1
|
Cui J, Li J, Zhao S, Fan L, Yin S, Zhao C, Hu H. Combination of Selenite and Butyrate Enhances Efficacy Against Colon Cancer by Targeting ASCT2-Mediated Amino Acid Metabolism. Biol Trace Elem Res 2024; 202:3565-3573. [PMID: 37897593 DOI: 10.1007/s12011-023-03927-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/22/2023] [Indexed: 10/30/2023]
Abstract
Drug combination is considered to be an effective approach to improve the efficacy of cancer therapy and chemoprevention. Selenite, a representative of inorganic form of selenium, and butyrate, a major short-chain fatty acid, are two well-documented colon cancer dietary chemopreventive agents with distinct molecular mechanisms. We hypothesized that combination of selenite and butyrate might produce improved outcome against colon cancer. This hypothesis was tested using both HCT116 human colon cancer cells and its xenograft mouse model in the present study. The in vitro study showed a synergistically inhibitory effect on HCT116 colon cancer cells but not on NCM460 normal human colon mucosal epithelial cells. Consistent with the in vitro study, results of the xenograft mouse model further demonstrated that combination of selenite and butyrate led to improved efficacy in comparison with each agent alone. Mechanistically, the induction of alanine-serine-cysteine transporter 2 (ASCT2) by selenite repressed its inhibitory effect on colon cancer cells, which was reversed by its co-treatment with butyrate. The findings of the present study denote the likely potential for developing selenite/butyrate combination remedy to combat against colon cancer.
Collapse
Affiliation(s)
- Jinling Cui
- College of Food Science and Nutritional Engineering, China Agricultural University, Haidian District, No.17 Qinghua East Road, Beijing, 100083, China
| | - Jingsi Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Haidian District, No.17 Qinghua East Road, Beijing, 100083, China
| | - Shuang Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Haidian District, No.17 Qinghua East Road, Beijing, 100083, China
| | - Lihong Fan
- College of Veterinary Medicine, China Agricultural University, Haidian District, No.2 Yunamingyuan West Road, Beijing, 100193, China.
| | - Shutao Yin
- College of Food Science and Nutritional Engineering, China Agricultural University, Haidian District, No.17 Qinghua East Road, Beijing, 100083, China
| | - Chong Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Haidian District, No.17 Qinghua East Road, Beijing, 100083, China
| | - Hongbo Hu
- College of Food Science and Nutritional Engineering, China Agricultural University, Haidian District, No.17 Qinghua East Road, Beijing, 100083, China.
| |
Collapse
|
2
|
An JK, Chung AS, Churchill DG. Nontoxic Levels of Se-Containing Compounds Increase Survival by Blocking Oxidative and Inflammatory Stresses via Signal Pathways Whereas High Levels of Se Induce Apoptosis. Molecules 2023; 28:5234. [PMID: 37446894 DOI: 10.3390/molecules28135234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/14/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
Selenium is a main group element and an essential trace element in human health. It was discovered in selenocysteine (SeC) by Stadtman in 1974. SeC is an encoded natural amino acid hailed as the 21st naturally occurring amino acid (U) present in several enzymes and which exquisitely participates in redox biology. As it turns out, selenium bears a U-shaped toxicity curve wherein too little of the nutrient present in biology leads to disorders; concentrations that are too great, on the other hand, pose toxicity to biological systems. In light of many excellent previous reviews and the corpus of literature, we wanted to offer this current review, in which we present aspects of the clinical and biological literature and justify why we should further investigate Se-containing species in biological and medicinal contexts, especially small molecule-containing species in biomedical research and clinical medicine. Of central interest is how selenium participates in biological signaling pathways. Several clinical medical cases are recounted; these reports are mainly pertinent to human cancer and changes in pathology and cases in which the patients are often terminal. Selenium was an option chosen in light of earlier chemotherapeutic treatment courses which lost their effectiveness. We describe apoptosis, and also ferroptosis, and senescence clearly in the context of selenium. Other contemporary issues in research also compelled us to form this review: issues with CoV-2 SARS infection which abound in the literature, and we described findings with human patients in this context. Laboratory scientific studies and clinical studies dealing with two main divisions of selenium, organic (e.g., methyl selenol) or inorganic selenium (e.g., sodium selenite), are discussed. The future seems bright with the research and clinical possibilities of selenium as a trace element, whose recent experimental clinical treatments have so far involved dosing simply and inexpensively over a set of days, amounts, and time intervals.
Collapse
Affiliation(s)
- Jong-Keol An
- Molecular Logic Gate Laboratory, Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - An-Sik Chung
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - David G Churchill
- Molecular Logic Gate Laboratory, Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Therapeutic Bioengineering Section, KAIST Institute for Health Science and Technology (KIHST), Daejeon 34141, Republic of Korea
| |
Collapse
|
3
|
Krakowiak A, Pietrasik S. New Insights into Oxidative and Reductive Stress Responses and Their Relation to the Anticancer Activity of Selenium-Containing Compounds as Hydrogen Selenide Donors. BIOLOGY 2023; 12:875. [PMID: 37372159 DOI: 10.3390/biology12060875] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/02/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023]
Abstract
Redox balance is important for the homeostasis of normal cells, but also for the proliferation, progression, and survival of cancer cells. Both oxidative and reductive stress can be harmful to cells. In contrast to oxidative stress, reductive stress and the therapeutic opportunities underlying the mechanisms of reductive stress in cancer, as well as how cancer cells respond to reductive stress, have received little attention and are not as well characterized. Therefore, there is recent interest in understanding how selective induction of reductive stress may influence therapeutic treatment and disease progression in cancer. There is also the question of how cancer cells respond to reductive stress. Selenium compounds have been shown to have chemotherapeutic effects against cancer, and their anticancer mechanism is thought to be related to the formation of their metabolites, including hydrogen selenide (H2Se), which is a highly reactive and reducing molecule. Here, we highlight recent reports on the molecular mechanism of how cells recognize and respond to oxidative and reductive stress (1) and the mechanisms through which different types of selenium compounds can generate H2Se (2) and thus selectively affect reductive stress under controlled conditions, which may be important for their anticancer effects.
Collapse
Affiliation(s)
- Agnieszka Krakowiak
- Department of Bioorganic Chemistry, Centre of Molecular and Macromolecular Studies Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| | - Sylwia Pietrasik
- Department of Bioorganic Chemistry, Centre of Molecular and Macromolecular Studies Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| |
Collapse
|
4
|
Tossetta G, Fantone S, Marzioni D, Mazzucchelli R. Role of Natural and Synthetic Compounds in Modulating NRF2/KEAP1 Signaling Pathway in Prostate Cancer. Cancers (Basel) 2023; 15:cancers15113037. [PMID: 37296999 DOI: 10.3390/cancers15113037] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 05/29/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023] Open
Abstract
Prostate cancer is the second most common cancer in men worldwide. Prostate cancer can be treated by surgery or active surveillance when early diagnosed but, when diagnosed at an advanced or metastatic stage, radiation therapy or androgen-deprivation therapy is needed to reduce cancer progression. However, both of these therapies can cause prostate cancer resistance to treatment. Several studies demonstrated that oxidative stress is involved in cancer occurrence, development, progression and treatment resistance. The nuclear factor erythroid 2-related factor 2 (NRF2)/KEAP1 (Kelch-Like ECH-Associated Protein 1) pathway plays an important role in protecting cells against oxidative damage. Reactive oxygen species (ROS) levels and NRF2 activation can determine cell fate. In particular, toxic levels of ROS lead physiological cell death and cell tumor suppression, while lower ROS levels are associated with carcinogenesis and cancer progression. On the contrary, a high level of NRF2 promotes cell survival related to cancer progression activating an adaptive antioxidant response. In this review, we analyzed the current literature regarding the role of natural and synthetic compounds in modulating NRF2/KEAP1 signaling pathway in prostate cancer.
Collapse
Affiliation(s)
- Giovanni Tossetta
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Sonia Fantone
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Daniela Marzioni
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Roberta Mazzucchelli
- Department of Biomedical Sciences and Public Health, Section of Pathological Anatomy, Università Politecnica delle Marche, 60126 Ancona, Italy
| |
Collapse
|
5
|
Ganguly S, Kumar J. Role of Antioxidant Vitamins and Minerals from Herbal Source in the Management of Lifestyle Diseases. ROLE OF HERBAL MEDICINES 2023:443-460. [DOI: 10.1007/978-981-99-7703-1_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
6
|
Kim SJ, Choi MC, Park JM, Chung AS. Antitumor Effects of Selenium. Int J Mol Sci 2021; 22:11844. [PMID: 34769276 PMCID: PMC8584251 DOI: 10.3390/ijms222111844] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 10/26/2021] [Accepted: 10/28/2021] [Indexed: 12/11/2022] Open
Abstract
Functions of selenium are diverse as antioxidant, anti-inflammation, increased immunity, reduced cancer incidence, blocking tumor invasion and metastasis, and further clinical application as treatment with radiation and chemotherapy. These functions of selenium are mostly related to oxidation and reduction mechanisms of selenium metabolites. Hydrogen selenide from selenite, and methylselenol (MSeH) from Se-methylselenocyteine (MSeC) and methylseleninicacid (MSeA) are the most reactive metabolites produced reactive oxygen species (ROS); furthermore, these metabolites may involve in oxidizing sulfhydryl groups, including glutathione. Selenite also reacted with glutathione and produces hydrogen selenide via selenodiglutathione (SeDG), which induces cytotoxicity as cell apoptosis, ROS production, DNA damage, and adenosine-methionine methylation in the cellular nucleus. However, a more pronounced effect was shown in the subsequent treatment of sodium selenite with chemotherapy and radiation therapy. High doses of sodium selenite were effective to increase radiation therapy and chemotherapy, and further to reduce radiation side effects and drug resistance. In our study, advanced cancer patients can tolerate until 5000 μg of sodium selenite in combination with radiation and chemotherapy since the half-life of sodium selenite may be relatively short, and, further, selenium may accumulates more in cancer cells than that of normal cells, which may be toxic to the cancer cells. Further clinical studies of high amount sodium selenite are required to treat advanced cancer patients.
