1
|
Li Q, Liu Y, Li B, Zheng C, Yu B, Niu K, Qiao Y. Bioinformatics analysis of oxidative stress genes in the pathogenesis of ulcerative colitis based on a competing endogenous RNA regulatory network. PeerJ 2024; 12:e17213. [PMID: 39161963 PMCID: PMC11332386 DOI: 10.7717/peerj.17213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 03/19/2024] [Indexed: 08/21/2024] Open
Abstract
Background Ulcerative colitis (UC) is a common chronic disease associated with inflammation and oxidative stress. This study aimed to construct a long noncoding RNA (lncRNA)-microRNA (miRNA)-messenger RNA (mRNA) network based on bioinformatics analysis and to explore oxidative stress-related genes underlying the pathogenesis of UC. Methods The GSE75214, GSE48959, and GSE114603 datasets were downloaded from the Gene Expression Omnibus database. Following differentially expressed (DE) analysis, the regulatory relationships among these DERNAs were identified through miRDB, miRTarBase, and TargetScan; then, the lncRNA-miRNA-mRNA network was established. The Molecular Signatures Database (MSigDB) was used to search oxidative stress-related genes. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed for functional annotation and enrichment analyses. Based on the drug gene interaction database DGIdb, drugs that interact with oxidative stress-associated genes were explored. A dextran sulfate sodium (DSS)-induced UC mouse model was used for experimental validation. Results A total of 30 DE-lncRNAs, 3 DE-miRNAs, and 19 DE-mRNAs were used to construct a lncRNA-miRNA-mRNA network. By comparing these 19 DE-mRNAs with oxidative stress-related genes in MSigDB, three oxidative stress-related genes (CAV1, SLC7A11, and SLC7A5) were found in the 19 DEM sets, which were all negatively associated with miR-194. GO and KEGG analyses showed that CAV1, SLC7A11, and SLC7A5 were associated with immune inflammation and steroid hormone synthesis. In animal experiments, the results showed that dexamethasone, a well-known glucocorticoid drug, could significantly decrease the expression of CAV1, SLC7A11, and SLC7A5 as well as improve UC histology, restore antioxidant activities, inhibit inflammation, and decrease myeloperoxidase activity. Conclusion SLC7A5 was identified as a representative gene associated with glucocorticoid therapy resistance and thus may be a new therapeutic target for the treatment of UC in the clinic.
Collapse
MESH Headings
- Animals
- Humans
- Mice
- Colitis, Ulcerative/genetics
- Colitis, Ulcerative/metabolism
- Colitis, Ulcerative/chemically induced
- Computational Biology
- Databases, Genetic
- Dextran Sulfate/toxicity
- Disease Models, Animal
- Gene Expression Profiling
- Gene Regulatory Networks/drug effects
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Oxidative Stress/genetics
- Oxidative Stress/drug effects
- RNA, Competitive Endogenous/genetics
- RNA, Competitive Endogenous/metabolism
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
Collapse
Affiliation(s)
- Qifang Li
- Department of Traditional Chinese Medicine, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Yuan Liu
- College of Integrated Chinese and Western Medicine, Jining Medical University, Jining, Shandong, China
| | - Bingbing Li
- College of Integrated Chinese and Western Medicine, Jining Medical University, Jining, Shandong, China
| | - Canlei Zheng
- College of Integrated Chinese and Western Medicine, Jining Medical University, Jining, Shandong, China
| | - Bin Yu
- College of Integrated Chinese and Western Medicine, Jining Medical University, Jining, Shandong, China
| | - Kai Niu
- College of Integrated Chinese and Western Medicine, Jining Medical University, Jining, Shandong, China
| | - Yi Qiao
- School of Public Health, Jining Medical University, Jining, Shandong, China
| |
Collapse
|
2
|
