | - Katsuhiko Funai
- Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, Utah, USA
| | - Luca Regazzoni
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - T Blake Monroe
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa, USA.,Department of Pharmacology and Toxicology, East Carolina University, Greenville, North Carolina, USA
| | - Ettore Gilardoni
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Luca Cannizzaro
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Mara Colzani
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Danilo De Maddis
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Giuseppe Rossoni
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | | | | | - Marina Carini
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Giancarlo Aldini
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| |
Collapse
|
20
|
Sasson S. Nutrient overload, lipid peroxidation and pancreatic beta cell function. Free Radic Biol Med 2017; 111:102-109. [PMID: 27600453 DOI: 10.1016/j.freeradbiomed.2016.09.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Accepted: 09/02/2016] [Indexed: 12/16/2022]
Abstract
Since the landmark discovery of α,β-unsaturated 4-hydroxyalkenals by Esterbauer and colleagues most studies have addressed the consequences of the tendency of these lipid peroxidation products to form covalent adducts with macromolecules and modify cellular functions. Many studies describe detrimental and cytotoxic effects of 4-hydroxy-2E-nonenal (4-HNE) in myriad tissues and organs and many pathologies. Other studies similarly assigned unfavorable effects to 4-hydroxy-2E-hexenal (4-HHE) and 4-hydroxy-2E,6Z-dodecadienal (4-HDDE). Nutrient overload (e.g., hyperglycemia, hyperlipidemia) modifies lipid metabolism in cells and promotes lipid peroxidation and the generation of α,β-unsaturated 4-hydroxyalkenals. Advances glycation- and lipoxidation end products (AGEs and ALEs) have been associated with the development of insulin resistance and pancreatic beta cell dysfunction and the etiology of type 2 diabetes and its peripheral complications. Less acknowledged are genuine signaling properties of 4-hydroxyalkenals in hormetic processes that provide defense against the consequences of nutrient overload. This review addresses recent findings on such lipohormetic mechanisms that are associated with lipid peroxidation in pancreatic beta cells. This article is part of a Special Issue entitled SI: LIPID OXIDATION PRODUCTS, edited by Giuseppe Poli.
Collapse
Affiliation(s)
- Shlomo Sasson
- Institute for Drug Research, Section of Pharmacology, Diabetes Research Unit, Hebrew University Faculty of Medicine, Jerusalem 9112001, Israel.
| |
Collapse
|
21
|
Mol M, Regazzoni L, Altomare A, Degani G, Carini M, Vistoli G, Aldini G. Enzymatic and non-enzymatic detoxification of 4-hydroxynonenal: Methodological aspects and biological consequences. Free Radic Biol Med 2017; 111:328-344. [PMID: 28161307 DOI: 10.1016/j.freeradbiomed.2017.01.036] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 01/26/2017] [Accepted: 01/26/2017] [Indexed: 10/20/2022]
Abstract
4-Hydroxynonenal (HNE), an electrophilic end-product deriving from lipid peroxidation, undergoes a heterogeneous set of biotransformations including enzymatic and non-enzymatic reactions. The former mostly involve red-ox reactions on the HNE oxygenated functions (phase I metabolism) and GSH conjugations (phase II) while the latter are due to the HNE capacity to spontaneously condense with nucleophilic sites within endogenous molecules such as proteins, nucleic acids and phospholipids. The overall metabolic fate of HNE has recently attracted great interest not only because it clearly determines the HNE disposal, but especially because the generated metabolites and adducts are not inactive molecules (as initially believed) but show biological activities even more pronounced than those of the parent compound as exemplified by potent pro-inflammatory stimulus induced by GSH conjugates. Similarly, several studies revealed that the non-enzymatic reactions, initially considered as damaging processes randomly involving all endogenous nucleophilic reactants, are in fact quite selective in terms of both reactivity of the nucleophilic sites and stability of the generated adducts. Even though many formed adducts retain the expected toxic consequences, some adducts exhibit well-defined beneficial roles as documented by the protective effects of sublethal concentrations of HNE against toxic concentrations of HNE. Clearly, future investigations are required to gain a more detailed understanding of the metabolic fate of HNE as well as to identify novel targets involved in the biological activity of the HNE metabolites. These studies are and will be permitted by the continuous progress in the analytical methods for the identification and quantitation of novel HNE metabolites as well as for proteomic analyses able to offer a comprehensive picture of the HNE-induced adducted targets. On these grounds, the present review will focus on the major enzymatic and non-enzymatic HNE biotransformations discussing both the molecular mechanisms involved and the biological effects elicited. The review will also describe the most important analytical enhancements that have permitted the here discussed advancements in our understanding of the HNE metabolic fate and which will permit in a near future an even better knowledge of this enigmatic molecule.
Collapse
Affiliation(s)
- Marco Mol
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Via Mangiagalli 25, 20133 Milan, Italy
| | - Luca Regazzoni
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Via Mangiagalli 25, 20133 Milan, Italy
| | - Alessandra Altomare
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Via Mangiagalli 25, 20133 Milan, Italy
| | - Genny Degani
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Via Mangiagalli 25, 20133 Milan, Italy
| | - Marina Carini
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Via Mangiagalli 25, 20133 Milan, Italy
| | - Giulio Vistoli
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Via Mangiagalli 25, 20133 Milan, Italy
| | - Giancarlo Aldini
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Via Mangiagalli 25, 20133 Milan, Italy.
| |
Collapse
|
22
|
Bhat S, Jagadeeshaprasad MG, Venkatasubramani V, Kulkarni MJ. Abundance matters: role of albumin in diabetes, a proteomics perspective. Expert Rev Proteomics 2017; 14:677-689. [PMID: 28689445 DOI: 10.1080/14789450.2017.1352473] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Human serum albumin (HSA) is a multifaceted protein with vital physiological functions. It is the most abundant plasma protein with inherent capability to bind to diverse ligands, and thus susceptible to various post-translational modifications (PTMs) which alter its structure and functions. One such PTM is glycation, a non-enzymatic reaction between reducing sugar and protein leading to formation of heterogeneous advanced glycation end products (AGEs). Glycated albumin (GA) concentration increases significantly in diabetes and is implicated in development of secondary complications. Areas covered: In this review, we discuss in depth, formation of GA and its consequences, approaches used for characterization and quantification of GA, milestones in GA proteomics, clinical relevance of GA as a biomarker, significance of maintaining abundant levels of albumin and future perspectives. Expert commentary: Elevated GA levels are associated with development of insulin resistance as well as secondary complications, in healthy and diabetic individuals respectively. Mass spectrometry (MS) based approaches aid in precise characterization and quantification of GA including early and advanced glycated peptides, which can be useful in prediction of the disease status. Thus GA has evolved to be one of the best candidates in the pursuit of diagnostic markers for prediction of prediabetes and diabetic complications.
