1
|
Jiang Z, Liu D, Li T, Gai C, Xin D, Zhao Y, Song Y, Cheng Y, Li T, Wang Z. Hydrogen sulfide reduces oxidative stress in Huntington's disease via Nrf2. Neural Regen Res 2025; 20:1776-1788. [PMID: 39104115 PMCID: PMC11688542 DOI: 10.4103/nrr.nrr-d-23-01051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/27/2023] [Accepted: 12/22/2023] [Indexed: 08/07/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202506000-00028/figure1/v/2024-08-05T133530Z/r/image-tiff The pathophysiology of Huntington's disease involves high levels of the neurotoxin quinolinic acid. Quinolinic acid accumulation results in oxidative stress, which leads to neurotoxicity. However, the molecular and cellular mechanisms by which quinolinic acid contributes to Huntington's disease pathology remain unknown. In this study, we established in vitro and in vivo models of Huntington's disease by administering quinolinic acid to the PC12 neuronal cell line and the striatum of mice, respectively. We observed a decrease in the levels of hydrogen sulfide in both PC12 cells and mouse serum, which was accompanied by down-regulation of cystathionine β-synthase, an enzyme responsible for hydrogen sulfide production. However, treatment with NaHS (a hydrogen sulfide donor) increased hydrogen sulfide levels in the neurons and in mouse serum, as well as cystathionine β-synthase expression in the neurons and the mouse striatum, while also improving oxidative imbalance and mitochondrial dysfunction in PC12 cells and the mouse striatum. These beneficial effects correlated with upregulation of nuclear factor erythroid 2-related factor 2 expression. Finally, treatment with the nuclear factor erythroid 2-related factor 2 inhibitor ML385 reversed the beneficial impact of exogenous hydrogen sulfide on quinolinic acid-induced oxidative stress. Taken together, our findings show that hydrogen sulfide reduces oxidative stress in Huntington's disease by activating nuclear factor erythroid 2-related factor 2, suggesting that hydrogen sulfide is a novel neuroprotective drug candidate for treating patients with Huntington's disease.
Collapse
Affiliation(s)
- Zige Jiang
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Dexiang Liu
- Department of Medical Psychology and Ethics, School of Basic Medicine Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Tingting Li
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Chengcheng Gai
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Danqing Xin
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Yijing Zhao
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Yan Song
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Yahong Cheng
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Tong Li
- Department of Neurosurgery Surgery, Qingdao Municipal Hospital, Qingdao, Shandong Province, China
| | - Zhen Wang
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| |
Collapse
|
2
|
Brett C, Gout I. The two faces of coenzyme A in cellular biology. Free Radic Biol Med 2025; 233:162-173. [PMID: 40107571 DOI: 10.1016/j.freeradbiomed.2025.03.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/10/2025] [Accepted: 03/17/2025] [Indexed: 03/22/2025]
Abstract
Coenzyme A (CoA) is an essential cofactor present in all living cells, which plays critical roles in diverse biochemical processes, including cellular metabolism, signal transduction, regulation of gene expression, and the antioxidant response. This review summarizes current knowledge on the role of CoA and its metabolically active thioesters in promoting cellular growth and proliferation (pro-growth) and discusses emerging research on CoA's antioxidant properties that enhance cell survival (pro-survival).
Collapse
Affiliation(s)
- Charlie Brett
- Department of Structural and Molecular Biology, University College London, London, WC1E 6BT, UK
| | - Ivan Gout
- Department of Structural and Molecular Biology, University College London, London, WC1E 6BT, UK.
| |
Collapse
|
3
|
Ma J, Yang P, Zhou Z, Song T, Jia L, Ye X, Yan W, Sun J, Ye T, Zhu L. GYY4137-induced p65 sulfhydration protects synovial macrophages against pyroptosis by improving mitochondrial function in osteoarthritis development. J Adv Res 2025; 71:173-188. [PMID: 38844123 DOI: 10.1016/j.jare.2024.05.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/27/2024] Open
Abstract
INTRODUCTION Osteoarthritis (OA) is the most common arthritis that is characterized by the progressive synovial inflammation and loss of articular cartilage. Although GYY4137 is a novel and slow-releasing hydrogen sulfide (H2S) donor with potent anti-inflammatory properties that may modulate the progression of OA, its underlying mechanism remains unclear. OBJECTIVES In this study, we validated the protective role of GYY4137 against OA pathological courses and elucidated its underlying regulatory mechanisms. METHODS Cell transfection, immunofluorescence staining, EdU assay, transmission electron microscopy, mitochondrial membrane potential measurement, electrophoretic mobility shift assay, sulfhydration assay, qPCR and western blot assays were performed in the primary mouse chondrocytes or the mouse macrophage cell line raw 264.7 for in vitro study. DMM-induced OA mice model and Macrophage-specific p65 knockout (p65f/f LysM-CreERT2) mice on the C57BL/6 background were used for in vivo study. RESULTS We found that GYY4137 can alleviate OA progress by suppressing synovium pyroptosis in vivo. Moreover, our in vitro data revealed that GYY4137 attenuates inflammation-induced NLRP3 and caspase-1 activation and results in a decrease of IL-1β production in macrophages. Mechanistically, GYY4137 increased persulfidation of NF-kB p65 in response to inflammatory stimuli that results in a decrease of cellular reactive oxygen species (ROS) accumulation and ameliorates mitochondrial dysfunctions. Using site-directed mutagenesis, we showed that H2S persulfidates cysteine38 in p65 protein and hampers p65 transcriptional activity, and p65 mutant impaired macrophage responses to GYY4137. CONCLUSION These findings suggest a mechanism by which GYY4137 through redox modification of p65 participates in inhibiting NLRP3 activation by OA to regulate inflammatory responses. Thus, we propose that GYY4137 represents a promising novel therapeutic strategy for the treatment of OA.
Collapse
Affiliation(s)
- Jun Ma
- Department of Orthepaedics, Naval Medical Center of PLA, Naval Medical University, Shanghai, China; Department of Health Statistics, Naval Medical University, Shanghai, China; Department of Orthopaedic Trauma Surgery, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Peng Yang
- Department of Orthepaedics, Naval Medical Center of PLA, Naval Medical University, Shanghai, China; Department of Orthopaedic Trauma Surgery, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Zhibin Zhou
- Department of Orthopaedic Trauma Surgery, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China; Department of Orthopaedics, General Hospital of Northern Theater Command, Shenyang, Liaoning, China
| | - Tengfei Song
- Department of Orthopaedic Trauma Surgery, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Liang Jia
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Xiaofei Ye
- Department of Health Statistics, Naval Medical University, Shanghai, China
| | - Wei Yan
- Department of Orthepaedics, Naval Medical Center of PLA, Naval Medical University, Shanghai, China
| | - Jiuyi Sun
- Department of Orthepaedics, Naval Medical Center of PLA, Naval Medical University, Shanghai, China.
| | - Tianwen Ye
- Department of Orthopaedic Trauma Surgery, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China.
| | - Lei Zhu
- Department of Orthopaedic Trauma Surgery, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China.
| |
Collapse
|
4
|
Zhu L, Huang R, Feng JR, Zhang M, Huang XJ, Chen Z, Wang W, Chen Y. Shexiang Tongxin Dropping Pills attenuate ischemic microvascular dysfunction via suppressing P66Shc-mediated mitochondrial respiration deficits. JOURNAL OF ETHNOPHARMACOLOGY 2025; 346:119664. [PMID: 40154895 DOI: 10.1016/j.jep.2025.119664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 03/17/2025] [Accepted: 03/20/2025] [Indexed: 04/01/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ischemic stroke (IS) disrupts mitochondrial energy metabolism, leading to cerebral microvascular dysfunction (CMD). Shexiang Tongxin Dropping Pills (STDP) is a traditional Chinese medicinal formulation that has been clinically used for treating microcirculatory dysfunction. We have previously reported its ability to improve cerebral microcirculatory abnormalities. Nevertheless, the protective effects of STDP on cerebral microvascular mitochondria in the context of energy metabolism repair remain underinvestigated. AIM OF THE STUDY This study aims to investigate the potential mechanisms by which STDP ameliorates IS-induced CMD through the restoration of mitochondrial function. MATERIALS AND METHODS An ischemic stroke/reperfusion model was established by occluding and subsequently reperfusing the middle cerebral artery (MCAO/R) in C57BL/6 J mice. Laser speckle contrast imaging, Y-maze, rotarod tests and TTC staining were employed to evaluate the anti-ischemic stroke effects of STDP. Histological examination of cell adhesion proteins (ICAM 1, VCAM 1) and tight junction proteins (VE-cadherin, occludin) was conducted to assess the effects of STDP on the cerebral microvascular endothelium. In vitro, a bEnd.3 cell model was established through oxygen-glucose deprivation followed by reoxygenation (OGD/R). The cytoprotective capability of STDP was assessed by quantifying endothelial permeability, reactive oxygen species (ROS) levels, and cell viability. Mendelian randomization (MR) analysis and bioinformatic studies were performed to elucidate the causal associations between mitochondrial biological function and IS. Mitochondrial membrane potential (MMP) was assessed using a tetramethylrhodamine ethyl ester perchlorate fluorescent probe, while ATP production was quantified using a commercially available assay kit. Mitochondrial respiration was evaluated by measuring the oxygen consumption rate (OCR). Finally, the verification of important targets in mouse brain slices and bEnd.3 cells was conducted through immunoblotting and immunofluorescence. RESULTS STDP significantly restored cerebral blood flow and neurological function, and reduced infarct volume in MCAO/R mice. Furthermore, STDP markedly alleviated inflammation and hyperpermeability of the cerebral microvascular endothelium in MCAO/R mice, as evidenced by the suppression of ICAM-1 and VCAM-1 expression, along with the upregulation of VE-cadherin and occludin protein levels. Moreover, STDP not only mitigated hyperpermeability and excessive production of ROS induced by OGD/R in bEnd.3 cells but also enhanced the protective effects of the ROS scavenger N-acetylcysteine on bEnd.3 cells. Results of MR analysis and bioinformation studies demonstrated that the disruption of mitochondrial respiration is a critical pathogenic factor in IS-induced CMD. Our data confirmed that STDP effectively restored MMP and ATP production in OGD/R-treated bEnd.3 cells. Furthermore, STDP significantly enhanced basal respiration, maximal OCR, and spare respiratory capacity in bEnd.3 cells compared to the OGD/R group. Mechanistically, STDP markedly increased endothelial cystathionine γ-lyase (CSE)-mediated hydrogen sulfide (H2S) production and S-sulfhydration of P66shc, resulting in reduced protein expression and phosphorylation levels of P66Shc. This inhibition prevented its translocation into mitochondria, thereby restoring mitochondrial respiration. CONCLUSION STDP facilitated CSE expression and promoted H2S production, contributing to the inactivation of P66shc by suppressing its expression and increasing its sulfhydration. This process impeded P66Shc translocation to mitochondria, subsequently restoring mitochondrial respiration and alleviating IS-induced cerebral microvascular endothelial dysfunction.
Collapse
Affiliation(s)
- Li Zhu
- Science and Technology Innovation Center, NMPA Key Laboratory for Research of Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, 51006, China; School of Pharmaceutics, Guangzhou University of Chinese Medicine, Guangzhou, 51006, China
| | - Ru Huang
- Science and Technology Innovation Center, NMPA Key Laboratory for Research of Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, 51006, China; School of Pharmaceutics, Guangzhou University of Chinese Medicine, Guangzhou, 51006, China
| | - Jing-Rui Feng
- Science and Technology Innovation Center, NMPA Key Laboratory for Research of Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, 51006, China; School of Pharmaceutics, Guangzhou University of Chinese Medicine, Guangzhou, 51006, China
| | - Miao Zhang
- Science and Technology Innovation Center, NMPA Key Laboratory for Research of Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, 51006, China; School of Pharmaceutics, Guangzhou University of Chinese Medicine, Guangzhou, 51006, China
| | - Xiao-Jie Huang
- Science and Technology Innovation Center, NMPA Key Laboratory for Research of Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, 51006, China; School of Pharmaceutics, Guangzhou University of Chinese Medicine, Guangzhou, 51006, China
| | - Zeyu Chen
- Science and Technology Innovation Center, NMPA Key Laboratory for Research of Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, 51006, China
| | - Wei Wang
- Science and Technology Innovation Center, NMPA Key Laboratory for Research of Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, 51006, China; School of Pharmaceutics, Guangzhou University of Chinese Medicine, Guangzhou, 51006, China.
| | - Yang Chen
- Science and Technology Innovation Center, NMPA Key Laboratory for Research of Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, 51006, China; Chinese Medicine Guangdong Laboratory, Zhuhai, 519031, China.
| |
Collapse
|
5
|
Liu J, Guo M, Yuan X, Fan X, Wang J, Jiao X. Gut Microbiota and Their Metabolites: The Hidden Driver of Diabetic Nephropathy? Unveiling Gut Microbe's Role in DN. J Diabetes 2025; 17:e70068. [PMID: 40189872 PMCID: PMC11973130 DOI: 10.1111/1753-0407.70068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 01/21/2025] [Accepted: 02/17/2025] [Indexed: 04/10/2025] Open
Abstract
BACKGROUND Diabetic nephropathy (DN) is a severe microvascular complication of diabetes with a complex pathogenesis. METHODS Recent studies were reviewed to explore the role of gut microbiota and its metabolites in DN development. RESULTS Dysbiosis of gut bacteria contributes to pathological changes such as glomerular sclerosis and renal tubule injury. Microbial metabolites are involved in DN through immune and inflammatory pathways. CONCLUSIONS Understanding the relationship between gut microbiota, its metabolites, and DN may offer potential implications for DN diagnosis, prevention, and treatment. Translating this knowledge into clinical practice presents challenges and opportunities.