Bhatia V, Elnagary L, Dakshinamurti S. Tracing the path of inhaled nitric oxide: Biological consequences of protein nitrosylation. Pediatr Pulmonol 2021; 56:525-538. [PMID: 33289321 DOI: 10.1002/ppul.25201] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/28/2020] [Accepted: 11/29/2020] [Indexed: 12/12/2022]
Abstract
Nitric oxide (NO) is a comprehensive regulator of vascular and airway tone. Endogenous NO produced by nitric oxide synthases regulates multiple signaling cascades, including activation of soluble guanylate cyclase to generate cGMP, relaxing smooth muscle cells. Inhaled NO is an established therapy for pulmonary hypertension in neonates, and has been recently proposed for the treatment of hypoxic respiratory failure and acute respiratory distress syndrome due to COVID-19. In this review, we summarize the effects of endogenous and exogenous NO on protein S-nitrosylation, which is the selective and reversible covalent attachment of a nitrogen monoxide group to the thiol side chain of cysteine. This posttranslational modification targets specific cysteines based on the acid/base sequence of surrounding residues, with significant impacts on protein interactions and function. S-nitrosothiol (SNO) formation is tightly compartmentalized and enzymatically controlled, but also propagated by nonenzymatic transnitrosylation of downstream protein targets. Redox-based nitrosylation and denitrosylation pathways dynamically regulate the equilibrium of SNO-proteins. We review the physiological roles of SNO proteins, including nitrosohemoglobin and autoregulation of blood flow through hypoxic vasodilation, and pathological effects of nitrosylation including inhibition of critical vasodilator enzymes; and discuss the intersection of NO source and dose with redox environment, in determining the effects of protein nitrosylation.
Collapse
Affiliation(s)
- Vikram Bhatia
- Biology of Breathing Group, Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, Canada
| | - Lara Elnagary
- Biology of Breathing Group, Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, Canada
| | - Shyamala Dakshinamurti
- Biology of Breathing Group, Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, Canada.,Section of Neonatology, Departments of Pediatrics and Physiology, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
3
|
Bailey ZS, Nilson E, Bates JA, Oyalowo A, Hockey KS, Sajja VSSS, Thorpe C, Rogers H, Dunn B, Frey AS, Billings MJ, Sholar CA, Hermundstad A, Kumar C, VandeVord PJ, Rzigalinski BA. Cerium Oxide Nanoparticles Improve Outcome after In Vitro and In Vivo Mild Traumatic Brain Injury. J Neurotrauma 2020; 37:1452-1462. [PMID: 27733104 PMCID: PMC7249477 DOI: 10.1089/neu.2016.4644] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Mild traumatic brain injury results in aberrant free radical generation, which is associated with oxidative stress, secondary injury signaling cascades, mitochondrial dysfunction, and poor functional outcome. Pharmacological targeting of free radicals with antioxidants has been examined as an approach to treatment, but has met with limited success in clinical trials. Conventional antioxidants that are currently available scavenge a single free radical before they are destroyed in the process. Here, we report for the first time that a novel regenerative cerium oxide nanoparticle antioxidant reduces neuronal death and calcium dysregulation after in vitro trauma. Further, using an in vivo model of mild lateral fluid percussion brain injury in the rat, we report that cerium oxide nanoparticles also preserve endogenous antioxidant systems, decrease macromolecular free radical damage, and improve cognitive function. Taken together, our results demonstrate that cerium oxide nanoparticles are a novel nanopharmaceutical with potential for mitigating neuropathological effects of mild traumatic brain injury and modifying the course of recovery.
