1
|
Zapolski T, Kornecki W, Jaroszyński A. The Influence of Balneotherapy Using Salty Sulfide-Hydrogen Sulfide Water on Selected Markers of the Cardiovascular System: A Prospective Study. J Clin Med 2024; 13:3526. [PMID: 38930055 PMCID: PMC11204439 DOI: 10.3390/jcm13123526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Background: The sulfide-hydrogen sulfide brine balneotherapy (HSBB), including a combination of dissolved hydrogen sulfide (H2S) gas, inorganic sulfur ions (S2-), and hydrosulfide ions (HS-), is one of the most important and most effective forms of spa treatment in patients with osteoarticular disorders (OADs). Some cardiovascular diseases (CVDs) are often considered to be contraindications to HSBB since the presence of thiol groups may lead to an increased quantity of reactive oxygen species (ROS), which damage the vascular endothelium, and endothelial dysfunction is considered to be the main cause of atherosclerosis. However, there are a number of literature reports suggesting this theory to be false. H2S is a member of the endogenous gaseous transmitter family and, since it is a relatively recent addition, it has the least well-known biological properties. H2S-NO interactions play an important role in oxidative stress in CVDs. The general objective of this study was to assess the cardiovascular safety of HSBB and analyze the effect of HSBB on selected cardiovascular risk markers. Methods: A total of 100 patients at the age of 76.3 (±7.5) years from the Włókniarz Sanatorium in Busko-Zdrój were initially included in the study. The following parameters were assessed: age, sex, height, body weight, body surface area (BSA), body mass index (BMI), systolic (SBP) and diastolic blood pressure (DBP), heart rate, the diagnosis of OAD that was the indication for balneotherapy, creatinine (CREAT), glomerular filtration rate (GFR), lipid panel, C-reactive protein (CRP), uric acid (UA), and fibrinogen (FIBR) and cardiovascular markers: (cardiac troponin T (cTnT), N-terminal pro-B-type natriuretic peptide (NT-proBNP). Results: A significant decrease in DBP and a trend towards SBP reduction were observed over the course of the study. A significant decrease was observed in CRP levels decreasing from 2.7 (±3.6) mg/L to 2.06 (±1.91) mg/L, whereas FIBR rose significantly from 2.95 (±0.59) g/L to 3.23 (±1.23) g/L. LDL-C levels decreased slightly, statistically significant, from 129.36 (±40.67) mg/dL to 123.74 (±36.14) mg/dL. HSBB did not affect the levels of evaluated cardiovascular biomarkers, namely NT-proBNP (137.41 (±176.52) pg/mL vs. 142.89 (±182.82) pg/mL; p = 0.477) and cTnT (9.64 (±4.13) vs. 9.65 (±3.91) ng/L; p = 0.948). A multiple regression analysis of pre-balneotherapy and post-balneotherapy values showed cTnT levels to be independently correlated only with CREAT levels and GFR values. None of the assessed parameters independently correlated with the NT-proBNP level. Conclusions: HSBB resulted in a statistically significant improvement in a subclinical pro-inflammatory state. HSBB has a beneficial effect in modifying key cardiovascular risk factors by reducing LDL-C levels and DBP values. HSBB has a neutral effect on cardiovascular ischemia/injury. Despite slightly elevated baseline levels of the biochemical marker of HF (NT-proBNP), HSBB causes no further increase in this marker. The use of HSBB in patients with OAD has either a neutral effect or a potentially beneficial effect on the cardiovascular system, which may constitute grounds for further studies to verify the current cardiovascular contraindications for this form of therapy.
Collapse
Affiliation(s)
- Tomasz Zapolski
- Department of Cardiology, Medical University of Lublin, 20-093 Lublin, Poland
| | | | - Andrzej Jaroszyński
- Department of Internal Medicine and Family Medicine, Collegium Medicum, Jan Kochanowski University in Kielce, 25-369 Kielce, Poland;
| |
Collapse
|
2
|
Zhang S, Qiu B, Lv B, Yang G, Tao Y, Hu Y, Li K, Yu X, Tang C, Du J, Jin H, Huang Y. Endogenous sulfur dioxide deficiency as a driver of cardiomyocyte senescence through abolishing sulphenylation of STAT3 at cysteine 259. Redox Biol 2024; 71:103124. [PMID: 38503216 PMCID: PMC10963856 DOI: 10.1016/j.redox.2024.103124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 03/21/2024] Open
Abstract
OBJECTIVE Cardiomyocyte senescence is an important contributor to cardiovascular diseases and can be induced by stressors including DNA damage, oxidative stress, mitochondrial dysfunction, epigenetic regulation, etc. However, the underlying mechanisms for the development of cardiomyocyte senescence remain largely unknown. Sulfur dioxide (SO2) is produced endogenously by aspartate aminotransferase 2 (AAT2) catalysis and plays an important regulatory role in the development of cardiovascular diseases. The present study aimed to explore the effect of endogenous SO2 on cardiomyocyte senescence and the underlying molecular mechanisms. APPROACH AND RESULTS We interestingly found a substantial reduction in the expression of AAT2 in the heart of aged mice in comparison to young mice. AAT2-knockdowned cardiomyocytes exhibited reduced SO2 content, elevated expression levels of Tp53, p21Cip/Waf, and p16INk4a, enhanced SA-β-Gal activity, and elevated level of γ-H2AX foci. Notably, supplementation with a SO2 donor ameliorated the spontaneous senescence phenotype and DNA damage caused by AAT2 deficiency in cardiomyocytes. Mechanistically, AAT2 deficiency suppressed the sulphenylation of signal transducer and activator of transcription 3 (STAT3) facilitated its nuclear translocation and DNA-binding capacity. Conversely, a mutation in the cysteine (Cys) 259 residue of STAT3 blocked SO2-induced STAT3 sulphenylation and subsequently prevented the inhibitory effect of SO2 on STAT3-DNA-binding capacity, DNA damage, and cardiomyocyte senescence. Additionally, cardiomyocyte (cm)-specific AAT2 knockout (AAT2cmKO) mice exhibited a deterioration in cardiac function, cardiomegaly, and cardiac aging, whereas supplementation with SO2 donors mitigated the cardiac aging and remodeling phenotypes in AAT2cmKO mice. CONCLUSION Downregulation of the endogenous SO2/AAT2 pathway is a crucial pathogenic mechanism underlying cardiomyocyte senescence. Endogenous SO2 modifies STAT3 by sulphenylating Cys259, leading to the inhibition of DNA damage and the protection against cardiomyocyte senescence.
Collapse
Affiliation(s)
- Shangyue Zhang
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China
| | - Bingquan Qiu
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China
| | - Boyang Lv
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China
| | - Guosheng Yang
- Laboratory Animal Facility, Peking University First Hospital, Beijing, 100034, China
| | - Yinghong Tao
- Laboratory Animal Facility, Peking University First Hospital, Beijing, 100034, China
| | - Yongyan Hu
- Laboratory Animal Facility, Peking University First Hospital, Beijing, 100034, China
| | - Kun Li
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Xiaoqi Yu
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Chaoshu Tang
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, 100191, China
| | - Junbao Du
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China
| | - Hongfang Jin
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China.
| | - Yaqian Huang
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China.
| |
Collapse
|
3
|
Dong C, Zhu T, Sun J, Dong X, Sun L, Gu X, Zhao C. Self-Assembled Activatable Probes to Monitor Interactive Dynamics of Intracellular Nitric Oxide and Hydrogen Sulfide. Anal Chem 2024; 96:1259-1267. [PMID: 38206997 DOI: 10.1021/acs.analchem.3c04513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
The increasing understanding of the intricate relationship between two crucial gasotransmitters nitric oxide (NO) and hydrogen sulfide (H2S) in biological actions has generated significant interest. However, comprehensive monitoring of the dynamic fluctuations of endogenous NO and H2S remains a challenge. In this study, we have designed an innovative aggregation-induced reporter SAB-NH-SC with enhanced responsiveness to H2S for visualizing the fluctuations of intracellular NO and H2S. This probe leverages the hydrophilic properties of the pyridinium salt derivative, which can rapidly self-assemble into positively charged nanoparticles under physiological conditions, avoiding the introduction of organic solvents or tedious preparations. Notably, the reporter can repeatedly cycle S-nitrosation and SNO-transnitrosation reactions when successively treated with NO and H2S. Consequently, fluorescence alternation at 751 (H2S) and 639 nm (NO) facilitates the dynamic visualization of the alternating presence of H2S and NO within cells. This dynamic and reversible probe holds immense potential for unraveling the intricate interactions between NO and H2S in a complex network of biological applications.
Collapse
Affiliation(s)
- Chengjun Dong
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Tianli Zhu
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Jie Sun
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Xuemei Dong
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Lixin Sun
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Xianfeng Gu
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, P. R. China
| | - Chunchang Zhao
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai, 200237, P. R. China
| |
Collapse
|
4
|
Li P, Liang F, Wang L, Jin D, Shang Y, Liu X, Pan Y, Yuan J, Shen J, Yin M. Bilayer vascular grafts with on-demand NO and H 2S release capabilities. Bioact Mater 2024; 31:38-52. [PMID: 37601276 PMCID: PMC10432902 DOI: 10.1016/j.bioactmat.2023.07.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/23/2023] [Accepted: 07/24/2023] [Indexed: 08/22/2023] Open
Abstract
Nitric oxide (NO) and hydrogen sulfide (H2S) gasotransmitters exhibit potential therapeutic effects in the cardiovascular system. Herein, biomimicking multilayer structures of biological blood vessels, bilayer small-diameter vascular grafts (SDVGs) with on-demand NO and H2S release capabilities, were designed and fabricated. The keratin-based H2S donor (KTC) with good biocompatibility and high stability was first synthesized and then electrospun with poly (l-lactide-co-caprolactone) (PLCL) to be used as the outer layer of grafts. The electrospun poly (ε-caprolactone) (PCL) mats were aminolyzed and further chelated with copper (II) ions to construct glutathione peroxidase (GPx)-like structural surfaces for the catalytic generation of NO, which acted as the inner layer of grafts. The on-demand release of NO and H2S selectively and synergistically promoted the proliferation and migration of human umbilical vein endothelial cells (HUVECs) while inhibiting the proliferation and migration of human umbilical artery smooth muscle cells (HUASMCs). Dual releases of NO and H2S gasotransmitters could enhance their respective production, resulting in enhanced promotion of HUVECs and inhibition of HUASMCs owing to their combined actions. In addition, the bilayer grafts were conducive to forming endothelial cell layers under flow shear stress. In rat abdominal aorta replacement models, the grafts remained patency for 6 months. These grafts were capable of facilitating rapid endothelialization and alleviating neointimal hyperplasia without obvious injury, inflammation, or thrombosis. More importantly, the grafts were expected to avoid calcification with the degradation of the grafts. Taken together, these bilayer grafts will be greatly promising candidates for SDVGs with rapid endothelialization and anti-calcification properties.
Collapse
Affiliation(s)
- Pengfei Li
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, Department of Materials Science and Engineering, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, PR China
| | - Fubang Liang
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, 1678 Dong Fang Road, Shanghai, 200127, PR China
| | - Lijuan Wang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, Department of Materials Science and Engineering, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, PR China
| | - Dawei Jin
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, 1678 Dong Fang Road, Shanghai, 200127, PR China
| | - Yushuang Shang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, Department of Materials Science and Engineering, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, PR China
| | - Xu Liu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, Department of Materials Science and Engineering, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, PR China
| | - Yanjun Pan
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, 1678 Dong Fang Road, Shanghai, 200127, PR China
| | - Jiang Yuan
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, Department of Materials Science and Engineering, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, PR China
| | - Jian Shen
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, Department of Materials Science and Engineering, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, PR China
- Jiangsu Engineering Research Center of Interfacial Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, PR China
| | - Meng Yin
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, 1678 Dong Fang Road, Shanghai, 200127, PR China
| |
Collapse
|
5
|
Sharma N, Kumar V, Jose DA. A ruthenium nitrosyl complex-based highly selective colorimetric sensor for biological H 2S and H 2S-NO cross-talk regulated release of NO. Dalton Trans 2023; 52:675-682. [PMID: 36537888 DOI: 10.1039/d2dt03108f] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A ruthenium nitrosyl complex (1·NO) and 1·NO incorporated phospholipid-based liposomes (Lip-1·NO) were reported for highly selective colorimetric detection of H2S. The probe 1·NO "cross-talks" with H2S and releases nitric oxide (NO) in the process. The detection limit for H2S was found to be 0.31 μM and 0.45 μM in the cases of 1·NO and Lip-1·NO, respectively. The DAF-FM DA assay has been performed to confirm the H2S-induced NO release from 1·NO and Lip-1·NO. The sensing of H2S was also verified by ESI-MS and FT-IR spectroscopy. It was also observed that external stimuli, H2S and light worked in an almost similar way to release NO as observed by UV-Vis spectroscopy. A molecular logic gate operation "OR" was applied to the probe 1·NO in combination with inputs 'light' and 'H2S' to give the output 'NO release'. Hence, the probe 1·NO performs the dual work of sensing H2S with a colorimetric response, releasing NO upon cross-talk between NO and H2S.
