1
|
Paik SJ, Kim DS, Son JE, Bach TT, Hai DV, Paik JH, Jo S, Kim DJ, Jung SK. Validation of Active Compound of Terminalia catappa L. Extract and Its Anti-Inflammatory and Antioxidant Properties by Regulating Mitochondrial Dysfunction and Cellular Signaling Pathways. J Microbiol Biotechnol 2024; 34:2118-2131. [PMID: 39252640 DOI: 10.4014/jmb.2407.07044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/21/2024] [Accepted: 08/27/2024] [Indexed: 09/11/2024]
Abstract
As chronic inflammation and oxidative stress cause various diseases in the human body, this study aimed to develop functional materials to prevent inflammation and oxidative stress. This study investigated the biological function and components of Terminalia catappa L. extract prepared using its leaves and branches (TCE). TCE was determined using ultraperformance liquid chromatography-quadrupole-time-of-flight mass spectrometry. Using RAW 264.7 mouse macrophages, inhibitory effects of the identified compounds on nitric oxide (NO) and reactive oxygen species (ROS) generation were analyzed. Therefore, α-punicalagin was selected as an active compound with the highest content (986.6 ± 68.4 μg/g) and physiological activity. TCE exhibited an inhibitory effect on lipopolysaccharide (LPS)-induced inflammatory markers, including NO, inducible nitric oxide synthase, and inflammatory cytokines without exerting cytotoxicity. Moreover, TCE prevented excessive ROS production mediated by LPS and upregulated hemeoxygenase-1 expression via the nuclear translocation of nuclear factor erythroid 2-related factor 2. Interestingly, TCE prevented LPS-induced mitochondrial membrane potential loss, mitochondrial ROS production, and dynamin-related protein 1 phosphorylation (serine 616), a marker of abnormal mitochondrial fission. Furthermore, TCE considerably repressed the activation of LPS-induced mitogen-activated protein kinase pathway. Thus, TCE is a promising anti-inflammatory and antioxidant pharmaceutical or nutraceutical, as demonstrated via mitochondrial dysfunction and cellular signaling pathway regulation.
Collapse
Affiliation(s)
- So Jeong Paik
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Dong-Shin Kim
- National Institute of Horticultural and Herbal Science, Rural Development Administration, Wanju 553635, Republic of Korea
| | - Joe Eun Son
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Tran The Bach
- Institute of Ecology and Biological Resources, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Ha Noi, Vietnam
| | - Do Van Hai
- Institute of Ecology and Biological Resources, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Ha Noi, Vietnam
| | - Jin-Hyub Paik
- International Biological Material Research Center, Korea Research Institute of Bioscience & Biotechnology, Daejeon 34141, Republic of Korea
| | - Sangjin Jo
- International Biological Material Research Center, Korea Research Institute of Bioscience & Biotechnology, Daejeon 34141, Republic of Korea
| | - Dong Joon Kim
- Department of Microbiology, College of Medicine, Dankook University, Cheonan 31116, Republic of Korea
- Multidrug-resistant Refractory Cancer Convergence Research Center (MRCRC), Dankook University, Cheonan 31116, Republic of Korea
| | - Sung Keun Jung
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
- Research Institute of Tailored Food Technology, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
2
|
Cui Y, Yang K, Guo C, Xia Z, Jiang B, Xue Y, Song B, Hu W, Zhang M, Wei Y, Zhang C, Zhang S, Fang J. Carbon monoxide as a negative feedback mechanism on HIF-1α in the progression of metabolic-associated fatty liver disease. Nitric Oxide 2024; 153:1-12. [PMID: 39369813 DOI: 10.1016/j.niox.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/01/2024] [Accepted: 10/03/2024] [Indexed: 10/08/2024]
Abstract
Metabolic-associated fatty liver disease (MAFLD) encompasses various chronic liver conditions, yet lacks approved drugs. Hypoxia-inducible factor-1α (HIF-1α) is pivotal in MAFLD development. Our prior research highlighted the efficacy of the nano-designed carbon monoxide (CO) donor, targeting HIF-1α in a mouse hepatic steatosis model. Given heme oxygenase-1 (HO-1, a major downstream molecule of HIF-1α) as the primary source of intrinsic CO, we hypothesized that upregulation of HO-1/CO, responsive to HIF-1α, forms a negative feedback loop regulating MAFLD progression. In this study, we explored the potential negative feedback mechanism of CO on HIF-1α and its downstream effects on MAFLD advancement. HIF-1α emerges early in hepatic steatosis induced by a high-fat (HF) diet, triggering increased HO-1 and inflammation. SMA/CORM2 effectively suppresses HIF-1α and steatosis progression when administered within the initial week of HF diet initiation but loses impact later. In adipose tissues, concurrent metabolic dysfunction and inflammation with HIF-1α activation suggest adipose tissue expansion initiates HF-induced steatosis, triggering hypoxia and liver inflammation. Notably, in an in vitro study using mouse hepatocytes treated with fatty acids, downregulating HO-1 intensified HIF-1α induction at moderate fatty acid concentrations. However, this effect diminished at high concentrations. These results suggest the HIF-1α-HO-1-CO axis as a feedback loop under physiological and mild pathological conditions. Excessive HIF-1α upregulation in pathological conditions overwhelms the CO feedback loop. Additional CO application effectively suppresses HIF-1α and disease progression, indicating potential application for MAFLD control.
Collapse
Affiliation(s)
- Yingying Cui
- Peking University First Hospital Ningxia Women and Children's Hospital (Ningxia Hui Autonomous Region Maternal and Child Health Hospital), Yinchuan, 750000, China; Department of Toxicology, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230022, Anhui, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, No 81 Meishan Road, Hefei, 230022, Anhui, China
| | - Kai Yang
- Department of Medical Technology, Anhui Medical College, No.632, Furong Road, Hefei, Anhui Province, China
| | - Chunyu Guo
- Department of Toxicology, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230022, Anhui, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, No 81 Meishan Road, Hefei, 230022, Anhui, China
| | - Zhengmei Xia
- Department of Toxicology, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230022, Anhui, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, No 81 Meishan Road, Hefei, 230022, Anhui, China
| | - Benchun Jiang
- Department of Gastricintestinal Surgery, Shengjing Hospital of China Medical University, No.36 Sanhao Street, Shenyang, 110004, Liaoning, China
| | - Yanni Xue
- Department of Toxicology, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230022, Anhui, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, No 81 Meishan Road, Hefei, 230022, Anhui, China
| | - Bingdong Song
- Department of Toxicology, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230022, Anhui, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, No 81 Meishan Road, Hefei, 230022, Anhui, China
| | - Weirong Hu
- Department of Toxicology, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230022, Anhui, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, No 81 Meishan Road, Hefei, 230022, Anhui, China
| | - Mingjie Zhang
- Department of General Surgery, Shengjing Hospital of China Medical University, No.36 Sanhao Street, Shenyang, 110004, Liaoning, China
| | - Yanyan Wei
- Department of Infectious Disease, the First Affiliated Hospital of Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Cheng Zhang
- Department of Toxicology, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230022, Anhui, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, No 81 Meishan Road, Hefei, 230022, Anhui, China
| | - Shichen Zhang
- Anhui Provincial Center for Maternal and Child Health Genetics, School of Public Health and Health Management, Anhui Medical College, No 632 Furong Road, Hefei, 230601, Anhui, China.
| | - Jun Fang
- Department of Toxicology, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230022, Anhui, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, No 81 Meishan Road, Hefei, 230022, Anhui, China; Anhui Provincial Center for Maternal and Child Health Genetics, School of Public Health and Health Management, Anhui Medical College, No 632 Furong Road, Hefei, 230601, Anhui, China; Faculty of Pharmaceutical Sciences, Sojo University, Ikeda 4-22-1, Kumamoto, 860-0082, Japan.