Collapse
Affiliation(s)
- Jinzhou Liu
- Department of PhysiologyThe Key Laboratory of Physiology of Shanxi Province, the Key Laboratory of Cellular Physiology of Ministry of Education, Shanxi Medical UniversityTaiyuanChina
| | - Min Guo
- Department of PhysiologyThe Key Laboratory of Physiology of Shanxi Province, the Key Laboratory of Cellular Physiology of Ministry of Education, Shanxi Medical UniversityTaiyuanChina
| | - Xiaobin Yuan
- Department of UrologyFirst Hospital of Shanxi Medical UniversityTaiyuanChina
| | - Xiao Fan
- Department of UrologyFirst Hospital of Shanxi Medical UniversityTaiyuanChina
| | - Jin Wang
- Department of PhysiologyThe Key Laboratory of Physiology of Shanxi Province, the Key Laboratory of Cellular Physiology of Ministry of Education, Shanxi Medical UniversityTaiyuanChina
| | - Xiangying Jiao
- Department of PhysiologyThe Key Laboratory of Physiology of Shanxi Province, the Key Laboratory of Cellular Physiology of Ministry of Education, Shanxi Medical UniversityTaiyuanChina
| |
Collapse
|
6
|
Song Y, Cao S, Sun X, Chen G. The interplay of hydrogen sulfide and microRNAs in cardiovascular diseases: insights and future perspectives. Mamm Genome 2024; 35:309-323. [PMID: 38834923 DOI: 10.1007/s00335-024-10043-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 05/14/2024] [Indexed: 06/06/2024]
Abstract
Hydrogen sulfide (H2S) is recognized as the third gasotransmitter, after nitric oxide (NO) and carbon monoxide (CO). It is known for its cardioprotective properties, including the relaxation of blood vessels, promotion of angiogenesis, regulation of myocardial cell apoptosis, inhibition of vascular smooth muscle cell proliferation, and reduction of inflammation. Additionally, abnormal H2S generation has been linked to the development of cardiovascular diseases (CVD), such as pulmonary hypertension, hypertension, atherosclerosis, vascular calcification, and myocardial injury. MicroRNAs (miRNAs) are non-coding, conserved, and versatile molecules that primarily influence gene expression by repressing translation and have emerged as biomarkers for CVD diagnosis. Studies have demonstrated that H2S can ameliorate cardiac dysfunction by regulating specific miRNAs, and certain miRNAs can also regulate H2S synthesis. The crosstalk between miRNAs and H2S offers a novel perspective for investigating the pathophysiology, prevention, and treatment of CVD. The present analysis outlines the interactions between H2S and miRNAs and their influence on CVD, providing insights into their future potential and advancement.
Collapse
Affiliation(s)
- Yunjia Song
- Department of Pharmacology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Shuo Cao
- Department of Pharmacology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xutao Sun
- Department of Typhoid, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China.
| | - Guozhen Chen
- Department of Pediatrics, The Affiliated Yantai Yuhuangding Hospital, Yantai, Shandong, China.
| |
Collapse
|
7
|
Liu L, Yao Y, Liu Y, Hong B, Li Z, Chen X, Zhang Y, Fu H, Yang D, Yang C. Targeted H 2S-Mediated Gas Therapy with pH-Sensitive Release Property for Myocardial Ischemia-Reperfusion Injury by Platelet Membrane. Biomater Res 2024; 28:0061. [PMID: 39161346 PMCID: PMC11330987 DOI: 10.34133/bmr.0061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/02/2024] [Indexed: 08/21/2024] Open
Abstract
Management of myocardial ischemia-reperfusion injury (MIRI) in reperfusion therapy remains a major obstacle in the field of cardiovascular disease, but current available therapies have not yet been achieved in mitigating myocardial injury due to the complex pathological mechanisms of MIRI. Exogenous delivery of hydrogen sulfide (H2S) to the injured myocardium can be an effective strategy for treating MIRI due to the multiple physiologic functions of H2S, including anti-inflammatory, anti-apoptotic, and mitochondrial protective effects. Here, to realize the precise delivery and release of H2S, we proposed the targeted H2S-mediated gas therapy with pH-sensitive release property mediated by platelet membranes (PMs). In this study, a biomimetic functional poly(lactic-co-ethanolic acid) nanoparticle (RAPA/JK-1-PLGA@PM) was fabricated by loading rapamycin (RAPA; mTOR inhibitor) and JK-1 (H2S donor) and then coated with PM. In vitro observations were conducted including pharmaceutical evaluation, H2S release behaviors, hemolysis analysis, serum stability, cellular uptake, cytotoxicity, inhibition of myocardial apoptosis, and anti-inflammation. In vivo examinations were performed including targeting ability, restoration of cardiac function, inhibition of pathological remodeling, and anti-inflammation. RAPA/JK-1-PLGA@PM was successfully prepared with good size distribution and stability. Utilizing the natural infarct-homing ability of PM, RAPA/JK-1-PLGA@PM could be effectively targeted to the damaged myocardium. RAPA/JK-1-PLGA@PM continuously released H2S triggered by inflammatory microenvironment, which could inhibit cardiomyocyte apoptosis, realize the transition of pro-inflammation, and alleviate myocardial injury demonstrated in hypoxia/reoxygenation myocardial cell in vitro. Precise delivery and release of H2S attenuated inflammatory response and cardiac damage, promoted cardiac repair, and ameliorated cardiac function proven in MIRI mouse model in vivo. This research outlined the novel nanoplatform that combined immunosuppressant agents and H2S donor with the pH-sensitive release property, offering a promising therapeutic for MIRI treatment that leveraged the synergistic effects of gas therapy.
Collapse
Affiliation(s)
- Lin Liu
- Department of Pharmacy,
The Second Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
- Department of Pharmacy,
Shantou University Medical College, Shantou 515041, China
| | - Yucen Yao
- Department of Pharmacy,
Shantou University Medical College, Shantou 515041, China
- College of Pharmacy, Jiamusi University, Jiamusi 154007, China
| | - Yang Liu
- Department of Pharmacy,
The Second Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
- Department of Pharmacy,
Shantou University Medical College, Shantou 515041, China
| | - Bingrong Hong
- Department of Pharmacy,
The Second Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
- Department of Pharmacy,
Shantou University Medical College, Shantou 515041, China
| | - Ziqing Li
- Department of Pharmacy,
The Second Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
- Department of Pharmacy,
Shantou University Medical College, Shantou 515041, China
| | - Xuejun Chen
- Department of Pharmacy,
The Second Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
- Department of Pharmacy,
Shantou University Medical College, Shantou 515041, China
| | - Yaofeng Zhang
- Department of Pharmacy,
The Second Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| | - Hongbo Fu
- Department of Pharmacy,
The Second Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| | - Degong Yang
- Department of Pharmacy,
Shantou University Medical College, Shantou 515041, China
- Department of Pharmacy, Department of Dermatology,
The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| | - Chunrong Yang
- Department of Pharmacy,
The Second Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
- Department of Pharmacy,
Shantou University Medical College, Shantou 515041, China
| |
Collapse
|
8
|
Tang SM, Lu GZ, Lei XY, Yang XY, Tang GT, Yu J, Xie ZZ. Sodium thiosulfate: A donor or carrier signaling molecule for hydrogen sulfide? Nitric Oxide 2024; 149:67-74. [PMID: 38897561 DOI: 10.1016/j.niox.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 06/11/2024] [Accepted: 06/15/2024] [Indexed: 06/21/2024]
Abstract
Sodium thiosulfate has been used for decades in the treatment of calciphylaxis and cyanide detoxification, and has recently shown initial therapeutic promise in critical diseases such as neuronal ischemia, diabetes mellitus, heart failure and acute lung injury. However, the precise mechanism of sodium thiosulfate remains incompletely defined and sometimes contradictory. Although sodium thiosulfate has been widely accepted as a donor of hydrogen sulfide (H2S), emerging findings suggest that it is the executive signaling molecule for H2S and that its effects may not be dependent on H2S. This article presents an overview of the current understanding of sodium thiosulfate, including its synthesis, biological characteristics, and clinical applications of sodium thiosulfate, as well as the underlying mechanisms in vivo. We also discussed the interplay of sodium thiosulfate and H2S. Our review highlights sodium thiosulfate as a key player in sulfide signaling with the broad clinical potential for the future.
Collapse
Affiliation(s)
- Si-Miao Tang
- The Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Institute of Pharmacy & Pharmacology, University of South China, Hengyang, Hunan, 421001, China
| | - Guo-Zhong Lu
- 922th Hospital of Hengyang, Hunan, 421001, China
| | - Xiao-Yong Lei
- The Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Institute of Pharmacy & Pharmacology, University of South China, Hengyang, Hunan, 421001, China
| | - Xiao-Yan Yang
- The Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Institute of Pharmacy & Pharmacology, University of South China, Hengyang, Hunan, 421001, China
| | - Guo-Tao Tang
- The Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Institute of Pharmacy & Pharmacology, University of South China, Hengyang, Hunan, 421001, China
| | - Jia Yu
- The Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Institute of Pharmacy & Pharmacology, University of South China, Hengyang, Hunan, 421001, China.
| | - Zhi-Zhong Xie
- The Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Institute of Pharmacy & Pharmacology, University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|
9
|
Sun Y, Jin L, Qin Y, Ouyang Z, Zhong J, Zeng Y. Harnessing Mitochondrial Stress for Health and Disease: Opportunities and Challenges. BIOLOGY 2024; 13:394. [PMID: 38927274 PMCID: PMC11200414 DOI: 10.3390/biology13060394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 05/26/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024]
Abstract
Mitochondria, essential organelles orchestrating cellular metabolism, have emerged as central players in various disease pathologies. Recent research has shed light on mitohormesis, a concept proposing an adaptive response of mitochondria to minor disturbances in homeostasis, offering novel therapeutic avenues for mitochondria-related diseases. This comprehensive review explores the concept of mitohormesis, elucidating its induction mechanisms and occurrence. Intracellular molecules like reactive oxygen species (ROS), calcium, mitochondrial unfolded proteins (UPRmt), and integrated stress response (ISR), along with external factors such as hydrogen sulfide (H2S), physical stimuli, and exercise, play pivotal roles in regulating mitohormesis. Based on the available evidence, we elucidate how mitohormesis maintains mitochondrial homeostasis through mechanisms like mitochondrial quality control and mitophagy. Furthermore, the regulatory role of mitohormesis in mitochondria-related diseases is discussed. By envisioning future applications, this review underscores the significance of mitohormesis as a potential therapeutic target, paving the way for innovative interventions in disease management.
Collapse
Affiliation(s)
| | | | | | | | | | - Ye Zeng
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China; (Y.S.); (L.J.); (Y.Q.); (Z.O.); (J.Z.)
| |
Collapse
|
10
|
Yu R, Wang Y, Zhu J, Yang G. H 2S-mediated blockage of protein acetylation and oxidative stress attenuates lipid overload-induced cardiac senescence. Arch Physiol Biochem 2024; 130:96-109. [PMID: 34511001 DOI: 10.1080/13813455.2021.1976209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 08/30/2021] [Indexed: 10/20/2022]
Abstract
Hydrogen sulphide (H2S), a newly identified gasotransmitter, can be endogenously produced by cystathionine gamma-lyase (CSE) in the cardiovascular system. This study investigated the role of the CSE/H2S system on lipid overload-induced lipotoxicity and cardiac senescence. Lipid overload in rat cardiomyocyte cells (H9C2) promoted intracellular accumulation of lipid, oxidative stress, mitochondrial dysfunctions, lipid peroxidation and inhibited cell viability, all of which could be reversed by exogenously applied H2S. Further data revealed that H2S protected H9C2 cells from lipid overload-induced senescence by altering the expressions of lipid metabolism-related genes and inhibiting cellular acetyl-CoA and global protein acetylation. Enhancement of protein acetylation abolished the protective role of H2S on cardiac senescence. In vivo, knockout of the CSE gene strengthened cardiac lipid accumulation, protein acetylation, and cellular ageing in high fat diet-fed mice. Taken together, the CSE/H2S system is capable of maintaining lipid homeostasis and cellular senescence in heart cells under lipid overload.
Collapse
Affiliation(s)
- Ruihuan Yu
- School of Biological, Chemical & Forensic Sciences, Laurentian University, Sudbury, Canada
- Cardiovascular and Metabolic Research Unit, Laurentian University, Sudbury, Canada
| | - Yuehong Wang
- School of Biological, Chemical & Forensic Sciences, Laurentian University, Sudbury, Canada
- Cardiovascular and Metabolic Research Unit, Laurentian University, Sudbury, Canada
| | - Jiechun Zhu
- School of Biological, Chemical & Forensic Sciences, Laurentian University, Sudbury, Canada
- Cardiovascular and Metabolic Research Unit, Laurentian University, Sudbury, Canada
| | - Guangdong Yang
- School of Biological, Chemical & Forensic Sciences, Laurentian University, Sudbury, Canada
- Cardiovascular and Metabolic Research Unit, Laurentian University, Sudbury, Canada
| |
Collapse
|
11
|
Łoboda A, Dulak J. Cardioprotective Effects of Hydrogen Sulfide and Its Potential Therapeutic Implications in the Amelioration of Duchenne Muscular Dystrophy Cardiomyopathy. Cells 2024; 13:158. [PMID: 38247849 PMCID: PMC10814317 DOI: 10.3390/cells13020158] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/10/2024] [Accepted: 01/12/2024] [Indexed: 01/23/2024] Open
Abstract
Hydrogen sulfide (H2S) belongs to the family of gasotransmitters and can modulate a myriad of biological signaling pathways. Among others, its cardioprotective effects, through antioxidant, anti-inflammatory, anti-fibrotic, and proangiogenic activities, are well-documented in experimental studies. Cardiorespiratory failure, predominantly cardiomyopathy, is a life-threatening complication that is the number one cause of death in patients with Duchenne muscular dystrophy (DMD). Although recent data suggest the role of H2S in ameliorating muscle wasting in murine and Caenorhabditis elegans models of DMD, possible cardioprotective effects have not yet been addressed. In this review, we summarize the current understanding of the role of H2S in animal models of cardiac dysfunctions and cardiac cells. We highlight that DMD may be amenable to H2S supplementation, and we suggest H2S as a possible factor regulating DMD-associated cardiomyopathy.