Collapse
Affiliation(s)
- Seung Jo Kim
- Sangkyungwon Integrate Medical Caner Hospital, Yeoju 12616, Gyeonggido, Korea;
| | - Min Chul Choi
- Comprehensive Gynecological Cancer Center, CHA Bundang Medical Center, Seongnam 13497, Gyeonggido, Korea;
| | - Jong Min Park
- Oriental Medicine, Daejeon University, Daejeon 34520, Korea;
| | - An Sik Chung
- Department of Biological Sciences, Korea Advanced Institute of Science and technology, Daejeon 34141, Korea
| |
Collapse
|
7
|
Hu W, Ma Y, Zhao C, Yin S, Hu H. Methylseleninic acid overcomes programmed death-ligand 1-mediated resistance of prostate cancer and lung cancer. Mol Carcinog 2021; 60:746-757. [PMID: 34411338 DOI: 10.1002/mc.23340] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/21/2021] [Accepted: 08/02/2021] [Indexed: 12/24/2022]
Abstract
Programmed death-ligand 1 (PD-L1)-mediated resistance has become a great challenge for tumor treatment. Cisplatin increased tumor PD-L1 expression, promoted chemotherapy resistance. Interferon-γ (IFN-γ)-induced PD-L1 expression might facilitate immunotherapy resistance. Methylseleninic acid (MSeA), a selenium (Se) compound, offered superior cancer chemo-preventive activities and enhanced tumor sensitivity to diverse chemotherapeutic drugs. This study explored the effects of MSeA on the PD-L1-mediated resistance using both in vitro and in vivo models. Results showed that MSeA substantially attenuated cisplatin-induced PD-L1 expression via inhibiting protein kinase B phosphorylation, thereby potentiated cisplatin cytotoxicity in prostate and lung cancer cell models. In lung cancer xenograft model, MSeA significantly suppressed cisplatin-induced PD-L1 expression, consequently enhanced T-cell immunity, ultimately improved the therapeutic efficacy of cisplatin. Moreover, IFN-γ-induced tumor PD-L1 expression was remarkably reduced by MSeA, with correlated reductions in janus kinase 2 and signal transducer and activator of transcription 3 (STAT3) phosphorylation in prostate and lung cancer cell models. Our findings, for the first time, demonstrated that MSeA is a potential agent to overcome PD-L1-mediated chemotherapy and immunotherapy resistance. Such information might have potential clinical implications for prostate and lung cancer treatment.
Collapse
Affiliation(s)
- Wenli Hu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Yurong Ma
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Chong Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Shutao Yin
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Hongbo Hu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
8
|
Yu Y, Liu Z, Luo LY, Fu PN, Wang Q, Li HF. Selenium Uptake and Biotransformation in Brassica rapa Supplied with Selenite and Selenate: A Hydroponic Work with HPLC Speciation and RNA-Sequencing. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:12408-12418. [PMID: 31644287 DOI: 10.1021/acs.jafc.9b05359] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Vegetables are an ideal source of human Se intake; it is important to understand selenium (Se) speciation in plants due to the distinct biological functions of selenocompounds. In this hydroponic study, the accumulation and assimilation of selenite and selenate in pak choi (Brassica rapa), a vastly consumed vegetable, were investigated at 1-168 h with HPLC speciation and RNA-sequencing. The results showed that the Se content in shoots and Se translocation factors with selenate addition were at least 10.81 and 11.62 times, respectively, higher than those with selenite addition. Selenite and selenate up-regulated the expression of SULT1;1 and PHT1;2 in roots by over 240% and 400%, respectively. Selenite addition always led to higher proportions of seleno-amino acids, while SeO42- was dominant under selenate addition (>49% of all Se species in shoots). However, in roots, SeO42- proportions declined substantially by 51% with a significant increase of selenomethionine proportions (63%) from 1 to 168 h. Moreover, with enhanced transcript of methionine gamma-lyase (60% of up-regulation compared to the control) plus high levels of methylselenium in shoots (approximately 70% of all Se species), almost 40% of Se was lost during the exposure under the selenite treatment. This work provides evidence that pak choi can rapidly transform selenite to methylselenium, and it is promising to use the plant for Se biofortification.
Collapse
Affiliation(s)
- Yao Yu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of the Ministry of Education, College of Resources and Environmental Sciences , China Agricultural University , Beijing 100193 , The People's Republic of China
| | - Zhe Liu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of the Ministry of Education, College of Resources and Environmental Sciences , China Agricultural University , Beijing 100193 , The People's Republic of China
| | - Li-Yun Luo
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of the Ministry of Education, College of Resources and Environmental Sciences , China Agricultural University , Beijing 100193 , The People's Republic of China
| | - Ping-Nan Fu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of the Ministry of Education, College of Resources and Environmental Sciences , China Agricultural University , Beijing 100193 , The People's Republic of China
| | - Qi Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of the Ministry of Education, College of Resources and Environmental Sciences , China Agricultural University , Beijing 100193 , The People's Republic of China
| | - Hua-Fen Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of the Ministry of Education, College of Resources and Environmental Sciences , China Agricultural University , Beijing 100193 , The People's Republic of China
| |
Collapse
|
9
|
Experimental infection by Neospora caninum in gerbil reduces activity of enzymes involved in energy metabolism. Exp Parasitol 2019; 208:107790. [PMID: 31697939 DOI: 10.1016/j.exppara.2019.107790] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 10/24/2019] [Accepted: 11/02/2019] [Indexed: 11/24/2022]
Abstract
Neospora caninum is a protozoan that has tropism for the central nervous system. The aim of this study was to determine whether experimental infection of gerbils would interfere with activity of enzymes associated with energy metabolism. We randomized 20 gerbils into two groups (ten animals per group): the control group (healthy animals; uninfected) and the infected group (experimentally infected with dose 7.8 × 102 tachyzoites of N. caninum per gerbil). On day six and twelve post-infection (PI), brain and spleen tissues were collected for biochemical and histopathological analyses. No histopathological lesions were observed in the brains of infected animals; however, inflammatory infiltrates were found in the spleen. Significantly greater levels of reactive oxygen species (ROS) were observed in the brain and spleen of infected gerbils than in the control group at 12 days PI. Cytosolic creatine kinase (CK-CYT), mitochondrial creatine kinase (CK-MIT), and pyruvate kinase (PK) activities were lower in the brains of infected gerbils than in those of the control group on day 12 PI. There was significantly less CK-CYT activity in the spleens of infected gerbils on day 6 and 12 PI. Finally, there was significantly less sodium-potassium ion pump (Na+/K+ ATPase) activity in the brains and spleens of infected gerbils on day 12 PI. These data suggest that experimental infection with N. caninum interfered with energy metabolism associated with ATP homeostasis in the brain and spleen, directly or indirectly, apparently mediated by ROS overproduction, contributing to inhibition of Na+/K+ ATPase activity.
Collapse
|
10
|
Cui J, Yan M, Liu X, Yin S, Lu S, Fan L, Hu H. Inorganic Selenium Induces Nonapoptotic Programmed Cell Death in PC-3 Prostate Cancer Cells Associated with Inhibition of Glycolysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:10637-10645. [PMID: 31513389 DOI: 10.1021/acs.jafc.9b03875] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Previous studies have shown that selenite, a representative of inorganic form selenium, exerts its anticancer effect by inducing apoptosis in androgen-dependent LNCaP prostate cancer cells, but few studies have determined the nature of cell death induced by selenite in metastatic androgen-refractory PC-3 cells. Our study showed that necrosis-like cell death rather than apoptosis, pyroptosis, or autophagic cell death was caused by selenite in PC-3 cells. Mechanistically, this type of cell death was caused by ATP depletion (26.28 ± 3.39 nmol/mg of control versus 9.12 ± 2.44 nmol/mg of 10 μM selenite treatment) that resulted from phosphofructokinase activity reduction (100.17 ± 0.17% of control versus 21.74 ± 6.65% of 10 μM selenite treatment). Our study also showed that ROS production is necessary for the decrease in cellular ATP levels and in phosphofructokinase activity. To our knowledge, this is the first study showing that selenite can induce necrosis-like cell death in PC-3 cells. Our findings support selenite as an effective compound for the therapy of apoptosis-resistant prostate cancer.
Collapse
Affiliation(s)
- Jinling Cui
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, Beijing Key Laboratory for Food Non-thermal Processing , China Agricultural University , No.17 Qinghua East Road , Haidian District, Beijing 100083 , China
| | - Mingzhu Yan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, Beijing Key Laboratory for Food Non-thermal Processing , China Agricultural University , No.17 Qinghua East Road , Haidian District, Beijing 100083 , China
| | - Xiaoyi Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, Beijing Key Laboratory for Food Non-thermal Processing , China Agricultural University , No.17 Qinghua East Road , Haidian District, Beijing 100083 , China
| | - Shutao Yin
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, Beijing Key Laboratory for Food Non-thermal Processing , China Agricultural University , No.17 Qinghua East Road , Haidian District, Beijing 100083 , China
| | - Shangyun Lu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, Beijing Key Laboratory for Food Non-thermal Processing , China Agricultural University , No.17 Qinghua East Road , Haidian District, Beijing 100083 , China
| | - Lihong Fan
- College of Veterinary Medicine , China Agricultural University , No2 Yunamingyuan West Road , Haidian District, Beijing 100193 , China
| | - Hongbo Hu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, Beijing Key Laboratory for Food Non-thermal Processing , China Agricultural University , No.17 Qinghua East Road , Haidian District, Beijing 100083 , China
| |
Collapse
|
11
|
Trozzi C, Raffaelli F, Vignini A, Nanetti L, Gesuita R, Mazzanti L. Evaluation of antioxidative and diabetes-preventive properties of an ancient grain, KAMUT ® khorasan wheat, in healthy volunteers. Eur J Nutr 2019; 58:151-161. [PMID: 29143934 PMCID: PMC6424920 DOI: 10.1007/s00394-017-1579-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 10/31/2017] [Indexed: 12/15/2022]
Abstract
PURPOSE Recently, there was an increasing interest on the use of ancient grains because of their better health-related composition. The aim of this study was to evaluate in healthy human subjects the antioxidative and diabetes-preventive properties of ancient KAMUT® khorasan wheat compared to modern wheat. METHODS The study was a randomized, non-blind, parallel arm study where the biochemical parameters of volunteers with a diet based on organic whole grain KAMUT® khorasan products, as the only source of cereal products were compared to a similar replacement diet based on organic whole grain modern durum wheat products. A total of 30 healthy volunteers were recruited and the intervention period lasted 16 weeks. Blood analyses were performed before and after the diet intervention. The effect of KAMUT® khorasan products on biochemical parameters was analyzed by multiple quantile regression adjusted for age, sex, physical activity and BMI compared to data at baseline. RESULTS Subjects receiving KAMUT® khorasan products showed a significantly greater decrease of fat mass (b = 3.7%; CI 1.6-5.5; p = 0.042), insulin (b = 2.4 µU/ml; CI 0.2-4.2; p = 0.036) and a significant increase of DHA (b = - 0.52%; CI - 1.1 to - 0.12; p = 0.021). CONCLUSIONS Our study provides evidence that a substitution diet with KAMUT® khorasan wheat products can reduce some markers associated to the development of type-2 diabetes compared to a diet of modern wheat.