| |
Collapse
|
3
|
Leineweber WD, Rowell MZ, Ranamukhaarachchi SK, Walker A, Li Y, Villazon J, Mestre-Farrera A, Hu Z, Yang J, Shi L, Fraley SI. Divergent iron regulatory states contribute to heterogeneity in breast cancer aggressiveness. iScience 2024; 27:110661. [PMID: 39262774 PMCID: PMC11387597 DOI: 10.1016/j.isci.2024.110661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/19/2024] [Accepted: 07/31/2024] [Indexed: 09/13/2024] Open
Abstract
Contact with dense collagen I (Col1) can induce collective invasion of triple negative breast cancer (TNBC) cells and transcriptional signatures linked to poor patient prognosis. However, this response is heterogeneous and not well understood. Using phenotype-guided sequencing analysis of invasive vs. noninvasive subpopulations, we show that these two phenotypes represent opposite sides of the iron response protein 1 (IRP1)-mediated response to cytoplasmic labile iron pool (cLIP) levels. Invasive cells upregulate iron uptake and utilization machinery characteristic of a low cLIP response, which includes contractility regulating genes that drive migration. Non-invasive cells upregulate iron sequestration machinery characteristic of a high cLIP response, which is accompanied by upregulation of actin sequestration genes. These divergent IRP1 responses result from Col1-induced transient expression of heme oxygenase I (HO-1), which cleaves heme and releases iron. These findings lend insight into the emerging theory that heme and iron fluxes regulate TNBC aggressiveness.
Collapse
Affiliation(s)
- William D Leineweber
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Maya Z Rowell
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | | | - Alyssa Walker
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Yajuan Li
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jorge Villazon
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Aida Mestre-Farrera
- Department of Pharmacology, Moores Cancer Center, University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA
| | - Zhimin Hu
- Department of Pharmacology, Moores Cancer Center, University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA
| | - Jing Yang
- Department of Pharmacology, Moores Cancer Center, University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA
- Department of Pediatrics, University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA
| | - Lingyan Shi
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Stephanie I Fraley
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
4
|
Kciuk M, Garg N, Dhankhar S, Saini M, Mujwar S, Devi S, Chauhan S, Singh TG, Singh R, Marciniak B, Gielecińska A, Kontek R. Exploring the Comprehensive Neuroprotective and Anticancer Potential of Afzelin. Pharmaceuticals (Basel) 2024; 17:701. [PMID: 38931368 PMCID: PMC11206995 DOI: 10.3390/ph17060701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/18/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024] Open
Abstract
Neurodegenerative diseases (Alzheimer's disease, Parkinson's disease, Huntington's disease, and others) and cancer, seemingly disparate in their etiology and manifestation, exhibit intriguing associations in certain cellular and molecular processes. Both cancer and neurodegenerative diseases involve the deregulation of cellular processes such as apoptosis, proliferation, and DNA repair and pose a significant global health challenge. Afzelin (kaempferol 3-O-rhamnoside) is a flavonoid compound abundant in various plant sources. Afzelin exhibits a diverse range of biological activities, offering promising prospects for the treatment of diseases hallmarked by oxidative stress and deregulation of cell death pathways. Its protective potential against oxidative stress is also promising for alleviating the side effects of chemotherapy. This review explores the potential therapeutic implications of afzelin, including its capacity to mitigate oxidative stress, modulate inflammation, and promote cellular regeneration in neurodegenerative and cancer diseases.
Collapse
Affiliation(s)
- Mateusz Kciuk
- Department of Molecular Biotechnology and Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha St., 90-237 Lodz, Poland; (M.K.); (B.M.); (A.G.); (R.K.)
| | - Nitika Garg
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India; (N.G.); (S.D.); (S.D.); (T.G.S.)
| | - Sanchit Dhankhar
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India; (N.G.); (S.D.); (S.D.); (T.G.S.)
| | - Monika Saini
- M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be) University, Mullana, Ambala 133207, Haryana, India;
- Swami Vivekanand College of Pharmacy, Ramnagar, Banur 140601, Punjab, India
| | - Somdutt Mujwar
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India; (N.G.); (S.D.); (S.D.); (T.G.S.)
| | - Sushma Devi
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India; (N.G.); (S.D.); (S.D.); (T.G.S.)
| | - Samrat Chauhan
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India; (N.G.); (S.D.); (S.D.); (T.G.S.)
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India; (N.G.); (S.D.); (S.D.); (T.G.S.)
| | - Randhir Singh
- Department of Pharmacology, Central University of Punjab, Bathinda 151401, Punjab, India;
| | - Beata Marciniak
- Department of Molecular Biotechnology and Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha St., 90-237 Lodz, Poland; (M.K.); (B.M.); (A.G.); (R.K.)
| | - Adrianna Gielecińska
- Department of Molecular Biotechnology and Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha St., 90-237 Lodz, Poland; (M.K.); (B.M.); (A.G.); (R.K.)
- Doctoral School of Exact and Natural Sciences, University of Lodz, 90-237 Lodz, Poland
| | - Renata Kontek
- Department of Molecular Biotechnology and Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha St., 90-237 Lodz, Poland; (M.K.); (B.M.); (A.G.); (R.K.)
| |
Collapse
|
5
|
Lei P, Cao L, Zhang H, Fu J, Wei X, Zhou F, Cheng J, Ming J, Lu H, Jiang T. Polyene phosphatidylcholine enhances the therapeutic response of oxaliplatin in gastric cancer through Nrf2/HMOX1 mediated ferroptosis. Transl Oncol 2024; 43:101911. [PMID: 38377934 PMCID: PMC10891348 DOI: 10.1016/j.tranon.2024.101911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/07/2024] [Accepted: 02/09/2024] [Indexed: 02/22/2024] Open
Abstract
Oxaliplatin (OXA)-based chemotherapy is one of the first-line treatments for advanced gastric cancer. However, the potential risk for chemotherapy-induced hepatic injury can hinder its effectiveness. Polyene phosphatidylcholine (PPC) is often used as a hepatoprotective agent to counter OXA-induced hepatic injury; however, its impact on the antitumour effectiveness of OXA remains uncertain. Our retrospective study examined 98 patients with stage IV gastric cancer to assess the impact of PPC on progression-free survival (PFS) and disease control rate (DCR). Furthermore, in vitro and in vivo assays were conducted to elucidate the combined biological effects of OXA and PPC (OXA+PPC) on gastric cancer. RNA sequencing, luciferase reporter assays, live/dead cell assays, immunofluorescence, and western blotting were used to identify the activated signalling pathways and downstream factors post OXA+PPC treatment. The findings indicated that PPC served as an independent prognostic factor, correlating with prolonged PFS and improved DCR in patients with gastric cancer. The combination of OXA and PPC significantly inhibited tumour cell growth both in vitro and in vivo. RNA sequencing revealed that OXA+PPC treatment amplified reactive oxygen species and ferroptosis signalling pathways. Mechanistically, OXA+PPC upregulated the expression of haem oxygenase-1 by promoting the nuclear migration of nuclear factor erythroid 2-related factor (Nrf2), thereby enhancing its transcriptional activity. Drug-molecule docking analysis demonstrated that PPC competitively bound to the peptide structural domains of both Nrf2 and Kelch-like ECH-associated protein 1 (KEAP1), accounting for the increased translocation of Nrf2. In conclusion, our study reveals the synergistic antitumour potential of PPC and OXA while protecting patients against hepatic injury. This suggests a promising combined treatment approach for patients with advanced gastric cancer.
