1
|
Parolini I, Degrassi M, Spadaro F, Caponnetto F, Fecchi K, Mastantuono S, Zhouyiyuan X, Demple B, Cesselli D, Tell G. Intraluminal vesicle trafficking is involved in the secretion of base excision repair protein APE1. FEBS J 2024; 291:2849-2875. [PMID: 38401056 DOI: 10.1111/febs.17088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/24/2023] [Accepted: 01/31/2024] [Indexed: 02/26/2024]
Abstract
The apurinic/apyrimidinic endodeoxyribonuclease 1 (APE1) is an essential enzyme of the base excision repair pathway of non-distorting DNA lesions. In response to genotoxic treatments, APE1 is highly secreted (sAPE1) in association with small-extracellular vesicles (EVs). Interestingly, its presence in the serum of patients with hepatocellular or non-small-cell-lung cancers may represent a prognostic biomarker. The mechanism driving APE1 to associate with EVs is unknown, but is of paramount importance in better understanding the biological roles of sAPE1. Because APE1 lacks an endoplasmic reticulum-targeting signal peptide, it can be secreted through an unconventional protein secretion endoplasmic reticulum-Golgi-independent pathway, which includes an endosome-based secretion of intraluminal vesicles, mediated by multivesicular bodies (MVBs). Using HeLa and A549 cell lines, we investigated the role of endosomal sorting complex required for transport protein pathways (either-dependent or -independent) in the constitutive or trichostatin A-induced secretion of sAPE1, by means of manumycin A and GW 4869 treatments. Through an in-depth biochemical analysis of late-endosomes (LEs) and early-endosomes (EEs), we observed that the distribution of APE1 on density gradient corresponded to that of LE-CD63, LE-Rab7, EE-EEA1 and EE-Rab 5. Interestingly, the secretion of sAPE1, induced by cisplatin genotoxic stress, involved an autophagy-based unconventional secretion requiring MVBs. The present study enlightens the central role played by MVBs in the secretion of sAPE1 under various stimuli, and offers new perspectives in understanding the biological relevance of sAPE1 in cancer cells.
Collapse
Affiliation(s)
- Isabella Parolini
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
- Laboratory of Molecular Biology and DNA Repair, Department of Medicine, University of Udine, Italy
| | - Monica Degrassi
- Laboratory of Molecular Biology and DNA Repair, Department of Medicine, University of Udine, Italy
| | - Francesca Spadaro
- Core Facilities - Confocal Microscopy Unit, Istituto Superiore di Sanità, Rome, Italy
| | - Federica Caponnetto
- Department of Medicine, University of Udine, Italy
- Institute of Pathology, Academic Hospital Santa Maria della Misericordia, Udine, Italy
| | - Katia Fecchi
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Serena Mastantuono
- Department of Medicine, University of Udine, Italy
- Institute of Pathology, Academic Hospital Santa Maria della Misericordia, Udine, Italy
| | - Xue Zhouyiyuan
- Department of Pharmacological Sciences, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Bruce Demple
- Department of Pharmacological Sciences, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Daniela Cesselli
- Department of Medicine, University of Udine, Italy
- Institute of Pathology, Academic Hospital Santa Maria della Misericordia, Udine, Italy
| | - Gianluca Tell
- Laboratory of Molecular Biology and DNA Repair, Department of Medicine, University of Udine, Italy
| |
Collapse
|
2
|
Gampala S, Moon HR, Wireman R, Peil J, Kiran S, Mitchell DK, Brewster K, Mang H, Masters A, Bach C, Smith-Kinnamen W, Doud EH, Rai R, Mosley AL, Quinney SK, Clapp DW, Hamdouchi C, Wikel J, Zhang C, Han B, Georgiadis MM, Kelley MR, Fishel ML. New Ref-1/APE1 targeted inhibitors demonstrating improved potency for clinical applications in multiple cancer types. Pharmacol Res 2024; 201:107092. [PMID: 38311014 PMCID: PMC10962275 DOI: 10.1016/j.phrs.2024.107092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/06/2024]
Abstract
AP endonuclease-1/Redox factor-1 (APE1/Ref-1 or Ref-1) is a multifunctional protein that is overexpressed in most aggressive cancers and impacts various cancer cell signaling pathways. Ref-1's redox activity plays a significant role in activating transcription factors (TFs) such as NFκB, HIF1α, STAT3 and AP-1, which are crucial contributors to the development of tumors and metastatic growth. Therefore, development of potent, selective inhibitors to target Ref-1 redox function is an appealing approach for therapeutic intervention. A first-generation compound, APX3330 successfully completed phase I clinical trial in adults with progressing solid tumors with favorable response rate, pharmacokinetics (PK), and minimal toxicity. These positive results prompted us to develop more potent analogs of APX3330 to effectively target Ref-1 in solid tumors. In this study, we present structure-activity relationship (SAR) identification and validation of lead compounds that exhibit a greater potency and a similar or better safety profile to APX3330. In order to triage and characterize the most potent and on-target second-generation Ref-1 redox inhibitors, we assayed for PK, mouse and human S9 fraction metabolic stability, in silico ADMET properties, ligand-based WaterLOGSY NMR measurements, pharmacodynamic markers, cell viability in multiple cancer cell types, and two distinct 3-dimensional (3D) cell killing assays (Tumor-Microenvironment on a Chip and 3D spheroid). To characterize the effects of Ref-1 inhibition in vivo, global proteomics was used following treatment with the top four analogs. This study identified and characterized more potent inhibitors of Ref-1 redox function (that outperformed APX3330 by 5-10-fold) with PK studies demonstrating efficacious doses for translation to clinic.
Collapse
Affiliation(s)
- Silpa Gampala
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Hye-Ran Moon
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47906, USA; Purdue Institute for Cancer Research, Purdue University, West Lafayette, IN 47906, USA
| | - Randall Wireman
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Jacqueline Peil
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Sonia Kiran
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Dana K Mitchell
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Kylee Brewster
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Henry Mang
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Andi Masters
- Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Clinical Pharmacology Analytical Core, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Christine Bach
- Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Clinical Pharmacology Analytical Core, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Whitney Smith-Kinnamen
- Center for Proteome Analysis, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Emma H Doud
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Center for Proteome Analysis, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Ratan Rai
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Amber L Mosley
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Center for Proteome Analysis, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Sara K Quinney
- Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Division of Clinical Pharmacology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - D Wade Clapp
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Chafiq Hamdouchi
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - James Wikel
- Apexian Pharmaceuticals, Indianapolis, IN, USA
| | - Chi Zhang
- Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Biohealth Informatics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Bumsoo Han
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47906, USA; Purdue Institute for Cancer Research, Purdue University, West Lafayette, IN 47906, USA
| | - Millie M Georgiadis
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Mark R Kelley
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Melissa L Fishel
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
3
|
Kim HY, Park JS, Jeon BH, Choi HS, Kim CS, Ma SK, Kim SW, Bae EH. Role of APE1/Ref-1 in hydrogen peroxide-induced apoptosis in human renal HK-2 cells. Kidney Res Clin Pract 2024; 43:186-201. [PMID: 37448293 PMCID: PMC11016666 DOI: 10.23876/j.krcp.22.171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 11/02/2022] [Accepted: 11/11/2022] [Indexed: 07/15/2023] Open
Abstract
BACKGROUND Apurinic/apyrimidinic endonuclease 1/redox factor-1 (APE1/Ref-1) is a multipotent protein that plays essential roles in cellular responses to oxidative stress. METHODS To examine the role of APE1/Ref-1 in ischemia-reperfusion (I/R) injuries and hydrogen peroxide (H2O2)-induced renal tubular apoptosis, we studied male C57BL6 mice and human proximal tubular epithelial (HK-2) cells treated with H2O2 at different concentrations. The colocalization of APE1/Ref-1 in the proximal tubule, distal tubule, thick ascending limb, and collecting duct was observed with confocal microscopy. The overexpression of APE1/Ref-1 with knockdown cell lines using an APE1/Ref-1-specific DNA or small interfering RNA (siRNA) was used for the apoptosis assay. The promotor activity of nuclear factor kappa B (NF-κB) was assessed and electrophoretic mobility shift assay was conducted. RESULTS APE1/Ref-1 was predominantly localized to the renal tubule nucleus. In renal I/R injuries, the levels of APE1/Ref-1 protein were increased compared with those in kidneys subjected to sham operations. The overexpression of APE1/Ref-1 in HK-2 cells enhanced the Bax/Bcl-2 ratio as a marker of apoptosis. Conversely, the suppression of APE1/Ref-1 expression by siRNA in 1-mM H2O2-treated HK-2 cells decreased the Bax/Bcl-2 ratio, the phosphorylation of extracellular signal-regulated kinase (ERK) 1/2, p38, c-Jun N-terminal kinase (JNK) 1/2, and NF-κB. In HK-2 cells, the promoter activity of NF-κB increased following H2O2 exposure, and this effect was further enhanced by APE1/Ref-1 transfection. CONCLUSION The inhibition of APE1/Ref-1 with siRNA attenuated H2O2-induced apoptosis through the modulation of mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 and the nuclear activation of NF-κB and proapoptotic factors.
Collapse
Affiliation(s)
- Ha Yeon Kim
- Department of Internal Medicine, Gwangju Veterans Hospital, Gwangju, Republic of Korea
| | - Jung Sun Park
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Byeong Hwa Jeon
- Research Institute of Medical Sciences and Department of Physiology, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Hong Sang Choi
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Chang Seong Kim
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Seong Kwon Ma
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Soo Wan Kim
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Eun Hui Bae
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea
| |
Collapse
|
4
|
Tang S, Wang Y, Luo R, Fang R, Liu Y, Xiang H, Ran P, Tong Y, Sun M, Tan S, Huang W, Huang J, Lv J, Xu N, Yao Z, Zhang Q, Xu Z, Yue X, Yu Z, Akesu S, Ding Y, Xu C, Lu W, Zhou Y, Hou Y, Ding C. Proteomic characterization identifies clinically relevant subgroups of soft tissue sarcoma. Nat Commun 2024; 15:1381. [PMID: 38360860 PMCID: PMC10869728 DOI: 10.1038/s41467-024-45306-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 01/18/2024] [Indexed: 02/17/2024] Open
Abstract
Soft tissue sarcoma is a broad family of mesenchymal malignancies exhibiting remarkable histological diversity. We portray the proteomic landscape of 272 soft tissue sarcomas representing 12 major subtypes. Hierarchical classification finds the similarity of proteomic features between angiosarcoma and epithelial sarcoma, and elevated expression of SHC1 in AS and ES is correlated with poor prognosis. Moreover, proteomic clustering classifies patients of soft tissue sarcoma into 3 proteomic clusters with diverse driven pathways and clinical outcomes. In the proteomic cluster featured with the high cell proliferation rate, APEX1 and NPM1 are found to promote cell proliferation and drive the progression of cancer cells. The classification based on immune signatures defines three immune subtypes with distinctive tumor microenvironments. Further analysis illustrates the potential association between immune evasion markers (PD-L1 and CD80) and tumor metastasis in soft tissue sarcoma. Overall, this analysis uncovers sarcoma-type-specific changes in proteins, providing insights about relationships of soft tissue sarcoma.
Collapse
Affiliation(s)
- Shaoshuai Tang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, Human Phenome Institute, Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Yunzhi Wang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, Human Phenome Institute, Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Rongkui Luo
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Rundong Fang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, Human Phenome Institute, Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Yufeng Liu
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hang Xiang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, Human Phenome Institute, Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Peng Ran
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, Human Phenome Institute, Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Yexin Tong
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, Human Phenome Institute, Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Mingjun Sun
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, Human Phenome Institute, Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Subei Tan
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, Human Phenome Institute, Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Wen Huang
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jie Huang
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jiacheng Lv
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, Human Phenome Institute, Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Ning Xu
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, Human Phenome Institute, Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Zhenmei Yao
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, Human Phenome Institute, Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Qiao Zhang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, Human Phenome Institute, Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Ziyan Xu
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, Human Phenome Institute, Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Xuetong Yue
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, Human Phenome Institute, Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Zixiang Yu
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Sujie Akesu
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yuqin Ding
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Institute of Medical Imaging, Shanghai, China
| | - Chen Xu
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Weiqi Lu
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Yuhong Zhou
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Yingyong Hou
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Chen Ding
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, Human Phenome Institute, Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200433, China.
| |
Collapse
|
5
|
Siswanto FM, Okukawa K, Tamura A, Oguro A, Imaoka S. Hydrogen peroxide activates APE1/Ref-1 via NF-κB and Parkin: A role in liver cancer resistance to oxidative stress. Free Radic Res 2023:1-31. [PMID: 37364176 DOI: 10.1080/10715762.2023.2229509] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/09/2023] [Accepted: 06/20/2023] [Indexed: 06/28/2023]
Abstract
Cancer cells exhibit an altered redox balance and aberrant redox signaling due to genetic, metabolic, and microenvironment-associated reprogramming. Persistently elevated levels of reactive oxygen species (ROS) contribute to many aspects of tumor development and progression. Emerging studies demonstrated the vital role of apurinic/apyrimidinic endonuclease 1 or reduction/oxidation (redox) factor 1(APE1/Ref-1) in the oxidative stress response and survival of cancer cells. APE1/Ref-1 is a multifunctional enzyme involved in the DNA damage response and functions as a redox regulator of transcription factors. We herein demonstrated that basal hydrogen peroxide (H2O2) and APE1/Ref-1 expression levels were markedly higher in cancer cell lines than in non-cancerous cells. Elevated APE1/Ref-1 levels were associated with shorter survival in liver cancer patients. Mechanistically, we showed that H2O2 activated nuclear factor-κB (NF-κB). RelA/p65 inhibited the expression of the E3 ubiquitin ligase Parkin, possibly by interfering with ATF4 activity. Parkin was responsible for the ubiquitination and proteasomal degradation of APE1/Ref-1; therefore, the H2O2-induced suppression of Parkin expression increased APE1/Ref-1 levels. The probability of survival was lower in liver cancer patients with low Parkin and high RelA expression levels. Additionally, Parkin and RelA expression levels negatively and positively correlated with APE1/Ref-1 levels, respectively, in the TCGA liver cancer cohort. We concluded that increases in APE1/Ref-1 via the NF-κB and Parkin pathways are critical for cancer cell survival under oxidative stress. The present results show the potential of the NF-κB-Parkin-APE1/Ref-1 axis as a prognostic factor and therapeutic strategy to eradicate liver cancer.