Collapse
Affiliation(s)
- Zachary S. Bailey
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, Virginia, USA
| | - Eric Nilson
- Department of Pharmacology, Edward Via College of Osteopathic Medicine, Blacksburg, Virginia, USA
| | - John A. Bates
- Department of Pharmacology, Edward Via College of Osteopathic Medicine, Blacksburg, Virginia, USA
| | - Adewole Oyalowo
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, Virginia, USA
| | - Kevin S. Hockey
- Department of Pharmacology, Edward Via College of Osteopathic Medicine, Blacksburg, Virginia, USA
| | | | - Chevon Thorpe
- Department of Pharmacology, Edward Via College of Osteopathic Medicine, Blacksburg, Virginia, USA
| | - Heidi Rogers
- Department of Pharmacology, Edward Via College of Osteopathic Medicine, Blacksburg, Virginia, USA
| | - Bryce Dunn
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, Virginia, USA
| | - Aaron S. Frey
- Department of Pharmacology, Edward Via College of Osteopathic Medicine, Blacksburg, Virginia, USA
| | - Marc J. Billings
- Department of Pharmacology, Edward Via College of Osteopathic Medicine, Blacksburg, Virginia, USA
| | - Christopher A. Sholar
- Department of Pharmacology, Edward Via College of Osteopathic Medicine, Blacksburg, Virginia, USA
| | - Amy Hermundstad
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, Virginia, USA
| | - Challa Kumar
- Integrated Mesoscale Architectures for Sustainable Catalysis, Rowland Institute of Science, Harvard University, Cambridge, Massachusetts, USA
| | - Pamela J. VandeVord
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, Virginia, USA
| | - Beverly A. Rzigalinski
- Department of Pharmacology, Edward Via College of Osteopathic Medicine, Blacksburg, Virginia, USA
| |
Collapse
|
4
|
Pan Y, Li Q, Zhou Q, Zhang W, Yue P, Xu C, Qin X, Yu H, Zhu M. Cancer cell specific fluorescent methionine protected gold nanoclusters for in-vitro cell imaging studies. Talanta 2018; 188:259-265. [DOI: 10.1016/j.talanta.2018.05.079] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 05/15/2018] [Accepted: 05/24/2018] [Indexed: 11/16/2022]
|
5
|
Pabelick CM, Thompson MA, Britt RD. Effects of Hyperoxia on the Developing Airway and Pulmonary Vasculature. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 967:179-194. [PMID: 29047087 DOI: 10.1007/978-3-319-63245-2_11] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Although it is necessary and part of standard practice, supplemental oxygen (40-90% O2) or hyperoxia is a significant contributing factor to development of bronchopulmonary dysplasia, persistent pulmonary hypertension, recurrent wheezing, and asthma in preterm infants. This chapter discusses hyperoxia and the role of redox signaling in the context of neonatal lung growth and disease. Here, we discuss how hyperoxia promotes dysfunction in the airway and the known redox-mediated mechanisms that are important for postnatal vascular and alveolar development. Whether in the airway or alveoli, redox pathways are important and greatly influence the neonatal lung.
Collapse
Affiliation(s)
- Christina M Pabelick
- Department of Anesthesiology, College of Medicine, Mayo Clinic, 4-184 W Jos SMH, 200 First St SW, Rochester, MN, 55905, USA. .,Departments Physiology and Biomedical Engineering, College of Medicine, Mayo Clinic, 4-184 W Jos SMH, 200 First St SW, Rochester, MN, 55905, USA.