Collapse
Affiliation(s)
| | - Francesca Raffaelli
- Biomedfood srl, Spinoff Università Politecnica delle Marche, Via Ranieri n.65, 60128, Ancona, Italy.
| | - Arianna Vignini
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche, Università Politecnica delle Marche, Ancona, Italy
| | - Laura Nanetti
- Biomedfood srl, Spinoff Università Politecnica delle Marche, Via Ranieri n.65, 60128, Ancona, Italy
| | - Rosaria Gesuita
- Centro Interdipartimentale di Epidemiologia, Biostatistica e Informatica medica, Università Politecnica delle Marche, Ancona, Italy
| | - Laura Mazzanti
- Biomedfood srl, Spinoff Università Politecnica delle Marche, Via Ranieri n.65, 60128, Ancona, Italy
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche, Università Politecnica delle Marche, Ancona, Italy
| |
Collapse
|
12
|
Qiu C, Zhang T, Zhu X, Qiu J, Jiang K, Zhao G, Wu H, Deng G. Methylseleninic Acid Suppresses Breast Cancer Growth via the JAK2/STAT3 Pathway. Reprod Sci 2018; 26:829-838. [PMID: 30526368 DOI: 10.1177/1933719118815582] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Previous studies show that methylseleninic acid (MSA), which is the most common selenium derivative used as a drug in humans, exerts specific cytotoxic effects in several cancer cell types. However, the complex mechanism of these effects has not been fully elucidated. Here, we demonstrate by Cell Counting Kit-8 in mouse breast cancer cell line 4T1 that MSA inhibits cell viability in a concentration-dependent (5, 10, 20 μmol/L) and time-dependent (6, 12, 24 hours) manner. Flow cytometry, Western blot, and Reverse Transcription-Polymerase Chain Reaction (RT-PCR) analyses indicated that MSA inhibits cancer cell invasion and induces apoptosis by the activation of caspase-3, poly ADP ribose polymerase 1 (PARP1), and BCL2-associated X. Furthermore, MSA demonstrated anticancer activity by inhibiting the Janus kinase 2/signal transducers and activators of transcription 3 (JAK2/STAT3) pathway. The MSA treatment for 24 hours decreased the phosphorylation of JAK2 and STAT3 in 4T1 cells by Western blot. We also confirmed this with the use of a JAK2 chemical inhibitor, AG490, as a positive control. In a 4T1 orthotopic allograft model, morphological and TdT-mediated dUTP nick-end labeling analyses showed that MSA treatment (1.5 mg/kg/weight) for 28 days inhibits tumor growth consistent with the clinical anticancer drug cyclophosphamide. Our observations demonstrate that MSA is a potent anticancer drug in breast cancer and uncovered a key role of the JAK2/STAT3 pathway in modulating tumor growth.
Collapse
Affiliation(s)
- Changwei Qiu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| | - Tao Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Xinying Zhu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Jinxia Qiu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Kangfeng Jiang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Gan Zhao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Haichong Wu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Ganzhen Deng
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| |
Collapse
|
13
|
Jaiswal SK, Prakash R, Prabhu KS, Tejo Prakash N. Bioaccessible selenium sourced from Se-rich mustard cake facilitates protection from TBHP induced cytotoxicity in melanoma cells. Food Funct 2018; 9:1998-2004. [PMID: 29644347 PMCID: PMC5918226 DOI: 10.1039/c7fo01644a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Selenium (Se) is an essential dietary supplement that resolves inflammatory responses and offers antioxidant cytoprotection. In this study, we present the data on the cytoprotective effect of Se-rich mustard protein isolated from mustard cultivated in seleniferous soils in Punjab, India. The concentrations of total Se in mustard seed, oil-free mustard cake, and mustard protein were 110.0 ± 3.04, 143.0 ± 5.18, and 582.3 ± 6.23 μg g-1, respectively. The cytoprotective effect of Se-rich mustard protein was studied on tert-butyl hydroperoxide (TBHP)-induced cytotoxicity in a mouse melanoma cell line (B16-F10). When compared with TBHP treated cells (where no viable cells were found), Se-rich protein made bioaccessible through simulated gastrointestinal digestion protected melanoma cells from cytotoxicity with decreased levels of oxidative stress resulting in 73% cell viability. Such an effect was associated with a significant increase in glutathione peroxidase activity as a function of bioaccessible Se and its response towards cytoprotection.
Collapse
Affiliation(s)
- Sumit K Jaiswal
- School of Energy and Environment, Thapar University, Patiala, India.
| | | | | | | |
Collapse
|
14
|
Hosnedlova B, Kepinska M, Skalickova S, Fernandez C, Ruttkay-Nedecky B, Malevu TD, Sochor J, Baron M, Melcova M, Zidkova J, Kizek R. A Summary of New Findings on the Biological Effects of Selenium in Selected Animal Species-A Critical Review. Int J Mol Sci 2017; 18:E2209. [PMID: 29065468 PMCID: PMC5666889 DOI: 10.3390/ijms18102209] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 10/10/2017] [Accepted: 10/11/2017] [Indexed: 12/18/2022] Open
Abstract
Selenium is an essential trace element important for many physiological processes, especially for the functions of immune and reproductive systems, metabolism of thyroid hormones, as well as antioxidant defense. Selenium deficiency is usually manifested by an increased incidence of retention of placenta, metritis, mastitis, aborts, lowering fertility and increased susceptibility to infections. In calves, lambs and kids, the selenium deficiency demonstrates by WMD (white muscle disease), in foals and donkey foals, it is associated with incidence of WMD and yellow fat disease, and in pigs it causes VESD (vitamin E/selenium deficiency) syndrome. The prevention of these health disorders can be achieved by an adequate selenium supplementation to the diet. The review summarizes the survey of knowledge on selenium, its biological significance in the organism, the impact of its deficiency in mammalian livestock (comparison of ruminants vs. non-ruminants, herbivore vs. omnivore) and possibilities of its peroral administration. The databases employed were as follows: Web of Science, PubMed, MEDLINE and Google Scholar.
Collapse
Affiliation(s)
- Bozena Hosnedlova
- Department of Viticulture and Enology, Faculty of Horticulture, Mendel University in Brno, Valtická 337, CZ-691 44 Lednice, Czech Republic.
| | - Marta Kepinska
- Department of Biomedical and Environmental Analyses, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland.
| | - Sylvie Skalickova
- Central Laboratory, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Palackeho 1946/1, 612 42 Brno, Czech Republic.
| | - Carlos Fernandez
- School of Pharmacy and Life Sciences, Robert Gordon University, Garthdee Road, Aberdeen AB107GJ, UK.
| | - Branislav Ruttkay-Nedecky
- Central Laboratory, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Palackeho 1946/1, 612 42 Brno, Czech Republic.
| | | | - Jiri Sochor
- Department of Viticulture and Enology, Faculty of Horticulture, Mendel University in Brno, Valtická 337, CZ-691 44 Lednice, Czech Republic.
| | - Mojmir Baron
- Department of Viticulture and Enology, Faculty of Horticulture, Mendel University in Brno, Valtická 337, CZ-691 44 Lednice, Czech Republic.
| | - Magdalena Melcova
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technicka 3, 166 28 Prague, Czech Republic.
| | - Jarmila Zidkova
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technicka 3, 166 28 Prague, Czech Republic.
| | - Rene Kizek
- Department of Biomedical and Environmental Analyses, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland.
- Central Laboratory, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Palackeho 1946/1, 612 42 Brno, Czech Republic.
| |
Collapse
|
15
|
Zheng X, Ma W, Sun R, Yin H, Lin F, Liu Y, Xu W, Zeng H. Butaselen prevents hepatocarcinogenesis and progression through inhibiting thioredoxin reductase activity. Redox Biol 2017; 14:237-249. [PMID: 28965082 PMCID: PMC5633849 DOI: 10.1016/j.redox.2017.09.014] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Accepted: 09/18/2017] [Indexed: 12/15/2022] Open
Abstract
Hepatocellular carcinoma (HCC) accounts for most of primary liver cancer, of which five-year survival rate remains low and chemoprevention has become a strategy to reduce disease burden of HCC. We aim to explore the in vivo chemopreventive effect of an organoselenium-containing compound butaselen (BS) against hepatocarcinogenesis and its underlying mechanisms. Pre- and sustained BS treatment (9, 18 and 36mg/Kg BS) could dose-dependently inhibit chronic hepatic inflammation, fibrosis, cirrhosis and HCC on murine models with 24 weeks treatment scheme. The thioredoxin reductase (TrxR), NF-κB pathway and pro-inflammatory factors were activated during hepatocarcinogenesis, while their expression were decreased by BS treatment. BS treatment could also significantly reduce tumor volume in H22-bearing models and remarkably slow tumor growth. HCC cell lines HepG2, Bel7402 and Huh7 were time- and dose-dependently inhibited by BS treatment. G2/M arrest and apoptosis were observed in HepG2 cells after BS treatment, which were mediated by TrxR/Ref-1 and NF-κB pathways inhibition. BS generated reactive oxygen species (ROS), which could be reduced by antioxidant N-acetyl-L-cysteine (NAC) and NADPH oxidase inhibitor DPI. NAC could markedly increase HepG2 cells viability. TrxR activity of HepG2 cells treated with BS were significantly decreased in parallel with proliferative inhibition. The TrxR1-knockdown HepG2 cells also exhibited low TrxR1 activity, high ROS level, relatively low proliferation rate and increased resistance to BS treatment. In conclusion, BS can prevent hepatocarcinogenesis through inhibiting chronic inflammation, cirrhosis and tumor progression. The underlying mechanisms may include TrxR activity inhibition, leading to ROS elevation, G2/M arrest and apoptosis.
Collapse
Affiliation(s)
- Xiaoqing Zheng
- State Key Laboratory of Natural and Biomimetic Drugs, No. 38, Xueyuan Road, Beijing 100191, PR China; Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, No. 38, Xueyuan Road, Beijing 100191, PR China
| | - Weiwei Ma
- State Key Laboratory of Natural and Biomimetic Drugs, No. 38, Xueyuan Road, Beijing 100191, PR China; Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, No. 38, Xueyuan Road, Beijing 100191, PR China
| | - Ruoxuan Sun
- State Key Laboratory of Natural and Biomimetic Drugs, No. 38, Xueyuan Road, Beijing 100191, PR China; Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, No. 38, Xueyuan Road, Beijing 100191, PR China
| | - Hanwei Yin
- Keaise Center for Clinical Laboratory, No. 666, Gaoxin Road, Wuhan 430000, PR China
| | - Fei Lin
- National Institutes for Food and Drug Control, No. 2, Tiantanxili, Beijing 100050, PR China
| | - Yuxi Liu
- State Key Laboratory of Natural and Biomimetic Drugs, No. 38, Xueyuan Road, Beijing 100191, PR China; Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, No. 38, Xueyuan Road, Beijing 100191, PR China
| | - Wei Xu
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Huihui Zeng
- State Key Laboratory of Natural and Biomimetic Drugs, No. 38, Xueyuan Road, Beijing 100191, PR China; Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, No. 38, Xueyuan Road, Beijing 100191, PR China.
| |
Collapse
|
16
|
Synergism between thioredoxin reductase inhibitor ethaselen and sodium selenite in inhibiting proliferation and inducing death of human non-small cell lung cancer cells. Chem Biol Interact 2017; 275:74-85. [DOI: 10.1016/j.cbi.2017.07.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 07/12/2017] [Accepted: 07/25/2017] [Indexed: 01/10/2023]
|
17
|
Verma P, Kunwar A, Indira Priyadarsini K. Effect of Low-Dose Selenium Supplementation on the Genotoxicity, Tissue Injury and Survival of Mice Exposed to Acute Whole-Body Irradiation. Biol Trace Elem Res 2017; 179:130-139. [PMID: 28190183 DOI: 10.1007/s12011-017-0955-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 01/25/2017] [Indexed: 01/03/2023]
Abstract
The aim of the present study is to evaluate the radioprotective effect of low-dose selenium supplementation (multiple administrations) on radiation toxicities and mortality induced by lethal dose of whole-body irradiation (WBI). For this, BALB/c mice received sodium selenite (4 μg/kg body wt) intraperitoneally for five consecutive days and subjected to WBI at an absorbed dose of 8 Gy (60Co, 1 Gy/min). Administration of sodium selenite was continued even during the post irradiation days three times a week till the end of the experiment. The radioprotective effect was evaluated in terms of the improvement in 30 days post irradiation survival, protection from DNA damage, and biochemical and histological changes in radiosensitive organs. The results indicated that low-dose sodium selenite administration did not protect the mice from radiation-induced hematopoietic and gastrointestinal injuries and subsequent mortality. However, it significantly prevented the radiation-induced genotoxicity or DNA damage in peripheral leukocytes. Further sodium selenite administration modulated the messenger RNA (mRNA) expression of GPx1, GPx2, and GPx4 in the spleen and intestine differentially and led to a significant increase in GPx activity (∼1.5 to 2-folds) in these organs. In line with this observation, sodium selenite administration reduced the level of lipid peroxidation in the intestine. In conclusion, our study shows that low-dose sodium selenite supplementation can be an effective strategy to prevent WBI-induced genotoxicity but may not have an advantage against mortality sustained during nuclear emergencies.