Collapse
Affiliation(s)
- Agnieszka Łoboda
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Gronostajowa 7 Street, 30-387 Kraków, Poland;
| | | |
Collapse
|
12
|
Li Z, Huang Y, Lv B, Du J, Yang J, Fu L, Jin H. Gasotransmitter-Mediated Cysteinome Oxidative Posttranslational Modifications: Formation, Biological Effects, and Detection. Antioxid Redox Signal 2024; 40:145-167. [PMID: 37548538 DOI: 10.1089/ars.2023.0407] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Significance: Gasotransmitters, including nitric oxide (NO), hydrogen sulfide (H2S) and sulfur dioxide (SO2), participate in various cellular processes via corresponding oxidative posttranslational modifications (oxiPTMs) of specific cysteines. Recent Advances: Accumulating evidence has clarified the mechanisms underlying the formation of oxiPTMs derived from gasotransmitters and their biological functions in multiple signal pathways. Because of the specific existence and functional importance, determining the sites of oxiPTMs in cysteine is crucial in biology. Recent advances in the development of selective probes, together with upgraded mass spectrometry (MS)-based proteomics, have enabled the quantitative analysis of cysteinome. To date, several cysteine residues have been identified as gasotransmitter targets. Critical Issues: To clearly understand the underlying mechanisms for gasotransmitter-mediated biological processes, it is important to identify modified targets. In this review, we summarize the chemical formation and biological effects of gasotransmitter-dependent oxiPTMs and highlight the state-of-the-art detection methods. Future Directions: Future studies in this field should aim to develop the next generation of probes for in situ labeling to improve spatial resolution and determine the dynamic change of oxiPTMs, which can lay the foundation for research on the molecular mechanisms and clinical translation of gasotransmitters. Antioxid. Redox Signal. 40, 145-167.
Collapse
Affiliation(s)
- Zongmin Li
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Yaqian Huang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Boyang Lv
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Junbao Du
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Jing Yang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing, Beijing Institute of Lifeomics, Beijing, China
| | - Ling Fu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing, Beijing Institute of Lifeomics, Beijing, China
| | - Hongfang Jin
- Department of Pediatrics, Peking University First Hospital, Beijing, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| |
Collapse
|
13
|
Zhang N, Zhou Z, Huang Y, Wang G, Tang Z, Lu J, Wang C, Ni X. Reduced hydrogen sulfide production contributes to adrenal insufficiency induced by hypoxia via modulation of NLRP3 inflammasome activation. Redox Rep 2023; 28:2163354. [PMID: 36661247 PMCID: PMC9869992 DOI: 10.1080/13510002.2022.2163354] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Objective: Adrenocortical responsiveness is critical for maintaining glucocorticoids production and homeostasis during stress. We sought to investigate adrenocortical responsiveness during hypoxia in mice and the mechanisms responsible for the regulation of adrenal responsiveness.Methods: (1) Adult male WT mice were randomly divided into four groups: normoxia, hypoxia (24h), hypoxia (72h), hypoxia (72h) + GYY4137(hydrogen sulfide (H2S) donor, 133mmol/kg/day); (2) WT mice were randomly divided into four groups: sham, adrenalectomy (ADX), sham+hypoxia, ADX+hypoxia; (3) Cse-/- mice were randomly divided into two groups: Cse-/-, Cse-/- +GYY4137.Results: The circulatory level of corticosteroid induced by ACTH stimulation was significantly reduced in the mice with hypoxia compared with control mice. The mortality rate induced by lipopolysaccharide (LPS) increased during hypoxia. Cystathionine-γ-lyase (CSE) expression was significantly reduced in adrenal glands during hypoxia. GYY4137 treatment significantly increased adrenal responsiveness and attenuated NLRP3 inflammasome activation in mice treated by hypoxia and Cse-/- mice. Furthermore, The sulfhydrated level of PSMA7 in adrenal gland was decreased in the mice with hypoxia and Cse-/- mice. PSMA7 was S-sulfhydrated at cysteine 70. Blockage of S-sulfhydration of PSMA7 increased NLRP3 expression in adrenocortical cells.Conclusion: Reduced H2S production mediated hypo-adrenocortical responsiveness and NLRP3 inflammasome activation via PAMA7 S-sulfhydration during hypoxia.
Collapse
Affiliation(s)
- Ningning Zhang
- National Clinical Research Center for Geriatric Disorders, Central South University Xiangya Hospital, Changsha, People’s Republic of China,International Collaborative Research Center for Medical Metabolomics, Central South University Xiangya Hospital, Changsha, People’s Republic of China,Department of Physiology, Navy Medical University, Shanghai, People’s Republic of China
| | - Zhan Zhou
- National Clinical Research Center for Geriatric Disorders, Central South University Xiangya Hospital, Changsha, People’s Republic of China,International Collaborative Research Center for Medical Metabolomics, Central South University Xiangya Hospital, Changsha, People’s Republic of China
| | - Yan Huang
- Department of Physiology, Navy Medical University, Shanghai, People’s Republic of China
| | - Gang Wang
- Department of Physiology, Navy Medical University, Shanghai, People’s Republic of China
| | - Zhengshan Tang
- National Clinical Research Center for Geriatric Disorders, Central South University Xiangya Hospital, Changsha, People’s Republic of China,International Collaborative Research Center for Medical Metabolomics, Central South University Xiangya Hospital, Changsha, People’s Republic of China
| | - Jianqiang Lu
- The Key Laboratory of Exercise and Health Sciences of Ministry of Education, School of Kinesiology, Shanghai University of Sport, Shanghai, People’s Republic of China
| | - Changnan Wang
- Department of Physiology, Navy Medical University, Shanghai, People’s Republic of China, Changnan Wang Department of Physiology, Navy Medical University, Shanghai200433, People’s Republic of China; Xin Ni
| | - Xin Ni
- National Clinical Research Center for Geriatric Disorders, Central South University Xiangya Hospital, Changsha, People’s Republic of China,International Collaborative Research Center for Medical Metabolomics, Central South University Xiangya Hospital, Changsha, People’s Republic of China,Department of Physiology, Navy Medical University, Shanghai, People’s Republic of China, Changnan Wang Department of Physiology, Navy Medical University, Shanghai200433, People’s Republic of China; Xin Ni
| |
Collapse
|
14
|
Luo S, Kong C, Ye D, Liu X, Wang Y, Meng G, Han Y, Xie L, Ji Y. Protein Persulfidation: Recent Progress and Future Directions. Antioxid Redox Signal 2023; 39:829-852. [PMID: 36943282 DOI: 10.1089/ars.2022.0064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Significance: Hydrogen sulfide (H2S) is considered to be a gasotransmitter along with carbon monoxide (CO) and nitric oxide (NO), and is known as a key regulator of physiological and pathological activities. S-sulfhydration (also known as persulfidation), a mechanism involving the formation of protein persulfides by modification of cysteine residues, is proposed here to explain the multiple biological functions of H2S. Investigating the properties of protein persulfides can provide a foundation for further understanding of the potential functions of H2S. Recent Advances: Multiple methods have been developed to determine the level of protein persulfides. It has been demonstrated that protein persulfidation is involved in many biological processes through various mechanisms including the regulation of ion channels, enzymes, and transcription factors, as well as influencing protein-protein interactions. Critical Issues: Some technical and theoretical questions remain to be solved. These include how to improve the specificity of the detection methods for protein persulfidation, why persulfidation typically occurs on one or a few thiols within a protein, how this modification alters protein functions, and whether protein persulfidation has organ-specific patterns. Future Directions: Optimizing the detection methods and elucidating the properties and molecular functions of protein persulfidation would be beneficial for current therapeutics. In this review, we introduce the detailed mechanism of the persulfidation process and discuss persulfidation detection methods. In addition, this review summarizes recent discoveries of the selectivity of protein persulfidation and the regulation of protein functions and cell signaling pathways by persulfidation. Antioxid. Redox Signal. 39, 829-852.
Collapse
Affiliation(s)
- Shanshan Luo
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Nanjing Medical University, Nanjing, China
| | - Chuiyu Kong
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Nanjing Medical University, Nanjing, China
| | - Danyu Ye
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Nanjing Medical University, Nanjing, China
| | - Xingeng Liu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Nanjing Medical University, Nanjing, China
- Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Yu Wang
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Nanjing Medical University, Nanjing, China
| | - Guoliang Meng
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, China
| | - Yi Han
- Department of Geriatrics, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Liping Xie
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Nanjing Medical University, Nanjing, China
- Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Nanjing, China
| | - Yong Ji
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Nanjing Medical University, Nanjing, China
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Nanjing Medical University, Nanjing, China
- Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Nanjing, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD), Harbin Medical University, Harbin, China
| |
Collapse
|
15
|
Li K, Wang M, Wang R, Wang X, Jiao H, Zhao J, Zhou Y, Li H, Lin H. Hydrogen Sulfide Regulates Glucose Uptake in Skeletal Muscles via S-Sulfhydration of AMPK in Muscle Fiber Type-Dependent Way. J Nutr 2023; 153:2878-2892. [PMID: 37611831 DOI: 10.1016/j.tjnut.2023.08.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/13/2023] [Accepted: 08/17/2023] [Indexed: 08/25/2023] Open
Abstract
BACKGROUND The effect of hydrogen sulfide (H2S) on glucose homeostasis remains to be elucidated, especially in the state of insulin resistance. OBJECTIVES In the present study, we aimed to investigate H2S-regulated glucose uptake in the M. pectoralis major (PM) muscle (which mainly consists of fast-twitch glycolytic fibers) and M. biceps femoris (BF) muscle (which mainly consists of slow-twitch oxidative fibers) of the chicken, a potential model of insulin resistance. METHODS Chicks were subjected to intraperitoneal injection of sodium hydrosulfide (NaHS, 50 μmol/kg body mass/day) twice a day to explore glucose homeostasis. In vitro, myoblasts from PM and BF muscles were used to detect glucose uptake and utilization. Effects of AMP-activated protein kinase (AMPK) phosphorylation, AMPK S-sulfhydration, and mitogen-activated protein kinase (MAPK) pathway induction by NaHS were detected. RESULTS NaHS enhanced glucose uptake and utilization in chicks (P < 0.05). In myoblasts from PM muscle, NaHS (100 μM) increased glucose uptake by activating AMPK S-sulfhydration, AMPK phosphorylation, and the AMPK/p38 MAPK pathway (P < 0.05). However, NaHS decreased glucose uptake in myoblasts from BF muscle by suppressing the p38 MAPK pathway (P < 0.05). Moreover, NaHS increased S-sulfhydration and, in turn, the phosphorylation of AMPK (P < 0.05). CONCLUSIONS This study reveals the role of H2S in enhancing glucose uptake and utilization in chicks. The results suggest that NaHS is involved in glucose uptake in skeletal muscle in a fiber type-dependent way. The AMPK/p38 pathway and protein S-sulfhydration promote glucose uptake in fast-twitch glycolytic muscle fibers, which provides a muscle fiber-specific potential therapeutic target to ameliorate glucose metabolism.
Collapse
Affiliation(s)
- Kelin Li
- College of Animal Science and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Tai'an, China
| | - Minghui Wang
- College of Animal Science and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Tai'an, China
| | - Ruxia Wang
- Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang, China
| | - Xiaojuan Wang
- College of Animal Science and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Tai'an, China
| | - Hongchao Jiao
- College of Animal Science and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Tai'an, China
| | - Jingpeng Zhao
- College of Animal Science and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Tai'an, China
| | - Yunlei Zhou
- College of Chemistry and Material Science, Shandong Agricultural University, Tai'an, China
| | - Haifang Li
- College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Hai Lin
- College of Animal Science and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Tai'an, China.
| |
Collapse
|
16
|
Xu S, Shieh M, Paul BD, Xian M. Hydrogen sulfide: Recent development of its dual donors and hybrid drugs. Br J Pharmacol 2023:10.1111/bph.16211. [PMID: 37553774 PMCID: PMC10850433 DOI: 10.1111/bph.16211] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/27/2023] [Accepted: 08/01/2023] [Indexed: 08/10/2023] Open
Abstract
Hydrogen sulfide (H2 S) is an important gaseous signalling molecule known to be critically involved in regulating cellular redox homeostasis. As the beneficial and therapeutic effects of H2 S in pathophysiology, such as in cardiovascular and neurodegenerative diseases, have emerged, so too has the drive for the development of H2 S-releasing compounds (aka donors) and their therapeutic applications. Most reported donor compounds singularly release H2 S through biocompatible triggers. An emerging area in the field is the development of compounds that can co-deliver H2 S with other drugs or biologically relevant species, such as reactive oxygen and nitrogen species (ROS and RNS, respectively). These H2 S-based dual donors and hybrid drugs are expected to offset negative side effects from individual treatments or achieve synergistic effects rendering them more clinically effective. Additionally, considering that molecules exist and interact physiologically, dual donors may more accurately mimic biological systems as compared to single donors and allow for the elucidation of fundamental chemistry and biology. This review focuses on the recent advances in the development of H2 S-based dual donors and hybrid drugs along with their design principles and synergistic effects.
Collapse
Affiliation(s)
- Shi Xu
- Department of Chemistry, Brown University, Providence, Rhode Island, USA
| | - Meg Shieh
- Department of Chemistry, Brown University, Providence, Rhode Island, USA
| | - Bindu D Paul
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Lieber Institute for Brain Development, Baltimore, Maryland, USA
| | - Ming Xian
- Department of Chemistry, Brown University, Providence, Rhode Island, USA
| |
Collapse
|
17
|
Wang H, Bai Q, Ma G. The biological functions of protein S-sulfhydration in eukaryotes and the ever-increasing understanding of its effects on bacteria. Microbiol Res 2023; 271:127366. [PMID: 36989759 DOI: 10.1016/j.micres.2023.127366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/21/2023] [Accepted: 03/17/2023] [Indexed: 03/29/2023]
Abstract
As a critical endogenous signaling molecule, hydrogen sulfide may induce reversible post-translational modifications on cysteine residues of proteins, generating a persulfide bond known as S-sulfhydration. A systemic overview of the biofunctions of S-sulfhydration will equip us better to characterize its regulatory roles in antioxidant defense, inflammatory response, and cell fate, as well as its pathological mechanisms related to cardiovascular, neurological, and multiple organ diseases, etc. Nevertheless, the understanding of S-sulfhydration is mostly built on mammalian cells and animal models. We subsequently summarized the mediation effects of this specific post-transcriptional modification on physiological processes and virulence in bacteria. The high-sensitivity and high-throughput detection technologies are required for studying the signal transduction mechanism of H2S and protein S-sulfhydration modification. Herein, we reviewed the establishment and development of different approaches to assess S-sulfhydration, including the biotin-switch method, modified biotin-switch method, alkylation-based cysteine-labelled assay, and Tag-switch method. Finally, we discussed the limitations of the impacts of S-sulfhydration in pathogens-host interactions and envisaged the challenges to design drugs and antibiotics targeting the S-sulfhydrated proteins in the host or pathogens.