| | - Michael A Thompson
- Department of Anesthesiology, College of Medicine, Mayo Clinic, 4-184 W Jos SMH, 200 First St SW, Rochester, MN, 55905, USA
| | - Rodney D Britt
- Departments Physiology and Biomedical Engineering, College of Medicine, Mayo Clinic, 4-184 W Jos SMH, 200 First St SW, Rochester, MN, 55905, USA
| |
Collapse
|
6
|
Affiliation(s)
- Keith Fluegge
- Institute of Health & Environmental Research, Cleveland, OH 44118, USA
| |
Collapse
|
7
|
Dosier LBM, Premkumar VJ, Zhu H, Akosman I, Wempe MF, McMahon TJ. Antagonists of the system L neutral amino acid transporter (LAT) promote endothelial adhesivity of human red blood cells. Thromb Haemost 2017; 117:1402-1411. [PMID: 28382373 PMCID: PMC5755361 DOI: 10.1160/th16-05-0373] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 03/21/2017] [Indexed: 02/02/2023]
Abstract
The system L neutral amino acid transporter (LAT; LAT1, LAT2, LAT3, or LAT4) has multiple functions in human biology, including the cellular import of S-nitrosothiols (SNOs), biologically active derivatives of nitric oxide (NO). SNO formation by haemoglobin within red blood cells (RBC) has been studied, but the conduit whereby a SNO leaves the RBC remains unidentified. Here we hypothesised that SNO export by RBCs may also depend on LAT activity, and investigated the role of RBC LAT in modulating SNO-sensitive RBC-endothelial cell (EC) adhesion. We used multiple pharmacologic inhibitors of LAT in vitro and in vivo to test the role of LAT in SNO export from RBCs and in thereby modulating RBC-EC adhesion. Inhibition of human RBC LAT by type-1-specific or nonspecific LAT antagonists increased RBC-endothelial adhesivity in vitro, and LAT inhibitors tended to increase post-transfusion RBC sequestration in the lung and decreased oxygenation in vivo. A LAT1-specific inhibitor attenuated SNO export from RBCs, and we demonstrated LAT1 in RBC membranes and LAT1 mRNA in reticulocytes. The proadhesive effects of inhibiting LAT1 could be overcome by supplemental L-CSNO (S-nitroso-L-cysteine), but not D-CSNO or L-Cys, and suggest a basal anti-adhesive role for stereospecific intercellular SNO transport. This study reveals for the first time a novel role of LAT1 in the export of SNOs from RBCs to prevent their adhesion to ECs. The findings have implications for the mechanisms of intercellular SNO signalling, and for thrombosis, sickle cell disease, and post-storage RBC transfusion, when RBC adhesivity is increased.
Collapse
Affiliation(s)
| | | | | | | | | | - Timothy J McMahon
- Tim J. McMahon, MD, PhD, Duke University Medical Center, DUMC 103003, Medical Sciences Research Building 1, 203 Research Dr., Durham, NC 27710, USA, E-mail:
| |
Collapse
|
8
|
May glutamine addiction drive the delivery of antitumor cisplatin-based Pt(IV) prodrugs? J Inorg Biochem 2016; 167:27-35. [PMID: 27898344 DOI: 10.1016/j.jinorgbio.2016.11.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 11/09/2016] [Accepted: 11/16/2016] [Indexed: 12/11/2022]
Abstract
A small series of Pt(IV) prodrugs containing Gln-like (Gln=glutamine) axial ligands has been designed with the aim to take advantage of the increased demand of Gln showed by some cancer cells (glutamine addiction). In complex 4 the Gln, linked through the α-carboxylic group is recognized by the Gln transporters, in particular by the solute carrier transporter SLC1A5. All compounds showed cellular accumulation, as well as antiproliferative activity, related to their lipophilicity, as already demonstrated for the majority of Pt(IV) prodrugs, that enter cells mainly by passive diffusion. On the contrary, when the Gln concentration in cell medium is near or lower to the physiological value, complex 4 acts as a Trojan horse: it enters SLC1A5-overexpressing cells, where, upon reduction, it releases the active metabolite cisplatin and the Gln-containing ligand, thus preventing any possible extrusion by the L-type amino acid transporter LAT1. This selective mechanism could decrease off-target accumulation of 4 and, consequently, Pt-associated side-effects.