Collapse
Affiliation(s)
- Prachi Verma
- Radiation and Photochemistry Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
- Homi Bhabha National Institute, Mumbai, 400094, India
| | - Amit Kunwar
- Radiation and Photochemistry Division, Bhabha Atomic Research Centre, Mumbai, 400085, India.
- Homi Bhabha National Institute, Mumbai, 400094, India.
| | - K Indira Priyadarsini
- Homi Bhabha National Institute, Mumbai, 400094, India
- Chemistry Division, Bhabha Atomic Research Centre, Mumbai, India
| |
Collapse
|
18
|
Fontelles CC, Ong TP. Selenium and Breast Cancer Risk: Focus on Cellular and Molecular Mechanisms. Adv Cancer Res 2017; 136:173-192. [PMID: 29054418 DOI: 10.1016/bs.acr.2017.08.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Selenium (Se) is a micronutrient with promising breast cancer prevention and treatment potential. There is extensive preclinical evidence of Se mammary carcinogenesis inhibition. Evidence from epidemiological studies is, however, unclear and intervention studies are rare. Here, we examine Se chemoprotection, chemoprevention, and chemotherapy effects in breast cancer, focusing on associated cellular and molecular mechanisms. Se exerts its protective actions through multiple mechanisms that involve antioxidant activities, induction of apoptosis, and inhibition of DNA damage, cell proliferation, angiogenesis, and invasion. New aspects of Se actions in breast cancer have emerged such as the impact of genetic polymorphisms on Se metabolism and response, new functions of selenoproteins, epigenetic modulation of gene expression, and long-term influence of early-life exposure on disease risk. Opportunity exists to design interventional studies with Se for breast cancer prevention and treatment taking into consideration these key aspects.
Collapse
|
19
|
Varlamova EG, Cheremushkina IV. Contribution of mammalian selenocysteine-containing proteins to carcinogenesis. J Trace Elem Med Biol 2017; 39:76-85. [PMID: 27908428 DOI: 10.1016/j.jtemb.2016.08.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 07/28/2016] [Accepted: 08/09/2016] [Indexed: 12/17/2022]
Abstract
Oxidative stress caused by a sharp growth of free radicals in the organism is a major cause underlying the occurrence of all kinds of malignant formations. Selenium is an important essential trace element found in selenoproteins in the form of selenocysteine, an amino acid differing from cysteine for the presence of selenium instead of sulfur and making such proteins highly active. To date the role of selenium has been extensively investigated through studying the functions of selenoproteins in carcinogenesis. Analysis of the obtained results clearly demonstrates that selenoproteins can act as oncosuppressors, but can also, on the contrary, favor the formation of malignant tumors.
Collapse
Affiliation(s)
- Elena Gennadyevna Varlamova
- Federal State Institution of Science Institute of Cell Biophysics, Russian Academy of Sciences, Moscow Region, Institutskaya st. 3, 142290, Pushchino, Russia.
| | - Irina Valentinovna Cheremushkina
- Federal State Educational Institution of Higher Education Voronezh State University of Engineering Technology, Prospect revolution st. 19, 394000, Voronezh, Russia.
| |
Collapse
|
20
|
Gopalakrishna R, Gundimeda U, Zhou S, Zung K, Forell K, Holmgren A. Imbalance in Protein Thiol Redox Regulation and Cancer-Preventive Efficacy of Selenium. REACTIVE OXYGEN SPECIES (APEX, N.C.) 2016; 2:272-289. [PMID: 29795790 DOI: 10.20455/ros.2016.851] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Although several experimental studies showed cancer-preventive efficacy of supplemental dietary selenium, human clinical trials questioned this efficacy. Identifying its molecular targets and mechanism is important in understanding this discrepancy. Methylselenol, the active metabolite of selenium, reacts with lipid hydroperoxides bound to protein kinase C (PKC) and is oxidized to methylseleninic acid (MSA). This locally generated MSA selectively inactivates PKC by oxidizing its critical cysteine sulfhydryls. The peroxidatic redox cycle occurring in this process may explain how extremely low concentrations of selenium catalytically modify specific membrane-bound proteins compartmentally separated from glutathione and selectively induce cytotoxicity in promoting cells. Mammalian thioredoxin reductase (TR) is itself a selenoenzyme with a catalytic selenocysteine residue. Together with thioredoxin (Trx), it catalyzes reduction of selenite and selenocystine by NADPH generating selenide which in the presence of oxygen redox cycles producing reactive oxygen species. Trx binds with high affinity to PKC and reverses PKC inactivation. Therefore, established tumor cells overexpressing TR and Trx may escape the cancer-preventive actions of selenium. This suggests that in some cases, certain selenoproteins may counteract selenometabolite actions. Lower concentrations of selenium readily inactivate antiapoptotic PKC isoenzymes e and a which have a cluster of vicinal thiols, thereby inducing apoptosis. Higher concentrations of selenium also inactivate proapoptotic enzymes such as proteolytically activated PKCd fragment, holo-PKCz, caspase-3, and c-Jun N-terminal kinase, which all have a limited number of critical cysteine residues and make tumor cells resistant to selenium-induced apoptosis. This may explain the intriguing U-shaped curve that is seen with dietary selenium intake and the extent of cancer prevention.
Collapse
Affiliation(s)
- Rayudu Gopalakrishna
- Department of Cell and Neurobiology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Usha Gundimeda
- Department of Cell and Neurobiology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Sarah Zhou
- Department of Cell and Neurobiology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Kristen Zung
- Department of Cell and Neurobiology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Kaitlyn Forell
- Department of Cell and Neurobiology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Arne Holmgren
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, 171 77 Stockholm, Sweden
| |
Collapse
|
21
|
Nakken HL, Lephart ED, Hopkins TJ, Shaw B, Urie PM, Christensen MJ. Prenatal exposure to soy and selenium reduces prostate cancer risk factors in TRAMP mice more than exposure beginning at six weeks. Prostate 2016; 76:588-96. [PMID: 26817824 DOI: 10.1002/pros.23150] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 12/31/2015] [Indexed: 12/12/2022]
Abstract
BACKGROUND Diets high in soy and selenium (Se) decrease prostate cancer risk factors in healthy rats. The purpose of this study was to determine whether treatment with high levels of soy and/or supplemental Se would decrease prostate cancer risk factors in the Transgenic Adenocarcinoma of Mouse Prostate (TRAMP) mouse, and whether timing of the introduction of these nutrients would affect risk reduction. METHODS Male hemizygous [C57BL/6 × FVB]F1 TRAMP mice were exposed to stock diets high or devoid of soy, with or without a supplement of Se-methylselenocysteine (MSC) starting at conception (10 mg Se/L in drinking water of pregnant/nursing dams; daily bolus of 4 mg Se/kg body weight to pups after weaning) or at 6 weeks of age in a 2 × 2 factorial design. Mice were killed at 12 weeks (n per dietary treatment = 20-30). RESULTS Liver and serum Se concentrations were increased by MSC supplementation (P < 0.001), high-soy diet (P < 0.05), and initiation of dietary treatments at conception (P < 0.05). MSC supplementation had greater effects in mice fed the zero-soy basal diet, compared to the high-soy formulation (Pinteraction < 0.01). These same three interventions, individually and interactively, decreased body weight and epididymal fat pad weights, and steady state levels of mRNA for Cyp19a1 (aromatase) and Srd5a1 (5α-reductase). In contrast, MSC was the only treatment that decreased urogenital tract weights (P < 0.001), serum IGF-1 levels (P < 0.002), and Gleason scores (P < 0.05). CONCLUSIONS Supplemental MSC reduces risk of prostate cancer in TRAMP mice. Basal diet composition (zero- vs. high-soy) can modify MSC's chemopreventive effects. Initiation of dietary treatments from conception maximizes chemopreventive effects of MSC. Prenatal Se status may have long-lasting effects on development and progression of prostate cancer.
Collapse
Affiliation(s)
- Heather L Nakken
- Department of Nutrition, Dietetics, and Food Science, Brigham Young University, Provo, Utah
| | - Edwin D Lephart
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, Utah
| | - Tyler J Hopkins
- Department of Nutrition, Dietetics, and Food Science, Brigham Young University, Provo, Utah
| | - Brett Shaw
- Department of Nutrition, Dietetics, and Food Science, Brigham Young University, Provo, Utah
| | - Paul M Urie
- Utah Valley Regional Medical Center, Provo, Utah
| | - Merrill J Christensen
- Department of Nutrition, Dietetics, and Food Science, Brigham Young University, Provo, Utah
- Simmons Center for Cancer Research, Brigham Young University, Provo, Utah
| |
Collapse
|
22
|
Yu S, Wang Y, Zhang W, Zhang Y, Zhu W, Liu Y, Zhang D, Wang J. pH-Assisted surface functionalization of selenium nanoparticles with curcumin to achieve enhanced cancer chemopreventive activity. RSC Adv 2016. [DOI: 10.1039/c6ra13291j] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
A pH-assisted strategy is proposed for synthesizing curcumin-functionalized selenium nanoparticles (SeNPs@Cur), which well combine the advantages of SeNPs with those of Cur in cancer chemoprevention and overcome their limitations in application.