Collapse
Affiliation(s)
- Ferbian Milas Siswanto
- Department of Biomedical Chemistry, School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Japan
- Department of Biochemistry, School of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia, Jakarta, Indonesia
| | - Kenta Okukawa
- Department of Biomedical Chemistry, School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Japan
| | - Akiyoshi Tamura
- Department of Biomedical Chemistry, School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Japan
| | - Ami Oguro
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Susumu Imaoka
- Department of Biomedical Chemistry, School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Japan
| |
Collapse
|
6
|
Shadfar S, Parakh S, Jamali MS, Atkin JD. Redox dysregulation as a driver for DNA damage and its relationship to neurodegenerative diseases. Transl Neurodegener 2023; 12:18. [PMID: 37055865 PMCID: PMC10103468 DOI: 10.1186/s40035-023-00350-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/16/2023] [Indexed: 04/15/2023] Open
Abstract
Redox homeostasis refers to the balance between the production of reactive oxygen species (ROS) as well as reactive nitrogen species (RNS), and their elimination by antioxidants. It is linked to all important cellular activities and oxidative stress is a result of imbalance between pro-oxidants and antioxidant species. Oxidative stress perturbs many cellular activities, including processes that maintain the integrity of DNA. Nucleic acids are highly reactive and therefore particularly susceptible to damage. The DNA damage response detects and repairs these DNA lesions. Efficient DNA repair processes are therefore essential for maintaining cellular viability, but they decline considerably during aging. DNA damage and deficiencies in DNA repair are increasingly described in age-related neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis and Huntington's disease. Furthermore, oxidative stress has long been associated with these conditions. Moreover, both redox dysregulation and DNA damage increase significantly during aging, which is the biggest risk factor for neurodegenerative diseases. However, the links between redox dysfunction and DNA damage, and their joint contributions to pathophysiology in these conditions, are only just emerging. This review will discuss these associations and address the increasing evidence for redox dysregulation as an important and major source of DNA damage in neurodegenerative disorders. Understanding these connections may facilitate a better understanding of disease mechanisms, and ultimately lead to the design of better therapeutic strategies based on preventing both redox dysregulation and DNA damage.
Collapse
Affiliation(s)
- Sina Shadfar
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Macquarie University, Sydney, NSW, 2109, Australia.
| | - Sonam Parakh
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Macquarie University, Sydney, NSW, 2109, Australia
| | - Md Shafi Jamali
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Macquarie University, Sydney, NSW, 2109, Australia
| | - Julie D Atkin
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Macquarie University, Sydney, NSW, 2109, Australia.
- La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Melbourne, VIC, 3086, Australia.
| |
Collapse
|
7
|
Sheng C, Zhao J, Yu F, Li L. Enzyme Translocation-Mediated Signal Amplification for Spatially Selective Aptasensing of ATP in Inflammatory Cells. Angew Chem Int Ed Engl 2023; 62:e202217551. [PMID: 36750407 DOI: 10.1002/anie.202217551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/10/2023] [Accepted: 02/07/2023] [Indexed: 02/09/2023]
Abstract
Amplified ATP imaging in inflammatory cells is highly desirable. However, the spatial selectivity of current amplification methods is limited, that is, signal amplification is performed systemically and not in a disease site-specific manner. Here we present a versatile strategy, termed enzymatically triggerable, aptamer-based signal amplification (ETA-SA), that enables inflammatory cell-specific imaging of ATP through spatially-resolved signal amplification. The ETA-SA leverages a translocated enzyme in inflammatory cells to activate DNA aptamer probes and further drive cascade reactions through the consumption of hairpin fuels, which, however, exerts no ATP response activity in normal cells, leading to a significantly improved sensitivity and spatial specificity for the inflammation-specific ATP imaging in vivo. Benefiting from the improved spatial selectivity, enhanced signal-to-background ratios were achieved for ATP imaging during acute hepatitis.
Collapse
Affiliation(s)
- Chuangui Sheng
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fangzhi Yu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lele Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
8
|
Coskun E, Singh N, Scanlan LD, Jaruga P, Doak SH, Dizdaroglu M, Nelson BC. Inhibition of human APE1 and MTH1 DNA repair proteins by dextran-coated γ-Fe 2O 3 ultrasmall superparamagnetic iron oxide nanoparticles. Nanomedicine (Lond) 2022; 17:2011-2021. [PMID: 36853189 PMCID: PMC10031551 DOI: 10.2217/nnm-2022-0204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023] Open
Abstract
Aim: To quantitatively evaluate the inhibition of human DNA repair proteins APE1 and MTH1 by dextran-coated γ-Fe2O3 ultrasmall superparamagnetic iron oxide nanoparticles (dUSPIONs). Materials & methods: Liquid chromatography-tandem mass spectrometry with isotope-dilution was used to measure the expression levels of APE1 and MTH1 in MCL-5 cells exposed to increasing doses of dUSPIONs. The expression levels of APE1 and MTH1 were measured in cytoplasmic and nuclear fractions of cell extracts. Results: APE1 and MTH1 expression was significantly inhibited in both cell fractions at the highest dUSPION dose. The expression of MTH1 was linearly inhibited across the full dUSPION dose range in both fractions. Conclusion: These findings warrant further studies to characterize the capacity of dUSPIONs to inhibit other DNA repair proteins in vitro and in vivo.
Collapse
Affiliation(s)
- Erdem Coskun
- Institute for Bioscience & Biotechnology Research, University of Maryland, Rockville, MD 20850, USA
| | - Neenu Singh
- Leicester School of Allied Health Sciences, Faculty of Health & Life Sciences, De Montfort University, The Gateway, Leicester, LE1 9BH, UK
| | - Leona D Scanlan
- California Environmental Protection Agency, Office of Environmental Health Hazard Assessment, 1001 I Street, Sacramento, CA 95814, USA
| | - Pawel Jaruga
- Biomolecular Measurement Division, National Institute of Standards & Technology, Gaithersburg, MD 20899, USA
| | - Shareen H Doak
- Institute of Life Science, Center for NanoHealth, Swansea University Medical School, Wales, SA2 8PP, UK
| | - Miral Dizdaroglu
- Biomolecular Measurement Division, National Institute of Standards & Technology, Gaithersburg, MD 20899, USA
| | - Bryant C Nelson
- Biosystems & Biomaterials Division, National Institute of Standards & Technology, Gaithersburg, MD 20899, USA
| |
Collapse
|
9
|
Akbari M, Nilsen HL, Montaldo NP. Dynamic features of human mitochondrial DNA maintenance and transcription. Front Cell Dev Biol 2022; 10:984245. [PMID: 36158192 PMCID: PMC9491825 DOI: 10.3389/fcell.2022.984245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/02/2022] [Indexed: 12/03/2022] Open
Abstract
Mitochondria are the primary sites for cellular energy production and are required for many essential cellular processes. Mitochondrial DNA (mtDNA) is a 16.6 kb circular DNA molecule that encodes only 13 gene products of the approximately 90 different proteins of the respiratory chain complexes and an estimated 1,200 mitochondrial proteins. MtDNA is, however, crucial for organismal development, normal function, and survival. MtDNA maintenance requires mitochondrially targeted nuclear DNA repair enzymes, a mtDNA replisome that is unique to mitochondria, and systems that control mitochondrial morphology and quality control. Here, we provide an overview of the current literature on mtDNA repair and transcription machineries and discuss how dynamic functional interactions between the components of these systems regulate mtDNA maintenance and transcription. A profound understanding of the molecular mechanisms that control mtDNA maintenance and transcription is important as loss of mtDNA integrity is implicated in normal process of aging, inflammation, and the etiology and pathogenesis of a number of diseases.
Collapse
Affiliation(s)
- Mansour Akbari
- Department of Medical Biology, Faculty of Health Sciences, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Hilde Loge Nilsen
- Department of Clinical Molecular Biology, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Unit for precision medicine, Akershus University Hospital, Nordbyhagen, Norway
- Department of Microbiology, Oslo University Hospital, Oslo, Norway
| | - Nicola Pietro Montaldo
- Department of Clinical Molecular Biology, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- *Correspondence: Nicola Pietro Montaldo,
| |
Collapse
|
10
|
Miner KM, Jamenis AS, Bhatia TN, Clark RN, Rajasundaram D, Sauvaigo S, Mason DM, Posimo JM, Abraham N, DeMarco BA, Hu X, Stetler RA, Chen J, Sanders LH, Luk KC, Leak RK. α-synucleinopathy exerts sex-dimorphic effects on the multipurpose DNA repair/redox protein APE1 in mice and humans. Prog Neurobiol 2022; 216:102307. [PMID: 35710046 PMCID: PMC9514220 DOI: 10.1016/j.pneurobio.2022.102307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 04/05/2022] [Accepted: 06/10/2022] [Indexed: 11/16/2022]
Abstract
Lewy body disorders are characterized by oxidative damage to DNA and inclusions rich in aggregated forms of α-synuclein. Among other roles, apurinic/apyrimidinic endonuclease 1 (APE1) repairs oxidative DNA damage, and APE1 polymorphisms have been linked to cases of Lewy body disorders. However, the link between APE1 and α-synuclein is unexplored. We report that knockdown or inhibition of APE1 amplified inclusion formation in primary hippocampal cultures challenged with preformed α-synuclein fibrils. Fibril infusions into the mouse olfactory bulb/anterior olfactory nucleus (OB/AON) elicited a modest decrease in APE1 expression in the brains of male mice but an increase in females. Similarly, men with Lewy body disorders displayed lower APE1 expression in the OB and amygdala compared to women. Preformed fibril infusions of the mouse OB/AON induced more robust base excision repair of DNA lesions in females than males. No fibril-mediated loss of APE1 expression was observed in male mice when the antioxidant N-acetylcysteine was added to their diet. These findings reveal a potential sex-biased link between α-synucleinopathy and APE1 in mice and humans. Further studies are warranted to determine how this multifunctional protein modifies α-synuclein inclusions and, conversely, how α-synucleinopathy and biological sex interact to modify APE1.
Collapse
Affiliation(s)
- Kristin M Miner
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282, USA
| | - Anuj S Jamenis
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282, USA
| | - Tarun N Bhatia
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282, USA
| | - Rachel N Clark
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282, USA
| | - Dhivyaa Rajasundaram
- Department of Pediatrics, Rangos Research Center, UPMC Children's Hospital of Pittsburgh, PA 15224, USA
| | | | - Daniel M Mason
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282, USA
| | - Jessica M Posimo
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282, USA
| | - Nevil Abraham
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282, USA
| | - Brett A DeMarco
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282, USA
| | - Xiaoming Hu
- Department of Neurology, University of Pittsburgh, PA 15213, USA
| | - R Anne Stetler
- Department of Neurology, University of Pittsburgh, PA 15213, USA
| | - Jun Chen
- Department of Neurology, University of Pittsburgh, PA 15213, USA
| | - Laurie H Sanders
- Department of Neurology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Kelvin C Luk
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19147, USA
| | - Rehana K Leak
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282, USA.
| |
Collapse
|
11
|
Zhao J, Di Z, Li L. Spatiotemporally Selective Molecular Imaging via Upconversion Luminescence‐Controlled, DNA‐Based Biosensor Technology. Angew Chem Int Ed Engl 2022; 61:e202204277. [DOI: 10.1002/anie.202204277] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Indexed: 12/18/2022]
Affiliation(s)
- Jian Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety National Center for Nanoscience and Technology Beijing 100190 China
- College of Materials Science and Optoelectronic Technology University of Chinese Academy of Sciences Beijing 100049 China
| | - Zhenghan Di
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety National Center for Nanoscience and Technology Beijing 100190 China
- College of Materials Science and Optoelectronic Technology University of Chinese Academy of Sciences Beijing 100049 China
| | - Lele Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety National Center for Nanoscience and Technology Beijing 100190 China
- College of Materials Science and Optoelectronic Technology University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
12
|
Zhao J, Di Z, Li L. Spatiotemporally Selective Molecular Imaging via Upconversion Luminescence‐Controlled, DNA‐Based Biosensor Technology. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jian Zhao
- NCNST: National Center for Nanoscience and Technology CAS key Lab CHINA
| | - Zhenghan Di
- NCNST: National Center for Nanoscience and Technology CAS key Lab CHINA
| | - Lele Li
- National Center for Nanoscience and Technology CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety 11 ZhongGuanCun BeiYiTiao, Haidian District 100190 Beijing CHINA
| |
Collapse
|
13
|
Song JH, Lee MS, Cha EY, Lee KH, Kim JY, Kim JS. Apurinic/apyrimidinic endonuclease 1 is associated with poor prognosis after curative resection followed by adjuvant chemotherapy in patients with stage III colon cancer. KOREAN JOURNAL OF CLINICAL ONCOLOGY 2022; 18:1-10. [PMID: 36945334 PMCID: PMC9942767 DOI: 10.14216/kjco.22001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 12/24/2022]
Abstract
Purpose Apurinic/apyrimidinic endonuclease 1 (APE1) is a key enzyme involved in the base excision repair pathway. It also has redox activity and maintains various transcription factors in an active reduced state. APE1 may be associated with chemoresistance. In the present study, we first investigated the expression level of APE1 protein and its correlation with oncologic outcomes of oxaliplatin-based chemotherapy in patients with stage III colon cancer. Further, we investigated the effects of human APE1 siRNA on the sensitivity of oxaliplatin in SNU-C2A colon cancer cells. Methods Tissue specimens from tumor and normal colon of 33 patients with stage III colon cancer were obtained from 2006 to 2009. The patients received at least eight cycles of oxaliplatin-based chemotherapy. APE1 expression was analyzed by immunohistochemistry and Western blotting using a cultured SNU-C2A cell line. Cell viability and apoptosis were determined by Cell Counting Kit-8 and caspase-3 cleavage using Western blotting. Results All the colon cancer tissues showed APE1 staining in the nucleus, whereas all the normal colon tissues were negative for APE1 staining in the cytoplasm. The group with a higher expression of APE1 demonstrated poorer prognosis than the group with low expression (P=0.026 for overall survival and P=0.021 for disease-free survival). Treatment with oxaliplatin resulted in a dose-dependent increase in APE1 expression in SNU-C2A cells. APE1 siRNA significantly enhanced oxaliplatin-induced growth inhibition, and also increased oxaliplatin-induced apoptosis in SNU-C2A cells. Conclusion APE1 could be considered a prognostic factor in colon cancer patients treated with oxaliplatin-based chemotherapy.