Collapse
|
9
|
Bao EL, Chystsiakova A, Brahmajothi MV, Sunday ME, Pavlisko EN, Wempe MF, Auten RL. Bronchopulmonary dysplasia impairs L-type amino acid transporter-1 expression in human and baboon lung. Pediatr Pulmonol 2016; 51:1048-1056. [PMID: 26918397 PMCID: PMC5814304 DOI: 10.1002/ppul.23402] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 12/29/2015] [Accepted: 01/31/2016] [Indexed: 11/11/2022]
Abstract
Bronchopulmonary dysplasia (BPD) is an inflammatory lung disorder common in premature infants who undergo mechanical ventilation with supplemental oxygen. Inhaled nitric oxide (iNO) has been used to prevent experimental and clinical BPD. Earlier studies showed that NO effects in alveolar epithelial cells (AEC) are mediated by S-nitrosothiol uptake via L-type amino acid transporter-1 (LAT1). Because LAT1 expression could influence the efficacy of iNO therapy, we sought to determine whether pulmonary LAT1 expression is altered in preterm baboons with experimental BPD and in human newborns susceptible to developing BPD. Using fixed lung obtained from 125 d to 140 d gestation baboon models of BPD, LAT1 immunostaining was measured in control and BPD animals. In adult controls and in 140 d gestational controls (GC), LAT1 was expressed in both type I and type II AECs. In 140 d BPD lungs, LAT1 expression density in alveolar tissue was decreased. In 125 d GC baboons, LAT1 immunostaining was largely confined to cuboidal AECs, whereas animals given 14 d of mechanical ventilation exhibited diminished alveolar septal LAT1 Labeling. The pattern in adult human donor lung was comparable to that observed in adult baboons. LAT1 was expressed in lungs obtained from some but not all very premature newborns at autopsy. In human and baboon lung, adult and newborn, pulmonary vascular cells expressed LAT1. In summary, LAT1 is expressed in AECs and pulmonary vascular cells in baboons and humans. Experimental BPD in premature baboons decreases pulmonary LAT1 expression and alters its spatial localization. Heterogeneity of functional LAT1 could affect S-nitrosothiol importation, which could impair iNO therapy. Pediatr Pulmonol. 2016;51:1048-1056. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Erik L Bao
- Department of Pediatrics, Duke University Medical Center, Durham, 27710, North Carolina
| | | | - Mulugu V Brahmajothi
- Department of Pediatrics, Duke University Medical Center, Durham, 27710, North Carolina
| | - Mary E Sunday
- Department of Pathology, Duke University Medical Center, Durham, North Carolina
| | | | - Michael F Wempe
- Department of Pharmaceutical Sciences, School of Pharmacy, Anschutz Medical Campus, University of Colorado Denver, Aurora, Colorado
| | - Richard L Auten
- Department of Pediatrics, Duke University Medical Center, Durham, 27710, North Carolina.
| |
Collapse
|
10
|
Abbas A, Beamish C, McGirr R, Demarco J, Cockburn N, Krokowski D, Lee TY, Kovacs M, Hatzoglou M, Dhanvantari S. Characterization of 5-(2- 18F-fluoroethoxy)-L-tryptophan for PET imaging of the pancreas. F1000Res 2016; 5:1851. [PMID: 27909574 PMCID: PMC5112576 DOI: 10.12688/f1000research.9129.2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/04/2016] [Indexed: 12/23/2022] Open
Abstract
Purpose: In diabetes, pancreatic beta cell mass declines significantly prior to onset of fasting hyperglycemia. This decline may be due to endoplasmic reticulum (ER) stress, and the system L amino acid transporter LAT1 may be a biomarker of this process. In this study, we used 5-(2-
18F-fluoroethoxy)-L-tryptophan (
18F-L-FEHTP) to target LAT1 as a potential biomarker of beta cell function in diabetes. Procedures: Uptake of
18F-L-FEHTP was determined in wild-type C57BL/6 mice by
ex vivo biodistribution. Both dynamic and static positron emission tomography (PET) images were acquired in wild-type and Akita mice, a model of ER stress-induced diabetes, as well as in mice treated with streptozotocin (STZ). LAT1 expression in both groups of mice was evaluated by immunofluorescence microscopy. Results: Uptake of
18F-L-FEHTP was highest in the pancreas, and static PET images showed highly specific pancreatic signal. Time-activity curves showed significantly reduced
18F-L-FEHTP uptake in Akita mice, and LAT1 expression was also reduced. However, mice treated with STZ, in which beta cell mass was reduced by 62%, showed no differences in
18F-L-FEHTP uptake in the pancreas, and there was no significant correlation of
18F-L-FEHTP uptake with beta cell mass. Conclusions: 18F-L-FEHTP is highly specific for the pancreas with little background uptake in kidney or liver. We were able to detect changes in LAT1 in a mouse model of diabetes, but these changes did not correlate with beta cell function or mass. Therefore,
18F-L-FEHTP PET is not a suitable method for the noninvasive imaging of changes in beta cell function during the progression of diabetes.