Collapse
Affiliation(s)
- Peijie Lei
- Department of Radiation Oncology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China; Department of Medicine, Qingdao University, Qingdao 266000, China
| | - Lianjing Cao
- Department of Radiation Oncology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Hongjun Zhang
- Department of Radiation Oncology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Jialei Fu
- Department of Radiation Oncology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Xiaojuan Wei
- Department of Radiation Oncology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Fei Zhou
- Department of Radiation Oncology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Jingjing Cheng
- Department of Radiation Oncology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Jie Ming
- Department of Radiation Oncology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Haijun Lu
- Department of Radiation Oncology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China.
| | - Tao Jiang
- Department of Radiation Oncology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China.
| |
Collapse
|
6
|
Yeudall S, Upchurch CM, Leitinger N. The clinical relevance of heme detoxification by the macrophage heme oxygenase system. Front Immunol 2024; 15:1379967. [PMID: 38585264 PMCID: PMC10995405 DOI: 10.3389/fimmu.2024.1379967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/11/2024] [Indexed: 04/09/2024] Open
Abstract
Heme degradation by the heme oxygenase (HMOX) family of enzymes is critical for maintaining homeostasis and limiting heme-induced tissue damage. Macrophages express HMOX1 and 2 and are critical sites of heme degradation in healthy and diseased states. Here we review the functions of the macrophage heme oxygenase system and its clinical relevance in discrete groups of pathologies where heme has been demonstrated to play a driving role. HMOX1 function in macrophages is essential for limiting oxidative tissue damage in both acute and chronic hemolytic disorders. By degrading pro-inflammatory heme and releasing anti-inflammatory molecules such as carbon monoxide, HMOX1 fine-tunes the acute inflammatory response with consequences for disorders of hyperinflammation such as sepsis. We then discuss divergent beneficial and pathological roles for HMOX1 in disorders such as atherosclerosis and metabolic syndrome, where activation of the HMOX system sits at the crossroads of chronic low-grade inflammation and oxidative stress. Finally, we highlight the emerging role for HMOX1 in regulating macrophage cell death via the iron- and oxidation-dependent form of cell death, ferroptosis. In summary, the importance of heme clearance by macrophages is an active area of investigation with relevance for therapeutic intervention in a diverse array of human diseases.
Collapse
Affiliation(s)
- Scott Yeudall
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA, United States
- Medical Scientist Training Program, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Clint M. Upchurch
- Department of Neuroscience, Center for Brain Immunology and Glia (BIG), University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Norbert Leitinger
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA, United States
- Robert M Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, United States
| |
Collapse
|
7
|
Leineweber WD, Rowell MZ, Ranamukhaarachchi S, Walker A, Li Y, Villazon J, Farrera AM, Hu Z, Yang J, Shi L, Fraley SI. Divergent iron-regulatory states contribute to heterogeneity in breast cancer aggressiveness. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.23.546216. [PMID: 37425829 PMCID: PMC10327122 DOI: 10.1101/2023.06.23.546216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Primary tumors with similar mutational profiles can progress to vastly different outcomes where transcriptional state, rather than mutational profile, predicts prognosis. A key challenge is to understand how distinct tumor cell states are induced and maintained. In triple negative breast cancer cells, invasive behaviors and aggressive transcriptional signatures linked to poor patient prognosis can emerge in response to contact with collagen type I. Herein, collagen-induced migration heterogeneity within a TNBC cell line was leveraged to identify transcriptional programs associated with invasive versus non-invasive phenotypes and implicate molecular switches. Phenotype-guided sequencing revealed that invasive cells upregulate iron uptake and utilization machinery, anapleurotic TCA cycle genes, actin polymerization promoters, and a distinct signature of Rho GTPase activity and contractility regulating genes. The non-invasive cell state is characterized by actin and iron sequestration modules along with glycolysis gene expression. These unique tumor cell states are evident in patient tumors and predict divergent outcomes for TNBC patients. Glucose tracing confirmed that non-invasive cells are more glycolytic than invasive cells, and functional studies in cell lines and PDO models demonstrated a causal relationship between phenotype and metabolic state. Mechanistically, the OXPHOS dependent invasive state resulted from transient HO-1 upregulation triggered by contact with dense collagen that reduced heme levels and mitochondrial chelatable iron levels. This induced expression of low cytoplasmic iron response genes regulated by ACO1/IRP1. Knockdown or inhibition of HO-1, ACO1/IRP1, MRCK, or OXPHOS abrogated invasion. These findings support an emerging theory that heme and iron flux serve as important regulators of TNBC aggressiveness.
Collapse
|
8
|
Fares K, El-Deeb MK, Elsammak O, Ouf A, Saeed HMS, Baess A, Elsammak M, El-Attar E. SNP (A > G - rs13057211) but not GT(n) polymorphism in HMOX-1 promotor gene is associated with COVID-19 mortality. BMC Pulm Med 2023; 23:514. [PMID: 38129860 PMCID: PMC10734135 DOI: 10.1186/s12890-023-02785-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 11/24/2023] [Indexed: 12/23/2023] Open
Abstract
INTRODUCTION COVID-19 causes severe inflammatory respiratory distress syndrome. The global pandemic caused millions of cases of morbidity and mortality worldwide. Patients may present with variable symptoms including dyspnea, fever, and GIT manifestations. The HMOX-1 gene is located on the long (q) arm of chromosome 22 at position 12.3. HMOX-1 is expressed in all mammalian tissues at basal levels and is considered as a stress response enzyme. HMOX-1 has a specific polymorphic site with variable GT(n) repeats at the promotor region. Several authors evaluated the HMOX-1 GT(n) promoter polymorphism in different inflammatory conditions. We evaluated HMOX-1 promoter polymorphism in relation to serum Hemoxygenase level and inflammatory makers (CRP, Ferritin, PCT, IL-6 and D-dimer) in patients affected by SARS-COV-2 disease. SUBJECTS AND METHODS Ninety patients confirmed to be infected with COVID-19 were followed up till the study end point (recovery and discharge or death). HMOX-1 promotor GT(n) polymorphism was evaluated using Sanger sequencing. HMOX-1 enzyme serum level was measured by ELISA and the level of different inflammatory markers was assessed by available commercial kits. RESULTS A novel Single nucleotide polymorphism (SNP) (A > G) - rs13057211 in the GT(n) region of HMOX-1 promoter gene was found in 40 (61.5%) COVID-19 patients out of the studied 65 patients. This (A > G) SNP was associated with higher mortality rate in COVID-19 as it was detected in 27 patients (75% of the patients who succumbed to the disease) (p = 0.021, Odds ratio = 3.7; 95% CI:1.29-10.56). Serum IL-6 (Interleuken-6) was positively correlated the length of Hospital Stay (LOHS) and procalcitonin (PCT); (p = 0.014, r: 0.651 and p < 0.001, r:0.997) respectively while negatively correlated with levels of HMOX-1 enzyme serum level (p = 0.013, r: -0.61). CRP correlated positively with LOHS (p = 0.021, r = 0.4), PCT (p = 0.044, r = 0.425) and age (p < 0.001, r = 0.685). Higher levels of D-Dimer and PCT were observed in patients with the long repeat. There was no significant difference between patients who recovered and those who died from COVID-19 as regards HMOX-1 level and GT(n) polymorphism. CONCLUSION We report a novel SNP (A > G, rs13057211) in the GT(n) region of HMOX-1 promoter gene that was associated with mortality in COVID-19 patients, however no significant difference was found in HMOX-1 serum level or HMOX-1 (GT)n repeats within the studied groups.