Collapse
|
18
|
He B, Zhang Z, Huang Z, Duan X, Wang Y, Cao J, Li L, He K, Nice EC, He W, Gao W, Shen Z. Protein persulfidation: Rewiring the hydrogen sulfide signaling in cell stress response. Biochem Pharmacol 2023; 209:115444. [PMID: 36736962 DOI: 10.1016/j.bcp.2023.115444] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/27/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023]
Abstract
The past few decades have witnessed significant progress in the discovery of hydrogen sulfide (H2S) as a ubiquitous gaseous signaling molecule in mammalian physiology, akin to nitric oxide and carbon monoxide. As the third gasotransmitter, H2S is now known to exert a wide range of physiological and cytoprotective functions in the biological systems. However, endogenous H2S concentrations are usually low, and its potential biologic mechanisms responsible have not yet been fully clarified. Recently, a growing body of evidence has demonstrated that protein persulfidation, a posttranslational modification of cysteine residues (RSH) to persulfides (RSSH) elicited by H2S, is a fundamental mechanism of H2S-mediated signaling pathways. Persulfidation, as a biological switch for protein function, plays an important role in the maintenance of cell homeostasis in response to various internal and external stress stimuli and is also implicated in numerous diseases, such as cardiovascular and neurodegenerative diseases and cancer. In this review, the biological significance of protein persulfidation by H2S in cell stress response is reviewed providing a framework for understanding the multifaceted roles of H2S. A mechanism-guided perspective can help open novel avenues for the exploitation of therapeutics based on H2S-induced persulfidation in the context of diseases.
Collapse
Affiliation(s)
- Bo He
- West China School of Basic Medical Sciences & Forensic Medicine, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Zhe Zhang
- West China School of Basic Medical Sciences & Forensic Medicine, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Zhao Huang
- West China School of Basic Medical Sciences & Forensic Medicine, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Xirui Duan
- Department of Oncology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Yu Wang
- West China School of Basic Medical Sciences & Forensic Medicine, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Jiangjun Cao
- West China School of Basic Medical Sciences & Forensic Medicine, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Lei Li
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Kai He
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Edouard C Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Weifeng He
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Army Military Medical University, Chongqing 400038, China.
| | - Wei Gao
- Clinical Genetics Laboratory, Affiliated Hospital & Clinical Medical College of Chengdu University, Chengdu 610081, China.
| | - Zhisen Shen
- Department of Otorhinolaryngology and Head and Neck Surgery, Affiliated Lihuili Hospital, Ningbo University, Ningbo 315040, Zhejiang, China.
| |
Collapse
|
19
|
Feng J, Lu X, Li H, Wang S. The roles of hydrogen sulfide in renal physiology and disease states. Ren Fail 2022; 44:1289-1308. [PMID: 35930288 PMCID: PMC9359156 DOI: 10.1080/0886022x.2022.2107936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Hydrogen sulfide (H2S), an endogenous gaseous signaling transmitter, has gained recognition for its physiological effects. In this review, we aim to summarize and discuss existing studies about the roles of H2S in renal functions and renal disease as well as the underlying mechanisms. H2S is mainly produced by four pathways, and the kidneys are major H2S–producing organs. Previous studies have shown that H2S can impact multiple signaling pathways via sulfhydration. In renal physiology, H2S promotes kidney excretion, regulates renin release and increases ATP production as a sensor for oxygen. H2S is also involved in the development of kidney disease. H2S has been implicated in renal ischemia/reperfusion and cisplatin–and sepsis–induced kidney disease. In chronic kidney diseases, especially diabetic nephropathy, hypertensive nephropathy and obstructive kidney disease, H2S attenuates disease progression by regulating oxidative stress, inflammation and the renin–angiotensin–aldosterone system. Despite accumulating evidence from experimental studies suggesting the potential roles of H2S donors in the treatment of kidney disease, these results need further clinical translation. Therefore, expanding the understanding of H2S can not only promote our further understanding of renal physiology but also lay a foundation for transforming H2S into a target for specific kidney diseases.
Collapse
Affiliation(s)
- Jianan Feng
- Department of Nephrology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Xiangxue Lu
- Department of Nephrology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Han Li
- Department of Nephrology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Shixiang Wang
- Department of Nephrology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
20
|
Recent Development of the Molecular and Cellular Mechanisms of Hydrogen Sulfide Gasotransmitter. Antioxidants (Basel) 2022; 11:antiox11091788. [PMID: 36139861 PMCID: PMC9495975 DOI: 10.3390/antiox11091788] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/04/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
Hydrogen sulfide has been recently identified as the third biological gasotransmitter, along with the more well studied nitric oxide (NO) and carbon monoxide (CO). Intensive studies on its potential as a therapeutic agent for cardiovascular, inflammatory, infectious and neuropathological diseases have been undertaken. Here we review the possible direct targets of H2S in mammals. H2S directly interacts with reactive oxygen/nitrogen species and is involved in redox signaling. H2S also reacts with hemeproteins and modulates metal-containing complexes. Once being oxidized, H2S can persulfidate proteins by adding -SSH to the amino acid cysteine. These direct modifications by H2S have significant impact on cell structure and many cellular functions, such as tight junctions, autophagy, apoptosis, vesicle trafficking, cell signaling, epigenetics and inflammasomes. Therefore, we conclude that H2S is involved in many important cellular and physiological processes. Compounds that donate H2S to biological systems can be developed as therapeutics for different diseases.
Collapse
|
21
|
Chen SM, Tang XQ. Homocysteinylation and Sulfhydration in Diseases. Curr Neuropharmacol 2022; 20:1726-1735. [PMID: 34951391 PMCID: PMC9881069 DOI: 10.2174/1570159x20666211223125448] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 11/02/2021] [Accepted: 12/18/2021] [Indexed: 11/22/2022] Open
Abstract
Homocysteine (Hcy) is an important intermediate in methionine metabolism and generation of one-carbon units, and its dysfunction is associated with many pathological states. Although Hcy is a non-protein amino acid, many studies have demonstrated protein-related homocysteine metabolism and possible mechanisms underlying homocysteinylation. Homocysteinylated proteins lose their original biological function and have a negative effect on the various disease phenotypes. Hydrogen sulfide (H2S) has been recognized as an important gaseous signaling molecule with mounting physiological properties. H2S modifies small molecules and proteins via sulfhydration, which is supposed to be essential in the regulation of biological functions and signal transduction in human health and disorders. This review briefly introduces Hcy and H2S, further discusses pathophysiological consequences of homocysteine modification and sulfhydryl modification, and ultimately makes a prediction that H2S might exert a protective effect on the toxicity of homocysteinylation of target protein via sulfhydration. The highlighted information here yields new insights into the role of protein modification by Hcy and H2S in diseases.
Collapse
Affiliation(s)
- Si-Min Chen
- Emergency Intensive Care Unit, Department of Emergency, Xiangtan Central Hospital, Xiangtan, 411100, Hunan, P.R. China; ,The First Affiliated Hospital, Institute of Neurology, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, P.R. China; ,Institute of Neuroscience, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, P.R. China
| | - Xiao-Qing Tang
- The First Affiliated Hospital, Institute of Neurology, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, P.R. China; ,Institute of Neuroscience, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, P.R. China,Address correspondence to this author at the The First Affiliated Hospital, Institute of Neurology, Hengyang Medical School, University of South China 69 Chuanshan Road, Hengyang 421001, Hunan Province, P.R. China; E-mails: ;
| |
Collapse
|
22
|
Haslem L, Hays JM, Hays FA. p66Shc in Cardiovascular Pathology. Cells 2022; 11:cells11111855. [PMID: 35681549 PMCID: PMC9180016 DOI: 10.3390/cells11111855] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/30/2022] [Accepted: 06/01/2022] [Indexed: 02/06/2023] Open
Abstract
p66Shc is a widely expressed protein that governs a variety of cardiovascular pathologies by generating, and exacerbating, pro-apoptotic ROS signals. Here, we review p66Shc’s connections to reactive oxygen species, expression, localization, and discuss p66Shc signaling and mitochondrial functions. Emphasis is placed on recent p66Shc mitochondrial function discoveries including structure/function relationships, ROS identity and regulation, mechanistic insights, and how p66Shc-cyt c interactions can influence p66Shc mitochondrial function. Based on recent findings, a new p66Shc mitochondrial function model is also put forth wherein p66Shc acts as a rheostat that can promote or antagonize apoptosis. A discussion of how the revised p66Shc model fits previous findings in p66Shc-mediated cardiovascular pathology follows.
Collapse
Affiliation(s)
- Landon Haslem
- Biochemistry and Molecular Biology Department, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (L.H.); (J.M.H.)
| | - Jennifer M. Hays
- Biochemistry and Molecular Biology Department, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (L.H.); (J.M.H.)
| | - Franklin A. Hays
- Biochemistry and Molecular Biology Department, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (L.H.); (J.M.H.)
- Stephenson Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Correspondence:
| |
Collapse
|
23
|
Ascenção K, Szabo C. Emerging roles of cystathionine β-synthase in various forms of cancer. Redox Biol 2022; 53:102331. [PMID: 35618601 PMCID: PMC9168780 DOI: 10.1016/j.redox.2022.102331] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 04/29/2022] [Accepted: 05/04/2022] [Indexed: 12/12/2022] Open
Abstract
The expression of the reverse transsulfuration enzyme cystathionine-β-synthase (CBS) is markedly increased in many forms of cancer, including colorectal, ovarian, lung, breast and kidney, while in other cancers (liver cancer and glioma) it becomes downregulated. According to the clinical database data in high-CBS-expressor cancers (e.g. colon or ovarian cancer), high CBS expression typically predicts lower survival, while in the low-CBS-expressor cancers (e.g. liver cancer), low CBS expression is associated with lower survival. In the high-CBS expressing tumor cells, CBS, and its product hydrogen sulfide (H2S) serves as a bioenergetic, proliferative, cytoprotective and stemness factor; it also supports angiogenesis and epithelial-to-mesenchymal transition in the cancer microenvironment. The current article reviews the various tumor-cell-supporting roles of the CBS/H2S axis in high-CBS expressor cancers and overviews the anticancer effects of CBS silencing and pharmacological CBS inhibition in various cancer models in vitro and in vivo; it also outlines potential approaches for biomarker identification, to support future targeted cancer therapies based on pharmacological CBS inhibition.
Collapse
|
24
|
The Interplay between Hydrogen Sulfide and Phytohormone Signaling Pathways under Challenging Environments. Int J Mol Sci 2022; 23:ijms23084272. [PMID: 35457090 PMCID: PMC9032328 DOI: 10.3390/ijms23084272] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 01/09/2023] Open
Abstract
Hydrogen sulfide (H2S) serves as an important gaseous signaling molecule that is involved in intra- and intercellular signal transduction in plant–environment interactions. In plants, H2S is formed in sulfate/cysteine reduction pathways. The activation of endogenous H2S and its exogenous application has been found to be highly effective in ameliorating a wide variety of stress conditions in plants. The H2S interferes with the cellular redox regulatory network and prevents the degradation of proteins from oxidative stress via post-translational modifications (PTMs). H2S-mediated persulfidation allows the rapid response of proteins in signaling networks to environmental stimuli. In addition, regulatory crosstalk of H2S with other gaseous signals and plant growth regulators enable the activation of multiple signaling cascades that drive cellular adaptation. In this review, we summarize and discuss the current understanding of the molecular mechanisms of H2S-induced cellular adjustments and the interactions between H2S and various signaling pathways in plants, emphasizing the recent progress in our understanding of the effects of H2S on the PTMs of proteins. We also discuss future directions that would advance our understanding of H2S interactions to ultimately mitigate the impacts of environmental stresses in the plants.
Collapse
|
25
|
Li M, Hu W, Wang R, Li Z, Yu Y, Zhuo Y, Zhang Y, Wang Z, Qiu Y, Chen K, Ding Q, Qi W, Zhu M, Zhu Y. Sp1 S-Sulfhydration Induced by Hydrogen Sulfide Inhibits Inflammation via HDAC6/MyD88/NF-κB Signaling Pathway in Adjuvant-Induced Arthritis. Antioxidants (Basel) 2022; 11:732. [PMID: 35453416 PMCID: PMC9030249 DOI: 10.3390/antiox11040732] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/01/2022] [Accepted: 04/03/2022] [Indexed: 12/29/2022] Open
Abstract
Histone deacetylase 6 (HDAC6) acts as a regulator of the nuclear factor kappa-B (NF-κB) signaling pathway by deacetylating the non-histone protein myeloid differentiation primary response 88 (MyD88) at lysine residues, which is an adapter protein for the Toll-like receptor (TLR) and interleukin (IL)-1β receptor. Over-activated immune responses, induced by infiltrated immune cells, excessively trigger the NF-κB signaling pathway in other effector cells and contribute to the development of rheumatoid arthritis (RA). It has also been reported that HDAC6 can promote the activation of the NF-κB signaling pathway. In the present study, we showed that HDAC6 protein level was increased in the synovium tissues of adjuvant-induced arthritis rats. In addition, hydrogen sulfide (H2S) donor S-propargyl-cysteine (SPRC) can inhibit HDAC6 expression and alleviate inflammatory response in vivo. In vitro study revealed that HDAC6 overexpression activated the NF-κB signaling pathway by deacetylating MyD88. Meanwhile, sodium hydrosulfide (NaHS) or HDAC6 inhibitor tubastatin A (tubA) suppressed the pro-inflammatory function of HDAC6. Furthermore, the reduced expression of HDAC6 appeared to result from transcriptional inhibition by S-sulfhydrating specificity protein 1 (Sp1), which is a transcription factor of HDAC6. Our results demonstrate that Sp1 can regulate HDAC6 expression, and S-sulfhydration of Sp1 by antioxidant molecular H2S ameliorates RA progression via the HDAC6/MyD88/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Meng Li
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau 999078, China; (M.L.); (W.H.); (R.W.); (Z.L.); (Y.Y.); (Y.Z.); (Y.Z.); (Z.W.); (Y.Q.); (K.C.); (Q.D.); (W.Q.); (M.Z.)