Collapse
Affiliation(s)
- Ji Hyeong Song
- Department of Surgery, Chungnam National University Sejong Hospital, Sejong, Korea
| | - Myung Sun Lee
- Surgical Oncology Research Laboratory, Chungnam National University Hospital, Daejeon, Korea
| | - Eun Young Cha
- Surgical Oncology Research Laboratory, Chungnam National University Hospital, Daejeon, Korea
| | - Kyung Ha Lee
- Department of Surgery, College of Medicine, Chungnam National University, Daejeon, Korea
| | - Ji Yeon Kim
- Department of Surgery, College of Medicine, Chungnam National University, Daejeon, Korea
| | - Jin Soo Kim
- Department of Surgery, Chungnam National University Sejong Hospital, Sejong, Korea
- Department of Surgery, College of Medicine, Chungnam National University, Daejeon, Korea
| |
Collapse
|
14
|
Li Z, Feng X, Hu W, Li L. An activatable DNA nanodevice for correlated imaging of apoptosis-related dual proteins. NANOSCALE 2022; 14:6465-6470. [PMID: 35416226 DOI: 10.1039/d2nr00537a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Apoptosis plays an important role in the life cycle of multicellular organisms. The development of techniques for sensitive monitoring of apoptosis-related key molecules can be used to assess not only disease progression but also its therapeutic interventions. However, there is still a lack of an imaging probe amenable for simultaneously detecting multiple biomarkers during drug-induced apoptosis. Herein, a novel activatable DNA nanodevice was designed to image apoptosis-related dual proteins in real time. The turn-on and specific recognition properties of our probe allow the spatially selective detection of apoptotic-related marker cytochrome c and apurinic/apyrimidinic endonuclease 1 in living cells. We demonstrated that the DNA nanodevice has the ability to monitor apoptosis and evaluate the efficacy of apoptosis-related drugs, which potentially can be used as a tool to evaluate the molecular mechanism of apoptosis regulation or to screen apoptotic drugs.
Collapse
Affiliation(s)
- Zhixiang Li
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin 300072, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.
| | - Xueyan Feng
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.
| | - Wenping Hu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin 300072, China
| | - Lele Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.
| |
Collapse
|
15
|
Guo N, Chen Y, Zhang Y, Deng Y, Zeng F, Li X. Potential Role of APEX1 During Ferroptosis. Front Oncol 2022; 12:798304. [PMID: 35311089 PMCID: PMC8927806 DOI: 10.3389/fonc.2022.798304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 02/02/2022] [Indexed: 11/25/2022] Open
Abstract
Ferroptosis is a recently discovered category of programmed cell death. It is much different from other types of cell death such as apoptosis, necrosis and autophagy. The main pathological feature of ferroptosis is the accumulation of iron-dependent lipid peroxidation. The typical changes in the morphological features of ferroptosis include cell volume shrinkage and increased mitochondrial membrane area. The mechanisms of ferroptosis may be mainly related to lipid peroxidation accumulation, imbalance in amino acid antioxidant system, and disturbance of iron metabolism. Besides, hypoxia-inducible factor (HIF), nuclear factor-E2-related factor 2 (Nrf2), and p53 pathway have been demonstrated to be involved in ferroptosis. At present, the molecular mechanisms of ferroptosis pathway are still unmapped. In this review, an outlook has been put forward about the crucial role of apurinic/apyrimidinic endodeoxyribonuclease 1 (APEX1) in the regulation of ferroptosis. APEX1 plays an important role in the regulation of intracellular redox balance and can be used as a potential inhibitor of ferroptotic cell death. Bioinformatics analysis indicated that the mRNA level of APEX1 is decreased in cases of ferroptosis triggered by erastin. Besides, it was found that there was a significant correlation between APEX1 and genes in the ferroptosis pathway. We have discussed the possibility to employ APEX1 inducers or inhibitors in the regulation of ferroptosis as a new strategy for the treatment of various human diseases.
Collapse
Affiliation(s)
- Nan Guo
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou, China
| | - Yan Chen
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yuhong Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou, China
| | - Yonghao Deng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou, China
| | - Fancai Zeng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou, China
| | - Xiang Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou, China
| |
Collapse
|
16
|
Oliveira TT, Coutinho LG, de Oliveira LOA, Timoteo ARDS, Farias GC, Agnez-Lima LF. APE1/Ref-1 Role in Inflammation and Immune Response. Front Immunol 2022; 13:793096. [PMID: 35296074 PMCID: PMC8918667 DOI: 10.3389/fimmu.2022.793096] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 02/07/2022] [Indexed: 12/12/2022] Open
Abstract
Apurinic/apyrimidinic endonuclease 1/redox effector factor 1 (APE1/Ref-1) is a multifunctional enzyme that is essential for maintaining cellular homeostasis. APE1 is the major apurinic/apyrimidinic endonuclease in the base excision repair pathway and acts as a redox-dependent regulator of several transcription factors, including NF-κB, AP-1, HIF-1α, and STAT3. These functions render APE1 vital to regulating cell signaling, senescence, and inflammatory pathways. In addition to regulating cytokine and chemokine expression through activation of redox sensitive transcription factors, APE1 participates in other critical processes in the immune response, including production of reactive oxygen species and class switch recombination. Furthermore, through participation in active chromatin demethylation, the repair function of APE1 also regulates transcription of some genes, including cytokines such as TNFα. The multiple functions of APE1 make it an essential regulator of the pathogenesis of several diseases, including cancer and neurological disorders. Therefore, APE1 inhibitors have therapeutic potential. APE1 is highly expressed in the central nervous system (CNS) and participates in tissue homeostasis, and its roles in neurodegenerative and neuroinflammatory diseases have been elucidated. This review discusses known roles of APE1 in innate and adaptive immunity, especially in the CNS, recent evidence of a role in the extracellular environment, and the therapeutic potential of APE1 inhibitors in infectious/immune diseases.
Collapse
Affiliation(s)
- Thais Teixeira Oliveira
- Departamento de Biologia Celular e Genética, Universidade Federal do Rio Grande do Norte (UFRN), Natal, Brazil
| | - Leonam Gomes Coutinho
- Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Norte (IFRN), São Paulo do Potengi, Brazil
| | | | | | - Guilherme Cavalcanti Farias
- Departamento de Biologia Celular e Genética, Universidade Federal do Rio Grande do Norte (UFRN), Natal, Brazil
| | - Lucymara Fassarella Agnez-Lima
- Departamento de Biologia Celular e Genética, Universidade Federal do Rio Grande do Norte (UFRN), Natal, Brazil
- *Correspondence: Lucymara Fassarella Agnez-Lima,
| |
Collapse
|
17
|
Ryu JW, Jung IH, Park EY, Kim KH, Kim K, Yeom J, Jung J, Lee SW. Radiation-induced C-reactive protein triggers apoptosis of vascular smooth muscle cells through ROS interfering with the STAT3/Ref-1 complex. J Cell Mol Med 2022; 26:2104-2118. [PMID: 35178859 PMCID: PMC8980952 DOI: 10.1111/jcmm.17233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/23/2022] [Accepted: 01/28/2022] [Indexed: 12/24/2022] Open
Abstract
Damage to normal tissue can occur over a long period after cancer radiotherapy. Free radical by radiation can initiate or accelerate chronic inflammation, which can lead to atherosclerosis. However, the underlying mechanisms remain unclear. Vascular smooth muscle cells (VSMCs) proliferate in response to JAK/STAT3 signalling. C-reactive protein (CRP) can induce VSMCs apoptosis via triggering NADPH oxidase (NOX). Apoptotic VSMCs promote instability and inflammation of atherosclerotic lesions. Herein, we identified a VSMCs that switched from proliferation to apoptosis through was enhanced by radiation-induced CRP. NOX inhibition using lentiviral sh-p22phox prevented apoptosis upon radiation-induced CRP. CRP overexpression reduced the amount of STAT3/Ref-1 complex, decreased JAK/STAT phosphorylation and formed a new complex of Ref-1/CRP in VSMC. Apoptosis of VSMCs was further increased by CRP co-overexpressed with Ref-1. Functional inhibition of NOX or p53 also prevented apoptotic activity of the CRP-Ref-1 complex. Immunofluorescence showed co-localization of CRP, Ref-1 and p53 with α-actin-positive VSMC in human atherosclerotic plaques. In conclusion, radiation-induced CRP increased the VSMCs apoptosis through Ref-1, which dissociated the STAT3/Ref-1 complex, interfered with JAK/STAT3 activity, and interacted with CRP-Ref-1, thus resulting in transcription-independent cell death via p53. Targeting CRP as a vascular side effect of radiotherapy could be exploited to improve curability.
Collapse
Affiliation(s)
- Je-Won Ryu
- Department of Convergence Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
| | - In-Hye Jung
- Department of Radiation Oncology, Gang Neung Asan Medical Center, Ganneung-si, Republic of Korea
| | - Eun-Young Park
- Department of Radiation Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Kang-Hyun Kim
- Department of Convergence Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
| | - Kyunggon Kim
- Department of Convergence Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
| | - Jeonghun Yeom
- Department of Convergence Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
| | - Jinhong Jung
- Department of Radiation Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sang-Wook Lee
- Department of Radiation Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
18
|
Haider M, Elsherbeny A, Pittalà V, Consoli V, Alghamdi MA, Hussain Z, Khoder G, Greish K. Nanomedicine Strategies for Management of Drug Resistance in Lung Cancer. Int J Mol Sci 2022; 23:1853. [PMID: 35163777 PMCID: PMC8836587 DOI: 10.3390/ijms23031853] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/01/2022] [Accepted: 02/01/2022] [Indexed: 12/12/2022] Open
Abstract
Lung cancer (LC) is one of the leading causes of cancer occurrence and mortality worldwide. Treatment of patients with advanced and metastatic LC presents a significant challenge, as malignant cells use different mechanisms to resist chemotherapy. Drug resistance (DR) is a complex process that occurs due to a variety of genetic and acquired factors. Identifying the mechanisms underlying DR in LC patients and possible therapeutic alternatives for more efficient therapy is a central goal of LC research. Advances in nanotechnology resulted in the development of targeted and multifunctional nanoscale drug constructs. The possible modulation of the components of nanomedicine, their surface functionalization, and the encapsulation of various active therapeutics provide promising tools to bypass crucial biological barriers. These attributes enhance the delivery of multiple therapeutic agents directly to the tumor microenvironment (TME), resulting in reversal of LC resistance to anticancer treatment. This review provides a broad framework for understanding the different molecular mechanisms of DR in lung cancer, presents novel nanomedicine therapeutics aimed at improving the efficacy of treatment of various forms of resistant LC; outlines current challenges in using nanotechnology for reversing DR; and discusses the future directions for the clinical application of nanomedicine in the management of LC resistance.
Collapse
Affiliation(s)
- Mohamed Haider
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates; (Z.H.); (G.K.)
| | - Amr Elsherbeny
- Division of Molecular Therapeutics and Formulation, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK;
| | - Valeria Pittalà
- Department of Drug and Health Science, University of Catania, 95125 Catania, Italy; (V.P.); (V.C.)
| | - Valeria Consoli
- Department of Drug and Health Science, University of Catania, 95125 Catania, Italy; (V.P.); (V.C.)
| | - Maha Ali Alghamdi
- Department of Biotechnology, College of Science, Taif University, Taif 21974, Saudi Arabia;
- Department of Molecular Medicine, Princess Al-Jawhara Centre for Molecular Medicine, School of Medicine and Medical Sciences, Arabian Gulf University, Manama 329, Bahrain;
| | - Zahid Hussain
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates; (Z.H.); (G.K.)
| | - Ghalia Khoder
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates; (Z.H.); (G.K.)