Collapse
Affiliation(s)
- Shaoxuan Yu
- College of Food Science and Engineering
- Northwest A&F University
- Yangling
- China
| | - Yanru Wang
- College of Food Science and Engineering
- Northwest A&F University
- Yangling
- China
| | - Wentao Zhang
- College of Food Science and Engineering
- Northwest A&F University
- Yangling
- China
| | - Yuhuan Zhang
- College of Food Science and Engineering
- Northwest A&F University
- Yangling
- China
| | - Wenxin Zhu
- College of Food Science and Engineering
- Northwest A&F University
- Yangling
- China
| | - Yingnan Liu
- College of Food Science and Engineering
- Northwest A&F University
- Yangling
- China
| | - Daohong Zhang
- College of Food Science and Engineering
- Northwest A&F University
- Yangling
- China
| | - Jianlong Wang
- College of Food Science and Engineering
- Northwest A&F University
- Yangling
- China
| |
Collapse
|
23
|
Lü J, Zhang J, Jiang C, Deng Y, Özten N, Bosland MC. Cancer chemoprevention research with selenium in the post-SELECT era: Promises and challenges. Nutr Cancer 2015; 68:1-17. [PMID: 26595411 PMCID: PMC4822195 DOI: 10.1080/01635581.2016.1105267] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
The negative efficacy outcomes of double-blinded, randomized, placebo-controlled Phase III human clinical trials with selenomethionine (SeMet) and SeMet-rich selenized-yeast (Se-yeast) for prostate cancer prevention and Se-yeast for prevention of nonsmall cell lung cancer (NSCLC) in North America lead to rejection of SeMet/Se-yeast for cancer prevention in Se-adequate populations. We identify 2 major lessons from the outcomes of these trials: 1) the antioxidant hypothesis was tested in wrong subjects or patient populations, and 2) the selection of Se agents was not supported by cell culture and preclinical animal efficacy data as is common in drug development. We propose that next-generation forms of Se (next-gen Se), such as methylselenol precursors, offer biologically appropriate approaches for cancer chemoprevention but these are faced with formidable challenges. Solid mechanism-based preclinical efficacy assessments and comprehensive safety studies with next-gen Se will be essential to revitalize the idea of cancer chemoprevention with Se in the post-SELECT era. We advocate smaller mechanism-driven Phase I/II trials with these next-gen Se to guide and justify future decisions for definitive Phase III chemoprevention efficacy trials.
Collapse
Affiliation(s)
- Junxuan Lü
- Department of Biomedical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center. 1300 S. Coulter St, Amarillo, TX79106 (JL, JZ, CJ)
| | - Jinhui Zhang
- Department of Biomedical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center. 1300 S. Coulter St, Amarillo, TX79106 (JL, JZ, CJ)
| | - Cheng Jiang
- Department of Biomedical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center. 1300 S. Coulter St, Amarillo, TX79106 (JL, JZ, CJ)
| | - Yibin Deng
- Hormel Institute, University of Minnesota, Austin, MN 55912 (YD)
| | - Nur Özten
- Department of Pathology, University of Illinois at Chicago (UIC), College of Medicine, Chicago, IL (NO, MCB)
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Bezmiâlem Vakif University, Istanbul, Turkey (NO)
| | - Maarten C. Bosland
- Department of Pathology, University of Illinois at Chicago (UIC), College of Medicine, Chicago, IL (NO, MCB)
| |
Collapse
|
24
|
Wang L, Guo X, Wang J, Jiang C, Bosland MC, Lü J, Deng Y. Methylseleninic Acid Superactivates p53-Senescence Cancer Progression Barrier in Prostate Lesions of Pten-Knockout Mouse. Cancer Prev Res (Phila) 2015; 9:35-42. [PMID: 26511486 DOI: 10.1158/1940-6207.capr-15-0236] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 10/20/2015] [Indexed: 11/16/2022]
Abstract
Monomethylated selenium (MM-Se) forms that are precursors of methylselenol, such as methylseleninic acid (MSeA), differ in metabolism and anticancer activities in preclinical cell and animal models from seleno-methionine that had failed to exert preventive efficacy against prostate cancer in North American men. Given that human prostate cancer arises from precancerous lesions such as high-grade prostatic intraepithelial neoplasia (HG-PIN), which frequently have lost phosphatase and tensin homolog (PTEN) tumor suppressor permitting phosphatidylinositol-3-OH kinase (PI3K)-protein kinase B (AKT) oncogenic signaling, we tested the efficacy of MSeA to inhibit HG-PIN progression in Pten prostate-specific knockout (KO) mice and assessed the mechanistic involvement of p53-mediated cellular senescence and of the androgen receptor (AR). We observed that short-term (4 weeks) oral MSeA treatment significantly increased expression of P53 and P21Cip1 proteins and senescence-associated-β-galactosidase staining, and reduced Ki67 cell proliferation index in Pten KO prostate epithelium. Long-term (25 weeks) MSeA administration significantly suppressed HG-PIN phenotype, tumor weight, and prevented emergence of invasive carcinoma in Pten KO mice. Mechanistically, the long-term MSeA treatment not only sustained P53-mediated senescence, but also markedly reduced AKT phosphorylation and AR abundance in the Pten KO prostate. Importantly, these cellular and molecular changes were not observed in the prostate of wild-type littermates which were similarly treated with MSeA. Because p53 signaling is likely to be intact in HG-PIN compared with advanced prostate cancer, the selective superactivation of p53-mediated senescence by MSeA suggests a new paradigm of cancer chemoprevention by strengthening a cancer progression barrier through induction of irreversible senescence with additional suppression of AR and AKT oncogenic signaling.
Collapse
Affiliation(s)
- Lei Wang
- Hormel Institute, University of Minnesota, Austin, Minnesota
| | - Xiaolan Guo
- Hormel Institute, University of Minnesota, Austin, Minnesota
| | - Ji Wang
- Hormel Institute, University of Minnesota, Austin, Minnesota
| | - Cheng Jiang
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center School of Pharmacy, Amarillo, Texas
| | - Maarten C Bosland
- Department of Pathology, University of Illinois at Chicago (UIC) College of Medicine, Chicago, Illinois
| | - Junxuan Lü
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center School of Pharmacy, Amarillo, Texas.
| | - Yibin Deng
- Hormel Institute, University of Minnesota, Austin, Minnesota.
| |
Collapse
|
25
|
Guo CH, Hsia S, Hsiung DY, Chen PC. Supplementation with Selenium yeast on the prooxidant-antioxidant activities and anti-tumor effects in breast tumor xenograft-bearing mice. J Nutr Biochem 2015; 26:1568-79. [PMID: 26344777 DOI: 10.1016/j.jnutbio.2015.07.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 07/26/2015] [Accepted: 07/29/2015] [Indexed: 12/29/2022]
Abstract
Selenium (Se) is essential for antioxidant activity involved in immune function and anti-carcinogenic action, whereas at higher concentrations, Se may have pro-oxidant properties. The present study was aimed at determining the effects of Se supplementation, as Se yeast, on oxidative stress in non-tumor/tumor tissues, as well as regulation of the apoptotic process, and immune responses in mice-bearing breast tumor xenografts. Female BALB/cByJNarl mice were divided into control (CNL and CNL-con), Se-supplemented control (CNL-HS, given as a single oral dose of 912 ng Se daily), breast tumor-bearing (TB and TB-con), TB-LS (228 ng Se), TB-MS (456 ng Se) and TB-HS (912 ng Se) groups. All mice were treated with/without Se for 14 days. A number of variables were further measured. Compared with the TB groups, tumor bearing mice with Se supplement had increased plasma Se concentrations, reduced erythrocyte Se-dependent glutathione peroxidase (GPx) activity and malondialdehyde (MDA) products and inhibited tumor growth. They have also higher Se concentrations in non-tumor and tumor tissues. Significantly elevated concentrations of MDA and reduced GPx activities, as well as increased anti-apoptotic bcl-2 and tumor suppressor p53 concentrations in tumor tissues were observed as Se accumulated in tumor, whereas lower MDA products were found in various non-tumor tissues than did the corresponding values. Further, there were elevated concentrations of Th1-derived cytokines and decreased Th2-type interleukin (IL)-4 in tumor-bearing mice with the treatment of Se. In conclusion, accumulation of Se in tumors may induce oxidative stress and p53-dependent pro-oxidative apoptosis, thus inhibiting the growth of breast tumor.
Collapse
Affiliation(s)
- Chih-Hung Guo
- Institute of Biomedical Nutrition, Hung-Kuang University, Taichung, 433, Taiwan; Department of Medical Research, China Medical University Hospital, Taichung, 404, Taiwan; Department of Health and Nutrition Biotechnology, Asia University, Taichung, 413, Taiwan; Taiwan Nutraceutical Association, Taipei 115, Taiwan.
| | - Simon Hsia
- Institute of Biomedical Nutrition, Hung-Kuang University, Taichung, 433, Taiwan; Taiwan Nutraceutical Association, Taipei 115, Taiwan
| | - Der-Yun Hsiung
- Department of Nursing, Hung-Kuang University, Taichung, 404, Taiwan; School of Nursing, China Medical University, Taichung, 404, Taiwan
| | - Pei-Chung Chen
- Taiwan Nutraceutical Association, Taipei 115, Taiwan; College of Life Sciences, National Chung Hsing University, Taichung, 402, Taiwan; College of Engineering, National Chiao Tung University, Hsinchu, 300, Taiwan.
| |
Collapse
|
26
|
Zeng H, Wu M. The Inhibitory Efficacy of Methylseleninic Acid Against Colon Cancer Xenografts in C57BL/6 Mice. Nutr Cancer 2015; 67:831-8. [DOI: 10.1080/01635581.2015.1042547] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
27
|
Zimmerman MT, Bayse CA, Ramoutar RR, Brumaghim JL. Sulfur and selenium antioxidants: challenging radical scavenging mechanisms and developing structure-activity relationships based on metal binding. J Inorg Biochem 2014; 145:30-40. [PMID: 25600984 DOI: 10.1016/j.jinorgbio.2014.12.020] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 12/17/2014] [Accepted: 12/19/2014] [Indexed: 11/30/2022]
Abstract
Because sulfur and selenium antioxidants can prevent oxidative damage, numerous animal and clinical trials have investigated the ability of these compounds to prevent the oxidative stress that is an underlying cause of cardiovascular disease, Alzheimer's disease, and cancer, among others. One of the most common sources of oxidative damage is metal-generated hydroxyl radical; however, very little research has focused on determining the metal-binding abilities and structural attributes that affect oxidative damage prevention by sulfur and selenium compounds. In this review, we describe our ongoing investigations into sulfur and selenium antioxidant prevention of iron- and copper-mediated oxidative DNA damage. We determined that many sulfur and selenium compounds inhibit Cu(I)-mediated DNA damage and that DNA damage prevention varies dramatically when Fe(II) is used in place of Cu(I) to generate hydroxyl radical. Oxidation potentials of the sulfur or selenium compounds do not correlate with their ability to prevent DNA damage, highlighting the importance of metal coordination rather than reactive oxygen species scavenging as an antioxidant mechanism. Additional gel electrophoresis, mass spectrometry, and UV-visible studies confirmed sulfur and selenium antioxidant binding to Cu(I) and Fe(II). Ultimately, our studies established that both the hydroxyl-radical-generating metal ion and the chemical environment of the sulfur or selenium significantly affect DNA damage prevention and that metal coordination is an essential mechanism for these antioxidants.