Collapse
Affiliation(s)
- Kerolos Fares
- Department of Chemical Pathology, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Mona K El-Deeb
- Department of Chemical Pathology, Medical Research Institute, Alexandria University, Alexandria, Egypt
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Al Jouf University, Sakakah, Saudi Arabia
| | - Omar Elsammak
- Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Amged Ouf
- Department of Biology and Biotechnology Graduate Program, School of Sciences and Engineering (SSE), The American University in Cairo (AUC), New Cairo, Egypt
| | - Hesham Mahmoud Sayd Saeed
- Department of Biotechnology, Institute of Graduate Studies and Research Alexandria University, Alexandria, Egypt
| | - Ayman Baess
- Department of Chest Diseases, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Mohamed Elsammak
- Department of Chemical Pathology, Medical Research Institute, Alexandria University, Alexandria, Egypt.
| | - Eman El-Attar
- Department of Chemical Pathology, Medical Research Institute, Alexandria University, Alexandria, Egypt
| |
Collapse
|
9
|
Cui Y, Guo C, Xia Z, Xue Y, Song B, Hu W, He X, Liang S, Wei Y, Zhang C, Wang H, Xu D, Zhang S, Fang J. Exploring the therapeutic potential of a nano micelle containing a carbon monoxide-releasing molecule for metabolic-associated fatty liver disease by modulating hypoxia-inducible factor-1α. Acta Biomater 2023; 169:500-516. [PMID: 37574157 DOI: 10.1016/j.actbio.2023.08.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/20/2023] [Accepted: 08/08/2023] [Indexed: 08/15/2023]
Abstract
Metabolic-associated fatty liver disease (MAFLD) encompasses a spectrum of chronic liver diseases, including steatohepatitis, cirrhosis, and liver cancer. Despite the increasing prevalence and severity of MAFLD, no approved pharmacological interventions are currently available. Hypoxia-inducible factor-1α (HIF-1α) has emerged as a crucial early mediator in the pathogenesis of MAFLD. Previously, we demonstrated the potent anti-inflammatory properties of the nano-designed carbon monoxide (CO) donor, styrene maleic acid copolymer (SMA) encapsulating CO-releasing molecule (SMA/CORM2), which effectively suppressed HIF-1α in various inflammatory disorders. Here, we investigated the therapeutic potential of SMA/CORM2 in a mouse model of MAFLD induced by a high-fat methionine- and choline-deficient (HF-MCD) diet. Following 4 weeks of HF-MCD diet consumption, we observed pronounced hepatic lipid accumulation accompanied by disrupted lipid metabolism, polarization of macrophages towards the pro-inflammatory M1 phenotype, activation of the NLRP3 inflammasome, and upregulation of the TGF-β fibrosis signaling pathway. Notably, the early and upstream event driving these pathological changes was the upregulation of HIF-1α. Treatment with SMA/CORM2 (10 mg/kg, three times per week) led to a significant increase in CO levels in both the circulation and liver, resulting in remarkable suppression of HIF-1α expression even before the onset of apparent pathological changes induced by the HF-MCD diet. Consequently, SMA/CORM2 administration exerted a significantly protective and therapeutic effect on MAFLD. In vitro studies using hepatocytes treated with high concentrations of fatty acids further supported these findings, as knockdown of HIF-1α using short hairpin RNA (shRNA) elicited similar effects to SMA/CORM2 treatment. Collectively, our results highlight the therapeutic potential of SMA/CORM2 in the management of MAFLD through suppression of HIF-1α. We anticipate that SMA/CORM2, with its ability to modulate HIF-1α expression, may hold promise for future applications in the treatment of MAFLD. STATEMENT OF SIGNIFICANCE: Carbon monoxide (CO) is a crucial gaseous signaling molecule that plays a vital role in maintaining homeostasis and is a potential target for treating many inflammatory diseases. Developing drug delivery systems that can deliver CO stably and target specific tissues is of great interest. Our team previously developed a nano micellar CO donor, SMA/CORM2, which exhibits superior bioavailability to native CORM2 and shows therapeutic potential in many inflammatory disease models. In this study, we showed that SMA/CORM2, through controlled CO release, significantly ameliorated steatohepatitis and liver fibrosis induced by an HF-MCD diet by suppressing an HIF-1α mediated inflammatory cascade. These findings provide new insight into the anti-inflammatory function of CO and a promising approach for controlling metabolic-associated fatty liver disease.
Collapse
Affiliation(s)
- Yingying Cui
- Department of Toxicology, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230022, Anhui, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, No 81 Meishan Road, Hefei 230022, Anhui, China; Peking University First Hispital Ningxia Women and Children's Hosptical (Ningxia Hui Autonomous Region Maternal and Child Health Hospital), Yinchuan 750000, China
| | - Chunyu Guo
- Department of Toxicology, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230022, Anhui, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, No 81 Meishan Road, Hefei 230022, Anhui, China
| | - Zhengmei Xia
- Department of Toxicology, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230022, Anhui, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, No 81 Meishan Road, Hefei 230022, Anhui, China
| | - Yanni Xue
- Department of Toxicology, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230022, Anhui, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, No 81 Meishan Road, Hefei 230022, Anhui, China
| | - Bingdong Song
- Department of Toxicology, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230022, Anhui, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, No 81 Meishan Road, Hefei 230022, Anhui, China
| | - Weirong Hu
- Department of Toxicology, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230022, Anhui, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, No 81 Meishan Road, Hefei 230022, Anhui, China
| | - Xue He
- Department of Gastroenterology, Anhui Provincial Key Laboratory of Digestive Disease, the First Affiliated Hospital of Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Shimin Liang
- Department of Gastroenterology, Anhui Provincial Key Laboratory of Digestive Disease, the First Affiliated Hospital of Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Yanyan Wei
- Department of Infectious Disease, the First Affiliated Hospital of Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Cheng Zhang
- Department of Toxicology, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230022, Anhui, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, No 81 Meishan Road, Hefei 230022, Anhui, China
| | - Hua Wang
- Department of Toxicology, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230022, Anhui, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, No 81 Meishan Road, Hefei 230022, Anhui, China
| | - Dexiang Xu
- Department of Toxicology, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230022, Anhui, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, No 81 Meishan Road, Hefei 230022, Anhui, China
| | - Shichen Zhang
- School of Public Health and Health Management, Anhui Medical College, No 632 Furong Road, Hefei 230601, Anhui, China.
| | - Jun Fang
- Department of Toxicology, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230022, Anhui, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, No 81 Meishan Road, Hefei 230022, Anhui, China; School of Public Health and Health Management, Anhui Medical College, No 632 Furong Road, Hefei 230601, Anhui, China; Faculty of Pharmaceutical Science, Sojo University, Ikeda 4-22-1, Kumamoto 860-0082, Japan.