| | - Khaled Greish
- Department of Molecular Medicine, Princess Al-Jawhara Centre for Molecular Medicine, School of Medicine and Medical Sciences, Arabian Gulf University, Manama 329, Bahrain;
| |
Collapse
|
19
|
Chen Y, Gong X, Gao Y, Shang Y, Shang J, Yu S, Li R, He S, Liu X, Wang F. Bioorthogonal regulation of DNA circuits for smart intracellular microRNA imaging. Chem Sci 2021; 12:15710-15718. [PMID: 35003602 PMCID: PMC8654030 DOI: 10.1039/d1sc05214d] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 10/28/2021] [Indexed: 12/15/2022] Open
Abstract
Catalytic DNA circuits represent a versatile toolbox for tracking intracellular biomarkers yet are constrained with low anti-interference capacity originating from their severe off-site activation. Herein, by introducing an unprecedented endogenous DNA repairing enzyme-powered pre-selection strategy, we develop a sequential and specific on-site activated catalytic DNA circuit for achieving the cancer cell-selective imaging of microRNA with high anti-interference capacity. Initially, the circuitry reactant is firmly caged by an elongated stabilizing duplex segment with a recognition/cleavage site of a cell-specific DNA repairing enzyme, which can prevent undesired signal leakage prior to its exposure to target cells. Then, the intrinsic DNA repairing enzyme of target cells can liberate the DNA probe for efficient intracellular microRNA imaging via the multiply guaranteed molecular recognition/activation procedures. This bioorthogonal regulated DNA circuit presents a modular and programmable amplification strategy for highly reliable assays of intracellular biomarkers, and provides a pivotal molecular toolbox for living systems. An on-site bioorthogonal regulated DNA circuit was developed by introducing an endogenous DNA repairing enzyme-mediated sequential activation strategy to achieve cancer cell-selective microRNA imaging with high anti-interference ability.![]()
Collapse
Affiliation(s)
- Yingying Chen
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 P. R. China
| | - Xue Gong
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 P. R. China
| | - Yuhui Gao
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 P. R. China
| | - Yu Shang
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 P. R. China
| | - Jinhua Shang
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 P. R. China
| | - Shanshan Yu
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 P. R. China
| | - Ruomeng Li
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 P. R. China
| | - Shizhen He
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 P. R. China
| | - Xiaoqing Liu
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 P. R. China.,Research Institute of Shenzhen, Wuhan University Shenzhen 518057 P. R. China
| | - Fuan Wang
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 P. R. China.,Research Institute of Shenzhen, Wuhan University Shenzhen 518057 P. R. China
| |
Collapse
|
20
|
Liu J, Zheng J, Guo Y, Sheng X, Yin Y, Qian S, Xu B, Xiong W, Yin X. Association between APE1 rs1760944 and rs1130409 polymorphism with prostate cancer risk: A systematic review and meta-analysis. Medicine (Baltimore) 2021; 100:e27630. [PMID: 34797286 PMCID: PMC8601344 DOI: 10.1097/md.0000000000027630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 10/13/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Recently, some studies have suggested that the association of apurinic/apyrimidinic endonuclease 1 (APE1) gene polymorphism with prostate cancer (PCa) risk, but there are still some controversies. Hence, we elaborated the relationship between APE1 rs1760944 and rs1130409 gene and PCa risk through systematic literature review and meta-analysis. METHODS As of March 2020, EMBASE, PubMed, the Cochrane Library, Science Direct/Elsevier, MEDLINE and CNKI were used for systematic literature retrieval to investigate the correlation between APE1 rs1760944 and rs1130409 gene polymorphism with PCa risk. Meta-analysis was performed using Review Manager and Stata software. RESULTS Seven studies were distinguished, consists of 1769 cases of PCa patients and 2237 normal controls. Our results illustrated that there are significant correlation between the APE1 rs1760944 gene polymorphism and PCa in all genetic models (P < .05). The combined odds ratios and 95% confidence intervals were as follows: Additive model (ORs 0.62, 95%, CI [0.39, 0.97]); Codominant model (ORs 0.74, 95% CI [0.58, 0.95]); Dominant model (ORs 0.75, 95%, CI [0.59, 0.95]); Recessive model (ORs 0.63, 95% CI [0.41, 0.96]); Allele model (ORs 0.78, 95% CI [0.65, 0.94]). There also have significant associations between APE1 rs1130409 polymorphisms and PCa in all genetic models (P < .05). The combined odds ratios and 95% confidence intervals were as follows: Additive model (ORs 1.37, 95%, CI [1.01, 1.85]); Codominant model (ORs 1.21, 95% CI [1.01, 1.44]); Dominant model (ORs 1.33, 95%, CI [1.02, 1.73]); Recessive model (ORs 1.74, 95% CI [1.06, 2.85]); Allele model (ORs 1.14, 95% CI [1.00, 1.29]). CONCLUSION This study suggests that APE1 rs1760944 polymorphisms might be a protective factor of PCa, and APE1 rs1130409 is suggested to be a risk factor of PCa. APE1 rs1760944 and rs1130409 polymorphisms may be used in the risk assessment of PCa.
Collapse
Affiliation(s)
- Jinnian Liu
- Department of Urology, Second People's Hospital of Banan District, Chongqing, China
| | - Jian Zheng
- Department of Urology, Second People's Hospital of Banan District, Chongqing, China
| | - Yu Guo
- Department of Urology, Traditional Chinese Medicine Hospital, Chongqing, China
| | - Xia Sheng
- Department of Urology, Second People's Hospital of Banan District, Chongqing, China
| | - Yongjian Yin
- Department of Urology, Second People's Hospital of Banan District, Chongqing, China
| | - Shengqiang Qian
- Department of Urology, Traditional Chinese Medicine Hospital, Chongqing, China
| | - Bin Xu
- Department of Urology, Traditional Chinese Medicine Hospital, Chongqing, China
| | - Wei Xiong
- Department of Urology, Traditional Chinese Medicine Hospital, Chongqing, China
| | - Xiangrui Yin
- Department of Urology, Traditional Chinese Medicine Hospital, Chongqing, China
| |
Collapse
|
21
|
de Assis ALEM, Archanjo AB, Maranhão RC, Mendes SO, de Souza RP, de Cicco R, de Oliveira MM, Borçoi AR, de L Maia L, Nunes FD, Dos Santos M, Trivilin LO, Pinheiro CJG, Álvares-da-Silva AM, Nogueira BV. Chlorine, chromium, proteins of oxidative stress and DNA repair pathways are related to prognosis in oral cancer. Sci Rep 2021; 11:22314. [PMID: 34785721 PMCID: PMC8595368 DOI: 10.1038/s41598-021-01753-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 11/02/2021] [Indexed: 12/24/2022] Open
Abstract
The comparison of chemical and histopathological data obtained from the analysis of excised tumor fragments oral squamous cell carcinoma (OSCC) with the demographic and clinical evolution data is an effective strategy scarcely explored in OSCC studies. The aim was to analyze OSCC tissues for protein expression of enzymes related to oxidative stress and DNA repair and trace elements as candidates as markers of tumor aggressiveness and prognosis. Tumor fragments from 78 OSCC patients that had undergone ablative surgery were qualitatively analyzed by synchrotron micro-X-ray fluorescence for trace elements. Protein expression of SOD-1, Trx, Ref-1 and OGG1/2 was performed by immunohistochemistry. Sociodemographic, clinical, and histopathological data were obtained from 4-year follow-up records. Disease relapse was highest in patients with the presence of chlorine and chromium and lowest in those with tumors with high OGG1/2 expression. High expression of SOD-1, Trx, and Ref-1 was determinant of the larger tumor. Presence of trace elements can be markers of disease prognosis. High expression of enzymes related to oxidative stress or to DNA repair can be either harmful by stimulating tumor growth or beneficial by diminishing relapse rates. Interference on these players may bring novel strategies for the therapeutic management of OSCC patients.
Collapse
Affiliation(s)
| | - Anderson Barros Archanjo
- Biotechnology Graduate Program/RENORBIO, Federal Univerty of Espírito Santo, Vitória, 29040090, Brazil
| | - Raul C Maranhão
- Heart Institute (InCor), Medical School Hospital, University of São Paulo, São Paulo, 05403900, Brazil
| | - Suzanny O Mendes
- Biotechnology Graduate Program/RENORBIO, Federal Univerty of Espírito Santo, Vitória, 29040090, Brazil
| | - Rafael P de Souza
- Cancer Institute Arnaldo Vieira de Carvalho, São Paulo, 01219010, Brazil
| | - Rafael de Cicco
- Cancer Institute Arnaldo Vieira de Carvalho, São Paulo, 01219010, Brazil
| | - Mayara M de Oliveira
- Biotechnology Graduate Program/RENORBIO, Federal Univerty of Espírito Santo, Vitória, 29040090, Brazil
| | - Aline R Borçoi
- Biotechnology Graduate Program/RENORBIO, Federal Univerty of Espírito Santo, Vitória, 29040090, Brazil
| | - Lucas de L Maia
- Biotechnology Graduate Program/RENORBIO, Federal Univerty of Espírito Santo, Vitória, 29040090, Brazil
| | - Fabio D Nunes
- Department of Stomatology, Faculty of Dentistry, University of São Paulo, São Paulo, 05508000, Brazil
| | - Marcelo Dos Santos
- Multicampi School of Medical Sciences of Rio Grando Do Norte, Federal University of Rio Grande Do Norte, Caicó, 59300000, Brazil
| | - Leonardo O Trivilin
- Department of Veterinary Medicine, Center for Agricultural Sciences and Engineering, Federal University of Espírito Santo, Alegre, 29500000, Brazil
| | - Christiano J G Pinheiro
- Department of Rural Engineering, Center for Agricultural Sciences and Engineering, Federal University of Espírito Santo, Alegre, 29500000, Brazil
| | - Adriana M Álvares-da-Silva
- Biotechnology Graduate Program/RENORBIO, Federal Univerty of Espírito Santo, Vitória, 29040090, Brazil.,Department of Morphology, Health Sciences Center, Federal University of Espírito Santo, Vitória, 29047105, Brazil
| | - Breno Valentim Nogueira
- Biotechnology Graduate Program/RENORBIO, Federal Univerty of Espírito Santo, Vitória, 29040090, Brazil. .,Department of Morphology, Health Sciences Center, Federal University of Espírito Santo, Vitória, 29047105, Brazil.
| |
Collapse
|
22
|
Elbanna M, Chowdhury NN, Rhome R, Fishel ML. Clinical and Preclinical Outcomes of Combining Targeted Therapy With Radiotherapy. Front Oncol 2021; 11:749496. [PMID: 34733787 PMCID: PMC8558533 DOI: 10.3389/fonc.2021.749496] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/30/2021] [Indexed: 12/12/2022] Open
Abstract
In the era of precision medicine, radiation medicine is currently focused on the precise delivery of highly conformal radiation treatments. However, the tremendous developments in targeted therapy are yet to fulfill their full promise and arguably have the potential to dramatically enhance the radiation therapeutic ratio. The increased ability to molecularly profile tumors both at diagnosis and at relapse and the co-incident progress in the field of radiogenomics could potentially pave the way for a more personalized approach to radiation treatment in contrast to the current ‘‘one size fits all’’ paradigm. Few clinical trials to date have shown an improved clinical outcome when combining targeted agents with radiation therapy, however, most have failed to show benefit, which is arguably due to limited preclinical data. Several key molecular pathways could theoretically enhance therapeutic effect of radiation when rationally targeted either by directly enhancing tumor cell kill or indirectly through the abscopal effect of radiation when combined with novel immunotherapies. The timing of combining molecular targeted therapy with radiation is also important to determine and could greatly affect the outcome depending on which pathway is being inhibited.
Collapse
Affiliation(s)
- May Elbanna
- Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, IN, United States.,Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Nayela N Chowdhury
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Ryan Rhome
- Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, IN, United States.,Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Melissa L Fishel
- Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, United States.,Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, United States.,Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
23
|
A New Method for Exonuclease Activity Analysis of Apurinic/Apyrimidinic Endonuclease 1 and Application in Heavy-polluted Ramie. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2021. [DOI: 10.1016/s1872-2040(21)60117-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
24
|
Fleming AM, Burrows CJ. Oxidative stress-mediated epigenetic regulation by G-quadruplexes. NAR Cancer 2021; 3:zcab038. [PMID: 34541539 PMCID: PMC8445369 DOI: 10.1093/narcan/zcab038] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/20/2021] [Accepted: 09/06/2021] [Indexed: 02/06/2023] Open
Abstract
Many cancer-associated genes are regulated by guanine (G)-rich sequences that are capable of refolding from the canonical duplex structure to an intrastrand G-quadruplex. These same sequences are sensitive to oxidative damage that is repaired by the base excision repair glycosylases OGG1 and NEIL1–3. We describe studies indicating that oxidation of a guanosine base in a gene promoter G-quadruplex can lead to up- and downregulation of gene expression that is location dependent and involves the base excision repair pathway in which the first intermediate, an apurinic (AP) site, plays a key role mediated by AP endonuclease 1 (APE1/REF1). The nuclease activity of APE1 is paused at a G-quadruplex, while the REF1 capacity of this protein engages activating transcription factors such as HIF-1α, AP-1 and p53. The mechanism has been probed by in vitro biophysical studies, whole-genome approaches and reporter plasmids in cellulo. Replacement of promoter elements by a G-quadruplex sequence usually led to upregulation, but depending on the strand and precise location, examples of downregulation were also found. The impact of oxidative stress-mediated lesions in the G-rich sequence enhanced the effect, whether it was positive or negative.
Collapse
Affiliation(s)
- Aaron M Fleming
- Department of Chemistry, University of Utah, 315 S. 1400 East, Salt Lake City, UT 84112-0850, USA
| | - Cynthia J Burrows
- Department of Chemistry, University of Utah, 315 S. 1400 East, Salt Lake City, UT 84112-0850, USA
| |
Collapse
|
25
|
Huang R, Zhou PK. DNA damage repair: historical perspectives, mechanistic pathways and clinical translation for targeted cancer therapy. Signal Transduct Target Ther 2021; 6:254. [PMID: 34238917 PMCID: PMC8266832 DOI: 10.1038/s41392-021-00648-7] [Citation(s) in RCA: 297] [Impact Index Per Article: 99.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 04/28/2021] [Accepted: 05/13/2021] [Indexed: 02/06/2023] Open
Abstract
Genomic instability is the hallmark of various cancers with the increasing accumulation of DNA damage. The application of radiotherapy and chemotherapy in cancer treatment is typically based on this property of cancers. However, the adverse effects including normal tissues injury are also accompanied by the radiotherapy and chemotherapy. Targeted cancer therapy has the potential to suppress cancer cells' DNA damage response through tailoring therapy to cancer patients lacking specific DNA damage response functions. Obviously, understanding the broader role of DNA damage repair in cancers has became a basic and attractive strategy for targeted cancer therapy, in particular, raising novel hypothesis or theory in this field on the basis of previous scientists' findings would be important for future promising druggable emerging targets. In this review, we first illustrate the timeline steps for the understanding the roles of DNA damage repair in the promotion of cancer and cancer therapy developed, then we summarize the mechanisms regarding DNA damage repair associated with targeted cancer therapy, highlighting the specific proteins behind targeting DNA damage repair that initiate functioning abnormally duo to extrinsic harm by environmental DNA damage factors, also, the DNA damage baseline drift leads to the harmful intrinsic targeted cancer therapy. In addition, clinical therapeutic drugs for DNA damage and repair including therapeutic effects, as well as the strategy and scheme of relative clinical trials were intensive discussed. Based on this background, we suggest two hypotheses, namely "environmental gear selection" to describe DNA damage repair pathway evolution, and "DNA damage baseline drift", which may play a magnified role in mediating repair during cancer treatment. This two new hypothesis would shed new light on targeted cancer therapy, provide a much better or more comprehensive holistic view and also promote the development of new research direction and new overcoming strategies for patients.