Collapse
Affiliation(s)
- Nancy Sharma
- Department of Chemistry, National Institute of Technology (NIT) Kurukshetra, Kurukshetra-136119, Haryana, India.
| | - Vinod Kumar
- Department of Chemistry, National Institute of Technology (NIT) Kurukshetra, Kurukshetra-136119, Haryana, India.
| | - D Amilan Jose
- Department of Chemistry, National Institute of Technology (NIT) Kurukshetra, Kurukshetra-136119, Haryana, India.
| |
Collapse
|
6
|
Siracusa R, Voltarelli VA, Trovato Salinaro A, Modafferi S, Cuzzocrea S, Calabrese EJ, Di Paola R, Otterbein LE, Calabrese V. NO, CO and H 2S: A Trinacrium of Bioactive Gases in the Brain. Biochem Pharmacol 2022; 202:115122. [PMID: 35679892 DOI: 10.1016/j.bcp.2022.115122] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 11/02/2022]
Abstract
Oxygen and carbon dioxide are time honored gases that have direct bearing on almost all life forms, but over the past thirty years, and in large part due to the Nobel Prize Award in Medicine for the elucidation of nitric oxide (NO) as a bioactive gas, the research and medical communities now recognize other gases as critical for survival. In addition to NO, hydrogen sulfide (H2S) and carbon monoxide (CO) have emerged as a triumvirate or Trinacrium of gases with analogous importance and that serve important homeostatic functions. Perhaps, one of the most intriguing aspects of these gases is the functional interaction between them, which is intimately linked by the enzyme systems that produce them. Despite the need to better understand NO, H2S and CO biology, the notion that these are environmental pollutants remains ever present. For this reason, incorporating the concept of hormesis becomes imperative and must be included in discussions when considering developing new therapeutics that involve these gases. While there is now an enormous literature base for each of these gasotransmitters, we provide here an overview of their respective physiologic roles in the brain.
Collapse
Affiliation(s)
- Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Messina, 98166, Italy
| | - Vanessa A Voltarelli
- Department of Surgery, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA, 02115, USA
| | - Angela Trovato Salinaro
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Sergio Modafferi
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Messina, 98166, Italy
| | - Edward J Calabrese
- Department of Environmental Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA 01003, USA
| | - Rosanna Di Paola
- Department of Veterinary Science, University of Messina, 98168, Messina, Italy
| | - Leo E Otterbein
- Department of Surgery, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA, 02115, USA.
| | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy.
| |
Collapse
|
7
|
Kadlec M, Pintus E, Ros-Santaella JL. The Interaction of NO and H 2S in Boar Spermatozoa under Oxidative Stress. Animals (Basel) 2022; 12:ani12050602. [PMID: 35268171 PMCID: PMC8909797 DOI: 10.3390/ani12050602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 11/30/2022] Open
Abstract
Various recent studies dedicated to the role of nitric oxide (NO) and hydrogen sulfide (H2S) in somatic cells provide evidence for an interaction of the two gasotransmitters. In the case of male gametes, only the action of a single donor of each gasotransmitter has been investigated up until today. It has been demonstrated that, at low concentrations, both gasotransmitters alone exert a positive effect on sperm quality parameters. Moreover, the activity of gaseous cellular messengers may be affected by the presence of oxidative stress, an underlying condition of several male reproductive disorders. In this study, we explored the effect of the combination of two donors SNP and NaHS (NO and H2S donors, respectively) on boar spermatozoa under oxidative stress. We applied NaHS, SNP, and their combination (DD) at 100 nM concentration in boar spermatozoa samples treated with Fe2+/ascorbate system. After 90 min of incubation at 38 °C, we have observed that progressive motility (PMot) and plasma membrane integrity (PMI) were improved (p < 0.05) in DD treatment compared to the Ctr sample under oxidative stress (CtrOX). Moreover, the PMot of DD treatment was higher (p < 0.05) than that of NaHS. Similar to NaHS, SNP treatment did not overcome the PMot and PMI of CtrOX. In conclusion, for the first time, we provide evidence that the combination of SNP and NaHS surmounts the effect of single-donor application in terms of PMot and PMI in porcine spermatozoa under oxidative stress.
Collapse
|
8
|
Oakley KM, Zhao Z, Lehane RL, Ma J, Kim E. Generation of H 2S from Thiol-Dependent NO Reactivity of Model [4Fe-4S] Cluster and Roussin's Black Anion. Inorg Chem 2021; 60:15910-15917. [PMID: 34180664 DOI: 10.1021/acs.inorgchem.1c01328] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Iron-sulfur clusters (Fe-S) have been well established as a target for nitric oxide (NO) in biological systems. Complementary to protein-bound studies, synthetic models have provided a platform to study what iron nitrosylated products and byproducts are produced depending on a controlled reaction environment. We have previously shown a model [2Fe-2S] system that produced a dinitrosyl iron complex (DNIC) upon nitrosylation along with hydrogen sulfide (H2S), another important gasotransmitter, in the presence of thiol, and hypothesized a similar reactivity pattern with [4Fe-4S] clusters which have largely produced inconsistent reaction products across biological and synthetic systems. Roussin's black anion (RBA), [Fe4(μ3-S)3(NO)7]-, is a previously established reaction product from synthetic [4Fe-4S] clusters with NO. Here, we present a new reactivity for the nitrosylation of a synthetic [4Fe-4S] cluster in the presence of thiol and thiolate. [Et4N]2[Fe4S4(SPh)4] (1) was nitrosylated in the presence of excess PhSH to generate H2S and an "RBA-like" intermediate that when further reacted with [NEt4][SPh] produced a {Fe(NO)2}9 DNIC, [Et4N][Fe(NO)2(SPh)2] (2). This "RBA-like" intermediate proved difficult to isolate but shares striking similarities to RBA in the presence of thiol based on IR υ(NO) stretching frequencies. Surprisingly, the same reaction products were produced when the reaction started with RBA and thiol. Similar to 1/NO, RBA in the presence of thiol and thiolate generates stoichiometric amounts of DNIC while releasing its bridging sulfides as H2S. These results suggest not only that RBA may not be the final product of [4Fe-4S] + NO but also that RBA has unprecedented reactivity with thiols and thiolates which may explain current challenges around identifying biological nitrosylated Fe-S clusters.
Collapse
Affiliation(s)
- Kady M Oakley
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Ziyi Zhao
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Ryan L Lehane
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Ji Ma
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Eunsuk Kim
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| |
Collapse
|
9
|
Possomato-Vieira JS, Palei AC, Pinto-Souza CC, Cavalli R, Dias-Junior CA, Sandrim V. Circulating levels of hydrogen sulphide negatively correlate to nitrite levels in gestational hypertensive and preeclamptic pregnant women. Clin Exp Pharmacol Physiol 2021; 48:1224-1230. [PMID: 34080216 DOI: 10.1111/1440-1681.13534] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 05/12/2021] [Accepted: 05/28/2021] [Indexed: 12/13/2022]
Abstract
Endothelial dysfunction is a hallmark of preeclampsia and the role of nitric oxide (NO) has been extensively studied in this pregnancy complication. In recent years, hydrogen sulphide (H2 S) has arisen as a new gasotransmitter with an impact on endothelial function. However, the involvement of H2 S in the pathophysiology of preeclampsia is not fully understood, and only a few studies with limited sample size have investigated circulating levels of H2 S in preeclamptic patients. Moreover, H2 S levels have not been previously evaluated in gestational hypertension. Furthermore, the relationship between H2 S and NO in these hypertensive disorders of pregnancy has yet to be determined. We measured H2 S levels in plasma of 120 healthy pregnant women, 88 gestational hypertensive and 62 preeclamptic women. We also measured plasma nitrite in a subset of patients and carried out correlation analysis between plasma H2 S and nitrite in these three groups. We found that plasma H2 S was elevated in preeclampsia and further increased in gestational hypertension compared to healthy pregnancy. Plasma nitrite was reduced in gestational hypertension and preeclampsia, and these levels were negatively correlated with H2 S in both gestational hypertension and preeclampsia, but not in healthy pregnancy. Our results indicate that increases in H2 S may represent a mechanism triggered as an attempt to compensate reduced NO in gestational hypertension and preeclampsia. Future studies are warranted to investigate the mechanisms underlying H2 S/NO interaction on mediating endothelial dysfunction in these hypertensive disorders of pregnancy.
Collapse
Affiliation(s)
| | - Ana Carolina Palei
- Department of Surgery, The University of Mississippi Medical Center, Jackson, MS, USA
| | | | - Ricardo Cavalli
- Department of Gynecology and Obstetrics, Faculty of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Brazil
| | | | - Valeria Sandrim
- Institute of Biosciences, São Paulo State University - IBB/UNESP, Botucatu, Brazil
| |
Collapse
|
10
|
Ustunova S, Takir S, Yilmazer N, Bulut H, Altindirek D, Ng OH, Tansel CD, Dogan BSU, Ozbek U, Armutak EI, Gurevin EG. Hydrogen Sulphide and Nitric Oxide Cooperate in Cardioprotection Against Ischemia/Reperfusion Injury in Isolated Rat Heart. In Vivo 2021; 34:2507-2516. [PMID: 32871779 DOI: 10.21873/invivo.12067] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/11/2020] [Accepted: 05/12/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND/AIM This study was designed to provide further evidence for the interactions between hydrogen sulfide (H2S) and nitric oxide (NO) in ischemia/reperfusion (I/R) injury. MATERIALS AND METHODS Rat hearts were studied with the Langendorff technique using the H2S donor sodium hydrosulfide (NaHS, 40 μM) and the cystathionine gamma-lyase (CTH or CSE) inhibitor DL-propargylglycine (PAG, 1 mM). NO synthase inhibitor L-NG-nitroarginine methyl ester (L-NAME, 30 mg/kg, 7 days) was administered before the isolation. The hearts were homogenized for biochemical and molecular analysis. RESULTS NaHS reversed I/R-induced cardiac performance impairment, increased tissue nitric oxide production and decreased tissue markers for cardiac injury, while L-NAME inhibited these effects. The expression of CTH was increased with PAG, which was suppressed by L-NAME. CONCLUSION H2S and NO increase each other's production suggesting their interaction and cooperation in cardioprotection against I/R injury.