| |
Collapse
|
10
|
Sileikaite-Morvaközi I, Hansen WH, Davies MJ, Mandrup-Poulsen T, Hawkins CL. Detrimental Actions of Chlorinated Nucleosides on the Function and Viability of Insulin-Producing Cells. Int J Mol Sci 2023; 24:14585. [PMID: 37834034 PMCID: PMC10572493 DOI: 10.3390/ijms241914585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
Neutrophils are innate immune cells that play a key role in pathogen clearance. They contribute to inflammatory diseases, including diabetes, by releasing pro-inflammatory cytokines, reactive oxygen species, and extracellular traps (NETs). NETs contain a DNA backbone and catalytically active myeloperoxidase (MPO), which produces hypochlorous acid (HOCl). Chlorination of the DNA nucleoside 8-chloro-deoxyguanosine has been reported as an early marker of inflammation in diabetes. In this study, we examined the reactivity of different chlorinated nucleosides, including 5-chloro-(deoxy)cytidine (5ClC, 5CldC), 8-chloro-(deoxy)adenosine (8ClA, 8CldA) and 8-chloro-(deoxy)guanosine (8ClG, 8CldG), with the INS-1E β-cell line. Exposure of INS-1E cells to 5CldC, 8CldA, 8ClA, and 8CldG decreased metabolic activity and intracellular ATP, and, together with 8ClG, induced apoptotic cell death. Exposure to 8ClA, but not the other nucleosides, resulted in sustained endoplasmic reticulum stress, activation of the unfolded protein response, and increased expression of thioredoxin-interacting protein (TXNIP) and heme oxygenase 1 (HO-1). Exposure of INS-1E cells to 5CldC also increased TXNIP and NAD(P)H dehydrogenase quinone 1 (NQO1) expression. In addition, a significant increase in the mRNA expression of NQO1 and GPx4 was seen in INS-1E cells exposed to 8ClG and 8CldA, respectively. However, a significant decrease in intracellular thiols was only observed in INS-1E cells exposed to 8ClG and 8CldG. Finally, a significant decrease in the insulin stimulation index was observed in experiments with all the chlorinated nucleosides, except for 8ClA and 8ClG. Together, these results suggest that increased formation of chlorinated nucleosides during inflammation in diabetes could influence β-cell function and may contribute to disease progression.
Collapse
Affiliation(s)
| | | | | | | | - Clare L. Hawkins
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (I.S.-M.); (M.J.D.); (T.M.-P.)
| |
Collapse
|
11
|
Zhao Y, Gao C, Liu L, Wang L, Song Z. The development and function of human monocyte-derived dendritic cells regulated by metabolic reprogramming. J Leukoc Biol 2023; 114:212-222. [PMID: 37232942 DOI: 10.1093/jleuko/qiad062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 04/15/2023] [Accepted: 04/28/2023] [Indexed: 05/27/2023] Open
Abstract
Human monocyte-derived dendritic cells (moDCs) that develop from monocytes play a key role in innate inflammatory responses as well as T cell priming. Steady-state moDCs regulate immunogenicity and tolerogenicity by changing metabolic patterns to participate in the body's immune response. Increased glycolytic metabolism after danger signal induction may strengthen moDC immunogenicity, whereas high levels of mitochondrial oxidative phosphorylation were associated with the immaturity and tolerogenicity of moDCs. In this review, we discuss what is currently known about differential metabolic reprogramming of human moDC development and distinct functional properties.
Collapse
Affiliation(s)
- Ying Zhao
- Department of Dermatology, Southwest Hospital, Army Medical University, 30 Gaotanyan Street, District Shapingba, Chongqing, 400038, China
| | - Cuie Gao
- Department of Dermatology, Southwest Hospital, Army Medical University, 30 Gaotanyan Street, District Shapingba, Chongqing, 400038, China
| | - Lu Liu
- Department of Dermatology, Southwest Hospital, Army Medical University, 30 Gaotanyan Street, District Shapingba, Chongqing, 400038, China
| | - Li Wang
- Institute of Immunology, College of Basic Medical Sciences, Army Medical University, Chongqing, China
| | - Zhiqiang Song
- Department of Dermatology, Southwest Hospital, Army Medical University, 30 Gaotanyan Street, District Shapingba, Chongqing, 400038, China
| |
Collapse
|
12
|
Arrigo E, Comità S, Pagliaro P, Penna C, Mancardi D. Clinical Applications for Gasotransmitters in the Cardiovascular System: Are We There Yet? Int J Mol Sci 2023; 24:12480. [PMID: 37569855 PMCID: PMC10419417 DOI: 10.3390/ijms241512480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/28/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023] Open
Abstract
Ischemia is the underlying mechanism in a wide variety of acute and persistent pathologies. As such, understanding the fine intracellular events occurring during (and after) the restriction of blood supply is pivotal to improving the outcomes in clinical settings. Among others, gaseous signaling molecules constitutively produced by mammalian cells (gasotransmitters) have been shown to be of potential interest for clinical treatment of ischemia/reperfusion injury. Nitric oxide (NO and its sibling, HNO), hydrogen sulfide (H2S), and carbon monoxide (CO) have long been proven to be cytoprotective in basic science experiments, and they are now awaiting confirmation with clinical trials. The aim of this work is to review the literature and the clinical trials database to address the state of development of potential therapeutic applications for NO, H2S, and CO and the clinical scenarios where they are more promising.
Collapse
|
13
|
Voltarelli VA, Alves de Souza RW, Miyauchi K, Hauser CJ, Otterbein LE. Heme: The Lord of the Iron Ring. Antioxidants (Basel) 2023; 12:antiox12051074. [PMID: 37237940 DOI: 10.3390/antiox12051074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/26/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023] Open
Abstract
Heme is an iron-protoporphyrin complex with an essential physiologic function for all cells, especially for those in which heme is a key prosthetic group of proteins such as hemoglobin, myoglobin, and cytochromes of the mitochondria. However, it is also known that heme can participate in pro-oxidant and pro-inflammatory responses, leading to cytotoxicity in various tissues and organs such as the kidney, brain, heart, liver, and in immune cells. Indeed, heme, released as a result of tissue damage, can stimulate local and remote inflammatory reactions. These can initiate innate immune responses that, if left uncontrolled, can compound primary injuries and promote organ failure. In contrast, a cadre of heme receptors are arrayed on the plasma membrane that is designed either for heme import into the cell, or for the purpose of activating specific signaling pathways. Thus, free heme can serve either as a deleterious molecule, or one that can traffic and initiate highly specific cellular responses that are teleologically important for survival. Herein, we review heme metabolism and signaling pathways, including heme synthesis, degradation, and scavenging. We will focus on trauma and inflammatory diseases, including traumatic brain injury, trauma-related sepsis, cancer, and cardiovascular diseases where current work suggests that heme may be most important.
Collapse
Affiliation(s)
- Vanessa Azevedo Voltarelli
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Rodrigo W Alves de Souza
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Kenji Miyauchi
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Carl J Hauser
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Leo Edmond Otterbein
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
14
|
Ji Y, Yang Y, Sun S, Dai Z, Ren F, Wu Z. Insights into diet-associated oxidative pathomechanisms in inflammatory bowel disease and protective effects of functional amino acids. Nutr Rev 2022; 81:95-113. [PMID: 35703919 DOI: 10.1093/nutrit/nuac039] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
There has been a substantial rise in the incidence and prevalence of clinical patients presenting with inflammatory bowel disease (IBD), which includes Crohn's disease and ulcerative colitis. Accumulating evidence has corroborated the view that dietary factors (particularly diets with high levels of saturated fat or sugar) are involved in the development and progression of IBD, which is predominately associated with changes in the composition of the gut microbiota and an increase in the generation of reactive oxygen species. Notably, the ecological imbalance of the gut microbiome exacerbates oxidative stress and inflammatory responses, leading to perturbations of the intestinal redox balance and immunity, as well as mucosal integrity. Recent findings have revealed that functional amino acids, including L-glutamine, glycine, L-arginine, L-histidine, L-tryptophan, and hydroxyproline, are effectively implicated in the maintenance of intestinal redox and immune homeostasis. These amino acids and their metabolites have oxygen free-radical scavenging and inflammation-relieving properties, and they participate in modulation of the microbial community and the metabolites in the gut. The principal focus of this article is a review of recent advances in the oxidative pathomechanisms of IBD development and progression in relation to dietary factors, with a particular emphasis on the redox and signal transduction mechanisms of host cells in response to unbalanced diets and enterobacteria. In addition, an update on current understanding of the protective effects of functional amino acids against IBD, together with the underlying mechanisms for this protection, have been provided.