Collapse
Affiliation(s)
- Shweta Bhat
- a Division of Biochemical Sciences , CSIR-National Chemical Laboratory , Pune , India
| | | | | | - Mahesh J Kulkarni
- a Division of Biochemical Sciences , CSIR-National Chemical Laboratory , Pune , India
| |
Collapse
|
23
|
Khan F, Moinuddin, Mir AR, Islam S, Alam K, Ali A. Immunochemical studies on HNE-modified HSA: Anti-HNE–HSA antibodies as a probe for HNE damaged albumin in SLE. Int J Biol Macromol 2016; 86:145-54. [DOI: 10.1016/j.ijbiomac.2016.01.053] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 12/21/2015] [Accepted: 01/15/2016] [Indexed: 12/24/2022]
|
24
|
Hormetic and regulatory effects of lipid peroxidation mediators in pancreatic beta cells. Mol Aspects Med 2016; 49:49-77. [PMID: 27012748 DOI: 10.1016/j.mam.2016.03.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Revised: 02/23/2016] [Accepted: 03/09/2016] [Indexed: 12/12/2022]
Abstract
Nutrient sensing mechanisms of carbohydrates, amino acids and lipids operate distinct pathways that are essential for the adaptation to varying metabolic conditions. The role of nutrient-induced biosynthesis of hormones is paramount for attaining metabolic homeostasis in the organism. Nutrient overload attenuate key metabolic cellular functions and interfere with hormonal-regulated inter- and intra-organ communication, which may ultimately lead to metabolic derangements. Hyperglycemia and high levels of saturated free fatty acids induce excessive production of oxygen free radicals in tissues and cells. This phenomenon, which is accentuated in both type-1 and type-2 diabetic patients, has been associated with the development of impaired glucose tolerance and the etiology of peripheral complications. However, low levels of the same free radicals also induce hormetic responses that protect cells against deleterious effects of the same radicals. Of interest is the role of hydroxyl radicals in initiating peroxidation of polyunsaturated fatty acids (PUFA) and generation of α,β-unsaturated reactive 4-hydroxyalkenals that avidly form covalent adducts with nucleophilic moieties in proteins, phospholipids and nucleic acids. Numerous studies have linked the lipid peroxidation product 4-hydroxy-2E-nonenal (4-HNE) to different pathological and cytotoxic processes. Similarly, two other members of the family, 4-hydroxyl-2E-hexenal (4-HHE) and 4-hydroxy-2E,6Z-dodecadienal (4-HDDE), have also been identified as potential cytotoxic agents. It has been suggested that 4-HNE-induced modifications in macromolecules in cells may alter their cellular functions and modify signaling properties. Yet, it has also been acknowledged that these bioactive aldehydes also function as signaling molecules that directly modify cell functions in a hormetic fashion to enable cells adapt to various stressful stimuli. Recent studies have shown that 4-HNE and 4-HDDE, which activate peroxisome proliferator-activated receptor δ (PPARδ) in vascular endothelial cells and insulin secreting beta cells, promote such adaptive responses to ameliorate detrimental effects of high glucose and diabetes-like conditions. In addition, due to the electrophilic nature of these reactive aldehydes they form covalent adducts with electronegative moieties in proteins, phosphatidylethanolamine and nucleotides. Normally these non-enzymatic modifications are maintained below the cytotoxic range due to efficient cellular neutralization processes of 4-hydroxyalkenals. The major neutralizing enzymes include fatty aldehyde dehydrogenase (FALDH), aldose reductase (AR) and alcohol dehydrogenase (ADH), which transform the aldehyde to the corresponding carboxylic acid or alcohols, respectively, or by biding to the thiol group in glutathione (GSH) by the action of glutathione-S-transferase (GST). This review describes the hormetic and cytotoxic roles of oxygen free radicals and 4-hydroxyalkenals in beta cells exposed to nutritional challenges and the cellular mechanisms they employ to maintain their level at functional range below the cytotoxic threshold.
Collapse
|
25
|
Tsuzuki Y, Yamashita Y, Hattori Y, Hua Li G, Akatsuka S, Kotani T, Kikkawa F, Naiki-Ito A, Takahashi S, Nishiwaki K, Toyokuni S. Pain-reducing anesthesia prevents oxidative stress in human term placenta. J Clin Biochem Nutr 2016; 58:156-60. [PMID: 27013783 PMCID: PMC4788402 DOI: 10.3164/jcbn.15-138] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Accepted: 11/12/2015] [Indexed: 12/23/2022] Open
Abstract
Anesthesia is sometimes used for the reduction of maternal pain in normal human term
labor, but whether the drugs affect oxidative stress remains unclear. The placenta
serves as an interface between the maternal and fetal vasculature. In this study, we
immunohistochemically analyzed two markers for oxidative stress, namely
8-hydroxy-2'-deoxyguanosine (8-OHdG) and 4-hydroxy-2-nonenal–modified proteins
(HNE), using placentas from 21 cases of normal tansvaginal delivery (V group), 20
Caesarean sections (C group), and 17 normal transvaginal deliveries with epidural
anesthesia (E group). 8-OHdG staining in the nuclei of trophoblasts lining the
chorionic villi was significantly stronger in the V group either compared with the C
or E group (p<0.001), without significant differences in the C
and E groups (p = 0.792). Moderate to intense
staining by HNE of the intravascular serum of chorionic villi vasculature was
frequently observed in the placentas from the V group, but less frequently of those
in either C or E groups (p<0.001), nor the p
value comparing the C and E groups was significant
(p = 0.128) for HNE staining. Our results suggest
that although the role of oxidative stress and its influences on fetal state in the
placenta in labor remains unclear, it seems to be lessened by epidural
anesthesia.