Collapse
Affiliation(s)
- Savas Ustunova
- Department of Physiology, School of Medicine, Bezmialem Vakif University, Istanbul, Turkey
| | - Selcuk Takir
- Department of Medical Pharmacology, School of Medicine, Giresun University, Giresun, Turkey
| | - Nadim Yilmazer
- Department of Biology, Faculty of Arts and Sciences, Namik Kemal University, Tekirdag, Turkey
| | - Huri Bulut
- Department of Medical Biochemistry, School of Medicine, Istinye University, Istanbul, Turkey
| | - Didem Altindirek
- Department of Genetics, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Ozden Hatirnaz Ng
- Department of Medical Biology, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Cihan Demirci Tansel
- Department of Biology, Faculty of Science, Istanbul University, Istanbul, Turkey
| | - B Sonmez Uydes Dogan
- Department of Pharmacology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey
| | - Ugur Ozbek
- Department of Medical Genetics, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Elif Ilkay Armutak
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Ebru Gurel Gurevin
- Department of Biology, Faculty of Science, Istanbul University, Istanbul, Turkey
| |
Collapse
|
11
|
Zhu T, Ren N, Liu X, Dong Y, Wang R, Gao J, Sun J, Zhu Y, Wang L, Fan C, Tian H, Li J, Zhao C. Probing the Intracellular Dynamics of Nitric Oxide and Hydrogen Sulfide Using an Activatable NIR II Fluorescence Reporter. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015650] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Tianli Zhu
- Key Laboratory for Advanced Materials, Institute of Fine Chemicals School of Chemistry and Molecular Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry East China University of Science and Technology Shanghai 200237 P. R. China
| | - Ning Ren
- Bioimaging Center Shanghai Synchrotron Radiation Facility Zhangjiang Laboratory Shanghai Advanced Research Institute Division of Physical Biology CAS Key Laboratory of Interfacial Physics and Technology Shanghai Institute of Applied Physics Chinese Academy of Sciences Shanghai 201210 China
| | - Xia Liu
- Bioimaging Center Shanghai Synchrotron Radiation Facility Zhangjiang Laboratory Shanghai Advanced Research Institute Division of Physical Biology CAS Key Laboratory of Interfacial Physics and Technology Shanghai Institute of Applied Physics Chinese Academy of Sciences Shanghai 201210 China
| | - Yan Dong
- Key Laboratory for Advanced Materials, Institute of Fine Chemicals School of Chemistry and Molecular Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry East China University of Science and Technology Shanghai 200237 P. R. China
| | - Rongchen Wang
- Key Laboratory for Advanced Materials, Institute of Fine Chemicals School of Chemistry and Molecular Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry East China University of Science and Technology Shanghai 200237 P. R. China
| | - Jinzhu Gao
- Key Laboratory for Advanced Materials, Institute of Fine Chemicals School of Chemistry and Molecular Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry East China University of Science and Technology Shanghai 200237 P. R. China
| | - Jie Sun
- Key Laboratory for Advanced Materials, Institute of Fine Chemicals School of Chemistry and Molecular Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry East China University of Science and Technology Shanghai 200237 P. R. China
| | - Ying Zhu
- Bioimaging Center Shanghai Synchrotron Radiation Facility Zhangjiang Laboratory Shanghai Advanced Research Institute Division of Physical Biology CAS Key Laboratory of Interfacial Physics and Technology Shanghai Institute of Applied Physics Chinese Academy of Sciences Shanghai 201210 China
| | - Lihua Wang
- Bioimaging Center Shanghai Synchrotron Radiation Facility Zhangjiang Laboratory Shanghai Advanced Research Institute Division of Physical Biology CAS Key Laboratory of Interfacial Physics and Technology Shanghai Institute of Applied Physics Chinese Academy of Sciences Shanghai 201210 China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine Shanghai Jiao Tong University Shanghai 200240 China
| | - He Tian
- Key Laboratory for Advanced Materials, Institute of Fine Chemicals School of Chemistry and Molecular Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry East China University of Science and Technology Shanghai 200237 P. R. China
| | - Jiang Li
- Bioimaging Center Shanghai Synchrotron Radiation Facility Zhangjiang Laboratory Shanghai Advanced Research Institute Division of Physical Biology CAS Key Laboratory of Interfacial Physics and Technology Shanghai Institute of Applied Physics Chinese Academy of Sciences Shanghai 201210 China
| | - Chunchang Zhao
- Key Laboratory for Advanced Materials, Institute of Fine Chemicals School of Chemistry and Molecular Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry East China University of Science and Technology Shanghai 200237 P. R. China
| |
Collapse
|
12
|
Zhu T, Ren N, Liu X, Dong Y, Wang R, Gao J, Sun J, Zhu Y, Wang L, Fan C, Tian H, Li J, Zhao C. Probing the Intracellular Dynamics of Nitric Oxide and Hydrogen Sulfide Using an Activatable NIR II Fluorescence Reporter. Angew Chem Int Ed Engl 2021; 60:8450-8454. [DOI: 10.1002/anie.202015650] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/24/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Tianli Zhu
- Key Laboratory for Advanced Materials, Institute of Fine Chemicals School of Chemistry and Molecular Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry East China University of Science and Technology Shanghai 200237 P. R. China
| | - Ning Ren
- Bioimaging Center Shanghai Synchrotron Radiation Facility Zhangjiang Laboratory Shanghai Advanced Research Institute Division of Physical Biology CAS Key Laboratory of Interfacial Physics and Technology Shanghai Institute of Applied Physics Chinese Academy of Sciences Shanghai 201210 China
| | - Xia Liu
- Bioimaging Center Shanghai Synchrotron Radiation Facility Zhangjiang Laboratory Shanghai Advanced Research Institute Division of Physical Biology CAS Key Laboratory of Interfacial Physics and Technology Shanghai Institute of Applied Physics Chinese Academy of Sciences Shanghai 201210 China
| | - Yan Dong
- Key Laboratory for Advanced Materials, Institute of Fine Chemicals School of Chemistry and Molecular Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry East China University of Science and Technology Shanghai 200237 P. R. China
| | - Rongchen Wang
- Key Laboratory for Advanced Materials, Institute of Fine Chemicals School of Chemistry and Molecular Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry East China University of Science and Technology Shanghai 200237 P. R. China
| | - Jinzhu Gao
- Key Laboratory for Advanced Materials, Institute of Fine Chemicals School of Chemistry and Molecular Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry East China University of Science and Technology Shanghai 200237 P. R. China
| | - Jie Sun
- Key Laboratory for Advanced Materials, Institute of Fine Chemicals School of Chemistry and Molecular Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry East China University of Science and Technology Shanghai 200237 P. R. China
| | - Ying Zhu
- Bioimaging Center Shanghai Synchrotron Radiation Facility Zhangjiang Laboratory Shanghai Advanced Research Institute Division of Physical Biology CAS Key Laboratory of Interfacial Physics and Technology Shanghai Institute of Applied Physics Chinese Academy of Sciences Shanghai 201210 China
| | - Lihua Wang
- Bioimaging Center Shanghai Synchrotron Radiation Facility Zhangjiang Laboratory Shanghai Advanced Research Institute Division of Physical Biology CAS Key Laboratory of Interfacial Physics and Technology Shanghai Institute of Applied Physics Chinese Academy of Sciences Shanghai 201210 China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine Shanghai Jiao Tong University Shanghai 200240 China
| | - He Tian
- Key Laboratory for Advanced Materials, Institute of Fine Chemicals School of Chemistry and Molecular Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry East China University of Science and Technology Shanghai 200237 P. R. China
| | - Jiang Li
- Bioimaging Center Shanghai Synchrotron Radiation Facility Zhangjiang Laboratory Shanghai Advanced Research Institute Division of Physical Biology CAS Key Laboratory of Interfacial Physics and Technology Shanghai Institute of Applied Physics Chinese Academy of Sciences Shanghai 201210 China
| | - Chunchang Zhao
- Key Laboratory for Advanced Materials, Institute of Fine Chemicals School of Chemistry and Molecular Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry East China University of Science and Technology Shanghai 200237 P. R. China
| |
Collapse
|
13
|
Chen HJ, Ngowi EE, Qian L, Li T, Qin YZ, Zhou JJ, Li K, Ji XY, Wu DD. Role of Hydrogen Sulfide in the Endocrine System. Front Endocrinol (Lausanne) 2021; 12:704620. [PMID: 34335475 PMCID: PMC8322845 DOI: 10.3389/fendo.2021.704620] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 06/25/2021] [Indexed: 12/13/2022] Open
Abstract
Hydrogen sulfide (H2S), as one of the three known gaseous signal transduction molecules in organisms, has attracted a surging amount of attention. H2S is involved in a variety of physiological and pathological processes in the body, such as dilating blood vessels (regulating blood pressure), protecting tissue from ischemia-reperfusion injury, anti-inflammation, carcinogenesis, or inhibition of cancer, as well as acting on the hypothalamus and pancreas to regulate hormonal metabolism. The change of H2S concentration is related to a variety of endocrine disorders, and the change of hormone concentration also affects the synthesis of H2S. Understanding the effect of biosynthesis and the concentration of H2S on the endocrine system is useful to develop drugs for the treatment of hypertension, diabetes, and other diseases.
Collapse
Affiliation(s)
- Hao-Jie Chen
- School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, China
| | - Ebenezeri Erasto Ngowi
- School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, China
- Department of Biological Sciences, Faculty of Science, Dar es Salaam University College of Education, Dar es Salaam, Tanzania
| | - Lei Qian
- School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, China
| | - Tao Li
- School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, China
| | - Yang-Zhe Qin
- School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, China
| | - Jing-Jing Zhou
- School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, China
| | - Ke Li
- School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, China
| | - Xin-Ying Ji
- School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, China
- Kaifeng Key Laboratory of Infection and Biological Safety, School of Basic Medical Sciences, Henan University, Kaifeng, China
- *Correspondence: Dong-Dong Wu, ; Xin-Ying Ji,
| | - Dong-Dong Wu
- School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, China
- School of Stomatology, Henan University, Kaifeng, China
- *Correspondence: Dong-Dong Wu, ; Xin-Ying Ji,
| |
Collapse
|
14
|
Huang YQ, Jin HF, Zhang H, Tang CS, Du JB. Interaction among Hydrogen Sulfide and Other Gasotransmitters in Mammalian Physiology and Pathophysiology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1315:205-236. [PMID: 34302694 DOI: 10.1007/978-981-16-0991-6_9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hydrogen sulfide (H2S), nitric oxide (NO), carbon monoxide (CO), and sulfur dioxide (SO2) were previously considered as toxic gases, but now they are found to be members of mammalian gasotransmitters family. Both H2S and SO2 are endogenously produced in sulfur-containing amino acid metabolic pathway in vivo. The enzymes catalyzing the formation of H2S are mainly CBS, CSE, and 3-MST, and the key enzymes for SO2 production are AAT1 and AAT2. Endogenous NO is produced from L-arginine under catalysis of three isoforms of NOS (eNOS, iNOS, and nNOS). HO-mediated heme catabolism is the main source of endogenous CO. These four gasotransmitters play important physiological and pathophysiological roles in mammalian cardiovascular, nervous, gastrointestinal, respiratory, and immune systems. The similarity among these four gasotransmitters can be seen from the same and/or shared signals. With many studies on the biological effects of gasotransmitters on multiple systems, the interaction among H2S and other gasotransmitters has been gradually explored. H2S not only interacts with NO to form nitroxyl (HNO), but also regulates the HO/CO and AAT/SO2 pathways. Here, we review the biosynthesis and metabolism of the gasotransmitters in mammals, as well as the known complicated interactions among H2S and other gasotransmitters (NO, CO, and SO2) and their effects on various aspects of cardiovascular physiology and pathophysiology, such as vascular tension, angiogenesis, heart contractility, and cardiac protection.
Collapse
Affiliation(s)
- Ya-Qian Huang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Hong-Fang Jin
- Department of Pediatrics, Peking University First Hospital, Beijing, China.
| | - Heng Zhang
- Department of Endocrinology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Chao-Shu Tang
- Department of Physiology and Pathophysiology, Peking University Health Science Centre, Beijing, China
| | - Jun-Bao Du
- Department of Pediatrics, Peking University First Hospital, Beijing, China.
| |
Collapse
|
15
|
Hydrogen sulfide (H 2S) signaling in plant development and stress responses. ABIOTECH 2021; 2:32-63. [PMID: 34377579 PMCID: PMC7917380 DOI: 10.1007/s42994-021-00035-4] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 02/03/2021] [Indexed: 12/13/2022]
Abstract
ABSTRACT Hydrogen sulfide (H2S) was initially recognized as a toxic gas and its biological functions in mammalian cells have been gradually discovered during the past decades. In the latest decade, numerous studies have revealed that H2S has versatile functions in plants as well. In this review, we summarize H2S-mediated sulfur metabolic pathways, as well as the progress in the recognition of its biological functions in plant growth and development, particularly its physiological functions in biotic and abiotic stress responses. Besides direct chemical reactions, nitric oxide (NO) and hydrogen peroxide (H2O2) have complex relationships with H2S in plant signaling, both of which mediate protein post-translational modification (PTM) to attack the cysteine residues. We also discuss recent progress in the research on the three types of PTMs and their biological functions in plants. Finally, we propose the relevant issues that need to be addressed in the future research. GRAPHIC ABSTRACT SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s42994-021-00035-4.
Collapse
|
16
|
Sun HJ, Wu ZY, Cao L, Zhu MY, Nie XW, Huang DJ, Sun MT, Bian JS. Role of nitroxyl (HNO) in cardiovascular system: From biochemistry to pharmacology. Pharmacol Res 2020; 159:104961. [DOI: 10.1016/j.phrs.2020.104961] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/16/2020] [Accepted: 05/24/2020] [Indexed: 12/12/2022]
|
17
|
Gastreich-Seelig M, Jimenez M, Pouokam E. Mechanisms Associated to Nitroxyl (HNO)-Induced Relaxation in the Intestinal Smooth Muscle. Front Physiol 2020; 11:438. [PMID: 32581821 PMCID: PMC7283591 DOI: 10.3389/fphys.2020.00438] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 04/08/2020] [Indexed: 12/23/2022] Open
Abstract
The pharmacological properties of nitroxyl (HNO) donors in the gastrointestinal tract are unknown. We investigated the properties of this molecule in the regulation of gastrointestinal contractility focusing on its possible interaction with other gaseous signaling molecules such as NO and H2S. Organ bath, Ca2+ imaging, and microelectrode recordings were performed on rat intestinal samples, using Angeli’s salt as HNO donor. Angeli’s salt caused a concentration-dependent relaxation of longitudinal or circular muscle strips of the ileum and the proximal colon. This relaxation was strongly inhibited by the Rho-kinase inhibitor Y-27632 (10 μM), by the reducing agent DTT or by the inhibitor of soluble guanylate cyclase (sGC) ODQ (10 μM) alone or in combination with the inhibitors of the endogenous synthesis of H2S β-cyano-L-alanine (5 mM) and amino-oxyacetate (5 mM). Preventing endogenous synthesis of NO by the NO synthase inhibitor L-NAME (200 μM) did not affect the relaxation induced by HNO. HNO induced an increase in cytosolic Ca2+ concentration in colonic myocytes. It also elicited myocyte membrane hyperpolarization that amounted to −10.6 ± 1.1 mV. ODQ (10 μM) and Apamin (1 μM), a selective inhibitor of small conductance Ca2+-activated K+ channels (SKca), strongly antagonized this effect. We conclude that HNO relaxes the gastrointestinal tract musculature by hyperpolarizing myocytes via activation of the sGC/cGMP pathway similarly to NO, not only inhibiting the RhoK and activating MLCP as do both NO and H2S but also increasing cytosolic Ca2+ for activation of SKCa contributing to hyperpolarization.