Collapse
Affiliation(s)
- Yun Ji
- are with the State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, China.,are with the Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Ying Yang
- are with the State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, China
| | - Shiqiang Sun
- are with the State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, China
| | - Zhaolai Dai
- are with the State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, ChinaChina
| | - Fazheng Ren
- are with the Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Zhenlong Wu
- are with the State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, China.,are with the Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing, China
| |
Collapse
|
15
|
Popek R, Mahawar L, Shekhawat GS, Przybysz A. Phyto-cleaning of particulate matter from polluted air by woody plant species in the near-desert city of Jodhpur (India) and the role of heme oxygenase in their response to PM stress conditions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:70228-70241. [PMID: 35585451 DOI: 10.1007/s11356-022-20769-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 05/08/2022] [Indexed: 06/15/2023]
Abstract
Particulate matter (PM) is one of the most dangerous pollutants in the air. Urban vegetation, especially trees and shrubs, accumulates PM and reduces its concentration in ambient air. The aim of this study was to examine 10 tree and shrub species common for the Indian city of Jodhpur (Rajasthan) located on the edge of the Thar Desert and determine (1) the accumulation of surface and in-wax PM (both in three different size fractions), (2) the amount of epicuticular waxes on foliage, (3) the concentrations of heavy metals (Cd and Cu) on/in the leaves of the examined species, and (4) the level of heme oxygenase enzyme in leaves that accumulate PM and heavy metals. Among the investigated species, Ficus religiosa L. and Cordia myxa L. accumulated the greatest amount of total PM. F. religiosa is a tall tree with a lush, large crown and leaves with wavy edge, convex veins, and long petioles, while C. myxa have hairy leaves with convex veins. The lowest PM accumulation was recorded for drought-resistant Salvadora persica L. and Azadirachta indica A. Juss., which is probably due to their adaptation to growing conditions. Heavy metals (Cu and Cd) were found in the leaves of almost every examined species. The accumulation of heavy metals (especially Cu) was positively correlated with the amount of PM deposited on the foliage. A new finding of this study indicated a potentially important role of HO in the plants' response to PM-induced stress. The correlation between HO and PM was stronger than that between HO and HMs. The results obtained in this study emphasise the role of plants in cleaning polluted air in conditions where there are very high concentrations of PM.
Collapse
Affiliation(s)
- Robert Popek
- Section of Basic Research in Horticulture, Department of Plant Protection, Institute of Horticultural Sciences, Warsaw University of Life Sciences - SGGW (WULS-SGGW), Nowoursynowska 159, 02-776, Warsaw, Poland.
| | - Lovely Mahawar
- Plant Biotechnology and Molecular Biology Laboratory, Department of Botany, Jai Narain Vyas University, Jodhpur, 342001, India
| | - Gyan Singh Shekhawat
- Plant Biotechnology and Molecular Biology Laboratory, Department of Botany, Jai Narain Vyas University, Jodhpur, 342001, India
| | - Arkadiusz Przybysz
- Section of Basic Research in Horticulture, Department of Plant Protection, Institute of Horticultural Sciences, Warsaw University of Life Sciences - SGGW (WULS-SGGW), Nowoursynowska 159, 02-776, Warsaw, Poland
| |
Collapse
|
16
|
New Insights on Heme Uptake in Leishmania spp. Int J Mol Sci 2022; 23:ijms231810501. [PMID: 36142411 PMCID: PMC9504327 DOI: 10.3390/ijms231810501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/02/2022] [Accepted: 09/06/2022] [Indexed: 11/20/2022] Open
Abstract
The protozoan parasite Leishmania, responsible for leishmaniasis, is one of the few aerobic organisms that cannot synthesize the essential molecule heme. Therefore, it has developed specialized pathways to scavenge it from its host. In recent years, some proteins involved in the import of heme, such as LHR1 and LFLVCRB, have been identified, but relevant aspects regarding the process remain unknown. Here, we characterized the kinetics of the uptake of the heme analogue Zn(II) Mesoporphyrin IX (ZnMP) in Leishmania major promastigotes as a model of a parasite causing cutaneous leishmaniasis with special focus on the force that drives the process. We found that ZnMP uptake is an active, inducible, and pH-dependent process that does not require a plasma membrane proton gradient but requires the presence of the monovalent cations Na+ and/or K+. In addition, we demonstrated that this parasite can efflux this porphyrin against a concentration gradient. We also found that ZnMP uptake differs among different dermotropic or viscerotropic Leishmania species and does not correlate with LHR1 or LFLVCRB expression levels. Finally, we showed that these transporters have only partially overlapping functions. Altogether, these findings contribute to a deeper understanding of an important process in the biology of this parasite.
Collapse
|
17
|
de Souza Almeida RR, Bobermin LD, Parmeggiani B, Wartchow KM, Souza DO, Gonçalves CA, Wajner M, Leipnitz G, Quincozes-Santos A. Methylmalonic acid induces inflammatory response and redox homeostasis disruption in C6 astroglial cells: potential glioprotective roles of melatonin and resveratrol. Amino Acids 2022; 54:1505-1517. [PMID: 35927507 DOI: 10.1007/s00726-022-03191-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 07/22/2022] [Indexed: 11/24/2022]
Abstract
Methylmalonic acidemia is a neurometabolic disorder biochemically characterized by the accumulation of methylmalonic acid (MMA) in different tissues, including the central nervous system (CNS). In this sense, it has been shown that high levels of this organic acid have a key role in the progressive neurological deterioration in patients. Astroglial cells actively participate in a wide range of CNS functions, such as antioxidant defenses and inflammatory response. Considering the role of these cells to maintain brain homeostasis, in the present study, we investigated the effects of MMA on glial parameters, focusing on redox homeostasis and inflammatory process, as well as putative mediators of these events in C6 astroglial cells. MMA decreased cell viability, glutathione levels, and antioxidant enzyme activities, increased inflammatory response, and changed the expression of nuclear factor erythroid 2-related factor 2 (Nrf2), nuclear factor kappa B (NFκB), peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), inducible nitric oxide synthase (iNOS), cyclooxygenase 2 (COX-2), and adenosine receptors, suggesting that these transcriptional factors and proteins may underlie the glial responses induced by MMA. Moreover, we also demonstrated the protective roles of melatonin and resveratrol against MMA-induced inflammation and decrease in glutathione levels. In summary, our findings support the hypothesis that astroglial changes are associated with pathogenesis of methylmalonic acidemia. In addition, we showed that these cells might be potential targets for preventive/therapeutic strategies by using molecules, such as melatonin and resveratrol, which mediated glioprotection in this inborn error of metabolism.