Collapse
Affiliation(s)
- Ahmed Abbas
- Department of Medical Biophysics, Western University, London, ON, N6A 5C1, Canada
| | - Christine Beamish
- Metabolism and Diabetes Program, Lawson Health Research Institute, London, ON, N6A 4V2, Canada
| | - Rebecca McGirr
- Metabolism and Diabetes Program, Lawson Health Research Institute, London, ON, N6A 4V2, Canada; Imaging Program, Lawson Health Research Institute, London, ON, N6A 4V2, Canada
| | - John Demarco
- Imaging Program, Lawson Health Research Institute, London, ON, N6A 4V2, Canada
| | - Neil Cockburn
- Imaging Program, Lawson Health Research Institute, London, ON, N6A 4V2, Canada
| | - Dawid Krokowski
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Ting-Yim Lee
- Department of Medical Biophysics, Western University, London, ON, N6A 5C1, Canada; Imaging Program, Lawson Health Research Institute, London, ON, N6A 4V2, Canada
| | - Michael Kovacs
- Department of Medical Biophysics, Western University, London, ON, N6A 5C1, Canada; Imaging Program, Lawson Health Research Institute, London, ON, N6A 4V2, Canada
| | - Maria Hatzoglou
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Savita Dhanvantari
- Department of Medical Biophysics, Western University, London, ON, N6A 5C1, Canada; Metabolism and Diabetes Program, Lawson Health Research Institute, London, ON, N6A 4V2, Canada; Imaging Program, Lawson Health Research Institute, London, ON, N6A 4V2, Canada; Department of Pathology and Laboratory Medicine, Western University, London, ON, N6A 5C1, Canada
| |
Collapse
|
11
|
Abbas A, Beamish C, McGirr R, Demarco J, Cockburn N, Krokowski D, Lee TY, Kovacs M, Hatzoglou M, Dhanvantari S. Characterization of 5-(2- 18F-fluoroethoxy)-L-tryptophan for PET imaging of the pancreas. F1000Res 2016; 5:1851. [PMID: 27909574 PMCID: PMC5112576 DOI: 10.12688/f1000research.9129.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/04/2016] [Indexed: 10/29/2023] Open
Abstract
Purpose: In diabetes, pancreatic beta cell mass declines significantly prior to onset of fasting hyperglycemia. This decline may be due to endoplasmic reticulum (ER) stress, and the system L amino acid transporter LAT1 may be a biomarker of this process. In this study, we used 5-(2- 18F-fluoroethoxy)-L-tryptophan ( 18F-L-FEHTP) to target LAT1 as a potential biomarker of beta cell function in diabetes. Procedures: Uptake of 18F-L-FEHTP was determined in wild-type C57BL/6 mice by ex vivo biodistribution. Both dynamic and static positron emission tomography (PET) images were acquired in wild-type and Akita mice, a model of ER stress-induced diabetes, as well as in mice treated with streptozotocin (STZ). LAT1 expression in both groups of mice was evaluated by immunofluorescence microscopy. Results: Uptake of 18F-L-FEHTP was highest in the pancreas, and static PET images showed highly specific pancreatic signal. Time-activity curves showed significantly reduced 18F-L-FEHTP uptake in Akita mice, and LAT1 expression was also reduced. However, mice treated with STZ, in which beta cell mass was reduced by 62%, showed no differences in 18F-L-FEHTP uptake in the pancreas, and there was no significant correlation of 18F-L-FEHTP uptake with beta cell mass. Conclusions:18F-L-FEHTP is highly specific for the pancreas with little background uptake in kidney or liver. We were able to detect changes in LAT1 in a mouse model of diabetes, but these changes did not correlate with beta cell function or mass. Therefore, 18F-L-FEHTP PET is not a suitable method for the noninvasive imaging of changes in beta cell function during the progression of diabetes.