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Wei Hu
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau 999078, China; (M.L.); (W.H.); (R.W.); (Z.L.); (Y.Y.); (Y.Z.); (Y.Z.); (Z.W.); (Y.Q.); (K.C.); (Q.D.); (W.Q.); (M.Z.)
| | - Ran Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau 999078, China; (M.L.); (W.H.); (R.W.); (Z.L.); (Y.Y.); (Y.Z.); (Y.Z.); (Z.W.); (Y.Q.); (K.C.); (Q.D.); (W.Q.); (M.Z.)
| | - Zhaoyi Li
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau 999078, China; (M.L.); (W.H.); (R.W.); (Z.L.); (Y.Y.); (Y.Z.); (Y.Z.); (Z.W.); (Y.Q.); (K.C.); (Q.D.); (W.Q.); (M.Z.)
| | - Yue Yu
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau 999078, China; (M.L.); (W.H.); (R.W.); (Z.L.); (Y.Y.); (Y.Z.); (Y.Z.); (Z.W.); (Y.Q.); (K.C.); (Q.D.); (W.Q.); (M.Z.)
| | - Yue Zhuo
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau 999078, China; (M.L.); (W.H.); (R.W.); (Z.L.); (Y.Y.); (Y.Z.); (Y.Z.); (Z.W.); (Y.Q.); (K.C.); (Q.D.); (W.Q.); (M.Z.)
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Yida Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau 999078, China; (M.L.); (W.H.); (R.W.); (Z.L.); (Y.Y.); (Y.Z.); (Y.Z.); (Z.W.); (Y.Q.); (K.C.); (Q.D.); (W.Q.); (M.Z.)
- State Key Laboratory of Respiratory Disease, National Clinical Center for Respiratory Diseases, Guangzhou Institute of Respiratory Diseases, First Affiliated Hospital, Guangzhou Medical University, Guangzhou 510120, China
| | - Zhou Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau 999078, China; (M.L.); (W.H.); (R.W.); (Z.L.); (Y.Y.); (Y.Z.); (Y.Z.); (Z.W.); (Y.Q.); (K.C.); (Q.D.); (W.Q.); (M.Z.)
| | - Yuanye Qiu
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau 999078, China; (M.L.); (W.H.); (R.W.); (Z.L.); (Y.Y.); (Y.Z.); (Y.Z.); (Z.W.); (Y.Q.); (K.C.); (Q.D.); (W.Q.); (M.Z.)
| | - Keyuan Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau 999078, China; (M.L.); (W.H.); (R.W.); (Z.L.); (Y.Y.); (Y.Z.); (Y.Z.); (Z.W.); (Y.Q.); (K.C.); (Q.D.); (W.Q.); (M.Z.)
| | - Qian Ding
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau 999078, China; (M.L.); (W.H.); (R.W.); (Z.L.); (Y.Y.); (Y.Z.); (Y.Z.); (Z.W.); (Y.Q.); (K.C.); (Q.D.); (W.Q.); (M.Z.)
| | - Wei Qi
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau 999078, China; (M.L.); (W.H.); (R.W.); (Z.L.); (Y.Y.); (Y.Z.); (Y.Z.); (Z.W.); (Y.Q.); (K.C.); (Q.D.); (W.Q.); (M.Z.)
| | - Menglin Zhu
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau 999078, China; (M.L.); (W.H.); (R.W.); (Z.L.); (Y.Y.); (Y.Z.); (Y.Z.); (Z.W.); (Y.Q.); (K.C.); (Q.D.); (W.Q.); (M.Z.)
| | - Yizhun Zhu
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau 999078, China; (M.L.); (W.H.); (R.W.); (Z.L.); (Y.Y.); (Y.Z.); (Y.Z.); (Z.W.); (Y.Q.); (K.C.); (Q.D.); (W.Q.); (M.Z.)
- School of Pharmacy, Macau University of Science and Technology, Macau 999078, China
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China
| |
Collapse
|
26
|
Gupta R, Sahu M, Tripathi R, Ambasta RK, Kumar P. Protein S-sulfhydration: Unraveling the prospective of hydrogen sulfide in the brain, vasculature and neurological manifestations. Ageing Res Rev 2022; 76:101579. [PMID: 35124235 DOI: 10.1016/j.arr.2022.101579] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 01/30/2022] [Accepted: 02/01/2022] [Indexed: 02/08/2023]
Abstract
Hydrogen sulfide (H2S) and hydrogen polysulfides (H2Sn) are essential regulatory signaling molecules generated by the entire body, including the central nervous system. Researchers have focused on the classical H2S signaling from the past several decades, whereas the last decade has shown the emergence of H2S-induced protein S-sulfhydration signaling as a potential therapeutic approach. Cysteine S-persulfidation is a critical paradigm of post-translational modification in the process of H2S signaling. Additionally, studies have shown the cross-relationship between S-sulfhydration and other cysteine-induced post-translational modifications, namely nitrosylation and carbonylation. In the central nervous system, S-sulfhydration is involved in the cytoprotection through various signaling pathways, viz. inflammatory response, oxidative stress, endoplasmic reticulum stress, atherosclerosis, thrombosis, and angiogenesis. Further, studies have demonstrated H2S-induced S-sulfhydration in regulating different biological processes, such as mitochondrial integrity, calcium homeostasis, blood-brain permeability, cerebral blood flow, and long-term potentiation. Thus, protein S-sulfhydration becomes a crucial regulatory molecule in cerebrovascular and neurodegenerative diseases. Herein, we first described the generation of intracellular H2S followed by the application of H2S in the regulation of cerebral blood flow and blood-brain permeability. Further, we described the involvement of S-sulfhydration in different biological and cellular functions, such as inflammatory response, mitochondrial integrity, calcium imbalance, and oxidative stress. Moreover, we highlighted the importance of S-sulfhydration in cerebrovascular and neurodegenerative diseases.
Collapse
|
27
|
Lv B, Peng H, Qiu B, Zhang L, Ge M, Bu D, Li K, Yu X, Du J, Yang L, Tang C, Huang Y, Du J, Jin H. Sulphenylation of CypD at Cysteine 104: A Novel Mechanism by Which SO2 Inhibits Cardiomyocyte Apoptosis. Front Cell Dev Biol 2022; 9:784799. [PMID: 35118072 PMCID: PMC8805922 DOI: 10.3389/fcell.2021.784799] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/13/2021] [Indexed: 11/13/2022] Open
Abstract
Objectives: The study was designed to explore the role of endogenous gaseous signaling molecule sulfur dioxide (SO2) in the control of cardiomyocyte apoptosis and its molecular mechanisms.Methods: Neonatal mouse cardiac myocytes (NMCMs) and H9c2 cells were used in the cell experiments. The endogenous SO2 pathway including SO2 level and the expression of SO2-generating enzyme aspartate aminotransferase 1/2 (AAT1/2) were detected in NMCMs. The apoptosis of cardiomyocytes was examined by a TUNEL assay. The cleavage and the activity of apoptotic proteins caspase9 and caspase3 were measured. The content of ATP, the opening of mitochondrial permeability transition pore (mPTP), and the cytochrome c (cytc) leakage were detected by immunofluorescence. The sulphenylation of cyclophilin-D (CypD) was detected by biotin switch analysis. The four CypD mutant plasmids in which cysteine sites were mutated to serine were constructed to identify the SO2-affected site in vitro.Results: ISO down-regulated the endogenous SO2/AAT pathway of cardiomyocytes in association with a significant increase in cardiomyocyte apoptosis, demonstrated by the increases in apoptosis, cleaved-caspase3/caspase3 ratio, and caspase3 activity. Furthermore, ISO significantly reduced ATP production in H9c2 cells, but the supplement of SO2 significantly restored the content of ATP. ISO stimulated mPTP opening, resulting in an increase in the release of cytc, which further increased the ratio of cleaved caspase9/caspase9 and enhanced the protein activity of caspase9. While, the supplementation of SO2 reversed the above effects. Mechanistically, SO2 did not affect CypD protein expression, but sulphenylated CypD and inhibited mPTP opening, resulting in an inhibition of cardiomyocyte apoptosis. The C104S mutation in CypD abolished SO2-induced sulphenylation of CypD, and thereby blocked the inhibitory effect of SO2 on the mPTP opening and cardiomyocyte apoptosis.Conclusion: Endogenous SO2 sulphenylated CypD at Cys104 to inhibit mPTP opening, and thus protected against cardiomyocyte apoptosis.
Collapse
Affiliation(s)
- Boyang Lv
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Hanlin Peng
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Bingquan Qiu
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Lulu Zhang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Mei Ge
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Dingfang Bu
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Kun Li
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, China
| | - Xiaoqi Yu
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, China
| | - Jiantong Du
- Department of Ophthalmology, Peking University First Hospital, Beijing, China
| | - Liu Yang
- Department of Ophthalmology, Peking University First Hospital, Beijing, China
| | - Chaoshu Tang
- Key Laboratory of Molecular Cardiology, Ministry of Education, Beijing, China
- Department of Physiology and Pathophysiology, Peking University Health Science Centre, Beijing, China
| | - Yaqian Huang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
- *Correspondence: Yaqian Huang, ; Junbao Du, ; Hongfang Jin,
| | - Junbao Du
- Department of Pediatrics, Peking University First Hospital, Beijing, China
- Key Laboratory of Molecular Cardiology, Ministry of Education, Beijing, China
- *Correspondence: Yaqian Huang, ; Junbao Du, ; Hongfang Jin,
| | - Hongfang Jin
- Department of Pediatrics, Peking University First Hospital, Beijing, China
- *Correspondence: Yaqian Huang, ; Junbao Du, ; Hongfang Jin,
| |
Collapse
|
28
|
Kaziród K, Myszka M, Dulak J, Łoboda A. Hydrogen sulfide as a therapeutic option for the treatment of Duchenne muscular dystrophy and other muscle-related diseases. Cell Mol Life Sci 2022; 79:608. [PMID: 36441348 PMCID: PMC9705465 DOI: 10.1007/s00018-022-04636-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 10/25/2022] [Accepted: 11/15/2022] [Indexed: 11/29/2022]
Abstract
Hydrogen sulfide (H2S) has been known for years as a poisoning gas and until recently evoked mostly negative associations. However, the discovery of its gasotransmitter functions suggested its contribution to various physiological and pathological processes. Although H2S has been found to exert cytoprotective effects through modulation of antioxidant, anti-inflammatory, anti-apoptotic, and pro-angiogenic responses in a variety of conditions, its role in the pathophysiology of skeletal muscles has not been broadly elucidated so far. The classical example of muscle-related disorders is Duchenne muscular dystrophy (DMD), the most common and severe type of muscular dystrophy. Mutations in the DMD gene that encodes dystrophin, a cytoskeletal protein that protects muscle fibers from contraction-induced damage, lead to prominent dysfunctions in the structure and functions of the skeletal muscle. However, the main cause of death is associated with cardiorespiratory failure, and DMD remains an incurable disease. Taking into account a wide range of physiological functions of H2S and recent literature data on its possible protective role in DMD, we focused on the description of the 'old' and 'new' functions of H2S, especially in muscle pathophysiology. Although the number of studies showing its essential regulatory action in dystrophic muscles is still limited, we propose that H2S-based therapy has the potential to attenuate the progression of DMD and other muscle-related disorders.
Collapse
Affiliation(s)
- Katarzyna Kaziród
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Gronostajowa 7, 30-387, Kraków, Poland
| | - Małgorzata Myszka
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Gronostajowa 7, 30-387, Kraków, Poland
| | - Józef Dulak
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Gronostajowa 7, 30-387, Kraków, Poland
| | - Agnieszka Łoboda
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Gronostajowa 7, 30-387, Kraków, Poland.
| |
Collapse
|
29
|
Mosbah A, Dhaouadi R, Abdeljelil NB, Guerbej H, Banni M. Multifactorial Screening Reveals New Insight into Early Cadmium Exposure and Garlic Interactions in Dicentrarchus labrax. Biol Trace Elem Res 2021; 199:4759-4771. [PMID: 33586117 DOI: 10.1007/s12011-021-02592-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 01/11/2021] [Indexed: 11/29/2022]
Abstract
Environmental pollutants and especially metal trace elements remain an unmitigated threat to the overall life support system. Their chemical stability and accumulation pattern in the ecosystem make them a persistent hazard. This study aims to characterize the early cadmium (Cd) histological and hematological alterations and their corresponding plasma indicators in the Mediterranean sea bass (Dicentrarchus labrax). We also assessed garlic potential to prevent cadmium toxicity. For this purpose, 200 fish of 55 g mean weight were separated into 3 cylindroconical fiberglass tanks of 500-L capacity, each with a stocking density of 4 kg m-3. The fish were regularly hand-fed 0% (control group), 2%, and 6% garlic-supplemented diets to apparent satiation twice a day for 1 month. At the end of the experiment, we injected 22.2 mM cadmium (CdCl2) intraperitoneally to the experimental groups and a placebo solution (9% NaCl) to the control groups; liver, kidney, heart, and blood tissue alterations were monitored with a full screening of their plasmatic indicators, 24 h before and 48 h after Cd injection. Subsequently, whole blood count and blood smears were performed to follow up on Cd-induced vascular damages. Our data showed that Cd induced thrombotic thrombocytopenic purpura, leading to widespread bleeding and cellular alterations in the targeted tissues. These alterations were associated with an obvious normochromic normocytic anemia in favor of microangiopathic hemolytic anemia. Cd injection has also seriously inhibited the overall enzymatic activities triggering a metabolic shift. Although garlic supplementation had little effect on cadmium-induced alterations, it significantly reduced biomass dispersion. Our data is the first evidence of the cadmium versatile toxicity involving vascular alterations as a central and a leading cause of the overall parenchymal lesions. Cd toxicity was associated with a specific enzymatic signature, which must be considered during the interpretation.