Collapse
Affiliation(s)
- Mirko Gastreich-Seelig
- Institute for Veterinary Physiology and Biochemistry, Justus-Liebig-University Giessen, Giessen, Germany
| | - Marcel Jimenez
- Department of Cell Biology, Physiology and Immunology and Neurosciences Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ervice Pouokam
- Institute for Veterinary Physiology and Biochemistry, Justus-Liebig-University Giessen, Giessen, Germany
| |
Collapse
|
18
|
Ahmad A, Riaz Z, Sattar MA, Khan SA, John EJ, Rashid S, Shah STA, Rafiq MA, Azam M, Qamar R. Effect of gasotransmitters treatment on expression of hypertension, vascular and cardiac remodeling and hypertensive nephropathy genes in left ventricular hypertrophy. Gene 2020; 737:144479. [PMID: 32068124 DOI: 10.1016/j.gene.2020.144479] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 02/09/2020] [Accepted: 02/12/2020] [Indexed: 01/09/2023]
Abstract
BACKGROUND Cardiac and renal dysfunction are often co-morbid pathologies leading to worsening prognosis resulting in difficulty in therapy of left ventricular hypertrophy (LVH). The aim of the current study was to determine the changes in expression of human ortholog genes of hypertension, vascular and cardiac remodeling and hypertensive nephropathy phenotypes under normal, disease and upon treatment with gasotransmitter including H2S (hydrogen sulphide), NO (nitric oxide) and combined (H2S + NO). METHODS A total of 72 Wistar Kyoto rats (with equivalent male and female animals) were recruited in the present study where LVH rat models were treated with H2S and NO individually as well as with both combined. Cardiac and renal physical indices were recorded and relative gene expression were quantified. RESULTS Both cardiac and renal physical indices were significantly modified with individual as well as combined H2S + NO treatment in control and LVH rats. Expression analysis revealed, hypertension, vascular remodeling genes ACE, TNFα and IGF1, mRNAs to be significantly higher (P ≤ 0.05) in the myocardia and renal tissues of LVH rats, while individual and combined H2S + NO treatment resulted in lowering the gene expression to normal/near to normal levels. The cardiac remodeling genes MYH7, TGFβ, SMAD4 and BRG1 expression were significantly up-regulated (P ≤ 0.05) in the myocardia of LVH where the combined H2S + NO treatment resulted in normal/near to normal expression more effectively as compared to individual treatments. In addition individual as well as combined H2S and NO treatment significantly decreased PKD1 expression in renal tissue, which was up-regulated in LVH rats (P ≤ 0.05). CONCLUSIONS The reduction in hemodynamic parameters and cardiac indices as well as alteration in gene expression on treatment of LVH rat model indicates important therapeutic potential of combined treatment with H2S + NO gasotransmitters in hypertension and cardiac hypertrophy when present as co-morbidity with renal complications.
Collapse
Affiliation(s)
- Ashfaq Ahmad
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang, Malaysia; Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - Zainab Riaz
- Translational Genomics Laboratory, Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | | | - Safia Akhtar Khan
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang, Malaysia
| | | | - Sumbal Rashid
- Translational Genomics Laboratory, Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Syed Tahir Abbas Shah
- Translational Genomics Laboratory, Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Muhammad Arshad Rafiq
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang, Malaysia; Translational Genomics Laboratory, Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Maleeha Azam
- Translational Genomics Laboratory, Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan.
| | - Raheel Qamar
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang, Malaysia; Pakistan Academy of Sciences, Islamabad, Pakistan
| |
Collapse
|
19
|
Induction of caveolin-3/eNOS complex by nitroxyl (HNO) ameliorates diabetic cardiomyopathy. Redox Biol 2020; 32:101493. [PMID: 32182574 PMCID: PMC7078438 DOI: 10.1016/j.redox.2020.101493] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 02/24/2020] [Accepted: 03/03/2020] [Indexed: 12/15/2022] Open
Abstract
Nitroxyl (HNO), one-electron reduced and protonated sibling of nitric oxide (NO), is a potential regulator of cardiovascular functions. It produces positive inotropic, lusitropic, myocardial anti-hypertrophic and vasodilator properties. Despite of these favorable actions, the significance and the possible mechanisms of HNO in diabetic hearts have yet to be fully elucidated. H9c2 cells or primary neonatal mouse cardiomyocytes were incubated with normal glucose (NG) or high glucose (HG). Male C57BL/6 mice received intraperitoneal injection of streptozotocin (STZ) to induce diabetes. Here, we demonstrated that the baseline fluorescence signals of HNO in H9c2 cells were reinforced by both HNO donor Angeli's salt (AS), and the mixture of hydrogen sulfide (H2S) donor sodium hydrogen sulfide (NaHS) and NO donor sodium nitroprusside (SNP), but decreased by HG. Pretreatment with AS significantly reduced HG-induced cell vitality injury, apoptosis, reactive oxygen species (ROS) generation, and hypertrophy in H9c2 cells. This effect was mediated by induction of caveolin-3 (Cav-3)/endothelial nitric oxide (NO) synthase (eNOS) complex. Disruption of Cav-3/eNOS by pharmacological manipulation or small interfering RNA (siRNA) abolished the protective effects of AS in HG-incubated H9c2 cells. In STZ-induced diabetic mice, administration of AS ameliorated the development of diabetic cardiomyopathy, as evidenced by improved cardiac function and reduced cardiac hypertrophy, apoptosis, oxidative stress and myocardial fibrosis without affecting hyperglycemia. This study shed light on how interaction of NO and H2S regulates cardiac pathology and provide new route to treat diabetic cardiomyopathy with HNO.
Collapse
|
20
|
Liu P, Li B, Fu L, Huang Y, Man M, Qi J, Sun X, Kang Q, Shen D, Chen L. Hybrid Three Dimensionally Printed Paper-Based Microfluidic Platform for Investigating a Cell's Apoptosis and Intracellular Cross-Talk. ACS Sens 2020; 5:464-473. [PMID: 32013403 DOI: 10.1021/acssensors.9b02205] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In this paper, we first proposed a novel hybrid three-dimensional (3D) printed and paper-based microfluidic platform and applied it for investigating the cell's apoptosis and intracellular cross-talk. The fabrication of a 3D-printed microfluidic chip is much easier than polydimethylsiloxane (PDMS) chip and can be applied in many common labs without soft lithogrophy fabrication equipment. Moreover, 3D printing can be perfectly combined with paper-based chips that can provide 3D scaffold for cell culture and analysis. In addition, these paper chips are disposable after use, greatly reducing the experimental cost. We integrated "Christmas Tree" structure with the top layer of the 3D-printed microfluidic chip to generate a continuous concentration gradient, and the bottom layer contained paper-based chips as cell culture area. The two-layer structure allows the concentration gradient forming layer to be separated from the cell culture layer, which can simplify the planting of cells in the microfluidic chip and make sure the cells stay in the culture chambers and don't clog the microfluidic channels. Applying this hybrid platform, we examined the effect of H2S on cancer cells. Continuous exposure to a low concentration of H2S inhibited cancer cell SMMC-7721 proliferation by inducing cell apoptosis. We also found that two gaseous molecules H2S and NO have cross-talk in cancer cells; they formed bioactive intermediate polysulfides in cancer cells. It is expected that this novel hybrid 3D-printed and paper-based microfluidic platform will have widespread application prospects in cell investigation.
Collapse
Affiliation(s)
- Ping Liu
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China
- CAS Key Laboratory of Coastal Environment Processes and Ecological Remediation, The Research Center for Coastal Environment Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Bowei Li
- CAS Key Laboratory of Coastal Environment Processes and Ecological Remediation, The Research Center for Coastal Environment Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Longwen Fu
- CAS Key Laboratory of Coastal Environment Processes and Ecological Remediation, The Research Center for Coastal Environment Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Yan Huang
- CAS Key Laboratory of Coastal Environment Processes and Ecological Remediation, The Research Center for Coastal Environment Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Mingsan Man
- CAS Key Laboratory of Coastal Environment Processes and Ecological Remediation, The Research Center for Coastal Environment Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Ji Qi
- CAS Key Laboratory of Coastal Environment Processes and Ecological Remediation, The Research Center for Coastal Environment Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Xiyan Sun
- CAS Key Laboratory of Coastal Environment Processes and Ecological Remediation, The Research Center for Coastal Environment Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Qi Kang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China
| | - Dazhong Shen
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environment Processes and Ecological Remediation, The Research Center for Coastal Environment Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| |
Collapse
|
21
|
Sun HJ, Lee WT, Leng B, Wu ZY, Yang Y, Bian JS. Nitroxyl as a Potential Theranostic in the Cancer Arena. Antioxid Redox Signal 2020; 32:331-349. [PMID: 31617376 DOI: 10.1089/ars.2019.7904] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Significance: As one-electron reduced molecule of nitric oxide (NO), nitroxyl (HNO) has gained enormous attention because of its novel physiological or pharmacological properties, ranging from cardiovascular protective actions to antitumoricidal effects. Recent Advances: HNO is emerging as a new entity with therapeutic advantages over its redox sibling, NO. The interests in the chemical, pharmacological, and biological characteristics of HNO have broadened our current understanding of its role in physiology and pathophysiology. Critical Issues: In particular, the experimental evidence suggests the therapeutic potential of HNO in tumor pharmacology, such as neuroblastoma, gastrointestinal tumor, ovarian, lung, and breast cancers. Indeed, HNO donors have been demonstrated to attenuate tumor proliferation and angiogenesis. Future Directions: In this review, the generation and detection of HNO are outlined, and the roles of HNO in cancer progression are further discussed. We anticipate that the completion of this review might give novel insights into the roles of HNO in cancer pharmacology and open up a novel field of cancer therapy based on HNO.
Collapse
Affiliation(s)
- Hai-Jian Sun
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Wei-Thye Lee
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Bin Leng
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Zhi-Yuan Wu
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Yong Yang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, China
| | - Jin-Song Bian
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,National University of Singapore (Suzhou) Research Institute, Suzhou, China
| |
Collapse
|
22
|
Kulkarni-Chitnis M, Mitchell-Bush L, Belford R, Robinson J, Opere CA, Ohia SE, Mbye YFN. Interaction between hydrogen sulfide, nitric oxide, and carbon monoxide pathways in the bovine isolated retina. AIMS Neurosci 2019; 6:104-115. [PMID: 32341971 PMCID: PMC7179363 DOI: 10.3934/neuroscience.2019.3.104] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 05/28/2019] [Indexed: 01/27/2023] Open
Abstract
Purpose Nitric oxide (NO), carbon monoxide (CO) and hydrogen sulfide (H2S) are physiologically relevant gaseous neurotransmitters that are endogenously produced in mammalian tissues. In the present study, we investigated the possibility that NO and CO can regulate the endogenous levels of H2S in bovine isolated neural retina. Methods Isolated bovine neural retina were homogenized and tissue homogenates were treated with a NO synthase inhibitor, NO donor, heme oxygenase-1 inhibitor, and/donor. H2S concentrations in bovine retinal homogenates were measured using a well-established colorimetric assay. Results L-NAME (300 nM–500 µM) caused a concentration-dependent decrease in basal endogenous levels of H2S by 86.2%. On the other hand, SNP (10–300 µM) elicited a concentration-related increase in H2S levels from 18.3 nM/mg of protein to 65.7 nM/mg of protein. ZnPP-IX (300 nM–10 µM) caused a concentration-dependent increase in the endogenous production of H2S whereas hemin (300 nM–20 µM) attenuated the basal levels of H2S. Conclusion We conclude that changes in the biosynthesis and availability of both NO and CO can interfere with the pathway/s involved in the production of H2S in the retina. The demonstrated ability of NO, CO and H2S to interact in the mammalian retina affirms a physiological/pharmacological role for these gaseous mediators in the eye.