Collapse
Affiliation(s)
- Ruixue Huang
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| | - Ping-Kun Zhou
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, AMMS, Beijing, China.
| |
Collapse
|
26
|
Heisel C, Yousif J, Mijiti M, Charizanis K, Brigell M, Corson TW, Kelley MR. APE1/Ref-1 as a Novel Target for Retinal Diseases. JOURNAL OF CELLULAR SIGNALING 2021; 2:133-138. [PMID: 34322687 PMCID: PMC8315574 DOI: 10.33696/signaling.2.044] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
APE1/Ref-1 (also called Ref-1) has been extensively studied for its role in DNA repair and reduction-oxidation (redox) signaling. The review titled: “The multifunctional APE1 DNA repair-redox signaling protein as a drug target in human disease” by Caston et. al. summarizes the molecular functions of Ref-1 and the role it plays in a number of diseases, with a specific focus on various types of cancer [1]. Previous studies have demonstrated that Ref-1 plays a critical role in regulating specific transcription factors (TFs) involved in a number of pathways, not only in cancer, but other disease indications as well. Disease indications of particular therapeutic interest include retinal vascular diseases such as diabetic retinopathy (DR), diabetic macular edema (DME), and neovascular age-related macular degeneration (nvAMD). While Ref-1 controls a number of TFs that are under redox regulation, three have been found to directly link cancer studies to retinal diseases; HIF-1α, NF-κB and STAT3. HIF-1α controls the expression of VEGF for angiogenesis while NF-κB and STAT3 regulate a number of known cytokines and factors involved in inflammation. These pathways are highly implicated and validated as major players in DR, DME and AMD. Therefore, findings in cancer studies for Ref-1 and its inhibition may be translated to these ocular diseases. This report discusses the path from cancer to the potential treatment of retinal disease, the Ref-1 redox signaling function as a possible target, and the current small molecules which have been identified to block this activity. One molecule, APX3330, is in clinical trials, while the others are in preclinical development. Inhibition of Ref-1 and its effects on inflammation and angiogenesis makes it a potential new therapeutic target for the treatment of retinal vascular diseases. This commentary summarizes the retinal-relevant research that built on the results summarized in the review by Caston et. al. [1].
Collapse
Affiliation(s)
- Curtis Heisel
- University of Michigan Medical School, 1301 Catherine St, Ann Arbor, MI 48105, USA
| | - Jonah Yousif
- University of Michigan Medical School, 1301 Catherine St, Ann Arbor, MI 48105, USA
| | - Mahmut Mijiti
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, 1044 W. Walnut St., Indianapolis, IN 46202, USA
| | | | | | - Timothy W Corson
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, 1044 W. Walnut St., Indianapolis, IN 46202, USA.,Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 1044 W. Walnut St., Indianapolis, IN 46202, USA.,Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, 1044 W. Walnut St., Indianapolis, IN 46202, USA.,Eugene and Marilyn Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, 1044 W. Walnut St., Indianapolis, IN 46202, USA
| | - Mark R Kelley
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, 1044 W. Walnut St., Indianapolis, IN 46202, USA.,Department of Pharmacology and Toxicology, Indiana University School of Medicine, 1044 W. Walnut St., Indianapolis, IN 46202, USA.,Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 1044 W. Walnut St., Indianapolis, IN 46202, USA.,Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, 1044 W. Walnut St., Indianapolis, IN 46202, USA.,Eugene and Marilyn Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, 1044 W. Walnut St., Indianapolis, IN 46202, USA
| |
Collapse
|
27
|
Molecular Mechanisms Regulating the DNA Repair Protein APE1: A Focus on Its Flexible N-Terminal Tail Domain. Int J Mol Sci 2021; 22:ijms22126308. [PMID: 34208390 PMCID: PMC8231204 DOI: 10.3390/ijms22126308] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 02/06/2023] Open
Abstract
APE1 (DNA (apurinic/apyrimidinic site) endonuclease 1) is a key enzyme of one of the major DNA repair routes, the BER (base excision repair) pathway. APE1 fulfils additional functions, acting as a redox regulator of transcription factors and taking part in RNA metabolism. The mechanisms regulating APE1 are still being deciphered. Structurally, human APE1 consists of a well-characterized globular catalytic domain responsible for its endonuclease activity, preceded by a conformationally flexible N-terminal extension, acquired along evolution. This N-terminal tail appears to play a prominent role in the modulation of APE1 and probably in BER coordination. Thus, it is primarily involved in mediating APE1 localization, post-translational modifications, and protein–protein interactions, with all three factors jointly contributing to regulate the enzyme. In this review, recent insights on the regulatory role of the N-terminal region in several aspects of APE1 function are covered. In particular, interaction of this region with nucleophosmin (NPM1) might modulate certain APE1 activities, representing a paradigmatic example of the interconnection between various regulatory factors.
Collapse
|
28
|
LINC00470 accelerates the proliferation and metastasis of melanoma through promoting APEX1 expression. Cell Death Dis 2021; 12:410. [PMID: 33875645 PMCID: PMC8055894 DOI: 10.1038/s41419-021-03612-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 03/05/2021] [Accepted: 03/10/2021] [Indexed: 12/16/2022]
Abstract
Recently studies found that APEX1 was abnormally expressed in melanoma, indicating that it might be involved in the development of melanoma. However, the underlying mechanism and the interaction between APEX1 and LINC00470 in melanoma are not clear. Therefore, we aimed to investigate the role of LINC00470 in the development of melanoma in this work. We discovered that LINC00470 was overexpressed in melanoma tissues and cells compared with the adjacent normal tissues and cells by qPCR. The overexpression of LINC00470 promoted the proliferation and migration of melanoma cells. The functional investigation demonstrated that LINC00470 activated the transcription factor, ZNF131, to regulate the APEX1 expression, which finally promoted cell proliferation and migration. In contrast, knockdown of LINC00470 could significantly inhibit the melanoma cell proliferation and migration, and suppress the growth of tumor in vivo. Overexpression of APEX1 could reverse the impact of the silence of LINC00470 in melanoma cells. In summary, our studies revealed that LINC00470 promoted melanoma proliferation and migration by enhancing the expression of APEX1, which indicated that LINC00470 might be a therapeutic target for the treatment of melanoma.
Collapse
|
29
|
Song H, Zeng J, Lele S, LaGrange CA, Bhakat KK. APE1 and SSRP1 is overexpressed in muscle invasive bladder cancer and associated with poor survival. Heliyon 2021; 7:e06756. [PMID: 33948507 PMCID: PMC8080038 DOI: 10.1016/j.heliyon.2021.e06756] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 03/18/2021] [Accepted: 04/06/2021] [Indexed: 12/22/2022] Open
Abstract
Background Human apurinic/apyrimidinic (AP) endonuclease 1 (APE1) plays a critical role in DNA base excision repair (BER) pathway and has been reported to be overexpressed in multiple cancers. Previously, we have shown that histone chaperone FACT complex (Facilitates Chromatin Transcription, a heterodimer of SSRP1 and SPT16 proteins) facilitates the chromatin access and DNA repair function of APE1, and their expression levels are correlated with promoting drug resistance in cancer. FACT inhibitor has been introduced in phase I and II clinical trials for chemosensitization of advanced solid cancers. However, the expression profile and prognostic significance of APE1 and FACT complex in bladder cancer remains largely unknown. Methods Retrospectively, 69 bladder cancer samples were retrieved and submitted for immunohistochemical staining of APE1 and SSRP1. Expression profile including cytoplasmic and nuclear staining of APE1 and expression level of SSRP1 was examined and semi-quantified to render a H-score. The prognostic significance of APE1 and SSRP1 was evaluated by Kaplan-Meier survival analysis in our cohort and R2 database. Results APE1 expression is elevated in bladder cancer compared to normal adjacent tissues. Compared with low grade tumors, high grade tumors show a shift in the staining pattern including higher intensity and positive cytoplasmic staining. Carcinoma in situ has a similar staining pattern to high grade tumors. APE1 and SSRP1 staining intensity increases as tumor progresses with stage. There is a correlation between APE1 and SSRP1 staining in invasive bladder cancer (Spearman r = 0.5466, p < 0.0001). The increased expression of APE1 and SSRP1 is associated with poor survival in Kaplan-Meier analysis in our cohort and in R2-TCGA bladder cancer database. Conclusions The expression levels of APE1 and SSRP1 are significantly elevated in bladder cancer as compared to normal adjacent tissues. APE1 correlates with SSRP1 expression in high grade tumors. Overexpression of APE1 and SSRP1 is associated with poor survival in bladder cancer. This suggests the usage of FACT inhibitor curaxins in muscle invasive bladder cancer to target FACT complex and APE1 to improve chemosensitization after further validation.
Collapse
Affiliation(s)
- Heyu Song
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, United States
| | - Jiping Zeng
- College of Medicine, University of Nebraska Medical Center, Omaha, NE, United States.,Department of Urology, University of Arizona College of Medicine, Tucson, AZ, United States
| | - Subodh Lele
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Chad A LaGrange
- Division of Urologic Surgery, Department of Surgery, University of Nebraska Medical Center, Omaha, NE, United States.,Fred & Pamela Buffett Cancer Center, Omaha, NE, United States
| | - Kishor K Bhakat
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, United States.,Fred & Pamela Buffett Cancer Center, Omaha, NE, United States
| |
Collapse
|
30
|
Lu X, Zhao H, Yuan H, Chu Y, Zhu X. High nuclear expression of APE1 correlates with unfavorable prognosis and promotes tumor growth in hepatocellular carcinoma. J Mol Histol 2021; 52:219-231. [PMID: 33392892 DOI: 10.1007/s10735-020-09939-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 12/04/2020] [Indexed: 02/06/2023]
Abstract
APE1 is a multifunctional protein that plays important roles in cancer development. However, the association between APE1 expression and the clinicopathological parameters of HCC patients has not been fully characterized. In this study, bioinformatics analysis of APE1 was performed in several databases, including the TCGA, GeneCard, Human Protein Atlas and Ualcan databases. The relationship between APE1 mRNA expression and several attributes of liver cancer patients in TCGA was investigated. Then, the protein expression of APE1 was detected by IHC analysis in 95 HCC samples and the association between APE1 expression and the clinicopathological parameters of HCC patients was explored. GSEA-KEGG analysis was performed to predict the potential signaling pathways that associated with APE1 expression. Then the siRNA-mediated knockdown model of APE1 was constructed in HCC cell line to further detect the detailed function of APE1 in HCC development in vitro and in vivo. The results of the bioinformatics analysis showed that APE1 expression was primarily located in the cell nucleus. APE1 mRNA expression was substantially correlated with pathological grade and T status in TCGA database. Elevated APE1 expression was observed in HCC samples and was associated with unfavorable survival time in liver cancer patients. IHC data demonstrated that the nuclear expression of APE1 in HCC tissues was significantly higher than that in noncancerous tissues. The expression level of the APE1 protein in HCC was strongly associated with tumor diameter and overall survival. Survival analysis indicated that APE1 nuclear expression is an independent prognostic marker for the overall survival of HCC patients. GSEA-KEGG results confirmed that APE1 associated with the base excision repair signaling pathway. The data of phenotypic experiments indicated that APE1 remarkably promoted tumor growth both in HCC cells and xenografts. The findings firstly imply that nuclear expression of APE1 is a valuable prognostic marker for HCC. APE1 significantly facilitate HCC development and targeting APE1 may be a promising strategy for HCC treatment.
Collapse
Affiliation(s)
- Xiaohua Lu
- Department of Interventional Radiology, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Hui Zhao
- Department of Interventional Radiology, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Hongxin Yuan
- Department of Interventional Radiology, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Yushan Chu
- Department of Interventional Radiology, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Xiaoqing Zhu
- Department of Interventional Radiology, Affiliated Hospital of Nantong University, Nantong, 226001, China.
| |
Collapse
|
31
|
Zhang M, Zhao Z, Chen S, Liang Z, Zhu J, Zhao M, Xu C, He J, Duan P, Zhang A. The Association of Polymorphisms in Base Excision Repair Genes with Ovarian Cancer Susceptibility in Chinese Women: A Two-Center Case-Control Study. J Cancer 2021; 12:264-269. [PMID: 33391423 PMCID: PMC7738827 DOI: 10.7150/jca.49925] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 10/11/2020] [Indexed: 02/07/2023] Open
Abstract
Base excision repair (BER) acts upon the most important mechanism of the DNA repair system, protecting DNA stability and integrity from the mutagenic and cytotoxic effects. Multiple researches have indicated that single-nucleotide polymorphisms (SNPs) in the BER-related gene may be associated with the susceptibility of ovarian cancer. However, the results are controversial. In this two-center case-control study, 19 potentially functional SNPs in six BER-related genes (hOGG1, APE1, PARP1, FEN1, LIG3 and XRCC1) was genotyped in 196 ovarian cancer cases and 272 cancer-free controls. And, their associations with ovarian cancer risk were assessed by unconditional logistic regression analyses. We found that PARP1 rs8679 and hOGG1 rs293795 polymorphisms were associated with a decreased risk of ovarian cancer under dominant model (adjusted OR=0.39, 95% CI=0.17-0.90, P=0.026; and adjusted OR=0.36, 95% CI=0.13-0.99, P=0.049, respectively). Stratification analysis demonstrated that this association was more pronounced in the subgroups of lower BMI and patients with early menarche and serous carcinoma. Moreover, LIG3 rs4796030 AA/AC variant genotypes performed an increased risk of ovarian cancer under recessive model (adjusted OR=1.54, 95% CI=1.01-2.35, P=0.046), especially in the subgroups of higher BMI, early clinic stage and the carcinoma at the left. These results suggested that PARP1, hOGG1 and LIG3 polymorphisms might impact on the risk of ovarian cancer. However, more researches with larger and different ethnic populations are warranted to support our findings.