Collapse
Affiliation(s)
- Amine Mosbah
- Laboratory of Biochemical and Environmental Toxicology, Higher Institute of Agriculture, Sousse University, 4042, Chott Mariem, Tunisia.
| | - Raouf Dhaouadi
- Laboratory of Ichthyology, National School of Veterinary Medicine, Manouba University, 2010, Manouba, Tunisia
| | - Nouha Ben Abdeljelil
- Department of Pathology, Fattouma Bourguiba University Hospital, 5000, Monastir, Tunisia
| | - Hamadi Guerbej
- National Institute of Marine Sciences and Technologies, Monastir Center, Monastir, Tunisia
| | - Mohamed Banni
- Laboratory of Biochemical and Environmental Toxicology, Higher Institute of Agriculture, Sousse University, 4042, Chott Mariem, Tunisia
| |
Collapse
|
30
|
Ibrahim SA, Abdel-Gaber SA, Ibrahim MA, Amin EF, Mohammed RK, Abdelrahman AM. Nitric Oxide Modulation as a Potential Molecular Mechanism Underlying the Protective Role of NaHS in Liver Ischemia Reperfusion Injury. Curr Mol Pharmacol 2021; 15:676-682. [PMID: 34503437 DOI: 10.2174/1874467214666210909154609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 02/26/2021] [Accepted: 04/12/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND AND AIM Liver IR is a frequent clinical complication with high morbidity and mortality. The present study evaluated the possible protective effect of sodium hydrosulfide (NaHS), a H2S donor, in IR-induced hepatic injury and explored the mechanisms of actions of the investigated drug. METHODS Male albino rats (200-230 g) were divided into the following groups: group 1:Sham-operated non treated rats, group 2: IR non treated rats, group 3: L-NNA + IR rats, group 4: NaHS + IR rats, group 5: L-NNA + NaHS + IR rats. Blood samples were collected for ALT determination. Liver tissue samples were used for the assessment of GPx, catalase, SOD, MDA, total nitrites and TNF-α. Parts from the liver were fixed in 10% formalin solution for histopathological examination and immunohistochemical examination of iNOS, eNOS and caspase-3. RESULTS NaHS protected the liver against IR. This hepatoprotection was associated with normalization of antioxidant enzyme activity and decrease in hepatic MDA, TNF-α and expression of caspase-3 and iNOS. CONCLUSION NaHS is hepatoprotective in IR injury. The hepatoprotective effects of NaHS are associated with antioxidant, anti-inflammatory and antiapoptotic effects. These effects are probably mediated via NO modulation.
Collapse
Affiliation(s)
- Salwa A Ibrahim
- Department of Pharmacology, Minia University Faculty of Medicine, Minia. Egypt
| | - Seham A Abdel-Gaber
- Department of Pharmacology, Minia University Faculty of Medicine, Minia. Egypt
| | - Mohamed A Ibrahim
- Department of Pharmacology, Minia University Faculty of Medicine, Minia. Egypt
| | - Entesar F Amin
- Department of Pharmacology, Minia University Faculty of Medicine, Minia. Egypt
| | - Rehab K Mohammed
- Department of Pathology, Minia University Faculty of Medicine, Minia. Egypt
| | - Aly M Abdelrahman
- Department of Pharmacology, Minia University Faculty of Medicine, Minia. Egypt
| |
Collapse
|
31
|
Zhu J, Ligi S, Yang G. An evolutionary perspective on the interplays between hydrogen sulfide and oxygen in cellular functions. Arch Biochem Biophys 2021; 707:108920. [PMID: 34019852 DOI: 10.1016/j.abb.2021.108920] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 05/09/2021] [Accepted: 05/11/2021] [Indexed: 02/06/2023]
Abstract
The physiological effects of the endogenously generated hydrogen sulfide (H2S) have been extensively studied in recent years. This review summarized the role of H2S in the origin of life and H2S metabolism in organisms from bacteria to vertebrates, examined the relationship between H2S and oxygen from an evolutionary perspective and emphasized the oxygen-dependent manner of H2S signaling in various physiological and pathological processes. H2S and oxygen are inextricably linked in various cellular functions. H2S is involved in aerobic respiration and stimulates oxidative phosphorylation and ATP production within the cell. Besides, H2S has protective effects on ischemia and reperfusion injury in several organs by acting as an oxygen sensor. Also, emerging evidence suggests the role of H2S is in an oxygen-dependent manner. All these findings indicate the subtle relationship between H2S and oxygen and further explain why H2S, a toxic molecule thriving in an anoxia environment several billion years ago, still affects homeostasis today despite the very low content in the body.
Collapse
Affiliation(s)
- Jiechun Zhu
- Department of Biology, Laurentian University, Sudbury, Canada; Cardiovascular and Metabolic Research Unit, Laurentian University, Sudbury, Canada
| | - Samantha Ligi
- Cardiovascular and Metabolic Research Unit, Laurentian University, Sudbury, Canada; Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Canada
| | - Guangdong Yang
- Department of Biology, Laurentian University, Sudbury, Canada; Cardiovascular and Metabolic Research Unit, Laurentian University, Sudbury, Canada; Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Canada.
| |
Collapse
|
32
|
Sokolov AS, Nekrasov PV, Shaposhnikov MV, Moskalev AA. Hydrogen sulfide in longevity and pathologies: Inconsistency is malodorous. Ageing Res Rev 2021; 67:101262. [PMID: 33516916 DOI: 10.1016/j.arr.2021.101262] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/18/2021] [Accepted: 01/24/2021] [Indexed: 02/08/2023]
Abstract
Hydrogen sulfide (H2S) is one of the biologically active gases (gasotransmitters), which plays an important role in various physiological processes and aging. Its production in the course of methionine and cysteine catabolism and its degradation are finely balanced, and impairment of H2S homeostasis is associated with various pathologies. Despite the strong geroprotective action of exogenous H2S in C. elegans, there are controversial effects of hydrogen sulfide and its donors on longevity in other models, as well as on stress resistance, age-related pathologies and aging processes, including regulation of senescence-associated secretory phenotype (SASP) and senescent cell anti-apoptotic pathways (SCAPs). Here we discuss that the translation potential of H2S as a geroprotective compound is influenced by a multiplicity of its molecular targets, pleiotropic biological effects, and the overlapping ranges of toxic and beneficial doses. We also consider the challenges of the targeted delivery of H2S at the required dose. Along with this, the complexity of determining the natural levels of H2S in animal and human organs and their ambiguous correlations with longevity are reviewed.
Collapse
|
33
|
Wang G, Huang Y, Zhang N, Liu W, Wang C, Zhu X, Ni X. Hydrogen Sulfide Is a Regulator of Hemoglobin Oxygen-Carrying Capacity via Controlling 2,3-BPG Production in Erythrocytes. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8877691. [PMID: 33628390 PMCID: PMC7896853 DOI: 10.1155/2021/8877691] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 01/19/2021] [Accepted: 01/25/2021] [Indexed: 12/18/2022]
Abstract
Hydrogen sulfide (H2S) is naturally synthesized in a wide range of mammalian tissues. Whether H2S is involved in the regulation of erythrocyte functions remains unknown. Using mice with a genetic deficiency in a H2S natural synthesis enzyme cystathionine-γ-lyase (CSE) and high-throughput metabolomic profiling, we found that levels of erythrocyte 2,3-bisphosphoglycerate (2,3-BPG), an erythroid-specific metabolite negatively regulating hemoglobin- (Hb-) oxygen (O2) binding affinity, were increased in CSE knockout (Cse -/-) mice under normoxia. Consistently, the 50% oxygen saturation (P50) value was increased in erythrocytes of Cse -/- mice. These effects were reversed by treatment with H2S donor GYY4137. In the models of cultured mouse and human erythrocytes, we found that H2S directly acts on erythrocytes to decrease 2,3-BPG production, thereby enhancing Hb-O2 binding affinity. Mouse genetic studies showed that H2S produced by peripheral tissues has a tonic inhibitory effect on 2,3-BPG production and consequently maintains Hb-O2 binding affinity in erythrocytes. We further revealed that H2S promotes Hb release from the membrane to the cytosol and consequently enhances bisphosphoglycerate mutase (BPGM) anchoring to the membrane. These processes might be associated with S-sulfhydration of Hb. Moreover, hypoxia decreased the circulatory H2S level and increased the erythrocyte 2,3-BPG content in mice, which could be reversed by GYY4137 treatment. Altogether, our study revealed a novel signaling pathway that regulates oxygen-carrying capacity in erythrocytes and highlights a previously unrecognized role of H2S in erythrocyte 2,3-BPG production.
Collapse
Affiliation(s)
- Gang Wang
- National Clinical Research Center for Geriatric Disorders and National International Joint Research Center for Medical Metabolomics, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, China
- Department of Physiology, Second Military Medical University, Shanghai 200433, China
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu, China
| | - Yan Huang
- National Clinical Research Center for Geriatric Disorders and National International Joint Research Center for Medical Metabolomics, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, China
- Department of Physiology, Second Military Medical University, Shanghai 200433, China
- General Hospital of Southern Theater Command, Guangzhou, 510010 Guangdong, China
| | - Ningning Zhang
- Department of Physiology, Second Military Medical University, Shanghai 200433, China
| | - Wenhu Liu
- National Clinical Research Center for Geriatric Disorders and National International Joint Research Center for Medical Metabolomics, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, China
| | - Changnan Wang
- Department of Physiology, Second Military Medical University, Shanghai 200433, China
| | - Xiaoyan Zhu
- Department of Physiology, Second Military Medical University, Shanghai 200433, China
| | - Xin Ni
- National Clinical Research Center for Geriatric Disorders and National International Joint Research Center for Medical Metabolomics, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, China
- Department of Physiology, Second Military Medical University, Shanghai 200433, China
| |
Collapse
|
34
|
Zhang P, Yu Y, Wang P, Shen H, Ling X, Xue X, Yang Q, Zhang Y, Xiao J, Wang Z. Role of Hydrogen Sulfide in Myocardial Ischemia-Reperfusion Injury. J Cardiovasc Pharmacol 2021; 77:130-141. [PMID: 33165141 DOI: 10.1097/fjc.0000000000000943] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 10/13/2020] [Indexed: 12/28/2022]
Abstract
ABSTRACT Hydrogen sulfide (H2S), generally known as a new gas signal molecule after nitric oxide and carbon monoxide, has been found as an important endogenous gasotransmitter in the last few decades, and it plays a significant role in the cardiovascular system both pathologically and physiologically. In recent years, there is growing evidence that H2S provides myocardial protection against myocardial ischemia-reperfusion injury (MIRI), which resulted in an ongoing focus on the possible mechanisms of action accounting for the H2S cardioprotective effect. At present, lots of mechanisms of action have been verified through in vitro and in vivo models of I/R injury, such as S-sulfhydrated modification, antiapoptosis, effects on microRNA, bidirectional effect on autophagy, antioxidant stress, or interaction with NO and CO. With advances in understanding of the molecular pathogenesis of MIRI and pharmacology studies, the design, the development, and the pharmacological characterization of H2S donor drugs have made great important progress. This review summarizes the latest research progress on the role of H2S in MIRI, systematically explains the molecular mechanism of H2S affecting MIRI, and provides a new idea for the formulation of a myocardial protection strategy in the future.
Collapse
Affiliation(s)
- Peng Zhang
- Department of Cardiothoracic Surgery, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, China; and
| | - Yue Yu
- Department of Cardiothoracic Surgery, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, China; and
| | - Pei Wang
- Department of Cardiothoracic Surgery, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, China; and
| | - Hua Shen
- Department of Cardiovascular Surgery, Chinese PLA General Hospital, Beijing, China
| | - Xinyu Ling
- Department of Cardiothoracic Surgery, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, China; and
| | - Xiaofei Xue
- Department of Cardiothoracic Surgery, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, China; and
| | - Qian Yang
- Department of Cardiothoracic Surgery, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, China; and
| | - Yufeng Zhang
- Department of Cardiothoracic Surgery, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, China; and
| | - Jian Xiao
- Department of Cardiothoracic Surgery, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, China; and
| | - Zhinong Wang
- Department of Cardiothoracic Surgery, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, China; and
| |
Collapse
|
35
|
Szabo C. Hydrogen Sulfide, an Endogenous Stimulator of Mitochondrial Function in Cancer Cells. Cells 2021; 10:cells10020220. [PMID: 33499368 PMCID: PMC7911547 DOI: 10.3390/cells10020220] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 12/12/2022] Open
Abstract
Hydrogen sulfide (H2S) has a long history as toxic gas and environmental hazard; inhibition of cytochrome c oxidase (mitochondrial Complex IV) is viewed as a primary mode of its cytotoxic action. However, studies conducted over the last two decades unveiled multiple biological regulatory roles of H2S as an endogenously produced mammalian gaseous transmitter. Cystathionine γ-lyase (CSE), cystathionine β-synthase (CBS) and 3-mercaptopyruvate sulfurtransferase (3-MST) are currently viewed as the principal mammalian H2S-generating enzymes. In contrast to its inhibitory (toxicological) mitochondrial effects, at lower (physiological) concentrations, H2S serves as a stimulator of electron transport in mammalian mitochondria, by acting as an electron donor—with sulfide:quinone oxidoreductase (SQR) being the immediate electron acceptor. The mitochondrial roles of H2S are significant in various cancer cells, many of which exhibit high expression and partial mitochondrial localization of various H2S producing enzymes. In addition to the stimulation of mitochondrial ATP production, the roles of endogenous H2S in cancer cells include the maintenance of mitochondrial organization (protection against mitochondrial fission) and the maintenance of mitochondrial DNA repair (via the stimulation of the assembly of mitochondrial DNA repair complexes). The current article overviews the state-of-the-art knowledge regarding the mitochondrial functions of endogenously produced H2S in cancer cells.
Collapse
Affiliation(s)
- Csaba Szabo
- Chair of Pharmacology, Section of Medicine, University of Fribourg, CH-1700 Fribourg, Switzerland
| |
Collapse
|
36
|
Tao BB, Zhu YC. A Common Molecular Switch for H 2S to Regulate Multiple Protein Targets. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1315:1-16. [PMID: 34302686 DOI: 10.1007/978-981-16-0991-6_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Hydrogen sulfide, a small molecule, produced by endogenous enzymes, such as CTH, CBS, and MPST using L-cysteine as substrates, has been reported to have numerous protective effects. However, the key problem that the target of H2S and how it can affect the structure and activity of biological molecules is still unknown. Till now, there are two main theories of its working mechanism. One is that H2S can modify the free thiol in cysteine to produce the persulfide state of the thiol and the sulfhydration of cysteine can significantly change the structure and activity of target proteins. The other theory is that H2S, as an antioxidant molecule, can directly break the disulfide bond in target proteins, and the persulfide state of thiol can be an intermediate product during the reaction. Both phenomena exit for no doubt since they are both supported by large amounts of experiments. Here, we will summarize both theories and try to discuss which one is the more effective or direct mechanism for H2S and what is the relationship between them. Therefore, we will discover more protein targets of H2S with the mechanism and understand more about the effect of this small molecule.