Collapse
Affiliation(s)
- Yoko Tsuzuki
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Japan; Department of Anesthesiology and Resuscitation, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Japan; Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan
| | - Yoriko Yamashita
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Japan; Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan
| | - Yuka Hattori
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Japan; Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Guang Hua Li
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Japan
| | - Shinya Akatsuka
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Japan
| | - Tomomi Kotani
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Fumitaka Kikkawa
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Aya Naiki-Ito
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan
| | - Satoru Takahashi
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan
| | - Kimitoshi Nishiwaki
- Department of Anesthesiology and Resuscitation, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Japan
| | - Shinya Toyokuni
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Japan
| |
Collapse
|
26
|
Schaur RJ, Siems W, Bresgen N, Eckl PM. 4-Hydroxy-nonenal-A Bioactive Lipid Peroxidation Product. Biomolecules 2015; 5:2247-337. [PMID: 26437435 PMCID: PMC4693237 DOI: 10.3390/biom5042247] [Citation(s) in RCA: 141] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 07/24/2015] [Accepted: 07/29/2015] [Indexed: 12/23/2022] Open
Abstract
This review on recent research advances of the lipid peroxidation product 4-hydroxy-nonenal (HNE) has four major topics: I. the formation of HNE in various organs and tissues, II. the diverse biochemical reactions with Michael adduct formation as the most prominent one, III. the endogenous targets of HNE, primarily peptides and proteins (here the mechanisms of covalent adduct formation are described and the (patho-) physiological consequences discussed), and IV. the metabolism of HNE leading to a great number of degradation products, some of which are excreted in urine and may serve as non-invasive biomarkers of oxidative stress.
Collapse
Affiliation(s)
- Rudolf J Schaur
- Institute of Molecular Biosciences, University of Graz, Heinrichstrasse 33a, 8010 Graz, Austria.
| | - Werner Siems
- Institute for Medical Education, KortexMed GmbH, Hindenburgring 12a, 38667 Bad Harzburg, Germany.
| | - Nikolaus Bresgen
- Division of Genetics, Department of Cell Biology, University of Salzburg, Hellbrunnerstasse 34, 5020 Salzburg, Austria.
| | - Peter M Eckl
- Division of Genetics, Department of Cell Biology, University of Salzburg, Hellbrunnerstasse 34, 5020 Salzburg, Austria.
| |
Collapse
|
27
|
Cohen G, Shamni O, Avrahami Y, Cohen O, Broner EC, Filippov-Levy N, Chatgilialoglu C, Ferreri C, Kaiser N, Sasson S. Beta cell response to nutrient overload involves phospholipid remodelling and lipid peroxidation. Diabetologia 2015; 58:1333-43. [PMID: 25810039 DOI: 10.1007/s00125-015-3566-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 03/11/2015] [Indexed: 12/13/2022]
Abstract
AIMS/HYPOTHESIS Membrane phospholipids are the major intracellular source for fatty acid-derived mediators, which regulate myriad cell functions. We showed previously that high glucose levels triggered the hydrolysis of polyunsaturated fatty acids from beta cell phospholipids. These fatty acids were subjected to free radical-catalysed peroxidation to generate the bioactive aldehyde 4-hydroxy-2E-nonenal (4-HNE). The latter activated the nuclear peroxisome proliferator-activated receptor-δ (PPARδ), which in turn augmented glucose-stimulated insulin secretion. The present study aimed at investigating the combined effects of glucose and fatty acid overload on phospholipid turnover and the subsequent generation of lipid mediators, which affect insulin secretion and beta cell viability. METHODS INS-1E cells were incubated with increasing glucose concentrations (5-25 mmol/l) without or with palmitic acid (PA; 50-500 μmol/l) and taken for fatty acid-based lipidomic analysis and functional assays. Rat isolated islets of Langerhans were used similarly. RESULTS PA was incorporated into membrane phospholipids in a concentration- and time-dependent manner; incorporation was highest at 25 mmol/l glucose. This was coupled to a rapid exchange with saturated, mono-unsaturated and polyunsaturated fatty acids. Importantly, released arachidonic acid and linoleic acid were subjected to peroxidation, resulting in the generation of 4-HNE, which further augmented insulin secretion by activating PPARδ in beta cells. However, this adaptive increase in insulin secretion was abolished at high glucose and PA levels, which induced endoplasmic reticulum stress, apoptosis and cell death. CONCLUSIONS/INTERPRETATION These findings highlight a key role for phospholipid remodelling and fatty acid peroxidation in mediating adaptive and cytotoxic interactions induced by nutrient overload in beta cells.