Collapse
Affiliation(s)
- Mingyao Zhang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Zhiguang Zhao
- Department of Pathology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Sailing Chen
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Zongwen Liang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Jiawei Zhu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Manman Zhao
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Chaoyi Xu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Jing He
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Ping Duan
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
- ✉ Corresponding authors: Anqi Zhang, E-mail: & Ping Duan, E-mail: . Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 West Xueyuan Road, Wenzhou 325027, Zhejiang, China. Tel and Fax: (0577)88816381
| | - Anqi Zhang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
- ✉ Corresponding authors: Anqi Zhang, E-mail: & Ping Duan, E-mail: . Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 West Xueyuan Road, Wenzhou 325027, Zhejiang, China. Tel and Fax: (0577)88816381
| |
Collapse
|
32
|
Cao X, Sun Y, Lu P, Zhao M. Fluorescence imaging of intracellular nucleases-A review. Anal Chim Acta 2020; 1137:225-237. [PMID: 33153605 DOI: 10.1016/j.aca.2020.08.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 08/04/2020] [Accepted: 08/06/2020] [Indexed: 11/28/2022]
Abstract
Nucleases play crucial roles in maintaining genomic integrity. Visualization of intracellular distribution and translocation of nucleases are of great importance for understanding the in-vivo physiological functions of these enzymes and their roles in DNA repair and other cellular signaling pathways. Here we review the recently developed approaches for fluorescence imaging of nucleases in various eukaryotic cells. We mainly focused on the immunofluorescence techniques, the genetically encoded fluorescent probes and the chemically synthesized fluorescent DNA-substrate probes that enabled in-situ visualization of the subcellular localization of nucleases and their interactions with other protein/DNA molecules within cells. The targeted nucleases included important endonucleases, 3' exonucleases and 5' exonucleases that were involved in the DNA damage repair pathways and the intracellular DNA degradation. The advantages and limitations of the available tools were summarized and discussed.
Collapse
Affiliation(s)
- Xiangjian Cao
- Beijing National Laboratory for Molecular Sciences, MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Ying Sun
- Beijing National Laboratory for Molecular Sciences, MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Peng Lu
- Beijing National Laboratory for Molecular Sciences, MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Meiping Zhao
- Beijing National Laboratory for Molecular Sciences, MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.
| |
Collapse
|
33
|
Felix FA, da Silva LP, Lopes MLDDS, Sobral APV, Freitas RDA, de Souza LB, Barboza CAG. DNA base excision repair and nucleotide excision repair proteins in malignant salivary gland tumors. Arch Oral Biol 2020; 121:104987. [PMID: 33202356 DOI: 10.1016/j.archoralbio.2020.104987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 10/29/2020] [Accepted: 11/01/2020] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To analyze the immunohistochemical expression of the base excision repair (BER) proteins apurinic/apyrimidinic endonuclease 1 (APE1) and X-ray repair cross-complementing protein 1 (XRCC1) and nucleotide excision repair (NER) protein xeroderma pigmentosum group F (XPF) in malignant salivary gland tumors (MSGTs). DESIGN Sixty-two cases of MSGTs were selected, including 14 acinic cell carcinomas (AcCC), 15 polymorphous adenocarcinomas (PAC), 16 adenoid cystic carcinomas (ACC), and 17 mucoepidermoid carcinomas (MEC). The specimens were submitted to quantitative immunohistochemical analysis. RESULTS All MSGTs exhibited nuclear or nucleo-cytoplasmic immunostaining of APE1, XRCC1 and XPF, with a high percentage of positive cells (median = 78.31, 70.48 and 75.46, respectively). XRCC1 expression was higher in PAC compared to MEC (p = 0.032). Nuclear APE1 immunostaining was significantly higher than nucleo-cytoplasmic expression in the selected MSGTs (p < 0.0001). APE1 expression was significantly associated with T1-T2 tumors in ACC (p = 0.006). Increased expression of XPF was associated with age older than 60 years in MEC (p = 0.015) and with ACC involving the minor salivary gland (p = 0.012), while a lower expression was found in AcCC and ACC patients treated by surgery combined with adjuvant therapy (p = 0.036 and p = 0.020, respectively). Low expression of XRCC1 in the nucleus (p = 0.028) and concomitant expression of this protein in the nucleus/cytoplasm were associated with a lower overall 5-year survival rate (p = 0.017). CONCLUSIONS This study showed that BER and NER proteins evaluated are highly expressed in the MSGTs studied, indicating mechanisms of genotoxic control in these tumors. In addition, the dysregulation of XRCC1 expression was a prognostic predictor in MSGTs analyzed.
Collapse
Affiliation(s)
- Fernanda Aragão Felix
- Postgraduate Program in Dental Science, Department of Dentistry, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | | | | | | | - Roseana de Almeida Freitas
- Postgraduate Program in Dental Science, Department of Dentistry, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Lélia Batista de Souza
- Postgraduate Program in Dental Science, Department of Dentistry, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Carlos Augusto Galvão Barboza
- Postgraduate Program in Dental Science, Department of Dentistry, Federal University of Rio Grande do Norte, Natal, RN, Brazil.
| |
Collapse
|
34
|
Thakur S, Sarkar B, Dhiman M, Mantha AK. Organophosphate-pesticides induced survival mechanisms and APE1-mediated Nrf2 regulation in non-small-cell lung cancer cells. J Biochem Mol Toxicol 2020; 35:e22640. [PMID: 33078895 DOI: 10.1002/jbt.22640] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/11/2020] [Accepted: 09/16/2020] [Indexed: 12/15/2022]
Abstract
Epidemiological and molecular studies have indicated that environmental exposure to organophosphate pesticides (OPPs) is associated with increased cancer risk; however, the underlying molecular mechanisms still need to be explained. Increasing cancer incidence is linked to OPPs-induced oxidative stress (OS). Our study evaluates monocrotophos (MCP) and chlorpyrifos (CP)-induced OS responses and apurinic/apyrimidinic endonuclease 1 (APE1) role in human non-small-cell lung cancer (NSCLC) cells. Our prior study has implicated OPPs-induced base excision repair (BER)-pathway dysregulation and APE1-mediated regulation of transcription factor (TF) c-jun in A549 cells. We further investigated the effects of MCP and CP on apoptosis, proliferation, and APE1's redox-regulation of nuclear factor-like 2 (Nrf2). Data demonstrates that MCP and CP at subtoxic concentrations induced reactive oxygen species generation and oxidative DNA base damage 8-oxo-dG lesions in NCI-H1299 cells. CP moderately upregulated the apoptosis-inducing factor (AIF) in A549 cells, however, it did not trigger other pro-apoptotic factors viz. caspase-9 and caspase-3, suggesting early caspase-independent apoptosis. However, dose-dependent AIF-downregulation was observed for MCP treatment. Furthermore, CP and MCP treatments upregulated proliferating cell nuclear antigen levels. Immunofluorescent confocal imaging showed the colocalization of APE1 with Nrf2 in 10 µM CP- and MCP-treated NCI-H1299 cells. Immunoprecipitation confirmed that APE1 and Nrf2 physically interacted, indicating the role of APE1-mediated Nrf2 activation following OPPs treatment. This study suggests that low concentration MCP and CP exposure generates OS along with DNA damage, and modulates apoptosis, and APE1-mediated Nrf2 activation, which might be considered as the possible mechanism promoting lung cancer cell survival, suggesting that APE1 may have the potential to become a therapeutic target for the treatment of NSCLC.
Collapse
Affiliation(s)
- Shweta Thakur
- Department of Zoology, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, Punjab, India
- Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, Odisha, India
| | - Bibekananda Sarkar
- Department of Zoology, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, Punjab, India
- Department of Zoology, B.S.S. College (affiliated to the B. N. Mandal University, Madhepura, Bihar), Supaul, Bihar, India
| | - Monisha Dhiman
- Department of Microbiology, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Anil K Mantha
- Department of Zoology, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, Punjab, India
| |
Collapse
|
35
|
Bazzani V, Barchiesi A, Radecka D, Pravisani R, Guadagno A, Di Loreto C, Baccarani U, Vascotto C. Mitochondrial apurinic/apyrimidinic endonuclease 1 enhances mtDNA repair contributing to cell proliferation and mitochondrial integrity in early stages of hepatocellular carcinoma. BMC Cancer 2020; 20:969. [PMID: 33028238 PMCID: PMC7542375 DOI: 10.1186/s12885-020-07258-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 08/04/2020] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is the leading cause of primary liver cancers. Surveillance of individuals at specific risk of developing HCC, early diagnostic markers, and new therapeutic approaches are essential to obtain a reduction in disease-related mortality. Apurinic/apyrimidinic endonuclease 1 (APE1) expression levels and its cytoplasmic localization have been reported to correlate with a lower degree of differentiation and shorter survival rate. The aim of this study is to fully investigate, for the first time, the role of the mitochondrial form of APE1 in HCC. METHODS As a study model, we analyzed samples from a cohort of patients diagnosed with HCC who underwent surgical resection. Mitochondrial APE1 content, expression levels of the mitochondrial import protein Mia40, and mtDNA damage of tumor tissue and distal non-tumor liver of each patient were analyzed. In parallel, we generated a stable HeLa clone for inducible silencing of endogenous APE1 and re-expression of the recombinant shRNA resistant mitochondrially targeted APE1 form (MTS-APE1). We evaluated mtDNA damage, cell growth, and mitochondrial respiration. RESULTS APE1's cytoplasmic positivity in Grades 1 and 2 HCC patients showed a significantly higher expression of mitochondrial APE1, which accounted for lower levels of mtDNA damage observed in the tumor tissue with respect to the distal area. In the contrast, the cytoplasmic positivity in Grade 3 was not associated with APE1's mitochondrial accumulation even when accounting for the higher number of mtDNA lesions measured. Loss of APE1 expression negatively affected mitochondrial respiration, cell viability, and proliferation as well as levels of mtDNA damage. Remarkably, the phenotype was efficiently rescued in MTS-APE1 clone, where APE1 is present only within the mitochondrial matrix. CONCLUSIONS Our study confirms the prominent role of the mitochondrial form of APE1 in the early stages of HCC development and the relevance of the non-nuclear fraction of APE1 in the disease progression. We have also confirmed overexpression of Mia40 and the role of the MIA pathway in the APE1 import process. Based on our data, inhibition of the APE1 transport by blocking the MIA pathway could represent a new therapeutic approach for reducing mitochondrial metabolism by preventing the efficient repair of mtDNA.
Collapse
Affiliation(s)
- Veronica Bazzani
- Department of Medical Area, University of Udine, P.le Massimiliano Kolbe 4, 33100, Udine, Italy
| | - Arianna Barchiesi
- Department of Medical Area, University of Udine, P.le Massimiliano Kolbe 4, 33100, Udine, Italy
| | - Dorota Radecka
- Department of Medical Area, University of Udine, P.le Massimiliano Kolbe 4, 33100, Udine, Italy
| | - Riccardo Pravisani
- Department of Medicine, General Surgery and Transplantation, Academic Hospital (ASUIUD), University of Udine, Udine, Italy
| | - Antonio Guadagno
- Department of Medicine, Institute of Pathology, University of Udine, Udine, Italy.,Pathology Unit, IRCCS Ospedale Policlinico "San Martino", Genoa, Italy
| | - Carla Di Loreto
- Department of Medicine, Institute of Pathology, University of Udine, Udine, Italy
| | - Umberto Baccarani
- Department of Medicine, General Surgery and Transplantation, Academic Hospital (ASUIUD), University of Udine, Udine, Italy
| | - Carlo Vascotto
- Department of Medical Area, University of Udine, P.le Massimiliano Kolbe 4, 33100, Udine, Italy.
| |
Collapse
|
36
|
Zhang Y, Zhang Q, Li L, Mu D, Hua K, Ci S, Shen L, Zheng L, Shen B, Guo Z. Arginine methylation of APE1 promotes its mitochondrial translocation to protect cells from oxidative damage. Free Radic Biol Med 2020; 158:60-73. [PMID: 32679368 PMCID: PMC8195256 DOI: 10.1016/j.freeradbiomed.2020.06.027] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 06/09/2020] [Accepted: 06/17/2020] [Indexed: 02/07/2023]
Abstract
Apurinic/apyrimidinic endonuclease 1 (APE1) is an essential multifunctional protein in mammals that plays critical roles in DNA repair and redox signaling within the cell. Impaired APE1 function or dysregulation is associated with disease susceptibility and poor cancer prognosis. Orchestrated regulatory mechanisms are crucial to ensure its function in a specific subcellular location at specific time. Here, we report arginine methylation as a post-translational modification (PTM) that regulates APE1 translocation to mitochondria in HeLa and HEK-293 cells. Protein arginine methyl-transferase 1 (PRMT1) was shown to methylate APE1 in vitro. Site-directed mutagenesis identified R301 as the major methylation site. We confirmed that APE1 is methylated in cells and that the R301K mutation significantly reduces its methylation. Baseline mitochondrial APE1 levels were low under standard culture conditions, but they could be induced by oxidative agents. Methylation-deficient APE1 showed reduced mitochondrial translocation. Methylation affected the interaction of APE1 with Tom20, translocase of the outer mitochondrial membrane. Methylation-deficient APE1 resulted in increased mitochondrial DNA damage and increased cytochrome c release after stimuli. These data suggest that methylation of APE1 promotes its mitochondrial translocation and protects cells from oxidative damage. This work describes a novel PTM regulation model of APE1 subcellular distribution through arginine methylation.