Collapse
Affiliation(s)
- Ahmed Abbas
- Department of Medical Biophysics, Western University, London, ON, N6A 5C1, Canada
| | - Christine Beamish
- Metabolism and Diabetes Program, Lawson Health Research Institute, London, ON, N6A 4V2, Canada
| | - Rebecca McGirr
- Metabolism and Diabetes Program, Lawson Health Research Institute, London, ON, N6A 4V2, Canada
- Imaging Program, Lawson Health Research Institute, London, ON, N6A 4V2, Canada
| | - John Demarco
- Imaging Program, Lawson Health Research Institute, London, ON, N6A 4V2, Canada
| | - Neil Cockburn
- Imaging Program, Lawson Health Research Institute, London, ON, N6A 4V2, Canada
| | - Dawid Krokowski
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Ting-Yim Lee
- Department of Medical Biophysics, Western University, London, ON, N6A 5C1, Canada
- Imaging Program, Lawson Health Research Institute, London, ON, N6A 4V2, Canada
| | - Michael Kovacs
- Department of Medical Biophysics, Western University, London, ON, N6A 5C1, Canada
- Imaging Program, Lawson Health Research Institute, London, ON, N6A 4V2, Canada
| | - Maria Hatzoglou
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Savita Dhanvantari
- Department of Medical Biophysics, Western University, London, ON, N6A 5C1, Canada
- Metabolism and Diabetes Program, Lawson Health Research Institute, London, ON, N6A 4V2, Canada
- Imaging Program, Lawson Health Research Institute, London, ON, N6A 4V2, Canada
- Department of Pathology and Laboratory Medicine, Western University, London, ON, N6A 5C1, Canada
| |
Collapse
|
12
|
Shivanna B, Maity S, Zhang S, Patel A, Jiang W, Wang L, Welty SE, Belmont J, Coarfa C, Moorthy B. Gene Expression Profiling Identifies Cell Proliferation and Inflammation as the Predominant Pathways Regulated by Aryl Hydrocarbon Receptor in Primary Human Fetal Lung Cells Exposed to Hyperoxia. Toxicol Sci 2016; 152:155-68. [PMID: 27103661 DOI: 10.1093/toxsci/kfw071] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Exposure to hyperoxia contributes to the development of bronchopulmonary dysplasia (BPD) in premature infants. We observed that aryl hydrocarbon receptor (AhR) signaling protects newborn mice and primary fetal human pulmonary microvascular endothelial cells (HPMECs) against hyperoxic injury. Additionally, a recent genome-wide transcriptome study in a newborn mouse model of BPD identified AhR as a key regulator of hyperoxia-induced gene dysregulation. Whether the AhR similarly deregulates genes in HPMEC is unknown. Therefore, the objective of this study was to characterize transcriptome level gene expression profile in AhR-sufficient and -deficient HPMEC exposed to normoxic and hyperoxic conditions. Global gene expression profiling was performed using Illumina microarray platform and selected genes were validated by real-time RT-PCR. AhR gene expression and hyperoxia independently affected the expression of 540 and 593 genes, respectively. Two-way ANOVA further identified 85 genes that were affected by an interaction between AhR expression and exposure to hyperoxia. Kyoto Encyclopedia of Genes and Genomes (KEGG), Gene Ontology, and Reactome pathway analysis identified cell proliferation, immune function, cytokine signaling, and organ development as the major pathways affected in AhR-deficient cells. The biological processes that were significantly enriched by hyperoxia included metabolic process, stress response, signal transduction, cell cycle, and immune regulation. Cell cycle was the predominant pathway affected by the combined effect of AhR knockdown and hyperoxia. Functional analysis of cell cycle showed that AhR-deficient cells had decreased proliferation compared with AhR-sufficient cells. These findings suggest that AhR modulates hyperoxic lung injury by regulating the genes that are necessary for cell proliferation and inflammation.