Collapse
Affiliation(s)
- Guy Cohen
- Department of Pharmacology, Institute for Drug Research, Faculty of Medicine, The Hebrew University, Jerusalem, 9112102, Israel
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Hintzpeter J, Martin H, Maser E. Reduction of lipid peroxidation products and advanced glycation end‐product precursors by cyanobacterial aldo‐keto reductase AKR3G1—a founding member of the AKR3G subfamily. FASEB J 2014; 29:263-73. [DOI: 10.1096/fj.14-258327] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Jan Hintzpeter
- Institute of Toxicology and Pharmacology for Natural ScientistsUniversity Medical School Schleswig‐HolsteinCampus KielKielGermany
| | - Hans‐Joerg Martin
- Institute of Toxicology and Pharmacology for Natural ScientistsUniversity Medical School Schleswig‐HolsteinCampus KielKielGermany
| | - Edmund Maser
- Institute of Toxicology and Pharmacology for Natural ScientistsUniversity Medical School Schleswig‐HolsteinCampus KielKielGermany
| |
Collapse
|
29
|
Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014. [PMID: 24999379 DOI: 10.1155/2014/360438,] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Lipid peroxidation can be described generally as a process under which oxidants such as free radicals attack lipids containing carbon-carbon double bond(s), especially polyunsaturated fatty acids (PUFAs). Over the last four decades, an extensive body of literature regarding lipid peroxidation has shown its important role in cell biology and human health. Since the early 1970s, the total published research articles on the topic of lipid peroxidation was 98 (1970-1974) and has been increasing at almost 135-fold, by up to 13165 in last 4 years (2010-2013). New discoveries about the involvement in cellular physiology and pathology, as well as the control of lipid peroxidation, continue to emerge every day. Given the enormity of this field, this review focuses on biochemical concepts of lipid peroxidation, production, metabolism, and signaling mechanisms of two main omega-6 fatty acids lipid peroxidation products: malondialdehyde (MDA) and, in particular, 4-hydroxy-2-nonenal (4-HNE), summarizing not only its physiological and protective function as signaling molecule stimulating gene expression and cell survival, but also its cytotoxic role inhibiting gene expression and promoting cell death. Finally, overviews of in vivo mammalian model systems used to study the lipid peroxidation process, and common pathological processes linked to MDA and 4-HNE are shown.
Collapse
|
30
|
Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014. [PMID: 24999379 DOI: 10.1155/2014/360438]] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Lipid peroxidation can be described generally as a process under which oxidants such as free radicals attack lipids containing carbon-carbon double bond(s), especially polyunsaturated fatty acids (PUFAs). Over the last four decades, an extensive body of literature regarding lipid peroxidation has shown its important role in cell biology and human health. Since the early 1970s, the total published research articles on the topic of lipid peroxidation was 98 (1970-1974) and has been increasing at almost 135-fold, by up to 13165 in last 4 years (2010-2013). New discoveries about the involvement in cellular physiology and pathology, as well as the control of lipid peroxidation, continue to emerge every day. Given the enormity of this field, this review focuses on biochemical concepts of lipid peroxidation, production, metabolism, and signaling mechanisms of two main omega-6 fatty acids lipid peroxidation products: malondialdehyde (MDA) and, in particular, 4-hydroxy-2-nonenal (4-HNE), summarizing not only its physiological and protective function as signaling molecule stimulating gene expression and cell survival, but also its cytotoxic role inhibiting gene expression and promoting cell death. Finally, overviews of in vivo mammalian model systems used to study the lipid peroxidation process, and common pathological processes linked to MDA and 4-HNE are shown.
Collapse
|
31
|
Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014. [PMID: 24999379 DOI: 10.1155/2014/360438\] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Lipid peroxidation can be described generally as a process under which oxidants such as free radicals attack lipids containing carbon-carbon double bond(s), especially polyunsaturated fatty acids (PUFAs). Over the last four decades, an extensive body of literature regarding lipid peroxidation has shown its important role in cell biology and human health. Since the early 1970s, the total published research articles on the topic of lipid peroxidation was 98 (1970-1974) and has been increasing at almost 135-fold, by up to 13165 in last 4 years (2010-2013). New discoveries about the involvement in cellular physiology and pathology, as well as the control of lipid peroxidation, continue to emerge every day. Given the enormity of this field, this review focuses on biochemical concepts of lipid peroxidation, production, metabolism, and signaling mechanisms of two main omega-6 fatty acids lipid peroxidation products: malondialdehyde (MDA) and, in particular, 4-hydroxy-2-nonenal (4-HNE), summarizing not only its physiological and protective function as signaling molecule stimulating gene expression and cell survival, but also its cytotoxic role inhibiting gene expression and promoting cell death. Finally, overviews of in vivo mammalian model systems used to study the lipid peroxidation process, and common pathological processes linked to MDA and 4-HNE are shown.
Collapse
|
32
|
Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014. [PMID: 24999379 DOI: 10.1155/2014/360438;] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Lipid peroxidation can be described generally as a process under which oxidants such as free radicals attack lipids containing carbon-carbon double bond(s), especially polyunsaturated fatty acids (PUFAs). Over the last four decades, an extensive body of literature regarding lipid peroxidation has shown its important role in cell biology and human health. Since the early 1970s, the total published research articles on the topic of lipid peroxidation was 98 (1970-1974) and has been increasing at almost 135-fold, by up to 13165 in last 4 years (2010-2013). New discoveries about the involvement in cellular physiology and pathology, as well as the control of lipid peroxidation, continue to emerge every day. Given the enormity of this field, this review focuses on biochemical concepts of lipid peroxidation, production, metabolism, and signaling mechanisms of two main omega-6 fatty acids lipid peroxidation products: malondialdehyde (MDA) and, in particular, 4-hydroxy-2-nonenal (4-HNE), summarizing not only its physiological and protective function as signaling molecule stimulating gene expression and cell survival, but also its cytotoxic role inhibiting gene expression and promoting cell death. Finally, overviews of in vivo mammalian model systems used to study the lipid peroxidation process, and common pathological processes linked to MDA and 4-HNE are shown.
Collapse
|
33
|
Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014. [PMID: 24999379 DOI: 10.1155/2014/360438"] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Lipid peroxidation can be described generally as a process under which oxidants such as free radicals attack lipids containing carbon-carbon double bond(s), especially polyunsaturated fatty acids (PUFAs). Over the last four decades, an extensive body of literature regarding lipid peroxidation has shown its important role in cell biology and human health. Since the early 1970s, the total published research articles on the topic of lipid peroxidation was 98 (1970-1974) and has been increasing at almost 135-fold, by up to 13165 in last 4 years (2010-2013). New discoveries about the involvement in cellular physiology and pathology, as well as the control of lipid peroxidation, continue to emerge every day. Given the enormity of this field, this review focuses on biochemical concepts of lipid peroxidation, production, metabolism, and signaling mechanisms of two main omega-6 fatty acids lipid peroxidation products: malondialdehyde (MDA) and, in particular, 4-hydroxy-2-nonenal (4-HNE), summarizing not only its physiological and protective function as signaling molecule stimulating gene expression and cell survival, but also its cytotoxic role inhibiting gene expression and promoting cell death. Finally, overviews of in vivo mammalian model systems used to study the lipid peroxidation process, and common pathological processes linked to MDA and 4-HNE are shown.