Collapse
Affiliation(s)
- Yilan Zhang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, Nanjing Normal University, 1 WenYuan Road, Nanjing, 210023, China
| | - Qi Zhang
- Department of Infectious Disease, Nanjing Liuhe District People's Hospital, Yangzhou University, Nanjing, 211500, China
| | - LuLu Li
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, Nanjing Normal University, 1 WenYuan Road, Nanjing, 210023, China
| | - Dan Mu
- Department of Radiology, Affiliated Drum Tower Hospital, Nanjing University School of Medicine, Nanjing, 210008, China
| | - Ke Hua
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, Nanjing Normal University, 1 WenYuan Road, Nanjing, 210023, China
| | - Shusheng Ci
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, Nanjing Normal University, 1 WenYuan Road, Nanjing, 210023, China
| | - Lei Shen
- Department of Cancer Genetics and Epigenetics, City of Hope National Medical Center and Beckman Research Institute, Duarte, CA, 91010, USA
| | - Li Zheng
- Department of Cancer Genetics and Epigenetics, City of Hope National Medical Center and Beckman Research Institute, Duarte, CA, 91010, USA
| | - Binghui Shen
- Department of Cancer Genetics and Epigenetics, City of Hope National Medical Center and Beckman Research Institute, Duarte, CA, 91010, USA.
| | - Zhigang Guo
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, Nanjing Normal University, 1 WenYuan Road, Nanjing, 210023, China.
| |
Collapse
|
37
|
Wicker CA, Takiar V, Suganya R, Arnold SM, Brill YM, Chen L, Horbinski CM, Napier D, Valentino J, Kudrimoti MR, Yu G, Izumi T. Evaluation of antioxidant network proteins as novel prognostic biomarkers for head and neck cancer patients. Oral Oncol 2020; 111:104949. [PMID: 32801084 DOI: 10.1016/j.oraloncology.2020.104949] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/07/2020] [Accepted: 07/28/2020] [Indexed: 01/08/2023]
Abstract
OBJECTIVES Recurrence rates for head and neck squamous cell carcinoma (HNSCC) approach 50% at 5 years. Current staging fails to identify patients with a worse prognosis who might benefit from intensified treatment, which warrants improved prognostic biomarkers. The purpose of this retrospective case study is to identify potential prognostic biomarkers in patients with HNSCC including APE1 (DNA repair/redox gene regulator), NRF2 and PPARGC1A (redox gene regulators), SOD3 and DCN (antioxidant proteins). MATERIALS AND METHODS Differential protein expression between benign, carcinoma in situ (CIS), and invasive HNSCC tissue specimens from 77 patients was assessed using immunohistochemistry. Protein expression was analyzed with multivariate, pair-wise, and Kaplan-Meier survival analyses to identify potential prognostic biomarkers. Utilizing The Cancer Genome Atlas's transcriptome database, pair-wise and survival analysis was performed to identify potential prognostic biomarkers. RESULTS APE1, NRF2, PPARGC1A, SOD3, and DCN expression in HNSCC in relation to, lymph node invasion, and patient survival were examined. Elevated APE1 protein expression in CIS corresponded with reduced survival (p = 0.0243). Increased APE1 gene expression in stage T4a HNSCC was associated with reduced patient survival (p < 0.015). Increased PPARGC1A in invasive tumor correlated with reduced survival (p = 0.0281). Patients with lymph node invasion at diagnosis had significantly increased APE1 protein in the primary sites (p < 0.05). Patients with poorly differentiated invasive tumors had reduced PPARGC1A in CIS proximal to the invasive tumor and had elevated DCN and SOD3 in proximal benign tissue (p < 0.05). CONCLUSIONS The expression of APE1, DCN, and SOD3 is a potential prognostic signature that identifies patients with worsened survival.
Collapse
Affiliation(s)
- Christina A Wicker
- Department of Radiation Oncology, University of Cincinnati, Cincinnati, OH, United States
| | - Vinita Takiar
- Department of Radiation Oncology, University of Cincinnati, Cincinnati, OH, United States
| | - Rangaswamy Suganya
- Houston Eye Associates, Clinical Research Department, Houston, TX, United States
| | - Susanne M Arnold
- Department of Internal Medicine, University of Kentucky, Lexington, KY, United States; Markey Cancer Center, University of Kentucky, Lexington, KY, United States
| | - Yolanda M Brill
- Department of Pathology, University of Kentucky, Lexington, KY, United States
| | - Li Chen
- Department of Internal Medicine, University of Kentucky, Lexington, KY, United States; Markey Cancer Center, University of Kentucky, Lexington, KY, United States
| | - Craig M Horbinski
- Department of Pathology, Northwestern University, Chicago, IL, United States
| | - Dana Napier
- Markey Cancer Center, University of Kentucky, Lexington, KY, United States
| | - Joseph Valentino
- Department of Otolaryngology, University of Kentucky, Lexington, KY, United States
| | - Mahesh R Kudrimoti
- Department of Radiation Medicine, University of Kentucky, Lexington, KY, United States
| | - Guoqiang Yu
- F. Joseph Halcomb III M.D. Department of Biomedical Engineering, University of Kentucky, Lexington, KY, United States
| | - Tadahide Izumi
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, United States.
| |
Collapse
|
38
|
Charles MR, Raza ST, Sharma R, Pratap P, Eba A, Singh M. Association of DNA Repair Genes XRCC1 and APE-1 with the Risk of Cervical Cancer in North Indian population. Asian Pac J Cancer Prev 2020; 21:2061-2065. [PMID: 32711433 PMCID: PMC7573399 DOI: 10.31557/apjcp.2020.21.7.2061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 07/09/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUNDS Cervical cancer (CC) is one of the leading cause of death in women worldwide, HPV infection is the major risk factor in the disease development, 0and however other risk factor such as chemical carcinogens, genetic susceptibility and altered immune system are also a cause of the disease progression. In the light of the above statement we studied the base excision repair pathway (BER). METHODS We identified and studied the association of Single Nucleotide polymorphisms in the DNA repair genes of XRCC1 (Arg194Trp, Arg399G,) and APE-1Asp/148Glu to the susceptibility of cervical cancer (CC) in North Indian population. In our study of cases (n=102). Controls (n=109) were recruited from among women without cervical abnormalities. Genotypes were determined by PCR-CTPP method, Taking DNA from peripheral blood in a case control study. RESULTS A positive association was observed between the polymorphisms of XRCC1 genes, that is, in codons 194 (P=0.03, odds ratio (OR) =2.39, 95% confidence interval (CI)=5.2-1.1), 280 (P=0.01, OR=4.1, 95% CI=11.5-1.3) and 399 (P=0.01, OR=3.4, 95% CI=8.6-1.3) while APE-1 genotype GG (p=0.03,odds ratio(OR)=0.2,95% confidence interval (CI)=0.97-0.004) we observed a statistically significant protective role in developing cervical cancer. CONCLUSION Our results suggested that, XRCC1 gene is an important candidate gene for susceptibility to cervical cancer. Although the sample size was small, the present study indicate a statistical association between cervical cancer and XRCC1 SNPs. Future studies are needed that may provide a better understanding of the association between gene polymorphism and cervical carcinoma risk. .
Collapse
Affiliation(s)
- Mark Rector Charles
- Department of Biotechnology, Era’s Lucknow Medical College and Hospital, Lucknow, India.
| | - Syed Tasleem Raza
- Department of Biotechnology, Era’s Lucknow Medical College and Hospital, Lucknow, India.
| | - Rolee Sharma
- Department of Bioscience, Integral University Lucknow, Lucknow Uttar Pradesh, India.
| | - Pushpendra Pratap
- Department of Biotechnology, Era’s Lucknow Medical College and Hospital, Lucknow, India.
| | - Ale Eba
- Department of Biotechnology, Era’s Lucknow Medical College and Hospital, Lucknow, India.
| | - Manvendra Singh
- Centre of Bio-Medical Research (CMBRL), Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India.
| |
Collapse
|
39
|
The Biological Role of Apurinic/Apyrimidinic Endonuclease1/Redox Factor-1 as a Therapeutic Target for Vascular Inflammation and as a Serologic Biomarker. Biomedicines 2020; 8:biomedicines8030057. [PMID: 32164272 PMCID: PMC7148461 DOI: 10.3390/biomedicines8030057] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 02/20/2020] [Accepted: 03/08/2020] [Indexed: 12/11/2022] Open
Abstract
Endothelial dysfunction promotes vascular inflammation by inducing the production of reactive oxygen species and adhesion molecules. Vascular inflammation plays a key role in the pathogenesis of vascular diseases and atherosclerotic disorders. However, whether there is an endogenous system that can participate in circulating immune surveillance or managing a balance in homeostasis is unclear. Apurinic/apyrimidinic endonuclease 1/redox factor-1 (henceforth referred to as APE1/Ref-1) is a multifunctional protein that can be secreted from cells. It functions as an apurinic/apyrimidinic endonuclease in the DNA base repair pathway and modulates redox status and several types of transcriptional factors, in addition to its anti-inflammatory activity. Recently, it was reported that the secretion of APE1/Ref-1 into the extracellular medium of cultured cells or its presence in the plasma can act as a serological biomarker for certain disorders. In this review, we summarize the possible biological functions of APE1/Ref-1 according to its subcellular localization or its extracellular secretions, as therapeutic targets for vascular inflammation and as a serologic biomarker.
Collapse
|
40
|
Liu Y, Zhang Z, Zhang L, Zhong Z. Cytoplasmic APE1 promotes resistance response in osteosarcoma patients with cisplatin treatment. Cell Biochem Funct 2020; 38:195-203. [PMID: 31930546 DOI: 10.1002/cbf.3461] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 09/02/2019] [Accepted: 10/28/2019] [Indexed: 11/09/2022]
Abstract
Chemotherapy resistance has become a hold back and major clinical challenge in osteosarcoma cancer. The alteration and subcellular distribution of apurinic/apyrimidinic endonuclease 1 (APE1) has been reported to be involved in chemotherapy resistance in many cancers. Here, we report that the cytoplasmic distribution of APE1 plays a key role in the sensitivity of combination platinum chemotherapy in osteosarcoma. Interestingly, the prevalence of cisplatin-induced DNA damage and apoptosis in low cytoplasmic APE1 osteosarcoma cell lines was higher than in high expression of cytoplasmic APE1 cell lines. Overexpression of cytoplasmic APE1 protected the osteosarcoma cells from CDDP-induced apoptosis. In addition, clinical data also show that the level of cytoplasmic APE1 was negatively associated with sensitivity to combination chemotherapy of cisplatin in osteosarcoma patients. Our findings suggest that cytoplasmic APE1 plays a significant role in chemotherapy resistance. This role is a supplement to the extranuclear function of APE1, and cytoplasmic APE1 expression level could be a promising predictor of platinum treatment prognosis for osteosarcoma patients.
Collapse
Affiliation(s)
- Yufeng Liu
- Cancer Center, The Third Affiliated Hospital and Research Institute of Surgery of Army Medical University (Third Military Medical University), Chongqing, PR China
| | - Zhimin Zhang
- Cancer Center, The Third Affiliated Hospital and Research Institute of Surgery of Army Medical University (Third Military Medical University), Chongqing, PR China
| | - Liang Zhang
- Cancer Center, The Third Affiliated Hospital and Research Institute of Surgery of Army Medical University (Third Military Medical University), Chongqing, PR China
| | - Zhaoyang Zhong
- Cancer Center, The Third Affiliated Hospital and Research Institute of Surgery of Army Medical University (Third Military Medical University), Chongqing, PR China
| |
Collapse
|
41
|
Yu CC, Bau DT, Liao CH, Chang WS, Liao JM, Wu HC, Shen TC, Yang JS, Tsai FJ, Tsai CW. The role of genotype/phenotype at apurinic/apyrimidinic endonuclease Rs1130409 in renal cell carcinoma. CHINESE J PHYSIOL 2020; 63:43-49. [DOI: 10.4103/cjp.cjp_72_19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
42
|
Koliadenko V, Wilanowski T. Additional functions of selected proteins involved in DNA repair. Free Radic Biol Med 2020; 146:1-15. [PMID: 31639437 DOI: 10.1016/j.freeradbiomed.2019.10.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/16/2019] [Accepted: 10/16/2019] [Indexed: 12/30/2022]
Abstract
Protein moonlighting is a phenomenon in which a single polypeptide chain can perform a number of different unrelated functions. Here we present our analysis of moonlighting in the case of selected DNA repair proteins which include G:T mismatch-specific thymine DNA glycosylase (TDG), methyl-CpG-binding domain protein 4 (MBD4), apurinic/apyrimidinic endonuclease 1 (APE1), AlkB homologs, poly (ADP-ribose) polymerase 1 (PARP-1) and single-strand selective monofunctional uracil DNA glycosylase 1 (SMUG1). Most of their additional functions are not accidental and clear patterns are emerging. Participation in RNA metabolism is not surprising as bases occurring in RNA are the same or very similar to those in DNA. Other common additional function involves regulation of transcription. This is not unexpected as these proteins bind to specific DNA regions for DNA repair, hence they can also be recruited to regulate transcription. Participation in demethylation and replication of DNA appears logical as well. Some of the multifunctional DNA repair proteins play major roles in many diseases, including cancer. However, their moonlighting might prove a major difficulty in the development of new therapies because it will not be trivial to target a single protein function without affecting its other functions that are not related to the disease.