Collapse
Affiliation(s)
| | - Craig A Bayse
- Department of Chemistry and Biochemistry, Old Dominion University, Hampton Boulevard, Norfolk, VA 23529, USA
| | - Ria R Ramoutar
- Department of Chemistry, Clemson University, Clemson, SC 29634-0973, USA
| | - Julia L Brumaghim
- Department of Chemistry, Clemson University, Clemson, SC 29634-0973, USA.
| |
Collapse
|
28
|
Diphenyl diselenide and sodium selenite associated with chemotherapy in experimental toxoplasmosis: influence on oxidant/antioxidant biomarkers and cytokine modulation. Parasitology 2014; 141:1761-8. [PMID: 25111395 DOI: 10.1017/s0031182014001073] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
SUMMARY The aim of this study was to assess the effect of sulfamethoxazole/trimethoprim (ST) supplemented with diphenyl diselenide and sodium selenite in experimental toxoplasmosis, on oxidant/antioxidant biomarkers and cytokine levels. Eighty-four BALB/c mice were divided in seven groups: group A (negative control), and groups B to G (infected). Blood and liver samples were collected on days 4 and 20 post infection (p.i.). Levels of thiobarbituric acid (TBA) reactive substances and advanced oxidation protein products (AOPP) were assessed in liver samples. Both biomarkers were significantly increased in infected groups on day 4 p.i., while they were reduced on day 20 p.i., compared with group A. Glutathione reductase (GR) activity significantly (P<0·01) increased on day 4 p.i., in group G, compared with group A. INF-γ was significantly increased (P<0·001) in both periods, day 4 (groups B, C, F and G) and 20 p.i. (groups C, F and G). IL-10 significantly reduced (P<0·001) on day 4 p.i. in group B; however, in the same period, it was increased (P<0·001) in groups C and G, compared with group A. On day 20 p.i., IL-10 increased (P<0·001) in groups F and G. Therefore, our results highlighted that these forms of selenium, associated with the chemotherapy, were able to reduce lipid peroxidation and protein oxidation, providing a beneficial immunological balance between the production of pro- and anti-inflammatory cytokines.
Collapse
|
29
|
Gao F, Yuan Q, Gao L, Cai P, Zhu H, Liu R, Wang Y, Wei Y, Huang G, Liang J, Gao X. Cytotoxicity and therapeutic effect of irinotecan combined with selenium nanoparticles. Biomaterials 2014; 35:8854-8866. [PMID: 25064805 DOI: 10.1016/j.biomaterials.2014.07.004] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 07/01/2014] [Indexed: 11/24/2022]
Abstract
Although chemotherapeutic drugs are widely applied for clinic tumor treatment, severe toxicity restricts their therapeutic efficacy. In this study, we reported a new form of selenium, selenium nanoparticles (Nano Se) which have significant lower toxicity and acceptable bioavailability. We investigated Nano Se as chemotherapy preventive agent to protect against toxicities of anticancer drug irinotecan and synergistically enhance the anti-tumor treatment effect in vitro and in vivo. The underlying mechanisms were also investigated. The combination of Nano Se and irinotecan showed increased cytotoxic effect with HCT-8 tumor cells likely by p53 mediated apoptosis. Nano Se inhibited growth of HCT-8 tumor cells partially through caspases mediated apoptosis. In vivo experiment showed Nano Se at a dose of 4 mg/kg/day significantly alleviated adverse effects induced by irinotecan (60 mg/kg) treatment. Nano Se alone treatment did not induce any toxic manifestations. The combination of Nano Se and irinotecan dramatically inhibited tumor growth and significantly induced apoptosis of tumor cells in HCT-8 cells xenografted tumor. Tumor inhibition rate was about 17.2%, 48.6% and 62.1% for Nano Se, irinotecan and the combination of Nano Se and irinotecan, respectively. The beneficial effects of Nano Se for tumor therapy were mainly ascribed to selectively regulating Nrf2-ARE (antioxidant responsive elements) pathway in tumor tissues and normal tissues. Our results suggest Nano Se is a promising selenium species with potential application in cancer treatment.
Collapse
Affiliation(s)
- Fuping Gao
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Qing Yuan
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Liang Gao
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Pengju Cai
- Affiliated Ruikang Hospital of Guangxi University of TCM, Nanning, Guangxi 530011, China
| | - Huarui Zhu
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Ru Liu
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Yaling Wang
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Yueteng Wei
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Guodong Huang
- Affiliated Ruikang Hospital of Guangxi University of TCM, Nanning, Guangxi 530011, China
| | - Jian Liang
- Affiliated Ruikang Hospital of Guangxi University of TCM, Nanning, Guangxi 530011, China
| | - Xueyun Gao
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
30
|
WU SUN, BAO YONGHUA, MA DONG, ZI YOUMEI, YANG CUI, YANG MAN, XING MENGTAO, YANG WANCAI. Sodium selenite inhibits leukemia HL-60 cell proliferation and induces cell apoptosis by enhancing the phosphorylation of JNK1 and increasing the expression of p21 and p27. Int J Mol Med 2014; 34:1175-9. [DOI: 10.3892/ijmm.2014.1854] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 06/30/2014] [Indexed: 11/06/2022] Open
|
31
|
Wang L, Hu H, Wang Z, Xiong H, Cheng Y, Liao JD, Deng Y, Lü J. Methylseleninic acid suppresses pancreatic cancer growth involving multiple pathways. Nutr Cancer 2014; 66:295-307. [PMID: 24447148 DOI: 10.1080/01635581.2014.868911] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
As a potential novel agent for treating pancreatic cancer, methylseleninic acid (MSeA) was evaluated in cell culture and xenograft models. Results showed that MSeA induced G1 cell cycle arrest and apoptosis in a majority of human and mouse pancreatic cancer cell lines, but G2 arrest in human PANC-1 and PANC-28 cell lines. In contrast to our previous finding in human prostate cancer LNCaP cells having a lack of P53 activation by MSeA, induction of G2 arrest in PANC-1 cells was accompanied by increased mutant P53 Ser15 phosphorylation, upregulation of P53-targets P21Cip1 and GADD45 and G2 checkpoint kinase (Chk2) activation, suggestive of DNA damage responses. A rapid inhibition of AKT phosphorylation was followed by reduced mTOR signaling and increased autophagy in PANC-1 cells attenuating caspase-mediated apoptosis execution. Furthermore, daily oral treatment with MSeA (3 mg Se/kg body weight) significantly suppressed growth of subcutaneously inoculated PANC-1 xenograft in SCID mice. Immunohistochemical analyses detected increased p-Ser15 P53, P21Cip1, pS139-H2AX (DNA damage responses), and caspase-3 cleavage and decreased pSer473AKT and Ki67 proliferative index and reduced intratumor vascular density in MSeA-treated xenograft. These results provide impetus for further research of MSeA in the therapy and/or chemoprevention of pancreatic cancer.
Collapse
Affiliation(s)
- Lei Wang
- a Hormel Institute , University of Minnesota , Austin , Minnesota , USA
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Font M, Lizarraga E, Ibáñez E, Plano D, Sanmartín C, Palop JA. Structural variations on antitumour agents derived from bisacylimidoselenocarbamate. A proposal for structure–activity relationships based on the analysis of conformational behaviour. Eur J Med Chem 2013; 66:489-98. [DOI: 10.1016/j.ejmech.2013.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 05/31/2013] [Accepted: 06/01/2013] [Indexed: 01/18/2023]
|
33
|
Rahman MM, Seo YR. Discovery of potential targets of selenomethionine-mediated chemoprevention in colorectal carcinoma mouse model using proteomics analysis. Carcinogenesis 2013; 34:1575-84. [PMID: 23504501 DOI: 10.1093/carcin/bgt078] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Despite some controversy, selenomethionine (SeMet)-mediated protection against colorectal cancer (CRC) might be a very promising non-cytotoxic option. However, responsive molecular targets and underlying mechanisms of SeMet-mediated chemoprevention are still unclear. Our aim was to discover new targets of SeMet-mediated chemoprevention in CRC using proteomics analysis. We found dietary SeMet supplementation before carcinoma initiation effectively suppressed polyp incidence and dysplastic lesions without any adverse effects. To determine chemopreventive targets of SeMet, we employed two-dimensional gel electrophoresis-based proteomics analysis in CRC mouse model. Pretreatment with SeMet apparently modulated the expression of 30 proteins with functions in major processes like chronic inflammation, oxidative stress and apoptosis as discovered through pathway analysis with Pathway Studio software. We validated four proteins selected from pathway analysis including prohibitin, purine nucleoside phosphorylase, annexin 2 and c-reactive protein by immunohistochemistry. 8-Hydroxy-2'-deoxyguanosine (8-OHdG), a known oxidative stress marker, was decreased by SeMet treatment in CRC mice as seen by immunohistochemistry. Further network analysis was done among these new four validated proteins, 8-OHdG and colorectal cancer. These four proteins found by proteomics analysis might be considered as potential chemopreventive biomarkers of SeMet against colon cancer and can help develop and improve approaches in preventive, therapeutic and prognostic aspects.
Collapse
Affiliation(s)
- Md Mujibur Rahman
- Department of Life Science, Dongguk University-Seoul, 26 Pil-dong 3-ga, Jung-gu, Seoul 100-715, Republic of Korea
| | | |
Collapse
|
34
|
Zhang G, Nitteranon V, Guo S, Qiu P, Wu X, Li F, Xiao H, Hu Q, Parkin KL. Organoselenium compounds modulate extracellular redox by induction of extracellular cysteine and cell surface thioredoxin reductase. Chem Res Toxicol 2013; 26:456-64. [PMID: 23360449 DOI: 10.1021/tx300515j] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The effect of selenium compounds on extracellular redox modulating capacity was studied in murine macrophage RAW 264.7 cells and differentiated human THP-1 monocytes. The arylselenium compounds benzeneselenol (PhSeH), dibenzyl diselenide (DBDSe), diphenyl diselenide (DPDSe), and ebselen were capable of inducing extracellular cysteine accumulation via a cystine- and glucose-dependent process. Extracellular cysteine production was dose-dependently inhibited by glutamate, an inhibitor of cystine/glutamate antiporter (Xc(-) transporter), supporting the involvement of Xc(-) transporter for cystine uptake in the above process. These arylselenium compounds also induced cellular thioredoxin reductase (TrxR) expression, particularly at the exofacial surface of cells. TrxR1 knockdown using small interfering RNA attenuated TrxR increases and cysteine efflux induced in cells by DPDSe. Sodium selenite (Na2SeO3), selenomethionine (SeMet), seleno-l-cystine (SeCySS), and Se-methylselenocysteine (MeSeCys) did not have these effects on macrophages under the same treatment conditions. The effects of organoselenium compounds on extracellular redox may contribute to the known, but inadequately understood, biological effects of selenium compounds.
Collapse
Affiliation(s)
- Guodong Zhang
- Department of Food Science, University of Wisconsin, 1605 Linden Drive, Madison, WI 53706, United States.