Collapse
Affiliation(s)
- Bei-Bei Tao
- Shanghai Key Laboratory of Bioactive Small Molecules and Shanghai Key Laboratory of Clinical Geriatric Medicine, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yi-Chun Zhu
- Shanghai Key Laboratory of Bioactive Small Molecules and Shanghai Key Laboratory of Clinical Geriatric Medicine, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
37
|
Hydrogen sulfide (H 2S) signaling in plant development and stress responses. ABIOTECH 2021; 2:32-63. [PMID: 34377579 PMCID: PMC7917380 DOI: 10.1007/s42994-021-00035-4] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 02/03/2021] [Indexed: 12/13/2022]
Abstract
ABSTRACT Hydrogen sulfide (H2S) was initially recognized as a toxic gas and its biological functions in mammalian cells have been gradually discovered during the past decades. In the latest decade, numerous studies have revealed that H2S has versatile functions in plants as well. In this review, we summarize H2S-mediated sulfur metabolic pathways, as well as the progress in the recognition of its biological functions in plant growth and development, particularly its physiological functions in biotic and abiotic stress responses. Besides direct chemical reactions, nitric oxide (NO) and hydrogen peroxide (H2O2) have complex relationships with H2S in plant signaling, both of which mediate protein post-translational modification (PTM) to attack the cysteine residues. We also discuss recent progress in the research on the three types of PTMs and their biological functions in plants. Finally, we propose the relevant issues that need to be addressed in the future research. GRAPHIC ABSTRACT SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s42994-021-00035-4.
Collapse
|
38
|
Ali A, Wang Y, Wu L, Yang G. Gasotransmitter signaling in energy homeostasis and metabolic disorders. Free Radic Res 2020; 55:83-105. [PMID: 33297784 DOI: 10.1080/10715762.2020.1862827] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Gasotransmitters are small molecules of gases, including nitric oxide (NO), hydrogen sulfide (H2S), and carbon monoxide (CO). These three gasotransmitters can be endogenously produced and regulate a wide range of pathophysiological processes by interacting with specific targets upon diffusion in the biological media. By redox and epigenetic regulation of various physiological functions, NO, H2S, and CO are critical for the maintenance of intracellular energy homeostasis. Accumulated evidence has shown that these three gasotransmitters control ATP generation, mitochondrial biogenesis, glucose metabolism, insulin sensitivity, lipid metabolism, and thermogenesis, etc. Abnormal generation and metabolism of NO, H2S, and/or CO are involved in various abnormal metabolic diseases, including obesity, diabetes, and dyslipidemia. In this review, we summarized the roles of NO, H2S, and CO in the regulation of energy homeostasis as well as their involvements in the metabolism of dysfunction-related diseases. Understanding the interaction among these gasotransmitters and their specific molecular targets are very important for therapeutic applications.
Collapse
Affiliation(s)
- Amr Ali
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Canada.,Cardiovascular and Metabolic Research Unit, Laurentian University, Sudbury, Canada
| | - Yuehong Wang
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Canada.,Cardiovascular and Metabolic Research Unit, Laurentian University, Sudbury, Canada
| | - Lingyun Wu
- Cardiovascular and Metabolic Research Unit, Laurentian University, Sudbury, Canada.,School of Human Kinetics, Laurentian University, Sudbury, Canada.,Health Science North Research Institute, Sudbury, Canada
| | - Guangdong Yang
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Canada.,Cardiovascular and Metabolic Research Unit, Laurentian University, Sudbury, Canada
| |
Collapse
|
39
|
Tian X, Zhou D, Zhang Y, Song Y, Zhang Q, Bu D, Sun Y, Wu L, Long Y, Tang C, Du J, Huang Y, Jin H. Persulfidation of transcription factor FOXO1 at cysteine 457: A novel mechanism by which H 2S inhibits vascular smooth muscle cell proliferation. J Adv Res 2020; 27:155-164. [PMID: 33318874 PMCID: PMC7728583 DOI: 10.1016/j.jare.2020.06.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 06/23/2020] [Accepted: 06/25/2020] [Indexed: 02/06/2023] Open
Abstract
FOXO1 is involved in the inhibitory effect of H2S on vascular smooth muscle cell proliferation. H2S inhibits vascular smooth muscle cell proliferation by maintaining FOXO1 activity. H2S preserves FOXO1 activity by persulfidation. H2S persulfidates FOXO1 at Cys457 and subsequently prevents FOXO1 phosphorylation at Ser256. The results provide new ideas for therapeutic strategies for anti-vascular remodeling.
Introduction The proliferation of vascular smooth muscle cells (VSMCs) is an important physiological and pathological basis for many cardiovascular diseases. Endogenous hydrogen sulfide (H2S), the third gasotransmitter, is found to preserve vascular structure by inhibiting VSMC proliferation. However, the mechanism by which H2S suppresses VSMC proliferation has not been fully clear. Objectives This study aimed to explore whether H2S persulfidates the transcription factor FOXO1 to inhibit VSMC proliferation. Methods After the proliferation of VSMC A7r5 cells was induced by endothelin-1 (ET-1), FOXO1 phosphorylation and proliferating cell nuclear antigen (PCNA) expression were detected by Western blotting, the degree of FOXO1 nuclear exclusion and PCNA fluorescent signals in the nucleus were detected by immunofluorescence, and the persulfidation of FOXO1 was measured through a biotin switch assay. Results The results showed that ET-1 stimulation increased cell proliferation, FOXO1 phosphorylation and FOXO1 nuclear exclusion to the cytoplasm in the cells. However, pretreatment with NaHS, an H2S donor, successfully abolished the ET-1-induced increases in the VSMC proliferation, FOXO1 phosphorylation, and FOXO1 nuclear exclusion to the cytoplasm. Mechanistically, H2S persulfidated the FOXO1 protein in A7r5 and 293T cells, and the thiol reductant DTT reversed this effect. Furthermore, the C457S mutation of FOXO1 abolished the H2S-induced persulfidation of FOXO1 in the cells and the subsequent inhibitory effects on FOXO1 phosphorylation at Ser256, FOXO1 nuclear exclusion to the cytoplasm and cell proliferation. Conclusion Thus, our findings demonstrated that H2S might inhibit VSMC proliferation by persulfidating FOXO1 at Cys457 and subsequently preventing FOXO1 phosphorylation at Ser256.
Collapse
Affiliation(s)
- Xiaoyu Tian
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, China
- Research Unit of Clinical Diagnosis and Treatment of Pediatric Syncope and Cardiovascular Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Dan Zhou
- Department of Cardiology, Wuhan Children's Hospital, Wuhan, China
| | - Yong Zhang
- Department of Cardiology, Wuhan Children's Hospital, Wuhan, China
| | - Yunjia Song
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, China
| | - Qingyou Zhang
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, China
| | - Dingfang Bu
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, China
| | - Yan Sun
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, China
| | - Liling Wu
- Key Laboratory of Molecular Cardiology, Ministry of Education, Beijing, China
- Department of Physiology and Pathophysiology, Peking University Health Science Centre, Beijing 100091, China
| | - Yuan Long
- Department of Cardiology, Wuhan Children's Hospital, Wuhan, China
| | - Chaoshu Tang
- Key Laboratory of Molecular Cardiology, Ministry of Education, Beijing, China
- Department of Physiology and Pathophysiology, Peking University Health Science Centre, Beijing 100091, China
| | - Junbao Du
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, China
- Key Laboratory of Molecular Cardiology, Ministry of Education, Beijing, China
- Corresponding authors at: Department of Pediatrics, Peking University First Hospital, Xi An Men Str. No.1 West District, Beijing 100034, China.
| | - Yaqian Huang
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, China
- Corresponding authors at: Department of Pediatrics, Peking University First Hospital, Xi An Men Str. No.1 West District, Beijing 100034, China.
| | - Hongfang Jin
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, China
- Research Unit of Clinical Diagnosis and Treatment of Pediatric Syncope and Cardiovascular Diseases, Chinese Academy of Medical Sciences, Beijing, China
- Corresponding authors at: Department of Pediatrics, Peking University First Hospital, Xi An Men Str. No.1 West District, Beijing 100034, China.
| |
Collapse
|
40
|
Protective Effects of ShcA Protein Silencing for Photothrombotic Cerebral Infarction. Transl Stroke Res 2020; 12:866-878. [PMID: 33242144 DOI: 10.1007/s12975-020-00874-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 11/03/2020] [Accepted: 11/05/2020] [Indexed: 12/26/2022]
Abstract
Reactive oxygen species (ROS) exacerbate stroke-induced cell damage. We found that ShcA, a protein that regulates ROS, is highly expressed in a Rose Bengal photothrombosis model. We investigated whether ShcA is essential for mitophagy in ROS-induced cellular damage and determined whether ROS exacerbate mitochondrial dysfunction via ShcA protein expression. Ischemic stroke was generated by Rose Bengal photothrombosis in mice. To silence ShcA protein expression in the mouse brain, ShcA-targeting siRNA-encapsulated nanoparticles were intrathecally injected into the cisterna magna. Upon staining with antibodies against ShcA counterpart caspase-3 or NeuN, we found that the ShcA protein expression was increased in apoptotic neurons. In addition, mitochondrial dysfunction and excessive mitophagy were evident in photothrombotic stroke tissue. Infarct volumes were significantly reduced, and neurological deficits were diminished in the ShcA siRNA nanoparticle-treated group, compared with the negative control siRNA nanoparticle-treated group. We confirmed that the reduction of ShcA expression by nanoparticle treatment rescued the expression of genes, associated with mitochondrial dynamics and mitophagy mediation in a stroke model. This study suggests that the regulation of ShcA protein expression can be a therapeutic target for reducing brain damage with mitochondrial dysfunction caused by thrombotic infarction.
Collapse
|
41
|
Abstract
Aims: Cysteine persulfidation (also called sulfhydration or sulfuration) has emerged as a potential redox mechanism to regulate protein functions and diverse biological processes in hydrogen sulfide (H2S) signaling. Due to its intrinsically unstable nature, working with this modification has proven to be challenging. Although methodological progress has expanded the inventory of persulfidated proteins, there is a continued need to develop methods that can directly and unequivocally identify persulfidated cysteine residues in complex proteomes. Results: A quantitative chemoproteomic method termed as low-pH quantitative thiol reactivity profiling (QTRP) was developed to enable direct site-specific mapping and reactivity profiling of proteomic persulfides and thiols in parallel. The method was first applied to cell lysates treated with NaHS, resulting in the identification of overall 1547 persulfidated sites on 994 proteins. Structural analysis uncovered unique consensus motifs that might define this distinct type of modification. Moreover, the method was extended to profile endogenous protein persulfides in cells expressing H2S-generating enzyme, mouse tissues, and human serum, which led to additional insights into mechanistic, structural, and functional features of persulfidation events, particularly on human serum albumin. Innovation and Conclusion: Low-pH QTRP represents the first method that enables direct and unbiased proteomic mapping of cysteine persulfidation. Our method allows to generate the most comprehensive inventory of persulfidated targets of NaHS so far and to perform the first analysis of in vivo persulfidation events, providing a valuable tool to dissect the biological functions of this important modification.
Collapse
Affiliation(s)
- Ling Fu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences • Beijing, Beijing Institute of Lifeomics, Beijing, China
| | - Keke Liu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences • Beijing, Beijing Institute of Lifeomics, Beijing, China
| | - Jingyang He
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences • Beijing, Beijing Institute of Lifeomics, Beijing, China
| | - Caiping Tian
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences • Beijing, Beijing Institute of Lifeomics, Beijing, China
| | - Xiaobo Yu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences • Beijing, Beijing Institute of Lifeomics, Beijing, China
| | - Jing Yang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences • Beijing, Beijing Institute of Lifeomics, Beijing, China
| |
Collapse
|
42
|
Yang CT, Devarie-Baez NO, Hamsath A, Fu XD, Xian M. S-Persulfidation: Chemistry, Chemical Biology, and Significance in Health and Disease. Antioxid Redox Signal 2020; 33:1092-1114. [PMID: 31547682 PMCID: PMC7583347 DOI: 10.1089/ars.2019.7889] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Significance: S-Persulfidation generates persulfide adducts (RSSH) on both small molecules and proteins. This process is believed to be critical in the regulation of biological functions of reactive sulfur species such as H2S, as well as in signal transduction. S-Persulfidation also plays regulatory roles in human health and diseases. Recent Advances: Some mechanisms underlying the generation of low-molecular-weight persulfides and protein S-persulfidation in living organisms have been uncovered. Some methods for the specific delivery of persulfides and the detection of persulfides in biological systems have been developed. These advances help to pave the road to better understand the functions of S-persulfidation. Critical Issues: Persulfides are highly reactive and unstable. Currently, their identification relies on trapping them by S-alkylation, but this is not always reliable due to rapid sulfur exchange reactions. Therefore, the presence, identity, and fates of persulfides in biological environments are sometimes difficult to track. Future Directions: Further understanding the fundamental chemistry/biochemistry of persulfides and development of more reliable detection methods are needed. S-Persulfidation in specific protein targets is essential in organismal physiological health and human disease states. Besides cardiovascular and neuronal systems, the roles of persulfidation in other systems need to be further explored. Contradictory results of persulfidation in biology, especially in cancer, need to be clarified.
Collapse
Affiliation(s)
- Chun-Tao Yang
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Protein Modification and Degradation Key Lab of Guangzhou and Guangdong, Key Laboratory of Molecular Clinical Pharmacology in School of Pharmaceutics Science, Guangzhou Medical University, Guangzhou, China.,Department of Chemistry, Washington State University, Pullman, Washington, USA
| | - Nelmi O Devarie-Baez
- Department of Chemistry, Washington State University-Tri Cities, Richland, Washington, USA
| | - Akil Hamsath
- Department of Chemistry, Washington State University, Pullman, Washington, USA
| | - Xiao-Dong Fu
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Protein Modification and Degradation Key Lab of Guangzhou and Guangdong, Key Laboratory of Molecular Clinical Pharmacology in School of Pharmaceutics Science, Guangzhou Medical University, Guangzhou, China
| | - Ming Xian
- Department of Chemistry, Washington State University, Pullman, Washington, USA
| |
Collapse
|
43
|
The multifaceted roles of sulfane sulfur species in cancer-associated processes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1862:148338. [PMID: 33212042 DOI: 10.1016/j.bbabio.2020.148338] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/30/2020] [Accepted: 11/13/2020] [Indexed: 02/07/2023]
Abstract
Sulfane sulfur species comprise a variety of biologically relevant hydrogen sulfide (H2S)-derived species, including per- and poly-sulfidated low molecular weight compounds and proteins. A growing body of evidence suggests that H2S, currently recognized as a key signaling molecule in human physiology and pathophysiology, plays an important role in cancer biology by modulating cell bioenergetics and contributing to metabolic reprogramming. This is accomplished through functional modulation of target proteins via H2S binding to heme iron centers or H2S-mediated reversible per- or poly-sulfidation of specific cysteine residues. Since sulfane sulfur species are increasingly viewed not only as a major source of H2S but also as key mediators of some of the biological effects commonly attributed to H2S, the multifaceted role of these species in cancer biology is reviewed here with reference to H2S, focusing on their metabolism, signaling function, impact on cell bioenergetics and anti-tumoral properties.