Collapse
Affiliation(s)
- Vlada Koliadenko
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Ilji Miecznikowa 1, 02-096, Warsaw, Poland
| | - Tomasz Wilanowski
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Ilji Miecznikowa 1, 02-096, Warsaw, Poland.
| |
Collapse
|
43
|
Matkarimov BT, Saparbaev MK. DNA Repair and Mutagenesis in Vertebrate Mitochondria: Evidence for Asymmetric DNA Strand Inheritance. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1241:77-100. [DOI: 10.1007/978-3-030-41283-8_6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
44
|
Santos HBDP, Morais EFD, Cavalcante RB, Nogueira RLM, Nonaka CFW, Souza LBD, Freitas RDA. Immunoexpression of DNA base excision repair and nucleotide excision repair proteins in ameloblastomas, syndromic and non-syndromic odontogenic keratocysts and dentigerous cysts. Arch Oral Biol 2019; 110:104627. [PMID: 31862643 DOI: 10.1016/j.archoralbio.2019.104627] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 12/01/2019] [Accepted: 12/02/2019] [Indexed: 12/22/2022]
Abstract
OBJECTIVE To evaluate the immunoexpression of DNA base excision repair (BER) [apurinic/apyrimidinic endonuclease 1 (APE-1), X-ray repair cross complementing 1 (XRCC-1)] and nucleotide excision repair (NER) [xeroderma pigmentosum complementation group (XPF)] proteins in benign epithelial odontogenic lesions with different biological behaviors. DESIGN Thirty solid ameloblastomas, 30 non-syndromic odontogenic keratocysts (NSOKCs), 29 syndromic odontogenic keratocysts (SKOCs), 30 dentigerous cysts (DCs) and 20 dental follicles (DFs) were evaluated quantitatively for APE-1, XRCC-1 and XPF through immunohistochemistry. RESULTS Nuclear expression of APE-1 was significantly higher in NSOKCs, SOKCs, and ameloblastomas in comparison to DCs (p < 0.001). Nuclear expression of XRCC-1 was higher in NSOKCs and SOKCs than in DCs (p < 0.05). At the nuclear level, XPF expression was higher in NSOKCs and SOKCs than in DCs and ameloblastomas (p < 0.05). A statistically significant higher expression of APE-1 (nuclear), XRCC-1 (nuclear), and XPF (nuclear and cytoplasmic) was found in all odontogenic lesion samples as compared to DFs (p < 0.05). For all lesions, there was a positive correlation between nuclear expression of APE-1 and XRCC-1 or XPF (p < 0.05). CONCLUSIONS Our results suggest a potential involvement of APE-1, XRCC-1 and XPF proteins in the pathogenesis of benign epithelial odontogenic lesions, especially in those with more aggressive biological behavior, such as ameloblastomas, NSOKCs, and SOKCs. We also showed that the expression of APE-1 was positively correlated with the nuclear expression of XRCC-1 and XPF, which may suggest an interaction between the BER and NER pathways in all odontogenic lesions studied herein.
Collapse
|
45
|
Tummanatsakun D, Proungvitaya T, Roytrakul S, Limpaiboon T, Wongkham S, Wongkham C, Silsirivanit A, Somintara O, Sangkhamanon S, Proungvitaya S. Serum Apurinic/Apyrimidinic Endodeoxyribonuclease 1 (APEX1) Level as a Potential Biomarker of Cholangiocarcinoma. Biomolecules 2019; 9:biom9090413. [PMID: 31454981 PMCID: PMC6770206 DOI: 10.3390/biom9090413] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 08/23/2019] [Accepted: 08/23/2019] [Indexed: 12/13/2022] Open
Abstract
Diagnostic and/or prognostic biomarkers for cholangiocarcinoma (CCA) are still insufficient with poor prognosis of patients. To discover a new CCA biomarker, we constructed our secretome database of three CCA cell lines and one control cholangiocyte cell line using GeLC-MS/MS. We selected candidate proteins by five bioinformatics tools for secretome analysis. The inclusion criteria were as follows: having predicted signal peptide or being predicted as non-classically secreted protein; together with having no transmembrane helix and being previously detected in plasma and having the highest number of signal peptide cleavage sites. Eventually, apurinic/apyrimidinic endodeoxyribonuclease 1 (APEX1) was selected for further analysis. To validate APEX1 as a bio-marker for CCA, serum APEX1 levels of 80, 39, and 40 samples collected from CCA, benign biliary diseases (BBD), and healthy control groups, respectively, were measured using dot blot analysis. The results showed that serum APEX1 level in CCA group was significantly higher than that in BBD or healthy control group. Among CCA patients, serum APEX1 level was significantly higher in patients having metastasis than in those without metastasis. The higher level of serum APEX1 was correlated with the shorter survival time of the patients. Serum APEX1 level might be a diagnostic and prognostic biomarker for CCA.
Collapse
Affiliation(s)
- Doungdean Tummanatsakun
- Centre of Research and Development of Medical Diagnostic Laboratories (CMDL), Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Tanakorn Proungvitaya
- Centre of Research and Development of Medical Diagnostic Laboratories (CMDL), Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Sittiruk Roytrakul
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani 12120, Thailand
| | - Temduang Limpaiboon
- Centre of Research and Development of Medical Diagnostic Laboratories (CMDL), Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
- Cholangiocarcinoma Research Institute (CARI), Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Sopit Wongkham
- Cholangiocarcinoma Research Institute (CARI), Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Chaisiri Wongkham
- Cholangiocarcinoma Research Institute (CARI), Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Atit Silsirivanit
- Cholangiocarcinoma Research Institute (CARI), Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Ongart Somintara
- Department of Surgery, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Sakkarn Sangkhamanon
- Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Siriporn Proungvitaya
- Centre of Research and Development of Medical Diagnostic Laboratories (CMDL), Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand.
- Cholangiocarcinoma Research Institute (CARI), Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.
| |
Collapse
|
46
|
APEX1 Expression as a Potential Diagnostic Biomarker of Clear Cell Renal Cell Carcinoma and Hepatobiliary Carcinomas. J Clin Med 2019; 8:jcm8081151. [PMID: 31375000 PMCID: PMC6723795 DOI: 10.3390/jcm8081151] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 07/29/2019] [Accepted: 07/31/2019] [Indexed: 12/28/2022] Open
Abstract
Apurinic/apyrimidinic endonuclease 1/redox effector factor 1 (APEX1) has been known to play key roles in DNA repair, the regulation of diverse transcriptional activity, and cellular responses to redox activity. This study aimed to examine serum APEX1 (s-APEX1) expression as a possible screening biomarker for clear cell renal cell carcinoma (ccRCC), hepatocellular carcinoma (HCC), and proximal and distal cholangiocarcinoma (CC). A total of 216 frozen serum samples were collected from 39 healthy control cases, 32 patients with ≥58 copies/mL of hepatitis B viral DNA (HBV DNA (+)), 40 ccRCC cases, 59 HCC cases, and 46 CC cases. The serum samples were examined for s-APEX1 concentration by enzyme-linked immunosorbent assay. The association of APEX1 expression with clinicopathological characteristics was also studied by immunohistochemical staining in 106 ccRCC, 131 HCC, and 32 intrahepatic CC cases. The median s-APEX1 concentrations of the HCC, CC, ccRCC, healthy control, and HBV DNA (+) groups were 0.294, 0.710, 0.474, 0.038, and 2.384 ng/mL, respectively (p < 0.001). Univariate and multivariate analyses revealed that increased cytoplasmic APEX1 expression led to a shorter disease-free survival period in HCC and CC cases. We suggest that the s-APEX1 level could be a potential diagnostic biomarker of ccRCC, HCC, and CC. Additionally, cytoplasmic APEX1 expression in cancer cells could be used to predict relapses in patients with HCC or CC.
Collapse
|
47
|
Joo HK, Lee YR, Lee EO, Park MS, Choi S, Kim CS, Park JB, Jeon BH. The extracellular role of Ref-1 as anti-inflammatory function in lipopolysaccharide-induced septic mice. Free Radic Biol Med 2019; 139:16-23. [PMID: 31100475 DOI: 10.1016/j.freeradbiomed.2019.05.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 05/11/2019] [Accepted: 05/11/2019] [Indexed: 12/19/2022]
Abstract
Apurinic/apyrimidinic endonuclease/redox factor-1 (Ref-1), a multifunctional protein secreted from stimulated cells, has been identified as a new serological biomarker. Despite recent reports on the role of Ref-1 in inflammation, the biological function of secreted Ref-1 remains unknown, especially in vivo. This study aimed to evaluate the possible roles of secreted Ref-1 in lipopolysaccharide-induced systemic inflammation in vivo. We generated a secretory Ref-1 adenoviral vector system, AdPPT-LS-Ref-1, by conjugation of preprotrypsin leading sequence (PPT-LS) with full-length Ref-1 sequences. Expression of tumor necrosis factor-α (TNF-α)-induced vascular cell adhesion molecule-1 (VCAM-1) in endothelial cells and lipopolysaccharide (LPS)-induced cyclooxygenase-2 in Raw264.7 cells was inhibited by secretory Ref-1, and this inhibitory effect was abrogated following neutralization of Ref-1 with anti-Ref-1 antibody. Plasma Ref-1 levels following administration of AdPPT-LS-Ref-1 (2 × 109 ifu, i.p.) for 24 h were substantially higher than those recorded following administration of Adβgal (84.6 ± 7.2 ng/ml vs. 4.4 ± 1.5 ng/ml). Treatment with LPS (10 mg/kg, i.v. for 6 h) markedly increased VCAM-1 expression, cathepsin or myeloperoxidase activity, which were significantly suppressed by treatment with AdPPT-LS-Ref-1. Furthermore, LPS-induced cytokines, such as TNF-α, interleukin (IL)-1β, IL-6, and monocyte chemoattractant protein 1, were significantly inhibited in AdPPT-LS-Ref-1-treated mice. However, LPS-induced myeloperoxidase activities were not suppressed by treatment with the redox mutant of secretory Ref-1, AdPPT-LS-Ref-1(C65A/C93A), or wild-type AdRef-1. Collectively, these results suggest that secreted Ref-1 has anti-inflammatory properties and that its redox cysteine residue is associated with the anti-inflammatory activity in vivo. Furthermore, our findings indicate that secretory Ref-1 may be useful as a therapeutic biomolecule against systemic inflammation.
Collapse
Affiliation(s)
- Hee Kyoung Joo
- Research Institute of Medical Sciences, Department of Physiology, School of Medicine, Chungnam National University, Daejeon, South Korea
| | - Yu Ran Lee
- Research Institute of Medical Sciences, Department of Physiology, School of Medicine, Chungnam National University, Daejeon, South Korea
| | - Eun-Ok Lee
- Research Institute of Medical Sciences, Department of Physiology, School of Medicine, Chungnam National University, Daejeon, South Korea
| | - Myoung Soo Park
- Research Institute of Medical Sciences, Department of Physiology, School of Medicine, Chungnam National University, Daejeon, South Korea
| | - Sunga Choi
- Research Institute of Medical Sciences, Department of Physiology, School of Medicine, Chungnam National University, Daejeon, South Korea
| | - Cuk-Seong Kim
- Research Institute of Medical Sciences, Department of Physiology, School of Medicine, Chungnam National University, Daejeon, South Korea
| | - Jin-Bong Park
- Research Institute of Medical Sciences, Department of Physiology, School of Medicine, Chungnam National University, Daejeon, South Korea
| | - Byeong Hwa Jeon
- Research Institute of Medical Sciences, Department of Physiology, School of Medicine, Chungnam National University, Daejeon, South Korea.
| |
Collapse
|
48
|
ATP Binding Cassette Transporter A1 is Involved in Extracellular Secretion of Acetylated APE1/Ref-1. Int J Mol Sci 2019; 20:ijms20133178. [PMID: 31261750 PMCID: PMC6651529 DOI: 10.3390/ijms20133178] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 06/25/2019] [Accepted: 06/26/2019] [Indexed: 02/07/2023] Open
Abstract
Acetylation of nuclear apurinic/apyrimidinic endonuclease-1/redox factor-1 (APE1/Ref-1) is associated with its extracellular secretion, despite the lack of an N-terminal protein secretion signal. In this study, we investigated plasma membrane targeting and translocation of APE1/Ref-1 in HEK293T cells with enhanced acetylation. While APE1/Ref-1 targeting was not affected by inhibition of the endoplasmic reticulum/Golgi-dependent secretion, its secretion was reduced by inhibitors of ATP-binding cassette (ABC) transporters, and siRNA-mediated down-regulation of ABC transporter A1. The association between APE1/Ref-1 and ABCA1 transporter was confirmed by proximal ligation assay and immunoprecipitation experiments. An APE1/Ref-1 construct with mutated acetylation sites (K6/K7R) showed reduced co-localization with ABC transporter A1. Exposure of trichostatin A (TSA) induced the acetylation of APE1/Ref-1, which translocated into membrane fraction. Taken together, acetylation of APE1/Ref-1 is considered to be necessary for its extracellular targeting via non-classical secretory pathway using the ABCA1 transporter.
Collapse
|
49
|
SET protein accumulation prevents cell death in head and neck squamous cell carcinoma through regulation of redox state and autophagy. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:623-637. [DOI: 10.1016/j.bbamcr.2019.01.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 01/06/2019] [Accepted: 01/08/2019] [Indexed: 12/29/2022]
|
50
|
Alnajjar KS, Sweasy JB. A new perspective on oxidation of DNA repair proteins and cancer. DNA Repair (Amst) 2019; 76:60-69. [PMID: 30818170 DOI: 10.1016/j.dnarep.2019.02.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 02/07/2019] [Indexed: 02/07/2023]
Abstract
Reactive oxygen and nitrogen species (RONS) are formed as byproducts of many endogenous cellular processes, in response to infections, and upon exposure to various environmental factors. An increase in RONS can saturate the antioxidation system and leads to oxidative stress. Consequently, macromolecules are targeted for oxidative modifications, including DNA and protein. The oxidation of DNA, which leads to base modification and formation of abasic sites along with single and double strand breaks, has been extensively investigated. Protein oxidation is often neglected and is only recently being recognized as an important regulatory mechanism of various DNA repair proteins. This is a review of the current state of research on the regulation of DNA repair by protein oxidation with emphasis on the correlation between inflammation and cancer.
Collapse
Affiliation(s)
- Khadijeh S Alnajjar
- Department of Therapeutic Radiology and Department of Genetics, Yale University School of Medicine, New Haven, CT, 06520, United States.
| | - Joann B Sweasy
- Department of Therapeutic Radiology and Department of Genetics, Yale University School of Medicine, New Haven, CT, 06520, United States
| |
Collapse
|