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Guo P, Zhao P, Liu J, Ma H, Bai J, Cao Y, Liu Y, He H, Qi C. Preparation of a novel organoselenium compound and its anticancer effects on cervical cancer cell line HeLa. Biol Trace Elem Res 2013; 151:301-6. [PMID: 23242865 DOI: 10.1007/s12011-012-9563-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2012] [Accepted: 11/26/2012] [Indexed: 11/25/2022]
Abstract
This study aims at developing new organoselenium compounds with good anticancer ability and low biotoxicity. Sucrose selenious ester (sucrose-Se) was synthesized by the reaction between sucrose and selenium oxychloride. MTT assay showed that sucrose-Se effectively inhibited the proliferation of cervical cancer cell line HeLa in a dose-dependent manner without cytostatic influence on human normal liver cell line HL-7702. Morphological observation and agarose gel electrophoresis demonstrated that sucrose-Se induced apoptosis to HeLa cells. In addition, sucrose-Se was able to inhibit proliferation of bladder carcinoma cell line 5637, human malignant melanoma cell line A375, and gastric carcinoma cell line MGC-803. Median lethal dose of sucrose-Se and sodium selenite was 290.0 and 13.1 ppm, respectively, in the acute toxicity test on mice. In conclusion, sucrose-Se has potential in cancer chemoprevention due its apoptosis induction capacity and low biotoxicity.
Collapse
Affiliation(s)
- Pei Guo
- Key Laboratory of Pesticide and Chemical Biology (Ministry of Education), College of Chemistry, Central China Normal University, Wuhan, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Thioredoxin reductase 1 deficiency enhances selenite toxicity in cancer cells via a thioredoxin-independent mechanism. Biochem J 2012; 445:423-30. [PMID: 22594686 DOI: 10.1042/bj20120618] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Selenium is an essential trace element in mammals, but is toxic at high levels. It is best known for its cancer prevention activity, but cancer cells are more sensitive to selenite toxicity than normal cells. Since selenite treatment leads to oxidative stress, and the Trx (thioredoxin) system is a major antioxidative system, we examined the interplay between TR1 (Trx reductase 1) and Trx1 deficiencies and selenite toxicity in DT cells, a malignant mouse cell line, and the corresponding parental NIH 3T3 cells. TR1-deficient cells were far more sensitive to selenite toxicity than Trx1-deficient or control cells. In contrast, this effect was not seen in cells treated with hydrogen peroxide, suggesting that the increased sensitivity of TR1 deficiency to selenite was not due to oxidative stress caused by this compound. Further analyses revealed that only TR1-deficient cells manifested strongly enhanced production and secretion of glutathione, which was associated with increased sensitivity of the cells to selenite. The results suggest a new role for TR1 in cancer that is independent of Trx reduction and compensated for by the glutathione system. The results also suggest that the enhanced selenite toxicity of cancer cells and simultaneous inhibition of TR1 can provide a new avenue for cancer therapy.
Collapse
|
37
|
Abstract
The discovery of multiple selenoproteins has raised tantalizing questions about their role in maintaining normal cellular function. Unfortunately, many of these remain inadequately investigated. While they have a role in maintaining redox balance, other functions are becoming increasingly recognized. As the roles of these selenoproteins are further characterized, a better understanding of the true physiological significance of this trace element will arise. This knowledge will be essential in defining optimum intakes to achieve cellular homeostasis in order to optimize health, including a reduction in cancer, for diverse populations. Human variation in the response to selenium likely reflects significant interactions between the type and amounts of selenium consumed with the genome and a host of environmental factors including the totality of the diet, as discussed in this review.
Collapse
Affiliation(s)
- Cindy D. Davis
- Nutritional Science Research Group, National Cancer Institute, Rockville, Maryland 20892;,
- Current address: Office of Dietary Supplements, National Institutes of Health, Rockville, Maryland 20892
| | - Petra A. Tsuji
- Department of Biological Sciences, Towson University, Towson, Maryland 21252
| | - John A. Milner
- Nutritional Science Research Group, National Cancer Institute, Rockville, Maryland 20892;,
| |
Collapse
|
38
|
Zeng H, Cheng WH, Johnson LK. Methylselenol, a selenium metabolite, modulates p53 pathway and inhibits the growth of colon cancer xenografts in Balb/c mice. J Nutr Biochem 2012; 24:776-80. [PMID: 22841391 DOI: 10.1016/j.jnutbio.2012.04.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 04/10/2012] [Accepted: 04/13/2012] [Indexed: 01/06/2023]
Abstract
It is has been hypothesized that methylselenol is a critical selenium metabolite for anticancer activity in vivo. In this study, we used a protein array which contained 112 different antibodies known to be involved in the p53 pathway to investigate the molecular targets of methylselenol in human HCT116 colon cancer cells. The array analysis indicated that methylselenol exposure changed the expression of 11 protein targets related to the regulation of cell cycle and apoptosis. Subsequently, we confirmed these proteins with the Western blotting approach, and found that methylselenol increased the expression of GADD 153 and p21 but reduced the level of c-Myc, E2F1 and Phos p38 MAP kinase. Similar to our previous report on human HCT116 colon cancer cells, methylselenol also inhibited cell growth and led to an increase in G1 and G2 fractions with a concomitant drop in S-phase in mouse colon cancer MC26 cells. When the MC26 cells were transplanted to their immune-competent Balb/c mice, methylselenol-treated MC26 cells had significantly less tumor growth potential than that of untreated MC26 cells. Taken together, our data suggest that methylselenol modulates the expression of key genes related to cell cycle and apoptosis and inhibits colon cancer cell proliferation and tumor growth.
Collapse
Affiliation(s)
- Huawei Zeng
- US Department of Agriculture, Agricultural Research Service, Grand Forks Human Nutrition Research Center, Grand Forks, ND 58203, USA.
| | | | | |
Collapse
|
39
|
Guo X, Yin S, Dong Y, Fan L, Ye M, Lu J, Hu H. Enhanced apoptotic effects by the combination of curcumin and methylseleninic acid: potential role of Mcl-1 and FAK. Mol Carcinog 2012; 52:879-89. [PMID: 22711297 DOI: 10.1002/mc.21933] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Revised: 05/07/2012] [Accepted: 05/18/2012] [Indexed: 12/29/2022]
Abstract
Curcumin and methylseleninic acid (MSeA) are well-documented dietary chemopreventive agents. Apoptosis appears to be a major mechanism for both agents to exert anti-cancer activity. The purpose of the present study was designed to determine whether the apoptotic effect on human cancer cells can be enhanced by combining curcumin with MSeA. Apoptosis was evaluated by Annexin V staining of externalized phosphatidylserine by flow cytometry. Expression of protein was analyzed by Western blotting. Localization of apoptosis-inducing factor (AIF) was detected by immunocytochemistry. RNA interference was employed to inhibit expression of specific protein. We found here that combining curcumin with MSeA led to a significantly enhanced apoptosis in both MDA-MB-231 breast cancer cells and DU145 prostate cancer cells. Further mechanistic investigations revealed that curcumin treatment alone caused a concentration dependent upregulation of Mcl-1, which can be overcome by combining it with MSeA. In line with the Mcl-1 reduction, an enhanced mitochondrial permeability transition and AIF nuclear translocation by the combination were achieved. In addition, an increased suppression of focal adhesion kinase activity was observed in the combination-treated cells which were associated with cell detachment-induced apoptosis by the combination. Our findings suggest that curcumin/MSeA combination holds excellent potential for improving their efficacy against human breast and prostate cancer through enhanced apoptosis induction.
Collapse
Affiliation(s)
- Xiao Guo
- Division of Nutrition and Health, College of Food Science and Nutritional Engineering, China Agricultural University, Haidian District, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
40
|
Bergstrom T, Ersson C, Bergman J, Moller L. Vitamins at physiological levels cause oxidation to the DNA nucleoside deoxyguanosine and to DNA--alone or in synergism with metals. Mutagenesis 2012; 27:511-7. [DOI: 10.1093/mutage/ges013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
41
|
Hudson TS, Carlson BA, Hoeneroff MJ, Young HA, Sordillo L, Muller WJ, Hatfield DL, Green JE. Selenoproteins reduce susceptibility to DMBA-induced mammary carcinogenesis. Carcinogenesis 2012; 33:1225-30. [PMID: 22436612 DOI: 10.1093/carcin/bgs129] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Selenium is an essential micronutrient in the diet of humans and other mammals. Based largely on animal studies and epidemiological evidence, selenium is purported to be a promising cancer chemopreventive agent. However, the biological mechanisms by which chemopreventive activity takes place are poorly understood. It remains unclear whether selenium acts in its elemental form, through incorporation into organic compounds, through selenoproteins or any combination of these. The purpose of this study was to determine whether selenoproteins mitigate the risk of developing chemically induced mammary cancer. Selenoprotein expression was ablated in mouse mammary epithelial cells through genetic deletion of the selenocysteine (Sec) tRNA gene (Trsp), whose product, designated selenocysteine tRNA, is required for selenoprotein translation. Trsp floxed and mouse mammary tumor virus (MMTV)-cre mice were crossed to achieve tissue-specific excision of Trsp in targeted mammary glands. Eight- to twelve-week-old second generation Trsp(fl/+);wt, Trsp(fl/+);MMTV-cre, Trsp(fl/fl);wt and Trsp(fl/fl);MMTV-cre female mice were administered standard doses of the carcinogen, 7,12-dimethylbenzylbenz[a]antracene. Our results revealed that heterozygous, Trsp(fl/+);MMTV-cre mice showed no difference in tumor incidence, tumor rate and survival compared with the Trsp(fl/+);wt mice. However, 54.8% of homozygous Trsp(fl/f)(l);MMTV-cre mice developed mammary tumors and exhibited significantly shorter survival than the corresponding Trsp(fl/fl);wt mice, where only 36.4% developed tumors. Loss of the homozygous Trsp alleles was associated with the reduction of selenoprotein expression. The results suggest that mice with reduced selenoprotein expression have increased susceptibility to developing carcinogen-induced mammary tumors and that a major protective mechanism against carcinogen-induced mammary cancer requires the expression of these selenoproteins.
Collapse
Affiliation(s)
- Tamaro S Hudson
- Transgenic Oncogenesis and Genomics Section, Laboratory of Cancer Biology and Genetics, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Cheng WH, Wu RTY, Wu M, Rocourt CRB, Carrillo JA, Song J, Bohr CT, Tzeng TJ. Targeting Werner syndrome protein sensitizes U-2 OS osteosarcoma cells to selenium-induced DNA damage response and necrotic death. Biochem Biophys Res Commun 2012; 420:24-8. [PMID: 22390926 DOI: 10.1016/j.bbrc.2012.02.104] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Accepted: 02/17/2012] [Indexed: 11/29/2022]
Abstract
Mutations in the Werner syndrome protein (WRN), a caretaker of the genome, result in Werner syndrome, which is characterized by premature aging phenotypes and cancer predisposition. Methylseleninic acid (MSeA) can activate DNA damage responses and is a superior compound to suppress tumorigenesis in mouse models of cancer. To test the hypothesis that targeting WRN can potentiate selenium toxicity in cancer cells, isogenic WRN small hairpin RNA (shRNA) and control shRNA U-2 OS osteosarcoma cells were treated with MSeA for 2d, followed by recovery for up to 7d. WRN deficiency sensitized U-2 OS cells to MSeA-induced necrotic death. Co-treatment with the ataxia-telangiectasia mutated (ATM) kinase inhibitor KU55933 desensitized the control shRNA cells, but not WRN shRNA cells, to MSeA treatment. WRN did not affect MSeA-induced ATM phosphorylation on Ser-1981 or H2A.X phosphorylation on Ser-139, but promoted recovery from the MSeA-induced DNA damage. Taken together, WRN protects U-2 OS osteosarcoma cells against MSeA-induced cytotoxicity, suggesting that oxidative DNA repair pathway is a promising target for improving the efficacy of selenium on tumor suppression.