Collapse
Affiliation(s)
- Madhura Kulkarni-Chitnis
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX 77004, USA
| | - Leah Mitchell-Bush
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX 77004, USA
| | - Remmington Belford
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX 77004, USA
| | - Jenaye Robinson
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX 77004, USA
| | - Catherine A Opere
- Department of Pharmacy Sciences, School of Pharmacy and Health Professions, Creighton University, Omaha, NE 68178, USA
| | - Sunny E Ohia
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX 77004, USA
| | - Ya Fatou N Mbye
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX 77004, USA
| |
Collapse
|
23
|
Mitidieri E, Gurgone D, Caiazzo E, Tramontano T, Cicala C, Sorrentino R, d'Emmanuele di Villa Bianca R. L-cysteine/cystathionine-β-synthase-induced relaxation in mouse aorta involves a L-serine/sphingosine-1-phosphate/NO pathway. Br J Pharmacol 2019; 177:734-744. [PMID: 30835815 DOI: 10.1111/bph.14654] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 12/20/2018] [Accepted: 01/30/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND PURPOSE Among the three enzymes involved in the transsulfuration pathway, only cystathionine β-synthase (CBS) converts L-cysteine into L-serine and H2 S. L-serine is also involved in the de novo sphingolipid biosynthesis through a condensation with palmitoyl-CoA by the action of serine palmitoyltransferase (SPT). Here, we have investigated if L-serine contributes to the vasorelaxant effect. EXPERIMENTAL APPROACH The presence of CBS in mouse vascular endothelium was assessed by immunohistochemistry and immunofluorescence. The relaxant activity of L-serine (0.1-300 μM) and L-cysteine (0.1-300 μM) was estimated on mouse aorta rings, with or without endothelium. A pharmacological modulation study evaluated NO and sphingosine-1-phosphate (S1P) involvement. Levels of NO and S1P were also measured following incubation of aorta tissue with either L-serine (1, 10, and 100 μM) or L-cysteine (10, 100 μM, and 1 mM). KEY RESULTS L-serine relaxed aorta rings in an endothelium-dependent manner. The vascular effect was reduced by L-NG-nitro-arginine methyl ester and wortmaninn. A similar pattern was obtained with L-cysteine. The S1P1 receptor antagonist (W146) or the SPT inhibitor (myriocin) reduced either L-serine or L-cysteine relaxant effect. L-serine or L-cysteine incubation increased NO and S1P levels in mouse aorta. CONCLUSIONS AND IMPLICATIONS L-serine, a by-product formed within the transsulfuration pathway starting from L-cysteine via CBS, contributes to the vasodilator action of L-cysteine. The L-serine effect involves both NO and S1P. This mechanism could be involved in the marked dysregulation of vascular tone in hyperhomocysteinemic patients (CBS deficiency) and may represent a feasible therapeutic target. LINKED ARTICLES This article is part of a themed section on Hydrogen Sulfide in Biology & Medicine. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v177.4/issuetoc.
Collapse
Affiliation(s)
- Emma Mitidieri
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Danila Gurgone
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Elisabetta Caiazzo
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Teresa Tramontano
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Carla Cicala
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Raffaella Sorrentino
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | | |
Collapse
|
24
|
Abstract
Interactions between small inorganic molecules are fundamental to the understanding of basic reaction mechanisms and some of the initial processes of chemical evolution that preceded organic molecules and led to the origin of life. The kinetics of these processes are suitable for the fast generation of a variety of new chemical entities and the propagation of a cascade of chemical reactions, a property that is ideal for signaling purposes even in biological systems. NO and H2S are such molecules that are nowadays recognized as biological gasotransmitters involved in the regulation of physiological functions through protein modifications such as S-nitrosothiol, disulfide, and persulfide formations. In this Viewpoint, we review the current understanding of interactions of NO (and organic and metal nitrosyl species) with H2S, in both chemical and biochemical contexts. Through the formation of HNO, (H)SNO (and its isomers), (H)SSNO, and polysulfides, these two gasotransmitters initiate reaction networks with significant roles in cell signaling. The chemical reactivities and biological effects of these nitrogen and sulfur species are still unresolved, and, thus, a cross-talk between all of them represents a challenging interdisciplinary field that awaits exciting new findings. We tackle some of the intriguing and open questions and provide perspectives for future research directions.
Collapse
Affiliation(s)
- Ivana Ivanovic-Burmazovic
- Department of Chemistry and Pharmacy , Friedrich-Alexander University (FAU) Erlangen-Nuremberg , 91054 Erlangen , Germany
| | - Milos R Filipovic
- Université de Bordeaux, IBGC, UMR 5095 , F-33077 Bordeaux , France.,CNRS, IBGC, UMR 5095 , F-33077 Bordeaux , France
| |
Collapse
|
25
|
Huang Y, Zhang X, He N, Wang Y, Kang Q, Shen D, Yu F, Chen L. Imaging of anti-inflammatory effects of HNO via a near-infrared fluorescent probe in cells and in rat gouty arthritis model. J Mater Chem B 2018; 7:305-313. [PMID: 32254555 DOI: 10.1039/c8tb02494d] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Nitroxyl (HNO) plays a crucial role in anti-inflammatory effects via the inhibition of inflammatory pathways, but the details of the endogenous generation of HNO still remain challenging owing to the complex biosynthetic pathways, in which the interaction between H2S and NO simultaneously generates HNO and polysulfides (H2Sn) in mitochondria. Moreover, nearly all the available fluorescent probes for HNO are utilized for imaging HNO in cells and tissues, instead of the in situ real-time detection of the simultaneous formation of HNO and H2Sn in mitochondria and animals. Here, we have developed a mitochondria-targeting near-infrared fluorescent probe, namely, Mito-JN, to detect the generation of HNO in cells and a rat model. The probe consists of three moieties: Aza-BODIPY as a fluorescent signal transducer, a triphenylphosphonium cation as a mitochondria-targeting agent, and a diphenylphosphinobenzoyl group as an HNO-responsive unit. The response mechanism is based on an aza-ylide intramolecular ester aminolysis reaction with fluorescence emissions on. Mito-JN displays high selectivity and sensitivity for HNO over various other biologically relevant species. Mito-JN was successfully used for the detection of the endogenous generation of HNO, which is derived from the crosstalk between H2S and NO in living cells. The additional generation of H2Sn was also confirmed using our previous probe Cy-Mito. The anti-inflammatory effect of HNO was examined in a cell model of LPS-induced inflammation and a rat model of gouty arthritis. The results imply that our probe is a good candidate for the assessment of the protective effects of HNO in inflammatory processes.
Collapse
Affiliation(s)
- Yan Huang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
An Update on Hydrogen Sulfide and Nitric Oxide Interactions in the Cardiovascular System. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:4579140. [PMID: 30271527 PMCID: PMC6151216 DOI: 10.1155/2018/4579140] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 07/25/2018] [Indexed: 01/19/2023]
Abstract
Hydrogen sulfide (H2S) and nitric oxide (NO) are now recognized as important regulators in the cardiovascular system, although they were historically considered as toxic gases. As gaseous transmitters, H2S and NO share a wide range of physical properties and physiological functions: they penetrate into the membrane freely; they are endogenously produced by special enzymes, they stimulate endothelial cell angiogenesis, they regulate vascular tone, they protect against heart injury, and they regulate target protein activity via posttranslational modification. Growing evidence has determined that these two gases are not independent regulators but have substantial overlapping pathophysiological functions and signaling transduction pathways. H2S and NO not only affect each other's biosynthesis but also produce novel species through chemical interaction. They play a regulatory role in the cardiovascular system involving similar signaling mechanisms or molecular targets. However, the natural precise mechanism of the interactions between H2S and NO remains unclear. In this review, we discuss the current understanding of individual and interactive regulatory functions of H2S and NO in biosynthesis, angiogenesis, vascular one, cardioprotection, and posttranslational modification, indicating the importance of their cross-talk in the cardiovascular system.
Collapse
|
27
|
Wu D, Hu Q, Tan B, Rose P, Zhu D, Zhu YZ. Amelioration of mitochondrial dysfunction in heart failure through S-sulfhydration of Ca 2+/calmodulin-dependent protein kinase II. Redox Biol 2018; 19:250-262. [PMID: 30195191 PMCID: PMC6128039 DOI: 10.1016/j.redox.2018.08.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 08/06/2018] [Accepted: 08/17/2018] [Indexed: 01/08/2023] Open
Abstract
Aims Ca2+/calmodulin-dependent protein kinase II (CaMKII) plays a critical role in the development of heart failure and in the induction of myocardial mitochondrial injury. Recent evidence has shown that hydrogen sulfide (H2S), produced by the enzyme cystathionine γ-lyase (CSE), improves the cardiac function in heart failure. However, the cellular mechanisms for this remain largely unknown. The present study was conducted to determine the functional role of H2S in protecting against mitochondrial dysfunction in heart failure through the inhibition of CaMKII using wild type and CSE knockout mouse models. Results Treatment with S-propyl-L-cysteine (SPRC) or sodium hydrosulfide (NaHS), modulators of blood H2S levels, attenuated the development of heart failure in animals, reduced lipid peroxidation, and preserved mitochondrial function. The inhibition CaMKII phosphorylation by SPRC and NaHS as demonstrated using both in vivo and in vitro models corresponded with the cardioprotective effects of these compounds. Interestingly, CaMKII activity was found to be elevated in CSE knockout (CSE-/-) mice as compared to wild type animals and the phosphorylation status of CaMKII appeared to relate to the severity of heart failure. Importantly, in wild type mice SPRC was found to promote S-sulfhydration of CaMKII leading to reduced activity of this protein, however, in CSE-/- mice S-sulfhydration was abolished following SPRC treatment. Innovation and conclusions A novel mechanism depicting a role of S-sulfhydration in the regulation of CaMKII is presented. SPRC mediated S-sulfhydration of CaMKII was found to inhibit CAMKII activity and to preserve cardiovascular homeostasis.
Collapse
Affiliation(s)
- Dan Wu
- Department of Pharmacy, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qingxun Hu
- Mitochondria and Metabolism Center, Department of Anesthesiology & Pain Medicine, University of Washington, Seattle, USA
| | - Bo Tan
- School of Pharmacy, Fudan University, Shanghai, China
| | - Peter Rose
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, United Kingdom
| | - Deqiu Zhu
- Department of Pharmacy, Tongji Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Yi Zhun Zhu
- School of Pharmacy, Macau University of Science and Technology, Macau, China; School of Pharmacy, Fudan University, Shanghai, China.
| |
Collapse
|
28
|
Interaction between nitric oxide and renal α1-adrenoreceptors mediated vasoconstriction in rats with left ventricular hypertrophyin Wistar Kyoto rats. PLoS One 2018; 13:e0189386. [PMID: 29447158 PMCID: PMC5844246 DOI: 10.1371/journal.pone.0189386] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 11/26/2017] [Indexed: 01/19/2023] Open
Abstract
Left ventricular hypertrophy (LVH) is associated with decreased responsiveness of
renal α1-adrenoreceptors subtypes to adrenergic agonists. Nitric
oxide donors are known to have antihypertrophic effects however their impact on
responsiveness of renal α1-adrenoreceptors subtypes is unknown. This
study investigated the impact of nitric oxide (NO) and its potential interaction
with the responsiveness of renal α1-adrenoreceptors subtypes to
adrenergic stimulation in rats with left ventricular hypertrophy (LVH). This
study also explored the impact of NO donor on CSE expression in normal and LVH
kidney. LVH was induced using isoprenaline and caffeine in drinking water for 2
weeks while NO donor (L-arginine, 1.25g/Lin drinking water) was given for 5
weeks. Intrarenal noradrenaline, phenylephrine and methoxamine responses were
determined in the absence and presence of selective α1-adrenoceptor
antagonists, 5- methylurapidil (5-MeU), chloroethylclonidine (CeC) and BMY 7378.
Renal cortical endothelial nitric oxide synthase mRNA was upregulated 7 fold
while that of cystathione γ lyase was unaltered in the NO treated LVH rats
(LVH-NO) group compared to LVH group. The responsiveness of renal
α1A, α1B and α1D-adrenoceptors in the low dose
and high dose phases of 5-MeU, CEC and BMY7378 to adrenergic agonists was
increased along with cGMP in the kidney of LVH-NO group. These findings suggest
that exogenous NO precursor up-regulated the renal eNOS/NO/cGMP pathway in LVH
rats and resulted in augmented α1A, α1B and α1D
adrenoreceptors responsiveness to the adrenergic agonists. There is a positive
interaction between H2S and NO production in normal animals but this
interaction appears absent in LVH animals.
Collapse
|
29
|
Filipovic MR, Zivanovic J, Alvarez B, Banerjee R. Chemical Biology of H 2S Signaling through Persulfidation. Chem Rev 2018; 118:1253-1337. [PMID: 29112440 PMCID: PMC6029264 DOI: 10.1021/acs.chemrev.7b00205] [Citation(s) in RCA: 692] [Impact Index Per Article: 98.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Signaling by H2S is proposed to occur via persulfidation, a posttranslational modification of cysteine residues (RSH) to persulfides (RSSH). Persulfidation provides a framework for understanding the physiological and pharmacological effects of H2S. Due to the inherent instability of persulfides, their chemistry is understudied. In this review, we discuss the biologically relevant chemistry of H2S and the enzymatic routes for its production and oxidation. We cover the chemical biology of persulfides and the chemical probes for detecting them. We conclude by discussing the roles ascribed to protein persulfidation in cell signaling pathways.