Collapse
|
34
|
Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014. [PMID: 24999379 DOI: 10.1155/2014/360438-- or] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Lipid peroxidation can be described generally as a process under which oxidants such as free radicals attack lipids containing carbon-carbon double bond(s), especially polyunsaturated fatty acids (PUFAs). Over the last four decades, an extensive body of literature regarding lipid peroxidation has shown its important role in cell biology and human health. Since the early 1970s, the total published research articles on the topic of lipid peroxidation was 98 (1970-1974) and has been increasing at almost 135-fold, by up to 13165 in last 4 years (2010-2013). New discoveries about the involvement in cellular physiology and pathology, as well as the control of lipid peroxidation, continue to emerge every day. Given the enormity of this field, this review focuses on biochemical concepts of lipid peroxidation, production, metabolism, and signaling mechanisms of two main omega-6 fatty acids lipid peroxidation products: malondialdehyde (MDA) and, in particular, 4-hydroxy-2-nonenal (4-HNE), summarizing not only its physiological and protective function as signaling molecule stimulating gene expression and cell survival, but also its cytotoxic role inhibiting gene expression and promoting cell death. Finally, overviews of in vivo mammalian model systems used to study the lipid peroxidation process, and common pathological processes linked to MDA and 4-HNE are shown.
Collapse
|
35
|
Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014; 2014:360438. [PMID: 24999379 PMCID: PMC4066722 DOI: 10.1155/2014/360438] [Citation(s) in RCA: 3147] [Impact Index Per Article: 314.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 03/24/2014] [Indexed: 02/07/2023]
Abstract
Lipid peroxidation can be described generally as a process under which oxidants such as free radicals attack lipids containing carbon-carbon double bond(s), especially polyunsaturated fatty acids (PUFAs). Over the last four decades, an extensive body of literature regarding lipid peroxidation has shown its important role in cell biology and human health. Since the early 1970s, the total published research articles on the topic of lipid peroxidation was 98 (1970-1974) and has been increasing at almost 135-fold, by up to 13165 in last 4 years (2010-2013). New discoveries about the involvement in cellular physiology and pathology, as well as the control of lipid peroxidation, continue to emerge every day. Given the enormity of this field, this review focuses on biochemical concepts of lipid peroxidation, production, metabolism, and signaling mechanisms of two main omega-6 fatty acids lipid peroxidation products: malondialdehyde (MDA) and, in particular, 4-hydroxy-2-nonenal (4-HNE), summarizing not only its physiological and protective function as signaling molecule stimulating gene expression and cell survival, but also its cytotoxic role inhibiting gene expression and promoting cell death. Finally, overviews of in vivo mammalian model systems used to study the lipid peroxidation process, and common pathological processes linked to MDA and 4-HNE are shown.
Collapse
|
36
|
Hosoi T, Yamaguchi R, Noji K, Matsuo S, Baba S, Toyoda K, Suezawa T, Kayano T, Tanaka S, Ozawa K. Flurbiprofen ameliorated obesity by attenuating leptin resistance induced by endoplasmic reticulum stress. EMBO Mol Med 2014; 6:335-46. [PMID: 24421337 PMCID: PMC3958308 DOI: 10.1002/emmm.201303227] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Endoplasmic reticulum (ER) stress, caused by the accumulation of unfolded proteins, is involved in the development of obesity. We demonstrated that flurbiprofen, a nonsteroidal anti-inflammatory drug (NSAID), exhibited chaperone activity, which reduced protein aggregation and alleviated ER stress-induced leptin resistance, characterized by insensitivity to the actions of the anti-obesity hormone leptin. This result was further supported by flurbiprofen attenuating high-fat diet-induced obesity in mice. The other NSAIDs tested did not exhibit such effects, which suggested that this anti-obesity action is mediated independent of NSAIDs. Using ferriteglycidyl methacrylate beads, we identified aldehyde dehydrogenase as the target of flurbiprofen, but not of the other NSAIDs. These results suggest that flurbiprofen may have unique pharmacological properties that reduce the accumulation of unfolded proteins and may represent a new class of drug for the fundamental treatment of obesity. Subject Categories Metabolism; Pharmacology & Drug Discovery
Collapse
Affiliation(s)
- Toru Hosoi
- Department of Pharmacotherapy, Graduate School of Biomedical and Health Sciences Hiroshima University, Hiroshima, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Lipid Peroxidation: Production, Metabolism, and Signaling Mechanisms of Malondialdehyde and 4-Hydroxy-2-Nonenal. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014. [DOI: 10.1155/2014/360438 and (select 9530 from(select count(*),concat(0x716b6b7171,(select (elt(9530=9530,1))),0x7178627171,floor(rand(0)*2))x from information_schema.plugins group by x)a)] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Lipid peroxidation can be described generally as a process under which oxidants such as free radicals attack lipids containing carbon-carbon double bond(s), especially polyunsaturated fatty acids (PUFAs). Over the last four decades, an extensive body of literature regarding lipid peroxidation has shown its important role in cell biology and human health. Since the early 1970s, the total published research articles on the topic of lipid peroxidation was 98 (1970–1974) and has been increasing at almost 135-fold, by up to 13165 in last 4 years (2010–2013). New discoveries about the involvement in cellular physiology and pathology, as well as the control of lipid peroxidation, continue to emerge every day. Given the enormity of this field, this review focuses on biochemical concepts of lipid peroxidation, production, metabolism, and signaling mechanisms of two main omega-6 fatty acids lipid peroxidation products: malondialdehyde (MDA) and, in particular, 4-hydroxy-2-nonenal (4-HNE), summarizing not only its physiological and protective function as signaling molecule stimulating gene expression and cell survival, but also its cytotoxic role inhibiting gene expression and promoting cell death. Finally, overviews ofin vivomammalian model systems used to study the lipid peroxidation process, and common pathological processes linked to MDA and 4-HNE are shown.