Collapse
Affiliation(s)
- Wen-Hsing Cheng
- Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742, USA.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Weekley CM, Aitken JB, Musgrave IF, Harris HH. Methylselenocysteine treatment leads to diselenide formation in human cancer cells: evidence from X-ray absorption spectroscopy studies. Biochemistry 2012; 51:736-8. [PMID: 22242710 DOI: 10.1021/bi201462u] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The selenoamino acids methylselenocysteine (MeSeCys) and selenomethionine (SeMet) have disparate efficacies as anticancer agents. Herein, we use X-ray absorption spectroscopy to determine the chemical form of selenium in human neuroblastoma cells. Cells treated with MeSeCys contain a significant diselenide component, which is absent from SeMet-treated cells and suggests that metabolites of MeSeCys are capable of altering the redox status of the cells. The differences in the speciation of Se in the selenoamino acid-treated cells may provide insight into the differing anticancer activities of MeSeCys and SeMet.
Collapse
Affiliation(s)
- Claire M Weekley
- School of Chemistry and Physics, The University of Adelaide, SA 5005, Australia
| | | | | | | |
Collapse
|
44
|
Methylseleninic acid potentiates multiple types of cancer cells to ABT-737-induced apoptosis by targeting Mcl-1 and Bad. Apoptosis 2011; 17:388-99. [DOI: 10.1007/s10495-011-0687-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
45
|
Zhang J, Wang L, Li G, Anderson LB, Xu Y, Witthuhn B, Lü J. Mouse Prostate Proteomes Are Differentially Altered by Supranutritional Intake of Four Selenium Compounds. Nutr Cancer 2011; 63:778-89. [DOI: 10.1080/01635581.2011.563029] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
46
|
Liu X, Pietsch KE, Sturla SJ. Susceptibility of the antioxidant selenoenyzmes thioredoxin reductase and glutathione peroxidase to alkylation-mediated inhibition by anticancer acylfulvenes. Chem Res Toxicol 2011; 24:726-36. [PMID: 21443269 DOI: 10.1021/tx2000152] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Selenium, in the form of selenocysteine, is a critical component of some major redox-regulating enzymes, including thioredoxin reductase (TrxR) and glutathione peroxidase (Gpx). TrxR has emerged as an anticancer target for drug development due to its elevated expression level in many aggressive human tumors. Acylfulvenes (AFs) are semisynthetic derivatives of the natural product illudin S and display improved cytotoxic selectivity profiles. AF and illudin S alkylate cellular macromolecules. Compared to AFs, illudin S more readily reacts with thiol-containing small molecules such as cysteine, glutathione, and cysteine-containing peptides. However, a previous study indicates that the reactivity of AFs and illudin S with glutathione reductase, a thiol-containing enzyme, is inversely correlated with the reactivity toward small molecule thiols. In this study, we investigate mechanistic aspects underlying the enzymatic and cellular effects of the AFs and illudin S on thioredoxin reductase. Both AF and HMAF were found to inhibit mammalian TrxR in the low- to submicromolar range, but illudin S was significantly less potent. TrxR inhibition by AFs was shown to be irreversible, concentration- and time-dependent, and mediated by alkylation of C-terminus active site Sec/Cys residues. In contrast, neither AFs nor illudin S inhibits Gpx, demonstrating that enzyme structure-specific small molecule interactions have a significant influence over the inherent reactivity of the Sec residue. In human cancer cells, TrxR activity can be inhibited by low micromolar concentrations of all three drugs. Finally, it was demonstrated that preconditioning cells by the addition of selenite to the cell culture media results in an enhancement in cell sensitivity toward AFs. These data suggest potential strategies for increasing drug activity by combination treatments that promote selenium enzyme activity.
Collapse
Affiliation(s)
- Xiaodan Liu
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota , Minneapolis 54555, United States
| | | | | |
Collapse
|
47
|
Rajendran P, Williams DE, Ho E, Dashwood RH. Metabolism as a key to histone deacetylase inhibition. Crit Rev Biochem Mol Biol 2011; 46:181-99. [PMID: 21599534 DOI: 10.3109/10409238.2011.557713] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
There is growing interest in the epigenetic mechanisms that are dysregulated in cancer and other human pathologies. Under this broad umbrella, modulators of histone deacetylase (HDAC) activity have gained interest as both cancer chemopreventive and therapeutic agents. Of the first generation, FDA-approved HDAC inhibitors to have progressed to clinical trials, vorinostat represents a "direct acting" compound with structural features suitable for docking into the HDAC pocket, whereas romidepsin can be considered a prodrug that undergoes reductive metabolism to generate the active intermediate (a zinc-binding thiol). It is now evident that other agents, including those in the human diet, can be converted by metabolism to intermediates that affect HDAC activity. Examples are cited of short-chain fatty acids, seleno-α-keto acids, small molecule thiols, mercapturic acid metabolites, indoles, and polyphenols. The findings are discussed in the context of putative endogenous HDAC inhibitors generated by intermediary metabolism (e.g. pyruvate), the yin-yang of HDAC inhibition versus HDAC activation, and the screening assays that might be most appropriate for discovery of novel HDAC inhibitors in the future.
Collapse
Affiliation(s)
- Praveen Rajendran
- Linus Pauling Institute, Oregon State University, Corvallis, OR, USA
| | | | | | | |
Collapse
|
48
|
Fairweather-Tait SJ, Bao Y, Broadley MR, Collings R, Ford D, Hesketh JE, Hurst R. Selenium in human health and disease. Antioxid Redox Signal 2011; 14:1337-83. [PMID: 20812787 DOI: 10.1089/ars.2010.3275] [Citation(s) in RCA: 801] [Impact Index Per Article: 57.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This review covers current knowledge of selenium in the environment, dietary intakes, metabolism and status, functions in the body, thyroid hormone metabolism, antioxidant defense systems and oxidative metabolism, and the immune system. Selenium toxicity and links between deficiency and Keshan disease and Kashin-Beck disease are described. The relationships between selenium intake/status and various health outcomes, in particular gastrointestinal and prostate cancer, cardiovascular disease, diabetes, and male fertility, are reviewed, and recent developments in genetics of selenoproteins are outlined. The rationale behind current dietary reference intakes of selenium is explained, and examples of differences between countries and/or expert bodies are given. Throughout the review, gaps in knowledge and research requirements are identified. More research is needed to improve our understanding of selenium metabolism and requirements for optimal health. Functions of the majority of the selenoproteins await characterization, the mechanism of absorption has yet to be identified, measures of status need to be developed, and effects of genotype on metabolism require further investigation. The relationships between selenium intake/status and health, or risk of disease, are complex but require elucidation to inform clinical practice, to refine dietary recommendations, and to develop effective public health policies.
Collapse
Affiliation(s)
- Susan J Fairweather-Tait
- School of Medicine, Health Policy and Practice, University of East Anglia, Norwich, Norfolk, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
49
|
McCann JC, Ames BN. Adaptive dysfunction of selenoproteins from the perspective of the triage theory: why modest selenium deficiency may increase risk of diseases of aging. FASEB J 2011; 25:1793-814. [PMID: 21402715 DOI: 10.1096/fj.11-180885] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The triage theory proposes that modest deficiency of any vitamin or mineral (V/M) could increase age-related diseases. V/M-dependent proteins required for short-term survival and/or reproduction (i.e., "essential") are predicted to be protected on V/M deficiency over other "nonessential" V/M-dependent proteins needed only for long-term health. The result is accumulation of insidious damage, increasing disease risk. We successfully tested the theory against published evidence on vitamin K. Here, we review about half of the 25 known mammalian selenoproteins; all of those with mouse knockout or human mutant phenotypes that could be used as criteria for a classification of essential or nonessential. Five selenoproteins (Gpx4, Txnrd1, Txnrd2, Dio3, and Sepp1) were classified as essential and 7 (Gpx1, Gpx 2, Gpx 3, Dio1, Dio2, Msrb1, and SelN) nonessential. On modest selenium (Se) deficiency, nonessential selenoprotein activities and concentrations are preferentially lost, with one exception (Dio1 in the thyroid, which we predict is conditionally essential). Mechanisms include the requirement of a special form of tRNA sensitive to Se deficiency for translation of nonessential selenoprotein mRNAs except Dio1. The same set of age-related diseases and conditions, including cancer, heart disease, and immune dysfunction, are prospectively associated with modest Se deficiency and also with genetic dysfunction of nonessential selenoproteins, suggesting that Se deficiency could be a causal factor, a possibility strengthened by mechanistic evidence. Modest Se deficiency is common in many parts of the world; optimal intake could prevent future disease.
Collapse
Affiliation(s)
- Joyce C McCann
- Nutrition and Metabolism Center, Children's Hospital Oakland Research Institute, 5700 Martin Luthur King Jr. Way, Oakland, CA 94609, USA.
| | | |
Collapse
|
50
|
Ran L, Wu X, Shen X, Zhang K, Ren F, Huang K. Effects of selenium form on blood and milk selenium concentrations, milk component and milk fatty acid composition in dairy cows. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2010; 90:2214-2219. [PMID: 20629108 DOI: 10.1002/jsfa.4073] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
BACKGROUND Human health may be improved if milk with a favorable fatty acid composition and Se concentration is ingested. The present study is to determine how a basal diet supplemented with daily 5 mg Se as Se-enriched yeast (SY) or sodium selenite (SS) affects the fatty acid composition and Se concentration of bovine milk. The effects of Se form on blood Se concentration, erythrocyte glutathione peroxidase 1 (GPx1) activity, serum GPx3 activity and milk yield and component were also studied. RESULTS Both Se forms, when compared to control group, increased Se concentrations of blood (P < 0.01) and milk (P < 0.01), erythrocyte GPx1 activity (P < 0.05) and milk percentages of polyunsaturated fatty acids (PUFA) (P < 0.05) and cis-9,cis-12 linoleic acid (P < 0.05). Cows supplemented with SY had higher Se levels in blood (P < 0.01) and milk (P < 0.01) and percentage of PUFA in milk (P < 0.05) when compared with those supplemented with SS. Milk yield, milk component and serum GPx3 activity were not significantly affected by Se form. CONCLUSION Supplementation of diet with SY appears to be of more benefit than SS in producing favorable milk with high PUFA and Se concentrations.
Collapse
Affiliation(s)
- Linwu Ran
- Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing 210095, China
| | | | | | | | | | | |
Collapse
|