Collapse
Affiliation(s)
- Milos R. Filipovic
- Univeristy of Bordeaux, IBGC, UMR 5095, F-33077 Bordeaux, France
- CNRS, IBGC, UMR 5095, F-33077 Bordeaux, France
| | - Jasmina Zivanovic
- Univeristy of Bordeaux, IBGC, UMR 5095, F-33077 Bordeaux, France
- CNRS, IBGC, UMR 5095, F-33077 Bordeaux, France
| | - Beatriz Alvarez
- Laboratorio de Enzimología, Facultad de Ciencias and Center for Free Radical and Biomedical Research, Universidad de la Republica, 11400 Montevideo, Uruguay
| | - Ruma Banerjee
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109-0600, United States
| |
Collapse
|
30
|
Olson KR. H 2S and polysulfide metabolism: Conventional and unconventional pathways. Biochem Pharmacol 2017; 149:77-90. [PMID: 29248597 DOI: 10.1016/j.bcp.2017.12.010] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 12/12/2017] [Indexed: 12/13/2022]
Abstract
It is now well established that hydrogen sulfide (H2S) is an effector of a wide variety of physiological processes. It is also clear that many of the effects of H2S are mediated through reactions with cysteine sulfur on regulatory proteins and most of these are not mediated directly by H2S but require prior oxidation of H2S and the formation of per- and polysulfides (H2Sn, n = 2-8). Attendant with understanding the regulatory functions of H2S and H2Sn is an appreciation of the mechanisms that control, i.e., both increase and decrease, their production and catabolism. Although a number of standard "conventional" pathways have been described and well characterized, novel "unconventional" pathways are continuously being identified. This review summarizes our current knowledge of both the conventional and unconventional.
Collapse
Affiliation(s)
- Kenneth R Olson
- Indiana University School of Medicine - South Bend, South Bend, IN 46617, USA.
| |
Collapse
|
31
|
Wu D, Hu Q, Xiong Y, Zhu D, Mao Y, Zhu YZ. Novel H 2S-NO hybrid molecule (ZYZ-803) promoted synergistic effects against heart failure. Redox Biol 2017; 15:243-252. [PMID: 29288927 PMCID: PMC5975222 DOI: 10.1016/j.redox.2017.11.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 11/20/2017] [Indexed: 11/20/2022] Open
Abstract
Therapeutic strategies that increase hydrogen sulfide (H2S) or nitric oxide (NO) are cytoprotective in various models of cardiovascular injury. However, the nature of interaction between H2S and NO in heart failure and the underlying mechanisms for the protective effects remain undefined. The present study tested the cardioprotective effect of ZYZ-803, a novel synthetic H2S-NO hybrid molecule that decomposed to release H2S and NO. ZYZ-803 dose dependently improved left ventricular remodeling and preserved left ventricular function in the setting of isoprenaline-induced heart failure. The cardioprotective effect of ZYZ-803 is significantly more potent than that of H2S and/or NO donor alone. ZYZ-803 stimulated the expression of cystathionine γ-lyase (CSE) for H2S generation and the activity of endothelial NO synthase (eNOS) for NO production. Blocking CSE and/or eNOS suppressed ZYZ-803-induced H2S and NO production and cardioprotection. ZYZ-803 increased vascular endothelial growth factor (VEGF) concentration and cyclic guanosine 5′-monophosphate (cGMP) level. Moreover, ZYZ-803 upregulated the endogenous antioxidants, glutathione peroxidase (GPx) and heme oxygenase 1 (HO-1). These findings indicate that H2S and NO cooperatively attenuates left ventricular remodeling and dysfunction during the development of heart failure through VEGF/cGMP pathway and ZYZ-803 provide expanding insight into strategies for treatment of heart failure.
Collapse
Affiliation(s)
- Dan Wu
- Department of Pharmacy, Tongji Hospital, Tongji University School of Medicine, Shanghai, China; School of Pharmacy, Macau University of Science and Technology, Macau, China
| | - Qingxun Hu
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China; Mitochondria and Metabolism Center, Department of Anesthesiology & Pain Medicine, University of Washington, Seattle, USA
| | - Ying Xiong
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Deqiu Zhu
- Department of Pharmacy, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yicheng Mao
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China.
| | - Yi Zhun Zhu
- School of Pharmacy, Macau University of Science and Technology, Macau, China.
| |
Collapse
|
32
|
Sulfide Homeostasis and Nitroxyl Intersect via Formation of Reactive Sulfur Species in Staphylococcus aureus. mSphere 2017; 2:mSphere00082-17. [PMID: 28656172 PMCID: PMC5480029 DOI: 10.1128/msphere.00082-17] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 06/02/2017] [Indexed: 12/30/2022] Open
Abstract
Hydrogen sulfide (H2S) is a toxic molecule and a recently described gasotransmitter in vertebrates whose function in bacteria is not well understood. In this work, we describe the transcriptomic response of the major human pathogen Staphylococcus aureus to quantified changes in levels of cellular organic reactive sulfur species, which are effector molecules involved in H2S signaling. We show that nitroxyl (HNO), a recently described signaling intermediate proposed to originate from the interplay of H2S and nitric oxide, also induces changes in cellular sulfur speciation and transition metal homeostasis, thus linking sulfide homeostasis to an adaptive response to antimicrobial reactive nitrogen species. Staphylococcus aureus is a commensal human pathogen and a major cause of nosocomial infections. As gaseous signaling molecules, endogenous hydrogen sulfide (H2S) and nitric oxide (NO·) protect S. aureus from antibiotic stress synergistically, which we propose involves the intermediacy of nitroxyl (HNO). Here, we examine the effect of exogenous sulfide and HNO on the transcriptome and the formation of low-molecular-weight (LMW) thiol persulfides of bacillithiol, cysteine, and coenzyme A as representative of reactive sulfur species (RSS) in wild-type and ΔcstR strains of S. aureus. CstR is a per- and polysulfide sensor that controls the expression of a sulfide oxidation and detoxification system. As anticipated, exogenous sulfide induces the cst operon but also indirectly represses much of the CymR regulon which controls cysteine metabolism. A zinc limitation response is also observed, linking sulfide homeostasis to zinc bioavailability. Cellular RSS levels impact the expression of a number of virulence factors, including the exotoxins, particularly apparent in the ΔcstR strain. HNO, like sulfide, induces the cst operon as well as other genes regulated by exogenous sulfide, a finding that is traced to a direct reaction of CstR with HNO and to an endogenous perturbation in cellular RSS, possibly originating from disassembly of Fe-S clusters. More broadly, HNO induces a transcriptomic response to Fe overload, Cu toxicity, and reactive oxygen species and reactive nitrogen species and shares similarity with the sigB regulon. This work reveals an H2S/NO· interplay in S. aureus that impacts transition metal homeostasis and virulence gene expression. IMPORTANCE Hydrogen sulfide (H2S) is a toxic molecule and a recently described gasotransmitter in vertebrates whose function in bacteria is not well understood. In this work, we describe the transcriptomic response of the major human pathogen Staphylococcus aureus to quantified changes in levels of cellular organic reactive sulfur species, which are effector molecules involved in H2S signaling. We show that nitroxyl (HNO), a recently described signaling intermediate proposed to originate from the interplay of H2S and nitric oxide, also induces changes in cellular sulfur speciation and transition metal homeostasis, thus linking sulfide homeostasis to an adaptive response to antimicrobial reactive nitrogen species.
Collapse
|
33
|
Xu YJ, Elimban V, Dhalla NS. Suppression of phosphorylated MAPK and caspase 3 by carbon dioxide. Mol Cell Biochem 2017; 436:23-28. [PMID: 28555276 DOI: 10.1007/s11010-017-3073-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 05/21/2017] [Indexed: 01/26/2023]
Abstract
Although CO2 is produced during the oxidation of different substrates in all types of cells, the role of this gas in the regulation of cellular function is not clearly understood. Since changes in several signal transduction as well as apoptotic, anti-apoptotic, and other proteins are known to modify cellular function, we investigated if some of these proteins are altered upon incubating the rat hind leg skeletal muscle in a medium enriched with CO2 (1000-1200 ppm) for 30 min. CO2 was observed to depress phosphorylated levels of ERK1 (P44) and ERK2 (P42) without affecting the unphosphorylated content of these MAPK proteins. On the other hand, no change in p38 MAPK protein was found but the content of its degradation product 30 kDa proteins (both phosphorylated and unphosphorylated) was decreased. No alterations in the content of other signaling proteins (PKA and Akt), inflammatory molecule (TNF-α), and vascular endothelial growth factor (VEGF) were seen upon exposure of the muscle to CO2. The content for apoptotic and anti-apoptotic proteins (Bad and Bcl2), except for a decrease in caspase 3, were also not affected by CO2. These results indicate that CO2 may serve as a gasotransmitter to regulate cellular function by depressing MAPK and caspase 3 activities.
Collapse
Affiliation(s)
- Yan-Jun Xu
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, 351 Tache Avenue, Winnipeg, MB, R2H 2A6, Canada
- Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Vijayan Elimban
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, 351 Tache Avenue, Winnipeg, MB, R2H 2A6, Canada.
- Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.
| | - Naranjan S Dhalla
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, 351 Tache Avenue, Winnipeg, MB, R2H 2A6, Canada
- Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
34
|
Zhou Y, Zhang X, Yang S, Li Y, Qing Z, Zheng J, Li J, Yang R. Ratiometric Visualization of NO/H 2S Cross-Talk in Living Cells and Tissues Using a Nitroxyl-Responsive Two-Photon Fluorescence Probe. Anal Chem 2017; 89:4587-4594. [PMID: 28343380 DOI: 10.1021/acs.analchem.7b00073] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
It is of scientific significance to explore the intricate relationship between two crucial gasotransmitters nitric oxide (NO) and hydrogen sulfide (H2S) because they exert similar and interdependent biological actions within the living organisms. Nevertheless, visualization of the NO/H2S crosstalk using effective molecular imaging tools remains challenging. To address this issue, and given that nitroxyl (HNO) has been implicated as the interdependent production of NO and H2S via a network of cascading chemical reactions, we herein design a ratiometric two-photon fluorescent probe for HNO, termed TP-Rho-HNO, which consists of benzo[h]chromene-rhodol scaffold as two-photon energy transfer cassette with phosphine moiety as specific HNO recognition unit. The newly proposed probe has been successfully applied in ratiometric two-photon bioimaging of endogenous HNO derived from NO and H2S interaction in the human umbilical vein cells (HUVECs) and as well as in rat brain tissues. Intriguingly, the imaging results consistently demonstrate that the mutually dependent upgeneration of H2S and NO are present in living biosystems, indicating that this molecular probe would provide a powerful approach to elucidate the chemical foundation for the anfractuous cross-talk between the NO and H2S signaling pathways in biology.
Collapse
Affiliation(s)
- Yibo Zhou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, and Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University , Changsha, 410082, P. R. China
| | - Xiufang Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, and Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University , Changsha, 410082, P. R. China
| | - Sheng Yang
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, School of Chemistry and Biological Engineering, Changsha University of Science and Technology , Changsha 410114, P. R. China
| | - Yuan Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, and Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University , Changsha, 410082, P. R. China
| | - Zhihe Qing
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, School of Chemistry and Biological Engineering, Changsha University of Science and Technology , Changsha 410114, P. R. China
| | - Jing Zheng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, and Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University , Changsha, 410082, P. R. China
| | - Jishan Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, and Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University , Changsha, 410082, P. R. China
| | - Ronghua Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, and Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University , Changsha, 410082, P. R. China.,Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, School of Chemistry and Biological Engineering, Changsha University of Science and Technology , Changsha 410114, P. R. China
| |
Collapse
|
35
|
Marcolongo JP, Zeida A, Slep LD, Olabe JA. Thionitrous Acid/Thionitrite and Perthionitrite Intermediates in the “Crosstalk” of NO and H 2 S. ADVANCES IN INORGANIC CHEMISTRY 2017. [DOI: 10.1016/bs.adioch.2017.02.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
36
|
Szabo C. Hydrogen sulfide, an enhancer of vascular nitric oxide signaling: mechanisms and implications. Am J Physiol Cell Physiol 2016; 312:C3-C15. [PMID: 27784679 DOI: 10.1152/ajpcell.00282.2016] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 10/17/2016] [Indexed: 12/15/2022]
Abstract
Nitric oxide (NO) vascular signaling has long been considered an independent, self-sufficient pathway. However, recent data indicate that the novel gaseous mediator, hydrogen sulfide (H2S), serves as an essential enhancer of vascular NO signaling. The current article overviews the multiple levels at which this enhancement takes place. The first level of interaction relates to the formation of biologically active hybrid S/N species and the H2S-induced stimulation of NO release from its various stable "pools" (e.g., nitrite). The next interactions occur on the level of endothelial calcium mobilization and PI3K/Akt signaling, increasing the specific activity of endothelial NO synthase (eNOS). The next level of interaction occurs on eNOS itself; H2S directly interacts with the enzyme: sulfhydration of critical cysteines stabilizes it in its physiological, dimeric state, thereby optimizing eNOS-derived NO production and minimizing superoxide formation. Yet another level of interaction, further downstream, occurs at the level of soluble guanylate cyclase (sGC): H2S stabilizes sGC in its NO-responsive, physiological, reduced form. Further downstream, H2S inhibits the vascular cGMP phosphodiesterase (PDE5), thereby prolonging the biological half-life of cGMP. Finally, H2S-derived polysulfides directly activate cGMP-dependent protein kinase (PKG). Taken together, H2S emerges an essential endogenous enhancer of vascular NO signaling, contributing to vasorelaxation and angiogenesis. The functional importance of the H2S/NO cooperative interactions is highlighted by the fact that H2S loses many of its beneficial cardiovascular effects when eNOS is inactive.