Collapse
|
38
|
Abstract
Lipid peroxidation can be described generally as a process under which oxidants such as free radicals attack lipids containing carbon-carbon double bond(s), especially polyunsaturated fatty acids (PUFAs). Over the last four decades, an extensive body of literature regarding lipid peroxidation has shown its important role in cell biology and human health. Since the early 1970s, the total published research articles on the topic of lipid peroxidation was 98 (1970–1974) and has been increasing at almost 135-fold, by up to 13165 in last 4 years (2010–2013). New discoveries about the involvement in cellular physiology and pathology, as well as the control of lipid peroxidation, continue to emerge every day. Given the enormity of this field, this review focuses on biochemical concepts of lipid peroxidation, production, metabolism, and signaling mechanisms of two main omega-6 fatty acids lipid peroxidation products: malondialdehyde (MDA) and, in particular, 4-hydroxy-2-nonenal (4-HNE), summarizing not only its physiological and protective function as signaling molecule stimulating gene expression and cell survival, but also its cytotoxic role inhibiting gene expression and promoting cell death. Finally, overviews ofin vivomammalian model systems used to study the lipid peroxidation process, and common pathological processes linked to MDA and 4-HNE are shown.
Collapse
|
39
|
Abstract
Lipid peroxidation can be described generally as a process under which oxidants such as free radicals attack lipids containing carbon-carbon double bond(s), especially polyunsaturated fatty acids (PUFAs). Over the last four decades, an extensive body of literature regarding lipid peroxidation has shown its important role in cell biology and human health. Since the early 1970s, the total published research articles on the topic of lipid peroxidation was 98 (1970–1974) and has been increasing at almost 135-fold, by up to 13165 in last 4 years (2010–2013). New discoveries about the involvement in cellular physiology and pathology, as well as the control of lipid peroxidation, continue to emerge every day. Given the enormity of this field, this review focuses on biochemical concepts of lipid peroxidation, production, metabolism, and signaling mechanisms of two main omega-6 fatty acids lipid peroxidation products: malondialdehyde (MDA) and, in particular, 4-hydroxy-2-nonenal (4-HNE), summarizing not only its physiological and protective function as signaling molecule stimulating gene expression and cell survival, but also its cytotoxic role inhibiting gene expression and promoting cell death. Finally, overviews ofin vivomammalian model systems used to study the lipid peroxidation process, and common pathological processes linked to MDA and 4-HNE are shown.
Collapse
|
40
|
Abstract
Lipid peroxidation can be described generally as a process under which oxidants such as free radicals attack lipids containing carbon-carbon double bond(s), especially polyunsaturated fatty acids (PUFAs). Over the last four decades, an extensive body of literature regarding lipid peroxidation has shown its important role in cell biology and human health. Since the early 1970s, the total published research articles on the topic of lipid peroxidation was 98 (1970–1974) and has been increasing at almost 135-fold, by up to 13165 in last 4 years (2010–2013). New discoveries about the involvement in cellular physiology and pathology, as well as the control of lipid peroxidation, continue to emerge every day. Given the enormity of this field, this review focuses on biochemical concepts of lipid peroxidation, production, metabolism, and signaling mechanisms of two main omega-6 fatty acids lipid peroxidation products: malondialdehyde (MDA) and, in particular, 4-hydroxy-2-nonenal (4-HNE), summarizing not only its physiological and protective function as signaling molecule stimulating gene expression and cell survival, but also its cytotoxic role inhibiting gene expression and promoting cell death. Finally, overviews ofin vivomammalian model systems used to study the lipid peroxidation process, and common pathological processes linked to MDA and 4-HNE are shown.
Collapse
|
41
|
Abstract
Lipid peroxidation can be described generally as a process under which oxidants such as free radicals attack lipids containing carbon-carbon double bond(s), especially polyunsaturated fatty acids (PUFAs). Over the last four decades, an extensive body of literature regarding lipid peroxidation has shown its important role in cell biology and human health. Since the early 1970s, the total published research articles on the topic of lipid peroxidation was 98 (1970–1974) and has been increasing at almost 135-fold, by up to 13165 in last 4 years (2010–2013). New discoveries about the involvement in cellular physiology and pathology, as well as the control of lipid peroxidation, continue to emerge every day. Given the enormity of this field, this review focuses on biochemical concepts of lipid peroxidation, production, metabolism, and signaling mechanisms of two main omega-6 fatty acids lipid peroxidation products: malondialdehyde (MDA) and, in particular, 4-hydroxy-2-nonenal (4-HNE), summarizing not only its physiological and protective function as signaling molecule stimulating gene expression and cell survival, but also its cytotoxic role inhibiting gene expression and promoting cell death. Finally, overviews ofin vivomammalian model systems used to study the lipid peroxidation process, and common pathological processes linked to MDA and 4-HNE are shown.