Collapse
|
44
|
Paul BD, Snyder SH, Kashfi K. Effects of hydrogen sulfide on mitochondrial function and cellular bioenergetics. Redox Biol 2020; 38:101772. [PMID: 33137711 PMCID: PMC7606857 DOI: 10.1016/j.redox.2020.101772] [Citation(s) in RCA: 148] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 10/17/2020] [Accepted: 10/26/2020] [Indexed: 01/06/2023] Open
Abstract
Hydrogen sulfide (H2S) was once considered to have only toxic properties, until it was discovered to be an endogenous signaling molecule. The effects of H2S are dose dependent, with lower concentrations being beneficial and higher concentrations, cytotoxic. This scenario is especially true for the effects of H2S on mitochondrial function, where higher concentrations of the gasotransmitter inhibit the electron transport chain, and lower concentrations stimulate bioenergetics in multiple ways. Here we review the role of H2S in mitochondrial function and its effects on cellular physiology. Hydrogen sulfide (H2S) plays central roles in mitochondrial homeostasis. Both excess H2S and a paucity of H2S have deleterious effects. One of the modes by which H2S signals in mitochondria is by sulfhydrating target proteins. Administering H2S (where scarcity of H2S occurs) or inhibiting H2S production (in case of excess H2S) may be beneficial.
Collapse
Affiliation(s)
- Bindu D Paul
- The Solomon H. Snyder Department of Neuroscience, USA.
| | - Solomon H Snyder
- The Solomon H. Snyder Department of Neuroscience, USA; Department of Psychiatry and Behavioral Sciences, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| | - Khosrow Kashfi
- Department of Molecular, Cellular and Biomedical Sciences, City University of New York School of Medicine, New York, NY, 10031, USA; Graduate Program in Biology, City University of New York Graduate Center, New York, NY, 10016, USA.
| |
Collapse
|
45
|
Sun F, Luo JH, Yue TT, Wang FX, Yang CL, Zhang S, Wang XQ, Wang CY. The role of hydrogen sulphide signalling in macrophage activation. Immunology 2020; 162:3-10. [PMID: 32876334 PMCID: PMC7730026 DOI: 10.1111/imm.13253] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/27/2020] [Accepted: 07/30/2020] [Indexed: 01/05/2023] Open
Abstract
Hydrogen sulphide (H2S) is the latest identified small gaseous mediator enabled by its lipophilic nature to freely permeate the biological membranes. Initially, H2S was recognized by its roles in neuronal activity and vascular relaxation, which makes it an important molecule involved in paracrine signalling pathways. Recently, the immune regulatory function of gasotransmitters, H2S in particular, is increasingly being appreciated. Endogenous H2S level has been linked to macrophage activation, polarization and inflammasome formation. Mechanistically, H2S‐induced protein S‐sulphydration suppresses several inflammatory pathways including NF‐κB and JNK signalling. Moreover, H2S serves as a potent cellular redox regulator to modulate epigenetic alterations and to promote mitochondrial biogenesis in macrophages. Here in this review, we intend to summarize the recent advancements of H2S studies in macrophages, and to discuss with focus on the therapeutic potential of H2S donors by targeting macrophages. The feasibility of H2S signalling component as a macrophage biomarker under disease conditions would be also discussed.
Collapse
Affiliation(s)
- Fei Sun
- The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Jia-Hui Luo
- The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Tian-Tian Yue
- The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Fa-Xi Wang
- The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Chun-Liang Yang
- The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Shu Zhang
- The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Xin-Qiang Wang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Cong-Yi Wang
- The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China.,Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China.,Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| |
Collapse
|
46
|
Wang Y, Dillon KM, Li Z, Winckler EW, Matson JB. Alleviating Cellular Oxidative Stress through Treatment with Superoxide-Triggered Persulfide Prodrugs. Angew Chem Int Ed Engl 2020; 59:16698-16704. [PMID: 32592216 PMCID: PMC7719095 DOI: 10.1002/anie.202006656] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Indexed: 12/21/2022]
Abstract
Overproduction of superoxide anion (O2.- ), the primary cellular reactive oxygen species (ROS), is implicated in various human diseases. To reduce cellular oxidative stress caused by overproduction of superoxide, we developed a compound that reacts with O2.- to release a persulfide (RSSH), a type of reactive sulfur species related to the gasotransmitter hydrogen sulfide (H2 S). Termed SOPD-NAC, this persulfide donor reacts specifically with O2.- , decomposing to generate N-acetyl cysteine (NAC) persulfide. To enhance persulfide delivery to cells, we conjugated the SOPD motif to a short, self-assembling peptide (Bz-CFFE-NH2 ) to make a superoxide-responsive, persulfide-donating peptide (SOPD-Pep). Both SOPD-NAC and SOPD-Pep delivered persulfides/H2 S to H9C2 cardiomyocytes and lowered ROS levels as confirmed by quantitative in vitro fluorescence imaging studies. Additional in vitro studies on RAW 264.7 macrophages showed that SOPD-Pep mitigated toxicity induced by phorbol 12-myristate 13-acetate (PMA) more effectively than SOPD-NAC and several control compounds, including common H2 S donors.
Collapse
Affiliation(s)
| | | | - Zhao Li
- Department of of Chemistry, Virginia Tech Center for Drug Discovery, and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, United States
| | - Ethan W. Winckler
- Department of of Chemistry, Virginia Tech Center for Drug Discovery, and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, United States
| | - John B. Matson
- Department of of Chemistry, Virginia Tech Center for Drug Discovery, and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, United States
| |
Collapse
|
47
|
Hipólito A, Nunes SC, Vicente JB, Serpa J. Cysteine Aminotransferase (CAT): A Pivotal Sponsor in Metabolic Remodeling and an Ally of 3-Mercaptopyruvate Sulfurtransferase (MST) in Cancer. Molecules 2020; 25:molecules25173984. [PMID: 32882966 PMCID: PMC7504796 DOI: 10.3390/molecules25173984] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/26/2020] [Accepted: 08/29/2020] [Indexed: 12/16/2022] Open
Abstract
Metabolic remodeling is a critical skill of malignant cells, allowing their survival and spread. The metabolic dynamics and adaptation capacity of cancer cells allow them to escape from damaging stimuli, including breakage or cross-links in DNA strands and increased reactive oxygen species (ROS) levels, promoting resistance to currently available therapies, such as alkylating or oxidative agents. Therefore, it is essential to understand how metabolic pathways and the corresponding enzymatic systems can impact on tumor behavior. Cysteine aminotransferase (CAT) per se, as well as a component of the CAT: 3-mercaptopyruvate sulfurtransferase (MST) axis, is pivotal for this metabolic rewiring, constituting a central mechanism in amino acid metabolism and fulfilling the metabolic needs of cancer cells, thereby supplying other different pathways. In this review, we explore the current state-of-art on CAT function and its role on cancer cell metabolic rewiring as MST partner, and its relevance in cancer cells' fitness.
Collapse
Affiliation(s)
- Ana Hipólito
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School|Faculty of Medical Sciences, University NOVA of Lisbon, Campus dos Mártires da Pátria, 130, 1169-056 Lisbon, Portugal; (A.H.); (S.C.N.)
- Institute of Oncology Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023 Lisbon, Portugal
| | - Sofia C. Nunes
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School|Faculty of Medical Sciences, University NOVA of Lisbon, Campus dos Mártires da Pátria, 130, 1169-056 Lisbon, Portugal; (A.H.); (S.C.N.)
- Institute of Oncology Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023 Lisbon, Portugal
| | - João B. Vicente
- Institute of Technology, Chemistry and Biology António Xavier (ITQB NOVA), Avenida da República (EAN), 2780-157 Oeiras, Portugal
- Correspondence: (J.B.V.); (J.S.)
| | - Jacinta Serpa
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School|Faculty of Medical Sciences, University NOVA of Lisbon, Campus dos Mártires da Pátria, 130, 1169-056 Lisbon, Portugal; (A.H.); (S.C.N.)
- Institute of Oncology Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023 Lisbon, Portugal
- Correspondence: (J.B.V.); (J.S.)
| |
Collapse
|
48
|
Wang Y, Dillon KM, Li Z, Winckler EW, Matson JB. Alleviating Cellular Oxidative Stress through Treatment with Superoxide‐Triggered Persulfide Prodrugs. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yin Wang
- Department of of ChemistryVirginia Tech Center for Drug DiscoveryMacromolecules Innovation InstituteVirginia Tech Blacksburg VA 24061 USA
| | - Kearsley M. Dillon
- Department of of ChemistryVirginia Tech Center for Drug DiscoveryMacromolecules Innovation InstituteVirginia Tech Blacksburg VA 24061 USA
| | - Zhao Li
- Department of of ChemistryVirginia Tech Center for Drug DiscoveryMacromolecules Innovation InstituteVirginia Tech Blacksburg VA 24061 USA
| | - Ethan W. Winckler
- Department of of ChemistryVirginia Tech Center for Drug DiscoveryMacromolecules Innovation InstituteVirginia Tech Blacksburg VA 24061 USA
| | - John B. Matson
- Department of of ChemistryVirginia Tech Center for Drug DiscoveryMacromolecules Innovation InstituteVirginia Tech Blacksburg VA 24061 USA
| |
Collapse
|
49
|
The effect of sodium bisulfate and coccidiostat on intestinal lesions and growth performance of Eimeria spp.-challenged broilers. Poult Sci 2020; 99:4769-4775. [PMID: 32988511 PMCID: PMC7598339 DOI: 10.1016/j.psj.2020.06.060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 05/18/2020] [Accepted: 06/19/2020] [Indexed: 01/01/2023] Open
Abstract
Coccidiosis is a high-prevalence disease that annually entails huge costs for the poultry industry. Control of coccidiosis in poultry production is based on the use of coccidiostats and vaccines. However, along with the problem of drug resistance, there is a concern about food safety and drug residues in poultry products. The objective of this study was to evaluate the effect of sodium bisulfate (SBS) in comparison with monensin (M) and their combination (SBSM) effects on controlling coccidiosis in broilers. In a randomized design, 300 chickens (Ross 308) were divided into 5 treatments and 4 replications (15 birds per replicate). All birds, except the negative control (NC), were orally inoculated with 4 Eimeria species on 14 D of age. Treatments included were as follows: NC, an unsupplemented basal diet, nonchallenged; positive control, a basal diet unsupplemented, challenged with Eimeria spp; a basal diet supplemented with 5 g/kg of SBS; a basal diet supplemented with 1 g/kg of M; and a basal diet supplemented with 5 g/kg SBS and 1 g/kg M (SBSM). Oocyst shedding per gram (OPG) of the faecal sample from each experimental unit was counted on 5 to 14 D after inoculation. Two chicks from each experimental unit were euthanized to investigate intestinal lesions on day 5 after inoculation. The NC birds showed the highest BW gain and the lowest feed conversion ratio. The birds in the SBSM group had improved feed consumption compared with the M group in the prechallenge period (P < 0.05). All supplemented treatments resulted in a significant decrease in OPG. The M and SBSM treatments showed more efficacy than the SBS group (P < 0.05) in reducing OPG. There was a significant reduction in cecal lesions owing to supplementation with SBS, but the effect of SBS in the upper part of the intestine was lower than the M and SBSM groups (P < 0.05). Based on the results of this study, SBS has protective effects against coccidiosis in ceca, and the combination of M and SBS (SBSM) did not show any further improvement effect compared with M alone on the control of coccidiosis.
Collapse
|
50
|
Chathoth K, Martin B, Cornelis P, Yvenou S, Bonnaure-Mallet M, Baysse C. The events that may contribute to subgingival dysbiosis: a focus on the interplay between iron, sulfide and oxygen. FEMS Microbiol Lett 2020; 367:5860280. [DOI: 10.1093/femsle/fnaa100] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 06/19/2020] [Indexed: 12/21/2022] Open
Abstract
ABSTRACT
This minireview considers the disruption of the host–microbiota harmless symbiosis in the subgingival niche. The establishment of a chronic infection by subversion of a commensal microbiota results from a complex and multiparametric sequence of events. This review narrows down to the interplay between oxygen, iron and sulfide that can result in a vicious cycle that would favor peroxygenic and glutathione producing streptococci as well as sulfidogenic anaerobic pathogens in the subgingival niche. We propose hypothesis and discuss strategies for the therapeutic modulation of the microbiota to prevent periodontitis and promote oral health.
Collapse
Affiliation(s)
- Kanchana Chathoth
- NuMeCan INSERM U1241, CIMIAD, Université de Rennes 1, F-35043 Rennes, France
| | - Bénédicte Martin
- NuMeCan INSERM U1241, CIMIAD, Université de Rennes 1, F-35043 Rennes, France
| | - Pierre Cornelis
- Department of Bioengineering Sciences, Laboratory of Microbiology, Vrije Universiteit Brussel, B-1050 Brussels, Belgium
- Laboratoire de Microbiologie Signaux et Microenvironnement, LMSM EA4312, Université de Rouen Normandie, Normandie Université, F-27000 Évreux, France
| | - Stéven Yvenou
- NuMeCan INSERM U1241, CIMIAD, Université de Rennes 1, F-35043 Rennes, France
| | - Martine Bonnaure-Mallet
- NuMeCan INSERM U1241, CIMIAD, Université de Rennes 1, F-35043 Rennes, France
- CHU Pontchaillou Rennes, 35000 Rennes, France
| | - Christine Baysse
- NuMeCan INSERM U1241, CIMIAD, Université de Rennes 1, F-35043 Rennes, France
| |
Collapse
|