Collapse
Affiliation(s)
- Rômulo Rodrigo de Souza Almeida
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Larissa Daniele Bobermin
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Belisa Parmeggiani
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Krista Minéia Wartchow
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Diogo Onofre Souza
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil.,Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Rua Ramiro Barcelos, 2600-Anexo, Bairro Santa Cecília, Porto Alegre, RS, 90035-003, Brazil
| | - Carlos-Alberto Gonçalves
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil.,Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Rua Ramiro Barcelos, 2600-Anexo, Bairro Santa Cecília, Porto Alegre, RS, 90035-003, Brazil
| | - Moacir Wajner
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil.,Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Rua Ramiro Barcelos, 2600-Anexo, Bairro Santa Cecília, Porto Alegre, RS, 90035-003, Brazil
| | - Guilhian Leipnitz
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil.,Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Rua Ramiro Barcelos, 2600-Anexo, Bairro Santa Cecília, Porto Alegre, RS, 90035-003, Brazil
| | - André Quincozes-Santos
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil. .,Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Rua Ramiro Barcelos, 2600-Anexo, Bairro Santa Cecília, Porto Alegre, RS, 90035-003, Brazil.
| |
Collapse
|
18
|
Wang P, Liu D, Yan S, Liang Y, Cui J, Guo L, Ren S, Chen P. The Role of Ferroptosis in the Damage of Human Proximal Tubule Epithelial Cells Caused by Perfluorooctane Sulfonate. TOXICS 2022; 10:toxics10080436. [PMID: 36006114 PMCID: PMC9414058 DOI: 10.3390/toxics10080436] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/25/2022] [Accepted: 07/28/2022] [Indexed: 05/03/2023]
Abstract
Perfluorooctane sulfonate (PFOS) is a typical persistent organic pollutant and environmental endocrine disruptor that has been shown to be associated with the development of many diseases; it poses a considerable threat to the ecological environment and to human health. PFOS is known to cause damage to renal cells; however, studies of PFOS-induced ferroptosis in cells have not been reported. We used the CCK-8 method to detect cell viability, flow cytometry and immunofluorescence methods to detect ROS levels and Western blot to detect ferroptosis, endoplasmic reticulum stress, antioxidant and apoptosis-related proteins. In our study, we found that PFOS could induce the onset of ferroptosis in HK-2 cells with decreased GPx4 expression and elevated ACSL4 and FTH1 expression, which are hallmarks for the development of ferroptosis. In addition, PFOS-induced ferroptosis in HK-2 cells could be reversed by Fer-1. We also found that endoplasmic reticulum stress and its mediated apoptotic mechanism and P53-mediated antioxidant mechanism are involved in the toxic damage of cells by PFOS. In this paper, we demonstrated for the first time that PFOS can induce ferroptosis in HK-2 cells. In addition, we preliminarily explored other mechanisms of cytotoxic damage by PFOS, which provides a new idea to study the toxicity of PFOS as well as the damage to the kidney and its mechanism.
Collapse
Affiliation(s)
- Pingwei Wang
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun 130021, China; (P.W.); (D.L.); (S.Y.); (Y.L.); (J.C.); (S.R.)
| | - Dongge Liu
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun 130021, China; (P.W.); (D.L.); (S.Y.); (Y.L.); (J.C.); (S.R.)
| | - Shuqi Yan
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun 130021, China; (P.W.); (D.L.); (S.Y.); (Y.L.); (J.C.); (S.R.)
| | - Yujun Liang
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun 130021, China; (P.W.); (D.L.); (S.Y.); (Y.L.); (J.C.); (S.R.)
| | - Jiajing Cui
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun 130021, China; (P.W.); (D.L.); (S.Y.); (Y.L.); (J.C.); (S.R.)
| | - Li Guo
- Department of Toxicology, School of Public Health, Jilin University, Changchun 130021, China;
| | - Shuping Ren
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun 130021, China; (P.W.); (D.L.); (S.Y.); (Y.L.); (J.C.); (S.R.)
| | - Peng Chen
- Department of Pediatrics, The Second Hospital of Jilin University, Changchun 130041, China
- Correspondence:
| |
Collapse
|
19
|
Abbas G, Yu J, Li G. Novel and Alternative Therapeutic Strategies for Controlling Avian Viral Infectious Diseases: Focus on Infectious Bronchitis and Avian Influenza. Front Vet Sci 2022; 9:933274. [PMID: 35937298 PMCID: PMC9353128 DOI: 10.3389/fvets.2022.933274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/08/2022] [Indexed: 11/13/2022] Open
Abstract
The growth of poultry farming has enabled higher spread of infectious diseases and their pathogens among different kinds of birds, such as avian infectious bronchitis virus (IBV) and avian influenza virus (AIV). IBV and AIV are a potential source of poultry mortality and economic losses. Furthermore, some pathogens have the ability to cause zoonotic diseases and impart human health problems. Antiviral treatments that are used often lead to virus resistance along with the problems of side effects, recurrence, and latency of viruses. Though target hosts are being vaccinated, the constant emergence and re-emergence of strains of these viruses cause disease outbreaks. The pharmaceutical industry is gradually focusing on plant extracts to develop novel herbal drugs to have proper antiviral capabilities. Natural therapeutic agents developed from herbs, essential oils (EO), and distillation processes deliver a rich source of amalgams to discover and produce new antiviral drugs. The mechanisms involved have elaborated how these natural therapeutics agents play a major role during virus entry and replication in the host and cause inhibition of viral pathogenesis. Nanotechnology is one of the advanced techniques that can be very useful in diagnosing and controlling infectious diseases in poultry. In general, this review covers the issue of the poultry industry situation, current infectious diseases, mainly IB and AI control measures and, in addition, the setup of novel therapeutics using plant extracts and the use of nanotechnology information that may help to control these diseases.
Collapse
|
20
|
He S, Shi J, Liu W, Du S, Zhang Y, Gong L, Dong S, Li X, Gao Q, Yang J, Yu J. Heme oxygenase-1 protects against endotoxin-induced acute lung injury depends on NAD +-mediated mitonuclear communication through PGC1α/PPARγ signaling pathway. Inflamm Res 2022; 71:1095-1108. [PMID: 35816227 PMCID: PMC9272656 DOI: 10.1007/s00011-022-01605-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/28/2022] [Indexed: 12/27/2022] Open
Abstract
Endotoxin-induced acute lung injury (ALI) is a challenging life-threatening disease for which no specific therapy exists. Mitochondrial dysfunction is corroborated as hallmarks in sepsis which commonly disrupt mitochondria-centered cellular communication networks, especially mitonuclear crosstalk, where the ubiquitous cofactor nicotinamide adenine dinucleotide (NAD+) is essential for mitonuclear communication. Heme oxygenase-1 (HO-1) is critical for maintaining mitochondrial dynamic equilibrium and regulating endoplasmic reticulum (ER) and Golgi stress to alleviating acute lung injury. However, it is unclear whether HO-1 regulates NAD+-mediated mitonuclear communication to exert the endogenous protection during endotoxin-induced ALI. In this study, we observed HO-1 attenuated endotoxin-induced ALI by regulated NAD+ levels and NAD+ affected the mitonuclear communication, including mitonuclear protein imbalance and UPRmt to alleviate lung damage. We also found the protective effect of HO-1 depended on NAD+ and NAD+-mediated mitonuclear communication. Furtherly, the inhibition of the PGC1α/PPARγ signaling exacerbates the septic lung injury by reducing NAD+ levels and repressing the mitonuclear protein imbalance and UPRmt. Altogether, our study certified that HO-1 ameliorated endotoxin-induced acute lung injury by regulating NAD+ and NAD+-mediated mitonuclear communications through PGC1α/PPARγ pathway. The present study provided complementary evidence for the cytoprotective effect of HO-1 as a potential target for preventing and attenuating of endotoxin-induced ALI.