Collapse
Affiliation(s)
- Csaba Szabo
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas
| |
Collapse
|
37
|
Hu Q, Wu D, Ma F, Yang S, Tan B, Xin H, Gu X, Chen X, Chen S, Mao Y, Zhu YZ. Novel Angiogenic Activity and Molecular Mechanisms of ZYZ-803, a Slow-Releasing Hydrogen Sulfide-Nitric Oxide Hybrid Molecule. Antioxid Redox Signal 2016; 25:498-514. [PMID: 27174595 DOI: 10.1089/ars.2015.6607] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
AIMS Revascularization strategies and gene therapy for treatment of ischemic diseases remain to be fully optimized for use in human and veterinary clinical medicine. The continued evolution of such strategies must take into consideration two compounds, which act as critical effectors of angiogenesis by endothelial cells. Nevertheless, the nature of interaction between hydrogen sulfide (H2S) and nitric oxide (NO) remained undefined at the time of this writing. RESULTS The present study uses ZYZ-803, a novel synthetic H2S-NO hybrid molecule, which, under physiological conditions, slowly decomposes to release H2S and NO. This is observed to dose dependently mediate cell proliferation, migration, and tube-like structure formation in vitro along with increased angiogenesis in rat aortic rings, Matrigel plug in vivo, and a murine ischemic hind limb model. The effects of ZYZ-803 exhibited significantly greater potency than those of H2S and/or NO donor alone. The compound stimulated cystathionine γ-lyase (CSE) expression and endothelial NO synthase (eNOS) activity to produce H2S and NO. Blocking CSE and/or eNOS suppressed both H2S and NO generation as well as the proangiogenic effect of ZYZ-803. Sirtuin-1 (SIRT1), CSE, and/or eNOS small interfering RNA (siRNA) suppressed the angiogenic effect of ZYZ-803-induced SIRT1 expression, VEGF, and cyclic guanosine 5'-monophosphate (cGMP) levels. These gasotransmitters cooperatively regulated angiogenesis through an SIRT1/VEGF/cGMP pathway. INNOVATION AND CONCLUSION H2S and NO exert mutual influence on biological functions mediated by both compounds. Functional convergence occurs in the SIRT1-dependent proangiogenic processes. These two gasotransmitters are mutually required for physiological regulation of endothelial homeostasis. These ongoing characterizations of mechanisms by which ZYZ-803 influences angiogenesis provide expanding insight into strategies for treatment of ischemic diseases. Antioxid. Redox Signal. 25, 498-514.
Collapse
Affiliation(s)
- Qingxun Hu
- 1 Shanghai Key Laboratory of Bioactive Small Molecules, Department of Pharmacology, School of Pharmacy, Fudan University , Shanghai, China
| | - Dan Wu
- 1 Shanghai Key Laboratory of Bioactive Small Molecules, Department of Pharmacology, School of Pharmacy, Fudan University , Shanghai, China .,2 Department of Pharmacy, Tongji Hospital, Tongji University School of Medicine , Shanghai, China
| | - Fenfen Ma
- 1 Shanghai Key Laboratory of Bioactive Small Molecules, Department of Pharmacology, School of Pharmacy, Fudan University , Shanghai, China
| | - Suna Yang
- 1 Shanghai Key Laboratory of Bioactive Small Molecules, Department of Pharmacology, School of Pharmacy, Fudan University , Shanghai, China
| | - Bo Tan
- 1 Shanghai Key Laboratory of Bioactive Small Molecules, Department of Pharmacology, School of Pharmacy, Fudan University , Shanghai, China
| | - Hong Xin
- 1 Shanghai Key Laboratory of Bioactive Small Molecules, Department of Pharmacology, School of Pharmacy, Fudan University , Shanghai, China
| | - Xianfeng Gu
- 3 Department of Medicinal Chemistry, School of Pharmacy, Fudan University , Shanghai, China
| | - Xu Chen
- 4 School of Pharmacy, Guilin Medical University , Guilin, China
| | - Siyao Chen
- 5 Department of Cardiac Surgery, Guangdong Cardiovascular Institute , Guangdong General Hospital, Guangdong Academy of Medical Science, Guangzhou, China
| | - Yicheng Mao
- 1 Shanghai Key Laboratory of Bioactive Small Molecules, Department of Pharmacology, School of Pharmacy, Fudan University , Shanghai, China
| | - Yi Zhun Zhu
- 6 School of Pharmacy, Macau University of Science and Technology , Macau, China
| |
Collapse
|
38
|
Surfactant-modulated discriminative sensing of HNO and H2S with a Cu2+-complex-based fluorescent probe. Tetrahedron 2016. [DOI: 10.1016/j.tet.2016.07.039] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
39
|
Zhou Y, Wu Z, Cao X, Ding L, Wen Z, Bian JS. HNO suppresses LPS-induced inflammation in BV-2 microglial cells via inhibition of NF-κB and p38 MAPK pathways. Pharmacol Res 2016; 111:885-895. [PMID: 27507578 DOI: 10.1016/j.phrs.2016.08.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 08/01/2016] [Accepted: 08/04/2016] [Indexed: 11/26/2022]
Abstract
Both hydrogen sulfide (H2S) and nitric oxide (NO) are important gaseous mediators. We and others previously reported that these two gases react with each other to generate a new mediator, nitroxyl (HNO), and regulate cardiovascular functions. In this study, we demonstrated for the first time that the interaction between the two gases also existed in microglia. The biological functions of HNO in microglial cells were further studied with Angeli's salt (AS), an HNO donor. We found that AS attenuated lipopolysaccharide (LPS)-evoked production of reactive oxygen species (ROS) and pro-inflammatory cytokines (e.g. IL-1β and TNFα) through downregulating the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). HNO significantly reduced the phosphorylation of p38 mitogen-activated protein kinase (MAPK) and the activation of nuclear factor-κB (NF-κB) through suppression of phosphorylation p65 and IκBα. The above effects were abolished by l-cysteine, an HNO scavenger, but were not mimicked by nitrite, another product of AS during generating HNO. A Cys-179-to-Ala mutation in inhibitory κB kinase β (IKKβ) mimicked the effect of HNO on LPS-induced NF-κB activation. Interestingly, AS abolished the inflammation in cells overexpressing WT-IKKβ, but had no significant effect in cells overexpressing C179A-IKKβ. These data suggest that HNO may act on C179 to prevent IKKβ-dependent inflammation. Taken together, our data demonstrated for the first time that H2S interacts with NO to generate HNO in microglial cells. HNO produces anti-inflammatory effects through suppressing the IKKβ dependent NF-κB activation and p38 MAPK pathways.
Collapse
Affiliation(s)
- Yebo Zhou
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore
| | - Zhiyuan Wu
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore
| | - Xu Cao
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore
| | - Lei Ding
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore
| | - ZhengShun Wen
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, Food and Pharmacy College, Zhejiang Ocean University, Zhoushan 316000, China
| | - Jin-Song Bian
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore.
| |
Collapse
|
40
|
Panthi S, Chung HJ, Jung J, Jeong NY. Physiological Importance of Hydrogen Sulfide: Emerging Potent Neuroprotector and Neuromodulator. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:9049782. [PMID: 27413423 PMCID: PMC4931096 DOI: 10.1155/2016/9049782] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 05/24/2016] [Indexed: 11/18/2022]
Abstract
Hydrogen sulfide (H2S) is an emerging neuromodulator that is considered to be a gasotransmitter similar to nitrogen oxide (NO) and carbon monoxide (CO). H2S exerts universal cytoprotective effects and acts as a defense mechanism in organisms ranging from bacteria to mammals. It is produced by the enzymes cystathionine β-synthase (CBS), cystathionine ϒ-lyase (CSE), 3-mercaptopyruvate sulfurtransferase (MST), and D-amino acid oxidase (DAO), which are also involved in tissue-specific biochemical pathways for H2S production in the human body. H2S exerts a wide range of pathological and physiological functions in the human body, from endocrine system and cellular longevity to hepatic protection and kidney function. Previous studies have shown that H2S plays important roles in peripheral nerve regeneration and degeneration and has significant value during Schwann cell dedifferentiation and proliferation but it is also associated with axonal degradation and the remyelination of Schwann cells. To date, physiological and toxic levels of H2S in the human body remain unclear and most of the mechanisms of action underlying the effects of H2S have yet to be fully elucidated. The primary purpose of this review was to provide an overview of the role of H2S in the human body and to describe its beneficial effects.
Collapse
Affiliation(s)
- Sandesh Panthi
- Department of Biomedical Science, Graduate School, Kyung Hee University, No. 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Hyung-Joo Chung
- Department of Anesthesiology and Pain Medicine, College of Medicine, Kosin University, No. 262, Gamcheon-ro, Seo-gu, Busan 49267, Republic of Korea
| | - Junyang Jung
- Department of Biomedical Science, Graduate School, Kyung Hee University, No. 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
- Department of Anatomy and Neurobiology, College of Medicine, Kyung Hee University, No. 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Na Young Jeong
- Department of Anatomy and Cell Biology, College of Medicine, Dong-A University, No. 32, Daesingongwon-ro, Seo-gu, Busan 49201, Republic of Korea
| |
Collapse
|
41
|
Cystathione gamma lyase/Hydrogen Sulphide Pathway Up Regulation Enhances the Responsiveness of α1A and α1B-Adrenoreceptors in the Kidney of Rats with Left Ventricular Hypertrophy. PLoS One 2016; 11:e0154995. [PMID: 27191852 PMCID: PMC4871510 DOI: 10.1371/journal.pone.0154995] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 04/22/2016] [Indexed: 01/19/2023] Open
Abstract
The purpose of the present study was to investigate the interaction between H2S and NO (nitric oxide) in the kidney and to evaluate its impact on the functional contribution of α1A and α1B-adrenoreceptors subtypes mediating the renal vasoconstriction in the kidney of rats with left ventricular hypertrophy (LVH). In rats the LVH induction was by isoprenaline administration and caffeine in the drinking water together with intraperitoneal administration of H2S. The responsiveness of α1A and α1B to exogenous noradrenaline, phenylephrine and methoxaminein the absence and presence of 5-methylurapidil (5-MeU) and chloroethylclonidine (CEC) was studied. Cystathione gamma lyase (CSE), cystathione β synthase (CBS), 3-mercaptopyruvate sulphar transferase (3-MST) and endothelial nitric oxide synthase (eNOS) were quantified. There was significant up regulation of CSE and eNOS in the LVH-H2S compared to the LVH group (P<0.05). Baseline renal cortical blood perfusion (RCBP) was increased (P<0.05) in the LVH-H2S compared to the LVH group. The responsiveness of α1A-adrenergic receptors to adrenergic agonists was increased (P<0.05) after administration of low dose 5-Methylurapidil in the LVH-H2S group while α1B-adrenergic receptors responsiveness to adrenergic agonists were increased (P<0.05) by both low and high dose chloroethylclonidine in the LVH-H2S group. Treatment of LVH with H2S resulted in up-regulation of CSE/H2S, CBS, and 3-MST and eNOS/NO/cGMP pathways in the kidney. These up regulation of CSE/H2S, CBS, and 3-MST and eNOS/NO/cGMP pathways enhanced the responsiveness of α1A and α1B-adrenoreceptors subtypes to adrenergic agonists in LVH-H2S. These findings indicate an important role for H2S in modulating deranged signalling in the renal vasculature resulting from LVH development.