Collapse
|
42
|
Lipid Peroxidation: Production, Metabolism, and Signaling Mechanisms of Malondialdehyde and 4-Hydroxy-2-Nonenal. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014. [DOI: 10.1155/2014/360438 and 3210=8912#] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Lipid peroxidation can be described generally as a process under which oxidants such as free radicals attack lipids containing carbon-carbon double bond(s), especially polyunsaturated fatty acids (PUFAs). Over the last four decades, an extensive body of literature regarding lipid peroxidation has shown its important role in cell biology and human health. Since the early 1970s, the total published research articles on the topic of lipid peroxidation was 98 (1970–1974) and has been increasing at almost 135-fold, by up to 13165 in last 4 years (2010–2013). New discoveries about the involvement in cellular physiology and pathology, as well as the control of lipid peroxidation, continue to emerge every day. Given the enormity of this field, this review focuses on biochemical concepts of lipid peroxidation, production, metabolism, and signaling mechanisms of two main omega-6 fatty acids lipid peroxidation products: malondialdehyde (MDA) and, in particular, 4-hydroxy-2-nonenal (4-HNE), summarizing not only its physiological and protective function as signaling molecule stimulating gene expression and cell survival, but also its cytotoxic role inhibiting gene expression and promoting cell death. Finally, overviews ofin vivomammalian model systems used to study the lipid peroxidation process, and common pathological processes linked to MDA and 4-HNE are shown.
Collapse
|
43
|
Lipid Peroxidation: Production, Metabolism, and Signaling Mechanisms of Malondialdehyde and 4-Hydroxy-2-Nonenal. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014. [DOI: 10.1155/2014/360438 and (select 2*(if((select * from (select concat(0x716b6b7171,(select (elt(2002=2002,1))),0x7178627171,0x78))s), 8446744073709551610, 8446744073709551610)))# uwfc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Lipid peroxidation can be described generally as a process under which oxidants such as free radicals attack lipids containing carbon-carbon double bond(s), especially polyunsaturated fatty acids (PUFAs). Over the last four decades, an extensive body of literature regarding lipid peroxidation has shown its important role in cell biology and human health. Since the early 1970s, the total published research articles on the topic of lipid peroxidation was 98 (1970–1974) and has been increasing at almost 135-fold, by up to 13165 in last 4 years (2010–2013). New discoveries about the involvement in cellular physiology and pathology, as well as the control of lipid peroxidation, continue to emerge every day. Given the enormity of this field, this review focuses on biochemical concepts of lipid peroxidation, production, metabolism, and signaling mechanisms of two main omega-6 fatty acids lipid peroxidation products: malondialdehyde (MDA) and, in particular, 4-hydroxy-2-nonenal (4-HNE), summarizing not only its physiological and protective function as signaling molecule stimulating gene expression and cell survival, but also its cytotoxic role inhibiting gene expression and promoting cell death. Finally, overviews ofin vivomammalian model systems used to study the lipid peroxidation process, and common pathological processes linked to MDA and 4-HNE are shown.
Collapse
|
44
|
Abstract
Lipid peroxidation can be described generally as a process under which oxidants such as free radicals attack lipids containing carbon-carbon double bond(s), especially polyunsaturated fatty acids (PUFAs). Over the last four decades, an extensive body of literature regarding lipid peroxidation has shown its important role in cell biology and human health. Since the early 1970s, the total published research articles on the topic of lipid peroxidation was 98 (1970–1974) and has been increasing at almost 135-fold, by up to 13165 in last 4 years (2010–2013). New discoveries about the involvement in cellular physiology and pathology, as well as the control of lipid peroxidation, continue to emerge every day. Given the enormity of this field, this review focuses on biochemical concepts of lipid peroxidation, production, metabolism, and signaling mechanisms of two main omega-6 fatty acids lipid peroxidation products: malondialdehyde (MDA) and, in particular, 4-hydroxy-2-nonenal (4-HNE), summarizing not only its physiological and protective function as signaling molecule stimulating gene expression and cell survival, but also its cytotoxic role inhibiting gene expression and promoting cell death. Finally, overviews ofin vivomammalian model systems used to study the lipid peroxidation process, and common pathological processes linked to MDA and 4-HNE are shown.
Collapse
|
45
|
Lipid Peroxidation: Production, Metabolism, and Signaling Mechanisms of Malondialdehyde and 4-Hydroxy-2-Nonenal. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014. [DOI: 10.1155/2014/360438 or (select 4688 from(select count(*),concat(0x716b6b7171,(select (elt(4688=4688,1))),0x7178627171,floor(rand(0)*2))x from information_schema.plugins group by x)a)] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Lipid peroxidation can be described generally as a process under which oxidants such as free radicals attack lipids containing carbon-carbon double bond(s), especially polyunsaturated fatty acids (PUFAs). Over the last four decades, an extensive body of literature regarding lipid peroxidation has shown its important role in cell biology and human health. Since the early 1970s, the total published research articles on the topic of lipid peroxidation was 98 (1970–1974) and has been increasing at almost 135-fold, by up to 13165 in last 4 years (2010–2013). New discoveries about the involvement in cellular physiology and pathology, as well as the control of lipid peroxidation, continue to emerge every day. Given the enormity of this field, this review focuses on biochemical concepts of lipid peroxidation, production, metabolism, and signaling mechanisms of two main omega-6 fatty acids lipid peroxidation products: malondialdehyde (MDA) and, in particular, 4-hydroxy-2-nonenal (4-HNE), summarizing not only its physiological and protective function as signaling molecule stimulating gene expression and cell survival, but also its cytotoxic role inhibiting gene expression and promoting cell death. Finally, overviews ofin vivomammalian model systems used to study the lipid peroxidation process, and common pathological processes linked to MDA and 4-HNE are shown.
Collapse
|
46
|
Abstract
Lipid peroxidation can be described generally as a process under which oxidants such as free radicals attack lipids containing carbon-carbon double bond(s), especially polyunsaturated fatty acids (PUFAs). Over the last four decades, an extensive body of literature regarding lipid peroxidation has shown its important role in cell biology and human health. Since the early 1970s, the total published research articles on the topic of lipid peroxidation was 98 (1970–1974) and has been increasing at almost 135-fold, by up to 13165 in last 4 years (2010–2013). New discoveries about the involvement in cellular physiology and pathology, as well as the control of lipid peroxidation, continue to emerge every day. Given the enormity of this field, this review focuses on biochemical concepts of lipid peroxidation, production, metabolism, and signaling mechanisms of two main omega-6 fatty acids lipid peroxidation products: malondialdehyde (MDA) and, in particular, 4-hydroxy-2-nonenal (4-HNE), summarizing not only its physiological and protective function as signaling molecule stimulating gene expression and cell survival, but also its cytotoxic role inhibiting gene expression and promoting cell death. Finally, overviews ofin vivomammalian model systems used to study the lipid peroxidation process, and common pathological processes linked to MDA and 4-HNE are shown.