Collapse
Affiliation(s)
- Binoy Shivanna
- *Department of Pediatrics, Section of Neonatal-Perinatal Medicine; *Department of Pediatrics, Section of Neonatal-Perinatal Medicine;
| | | | - Shaojie Zhang
- *Department of Pediatrics, Section of Neonatal-Perinatal Medicine
| | - Ananddeep Patel
- *Department of Pediatrics, Section of Neonatal-Perinatal Medicine
| | - Weiwu Jiang
- *Department of Pediatrics, Section of Neonatal-Perinatal Medicine
| | - Lihua Wang
- *Department of Pediatrics, Section of Neonatal-Perinatal Medicine
| | - Stephen E Welty
- *Department of Pediatrics, Section of Neonatal-Perinatal Medicine
| | - John Belmont
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030
| | | | | |
Collapse
|
13
|
Silva DMG, Nardiello C, Pozarska A, Morty RE. Recent advances in the mechanisms of lung alveolarization and the pathogenesis of bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol 2015; 309:L1239-72. [PMID: 26361876 DOI: 10.1152/ajplung.00268.2015] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 09/09/2015] [Indexed: 02/08/2023] Open
Abstract
Alveolarization is the process by which the alveoli, the principal gas exchange units of the lung, are formed. Along with the maturation of the pulmonary vasculature, alveolarization is the objective of late lung development. The terminal airspaces that were formed during early lung development are divided by the process of secondary septation, progressively generating an increasing number of alveoli that are of smaller size, which substantially increases the surface area over which gas exchange can take place. Disturbances to alveolarization occur in bronchopulmonary dysplasia (BPD), which can be complicated by perturbations to the pulmonary vasculature that are associated with the development of pulmonary hypertension. Disturbances to lung development may also occur in persistent pulmonary hypertension of the newborn in term newborn infants, as well as in patients with congenital diaphragmatic hernia. These disturbances can lead to the formation of lungs with fewer and larger alveoli and a dysmorphic pulmonary vasculature. Consequently, affected lungs exhibit a reduced capacity for gas exchange, with important implications for morbidity and mortality in the immediate postnatal period and respiratory health consequences that may persist into adulthood. It is the objective of this Perspectives article to update the reader about recent developments in our understanding of the molecular mechanisms of alveolarization and the pathogenesis of BPD.
Collapse
Affiliation(s)
- Diogo M G Silva
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany; Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Claudio Nardiello
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany; Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Agnieszka Pozarska
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany; Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Rory E Morty
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany; Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| |
Collapse
|
14
|
Abstract
Respiratory diseases are increasingly recognized as having their origins during perinatal and early postnatal lung development, a time of significant adaptation to large changes in redox conditions as well as to mechanical forces. This Forum of the journal presents a Forum highlighting studies of the interplay between reactive oxygen/nitrogen species and the systems that have evolved to degrade them or exploit them, as well as the cellular repair processes which respond to early life redox stress in the lung. This group of authors suggests new understandings of these events that may point the way to improved therapeutic approaches.
Collapse
Affiliation(s)
- Richard L Auten
- 1 Department of Pediatrics, Duke University Medical Center , Durham, North Carolina
| | | |
Collapse
|