Collapse
|
42
|
Sun J, Aponte AM, Menazza S, Gucek M, Steenbergen C, Murphy E. Additive cardioprotection by pharmacological postconditioning with hydrogen sulfide and nitric oxide donors in mouse heart: S-sulfhydration vs. S-nitrosylation. Cardiovasc Res 2016; 110:96-106. [PMID: 26907390 DOI: 10.1093/cvr/cvw037] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 02/12/2016] [Indexed: 11/14/2022] Open
Abstract
Hydrogen sulfide (H2S), as a gaseous signalling molecule, has been found to play important roles in postconditioning (PostC)-induced cardioprotection. Similar to nitric oxide (NO)-mediated protein S-nitrosylation (SNO), recent studies suggest that H2S could regulate protein function through another redox-based post-translational modification on protein cysteine residue(s), i.e. S-sulfhydration (SSH). In this study, we examined whether there are changes in protein SSH associated with cardioprotection induced by treatment with H2S on reperfusion. In addition, we also examined whether there is cross talk between H2S and NO. Compared with control, treatment on reperfusion with NaHS (H2S donor, 100 µmol/L) significantly reduced post-ischaemic contractile dysfunction and infarct size. A comparable cardioprotective effect could be also achieved by reperfusion treatment with SNAP (NO donor, 10 µmol/L). Interestingly, simultaneous reperfusion with both donors had an additive protective effect. In addition, C-PTIO (NO scavenger, 20 µmol/L) eliminated the protection induced by NaHS and also the additive protection by SNAP + NaHS together. Using a modified biotin switch method, we observed a small increase in SSH following NaHS treatment on reperfusion. We also found that NaHS treatment on reperfusion increases SNO to a level comparable to that with SNAP treatment. In addition, there was an additive increase in SNO but not SSH when SNAP and NaHS were added together at reperfusion. Thus, part of the benefit of NaHS is an increase in SNO, and the magnitude of the protective effect is related to the magnitude of the increase in SNO.
Collapse
Affiliation(s)
- Junhui Sun
- Systems Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, 10 Center Drive, Building 10/Room 8N206, Bethesda, MD 20892, USA
| | - Angel M Aponte
- Proteomics Core Facility, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sara Menazza
- Systems Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, 10 Center Drive, Building 10/Room 8N206, Bethesda, MD 20892, USA
| | - Marjan Gucek
- Proteomics Core Facility, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Charles Steenbergen
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD 21205, USA
| | - Elizabeth Murphy
- Systems Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, 10 Center Drive, Building 10/Room 8N206, Bethesda, MD 20892, USA
| |
Collapse
|
43
|
HNO/Thiol Biology as a Therapeutic Target. OXIDATIVE STRESS IN APPLIED BASIC RESEARCH AND CLINICAL PRACTICE 2016. [DOI: 10.1007/978-3-319-30705-3_14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
44
|
Scuffi D, Lamattina L, García-Mata C. Decoding the Interaction Between Nitric Oxide and Hydrogen Sulfide in Stomatal Movement. GASOTRANSMITTERS IN PLANTS 2016. [DOI: 10.1007/978-3-319-40713-5_13] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
45
|
Interaction of Hydrogen Sulfide with Nitric Oxide in the Cardiovascular System. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2016:6904327. [PMID: 26640616 PMCID: PMC4657111 DOI: 10.1155/2016/6904327] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2015] [Accepted: 06/21/2015] [Indexed: 01/07/2023]
Abstract
Historically acknowledged as toxic gases, hydrogen sulfide (H2S) and nitric oxide (NO) are now recognized as the predominant members of a new family of signaling molecules, “gasotransmitters” in mammals. While H2S is biosynthesized by three constitutively expressed enzymes (CBS, CSE, and 3-MST) from L-cysteine and homocysteine, NO is generated endogenously from L-arginine by the action of various isoforms of NOS. Both gases have been transpired as the key and independent regulators of many physiological functions in mammalian cardiovascular, nervous, gastrointestinal, respiratory, and immune systems. The analogy between these two gasotransmitters is evident not only from their paracrine mode of signaling, but also from the identical and/or shared signaling transduction pathways. With the plethora of research in the pathophysiological role of gasotransmitters in various systems, the existence of interplay between these gases is being widely accepted. Chemical interaction between NO and H2S may generate nitroxyl (HNO), which plays a specific effective role within the cardiovascular system. In this review article, we have attempted to provide current understanding of the individual and interactive roles of H2S and NO signaling in mammalian cardiovascular system, focusing particularly on heart contractility, cardioprotection, vascular tone, angiogenesis, and oxidative stress.
Collapse
|
46
|
Key bioactive reaction products of the NO/H2S interaction are S/N-hybrid species, polysulfides, and nitroxyl. Proc Natl Acad Sci U S A 2015. [PMID: 26224837 DOI: 10.1073/pnas.1509277112] [Citation(s) in RCA: 222] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Experimental evidence suggests that nitric oxide (NO) and hydrogen sulfide (H2S) signaling pathways are intimately intertwined, with mutual attenuation or potentiation of biological responses in the cardiovascular system and elsewhere. The chemical basis of this interaction is elusive. Moreover, polysulfides recently emerged as potential mediators of H2S/sulfide signaling, but their biosynthesis and relationship to NO remain enigmatic. We sought to characterize the nature, chemical biology, and bioactivity of key reaction products formed in the NO/sulfide system. At physiological pH, we find that NO and sulfide form a network of cascading chemical reactions that generate radical intermediates as well as anionic and uncharged solutes, with accumulation of three major products: nitrosopersulfide (SSNO(-)), polysulfides, and dinitrososulfite [N-nitrosohydroxylamine-N-sulfonate (SULFI/NO)], each with a distinct chemical biology and in vitro and in vivo bioactivity. SSNO(-) is resistant to thiols and cyanolysis, efficiently donates both sulfane sulfur and NO, and potently lowers blood pressure. Polysulfides are both intermediates and products of SSNO(-) synthesis/decomposition, and they also decrease blood pressure and enhance arterial compliance. SULFI/NO is a weak combined NO/nitroxyl donor that releases mainly N2O on decomposition; although it affects blood pressure only mildly, it markedly increases cardiac contractility, and formation of its precursor sulfite likely contributes to NO scavenging. Our results unveil an unexpectedly rich network of coupled chemical reactions between NO and H2S/sulfide, suggesting that the bioactivity of either transmitter is governed by concomitant formation of polysulfides and anionic S/N-hybrid species. This conceptual framework would seem to offer ample opportunities for the modulation of fundamental biological processes governed by redox switching and sulfur trafficking.
Collapse
|
47
|
Wedmann R, Zahl A, Shubina TE, Dürr M, Heinemann FW, Bugenhagen BEC, Burger P, Ivanovic-Burmazovic I, Filipovic MR. Does perthionitrite (SSNO(-)) account for sustained bioactivity of NO? A (bio)chemical characterization. Inorg Chem 2015; 54:9367-80. [PMID: 26111441 DOI: 10.1021/acs.inorgchem.5b00831] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Hydrogen sulfide (H2S) and nitric oxide (NO) are important signaling molecules that regulate several physiological functions. Understanding the chemistry behind their interplay is important for explaining these functions. The reaction of H2S with S-nitrosothiols to form the smallest S-nitrosothiol, thionitrous acid (HSNO), is one example of physiologically relevant cross-talk between H2S and nitrogen species. Perthionitrite (SSNO(-)) has recently been considered as an important biological source of NO that is far more stable and longer living than HSNO. In order to experimentally address this issue here, we prepared SSNO(-) by two different approaches, which lead to two distinct species: SSNO(-) and dithionitric acid [HON(S)S/HSN(O)S]. (H)S2NO species and their reactivity were studied by (15)N NMR, IR, electron paramagnetic resonance and high-resolution electrospray ionization time-of-flight mass spectrometry, as well as by X-ray structure analysis and cyclic voltammetry. The obtained results pointed toward the inherent instability of SSNO(-) in water solutions. SSNO(-) decomposed readily in the presence of light, water, or acid, with concomitant formation of elemental sulfur and HNO. Furthermore, SSNO(-) reacted with H2S to generate HSNO. Computational studies on (H)SSNO provided additional explanations for its instability. Thus, on the basis of our data, it seems to be less probable that SSNO(-) can serve as a signaling molecule and biological source of NO. SSNO(-) salts could, however, be used as fast generators of HNO in water solutions.
Collapse
Affiliation(s)
- Rudolf Wedmann
- Department of Chemistry and Pharmacy, Friedrich-Alexander University of Erlangen-Nuremberg , Egerlandstrasse 1, 91058 Erlangen, Germany
| | - Achim Zahl
- Department of Chemistry and Pharmacy, Friedrich-Alexander University of Erlangen-Nuremberg , Egerlandstrasse 1, 91058 Erlangen, Germany
| | - Tatyana E Shubina
- Department of Chemistry and Pharmacy, Friedrich-Alexander University of Erlangen-Nuremberg , Egerlandstrasse 1, 91058 Erlangen, Germany
| | - Maximilian Dürr
- Department of Chemistry and Pharmacy, Friedrich-Alexander University of Erlangen-Nuremberg , Egerlandstrasse 1, 91058 Erlangen, Germany
| | - Frank W Heinemann
- Department of Chemistry and Pharmacy, Friedrich-Alexander University of Erlangen-Nuremberg , Egerlandstrasse 1, 91058 Erlangen, Germany
| | | | - Peter Burger
- Department of Chemistry, University of Hamburg , Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| | - Ivana Ivanovic-Burmazovic
- Department of Chemistry and Pharmacy, Friedrich-Alexander University of Erlangen-Nuremberg , Egerlandstrasse 1, 91058 Erlangen, Germany
| | - Milos R Filipovic
- Department of Chemistry and Pharmacy, Friedrich-Alexander University of Erlangen-Nuremberg , Egerlandstrasse 1, 91058 Erlangen, Germany
| |
Collapse
|
48
|
Dux M, Will C, Vogler B, Filipovic MR, Messlinger K. Meningeal blood flow is controlled by H2 S-NO crosstalk activating a HNO-TRPA1-CGRP signalling pathway. Br J Pharmacol 2015; 173:431-45. [PMID: 25884403 DOI: 10.1111/bph.13164] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 03/17/2015] [Accepted: 04/10/2015] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND AND PURPOSE Meningeal blood flow is controlled by CGRP released from trigeminal afferents and NO mainly produced in arterial endothelium. The vasodilator effect of NO may be due to the NO-derived compound, nitroxyl (HNO), generated through reaction with endogenous H2 S. We investigated the involvement of HNO in CGRP release and meningeal blood flow. EXPERIMENTAL APPROACH Blood flow in exposed dura mater of rats was recorded by laser Doppler flowmetry. CGRP release from the dura mater in the hemisected rat head was quantified using an elisa. NO and H2 S were localized histochemically with specific sensors. KEY RESULTS Topical administration of the NO donor diethylamine-NONOate increased meningeal blood flow by 30%. Pretreatment with oxamic acid, an inhibitor of H2 S synthesis, reduced this effect. Administration of Na2 S increased blood flow by 20%, an effect abolished by the CGRP receptor antagonist CGRP8-37 or the TRPA1 channel antagonist HC030031 and reduced when endogenous NO synthesis was blocked. Na2 S dose-dependently increased CGRP release two- to threefold. Co-administration of diethylamine-NONOate facilitated CGRP release, while inhibition of endogenous NO or H2 S synthesis lowered basal CGRP release. NO and H2 S were mainly localized in arterial vessels, HNO additionally in nerve fibre bundles. HNO staining was lost after treatment with L-NMMA and oxamic acid. CONCLUSIONS AND IMPLICATIONS NO and H2 S cooperatively increased meningeal blood flow by forming HNO, which activated TRPA1 cation channels in trigeminal fibres, inducing CGRP release. This HNO-TRPA1-CGRP signalling pathway may be relevant to the pathophysiology of headaches.
Collapse
Affiliation(s)
- Mária Dux
- Department of Physiology, University of Szeged, Szeged, Hungary
| | - Christine Will
- Institute of Physiology and Pathophysiology, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Birgit Vogler
- Institute of Physiology and Pathophysiology, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Milos R Filipovic
- Department of Chemistry and Pharmacy, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Karl Messlinger
- Institute of Physiology and Pathophysiology, University of Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
49
|
Calderone V, Testai L, Martelli A, Citi V, D'Antongiovanni V, Breschi MC. Different patterns of H2S/NO cross-talk in the control of the coronary vascular bed under normotensive or hypertensive conditions. Nitric Oxide 2015. [DOI: 10.1016/j.niox.2015.02.075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
50
|
Cortese-Krott MM, Fernandez BO, Kelm M, Butler AR, Feelisch M. On the chemical biology of the nitrite/sulfide interaction. Nitric Oxide 2015; 46:14-24. [DOI: 10.1016/j.niox.2014.12.009] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 11/27/2014] [Accepted: 12/15/2014] [Indexed: 02/07/2023]
|