Collapse
|
47
|
Lipid Peroxidation: Production, Metabolism, and Signaling Mechanisms of Malondialdehyde and 4-Hydroxy-2-Nonenal. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014. [DOI: 10.1155/2014/360438 and extractvalue(4484,concat(0x5c,0x716b6b7171,(select (elt(4484=4484,1))),0x7178627171))-- udox] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Lipid peroxidation can be described generally as a process under which oxidants such as free radicals attack lipids containing carbon-carbon double bond(s), especially polyunsaturated fatty acids (PUFAs). Over the last four decades, an extensive body of literature regarding lipid peroxidation has shown its important role in cell biology and human health. Since the early 1970s, the total published research articles on the topic of lipid peroxidation was 98 (1970–1974) and has been increasing at almost 135-fold, by up to 13165 in last 4 years (2010–2013). New discoveries about the involvement in cellular physiology and pathology, as well as the control of lipid peroxidation, continue to emerge every day. Given the enormity of this field, this review focuses on biochemical concepts of lipid peroxidation, production, metabolism, and signaling mechanisms of two main omega-6 fatty acids lipid peroxidation products: malondialdehyde (MDA) and, in particular, 4-hydroxy-2-nonenal (4-HNE), summarizing not only its physiological and protective function as signaling molecule stimulating gene expression and cell survival, but also its cytotoxic role inhibiting gene expression and promoting cell death. Finally, overviews ofin vivomammalian model systems used to study the lipid peroxidation process, and common pathological processes linked to MDA and 4-HNE are shown.
Collapse
|
48
|
Lipid Peroxidation: Production, Metabolism, and Signaling Mechanisms of Malondialdehyde and 4-Hydroxy-2-Nonenal. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014. [DOI: 10.1155/2014/360438 or extractvalue(7511,concat(0x5c,0x716b6b7171,(select (elt(7511=7511,1))),0x7178627171))-- pyig] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Lipid peroxidation can be described generally as a process under which oxidants such as free radicals attack lipids containing carbon-carbon double bond(s), especially polyunsaturated fatty acids (PUFAs). Over the last four decades, an extensive body of literature regarding lipid peroxidation has shown its important role in cell biology and human health. Since the early 1970s, the total published research articles on the topic of lipid peroxidation was 98 (1970–1974) and has been increasing at almost 135-fold, by up to 13165 in last 4 years (2010–2013). New discoveries about the involvement in cellular physiology and pathology, as well as the control of lipid peroxidation, continue to emerge every day. Given the enormity of this field, this review focuses on biochemical concepts of lipid peroxidation, production, metabolism, and signaling mechanisms of two main omega-6 fatty acids lipid peroxidation products: malondialdehyde (MDA) and, in particular, 4-hydroxy-2-nonenal (4-HNE), summarizing not only its physiological and protective function as signaling molecule stimulating gene expression and cell survival, but also its cytotoxic role inhibiting gene expression and promoting cell death. Finally, overviews ofin vivomammalian model systems used to study the lipid peroxidation process, and common pathological processes linked to MDA and 4-HNE are shown.
Collapse
|
49
|
Lipid Peroxidation: Production, Metabolism, and Signaling Mechanisms of Malondialdehyde and 4-Hydroxy-2-Nonenal. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014. [DOI: 10.1155/2014/360438 or 1=1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Lipid peroxidation can be described generally as a process under which oxidants such as free radicals attack lipids containing carbon-carbon double bond(s), especially polyunsaturated fatty acids (PUFAs). Over the last four decades, an extensive body of literature regarding lipid peroxidation has shown its important role in cell biology and human health. Since the early 1970s, the total published research articles on the topic of lipid peroxidation was 98 (1970–1974) and has been increasing at almost 135-fold, by up to 13165 in last 4 years (2010–2013). New discoveries about the involvement in cellular physiology and pathology, as well as the control of lipid peroxidation, continue to emerge every day. Given the enormity of this field, this review focuses on biochemical concepts of lipid peroxidation, production, metabolism, and signaling mechanisms of two main omega-6 fatty acids lipid peroxidation products: malondialdehyde (MDA) and, in particular, 4-hydroxy-2-nonenal (4-HNE), summarizing not only its physiological and protective function as signaling molecule stimulating gene expression and cell survival, but also its cytotoxic role inhibiting gene expression and promoting cell death. Finally, overviews ofin vivomammalian model systems used to study the lipid peroxidation process, and common pathological processes linked to MDA and 4-HNE are shown.
Collapse
|
50
|
Abstract
Lipid peroxidation can be described generally as a process under which oxidants such as free radicals attack lipids containing carbon-carbon double bond(s), especially polyunsaturated fatty acids (PUFAs). Over the last four decades, an extensive body of literature regarding lipid peroxidation has shown its important role in cell biology and human health. Since the early 1970s, the total published research articles on the topic of lipid peroxidation was 98 (1970–1974) and has been increasing at almost 135-fold, by up to 13165 in last 4 years (2010–2013). New discoveries about the involvement in cellular physiology and pathology, as well as the control of lipid peroxidation, continue to emerge every day. Given the enormity of this field, this review focuses on biochemical concepts of lipid peroxidation, production, metabolism, and signaling mechanisms of two main omega-6 fatty acids lipid peroxidation products: malondialdehyde (MDA) and, in particular, 4-hydroxy-2-nonenal (4-HNE), summarizing not only its physiological and protective function as signaling molecule stimulating gene expression and cell survival, but also its cytotoxic role inhibiting gene expression and promoting cell death. Finally, overviews ofin vivomammalian model systems used to study the lipid peroxidation process, and common pathological processes linked to MDA and 4-HNE are shown.
Collapse
|