Collapse
Affiliation(s)
- Simeng He
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China
| | - Jia Shi
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China
| | - Wenming Liu
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China
| | - Shihan Du
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China
| | - Yuan Zhang
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China
| | - Lirong Gong
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China
| | - Shuan Dong
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China
| | - Xiangyun Li
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China
| | - Qiaoying Gao
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Institute of Acute Abdominal Diseases of Integrated Traditional Chinese and Western Medicine, Tianjin Nankai Hospital, Tianjin, China
| | - Jing Yang
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Institute of Acute Abdominal Diseases of Integrated Traditional Chinese and Western Medicine, Tianjin Nankai Hospital, Tianjin, China
| | - Jianbo Yu
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
21
|
Wu Y, Li J, Wang J, Dawuda MM, Liao W, Meng X, Yuan H, Xie J, Tang Z, Lyu J, Yu J. Heme is involved in the exogenous ALA-promoted growth and antioxidant defense system of cucumber seedlings under salt stress. BMC PLANT BIOLOGY 2022; 22:329. [PMID: 35804328 PMCID: PMC9264505 DOI: 10.1186/s12870-022-03717-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/27/2022] [Indexed: 05/23/2023]
Abstract
A biosynthetic precursor of tetrapyrrol, 5-aminolevulinic acid (ALA), is widely used in agricultural production, as an exogenous regulatory substance that effectively regulates plant growth. Previous studies have shown that heme and chlorophyll accumulate in plants under salt stress, when treated with exogenous ALA. In this study, we explored the regulatory role of heme in plants, by spraying 25 mg L-1 ALA onto the leaves of cucumber seedlings treated with heme synthesis inhibitor (2,2'-dipyridyl, DPD) and heme scavenger (hemopexin, Hx), under 50 mmol L-1 NaCl stress. The results showed that NaCl alone and DPD + Hx treatments to cucumber seedlings subjected to salt stress adversely affected their growth, by decreasing biomass accumulation, root activity, and root morphology. In addition, these treatments induced an increase in membrane lipid oxidation, as well as enhancement of anti-oxidase activities, proline content, and glutamate betaine. However, exogenous ALA application increased the plant growth and root architecture indices under NaCl stress, owing to a lack of heme in the seedlings. In addition, cucumber seedlings treated with DPD and Hx showed inhibition of growth under salt stress, but exogenous ALA effectively improved cucumber seedling growth as well as the physiological characteristics; moreover, the regulation of ALA in plants was weakened when heme synthesis was inhibited. Heme biosynthesis and metabolism genes, HEMH and HO1, which are involved in the ALA metabolic pathway, were upregulated under salinity conditions, when ferrochelatase activity was inhibited. Application of exogenous ALA increased the heme content in the leaves. Thus, exogenous ALA may supplement the substrates for heme synthesis. These results indicated that heme plays a vital role in the response of plants to salinity stress. In conclusion, heme is involved in ALA-mediated alleviation of damage caused to cucumber seedlings and acts as a positive regulator of plant adaption.
Collapse
Affiliation(s)
- Yue Wu
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Jing Li
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Junwen Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Mohammed Mujitaba Dawuda
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
- Department of Horticulture, University for Development Studies, Tamale, Ghana
| | - Weibiao Liao
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Xin Meng
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Hong Yuan
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Jianming Xie
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Zhongqi Tang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Jian Lyu
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Jihua Yu
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China.
- State Key Laboratory of Arid-Land Crop Science, Gansu Agricultural University, Lanzhou, 730070, China.
| |
Collapse
|
22
|
Salihi A, Al-Naqshabandi MA, Khudhur ZO, Housein Z, Hama HA, Abdullah RM, Hussen BM, Alkasalias T. Gasotransmitters in the tumor microenvironment: Impacts on cancer chemotherapy (Review). Mol Med Rep 2022; 26:233. [PMID: 35616143 PMCID: PMC9178674 DOI: 10.3892/mmr.2022.12749] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 04/07/2022] [Indexed: 11/23/2022] Open
Abstract
Nitric oxide, carbon monoxide and hydrogen sulfide are three endogenous gasotransmitters that serve a role in regulating normal and pathological cellular activities. They can stimulate or inhibit cancer cell proliferation and invasion, as well as interfere with cancer cell responses to drug treatments. Understanding the molecular pathways governing the interactions between these gases and the tumor microenvironment can be utilized for the identification of a novel technique to disrupt cancer cell interactions and may contribute to the conception of effective and safe cancer therapy strategies. The present review discusses the effects of these gases in modulating the action of chemotherapies, as well as prospective pharmacological and therapeutic interfering approaches. A deeper knowledge of the mechanisms that underpin the cellular and pharmacological effects, as well as interactions, of each of the three gases could pave the way for therapeutic treatments and translational research.
Collapse
Affiliation(s)
- Abbas Salihi
- Department of Biology, College of Science, Salahaddin University-Erbil, Erbil, Kurdistan Region 44001, Iraq
- Center of Research and Strategic Studies, Lebanese French University, Erbil, Kurdistan Region 44002, Iraq
- Department of Microbiology, Tumor and Cell Biology (MTC), Biomedicum, Karolinska Institutet, SE-17165 Stockholm, Sweden
| | - Mohammed A. Al-Naqshabandi
- Department of Clinical Biochemistry, College of Health Sciences, Hawler Medical University, Erbil, Kurdistan Region 44001, Iraq
| | - Zhikal Omar Khudhur
- Department of Medical Analysis, Faculty of Applied Science, Tishk International University, Erbil, Kurdistan Region 44001, Iraq
| | - Zjwan Housein
- Department of Medical Laboratory Technology, Technical Health and Medical College, Erbil Polytechnique University, Erbil, Kurdistan Region 44002, Iraq
| | - Harmand A. Hama
- Department of Biology, Faculty of Education, Tishk International University, Erbil, Kurdistan Region 44002, Iraq
| | - Ramyar M. Abdullah
- College of Medicine, Hawler Medical University, Erbil, Kurdistan Region 44002, Iraq
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan Region 44002, Iraq
| | - Twana Alkasalias
- General Directorate of Scientific Research Center, Salahaddin University-Erbil, Erbil, Kurdistan Region 44002, Iraq
- Department of Women's and Children's Health, Karolinska Institutet, Karolinska University Hospital, SE-17176 Stockholm, Sweden
| |
Collapse
|
23
|
Tawa M, Okamura T. Factors influencing the soluble guanylate cyclase heme redox state in blood vessels. Vascul Pharmacol 2022; 145:107023. [PMID: 35718342 DOI: 10.1016/j.vph.2022.107023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 06/09/2022] [Accepted: 06/12/2022] [Indexed: 11/15/2022]
Abstract
Soluble guanylate cyclase (sGC) plays an important role in maintaining vascular homeostasis, as an acceptor for the biological messenger nitric oxide (NO). However, only reduced sGC (with a ferrous heme) can be activated by NO; oxidized (ferric heme) and apo (absent heme) sGC cannot. In addition, the proportions of reduced, oxidized, and apo sGC change under pathological conditions. Although diseased blood vessels often show decreased NO bioavailability in the vascular wall, a shift of sGC heme redox balance in favor of the oxidized/apo forms can also occur. Therefore, sGC is of growing interest as a drug target for various cardiovascular diseases. Notably, the balance between NO-sensitive reduced sGC and NO-insensitive oxidized/apo sGC in the body is regulated in a reversible manner by various biological molecules and proteins. Many studies have attempted to identify endogenous factors and determinants that influence this redox state. For example, various reactive nitrogen and oxygen species are capable of inducing the oxidation of sGC heme. Conversely, a heme reductase and some antioxidants reduce the ferric heme in sGC to the ferrous state. This review summarizes the factors and mechanisms identified by these studies that operate to regulate the sGC heme redox state.
Collapse
Affiliation(s)
- Masashi Tawa
- Department of Pathological and Molecular Pharmacology, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka 569-1094, Japan.
| | - Tomio Okamura
- Emeritus Professor, Shiga University of Medical Science, Otsu, Shiga 520-2192, Japan
| |
Collapse
|
24
|
Biliverdin/Bilirubin Redox Pair Protects Lens Epithelial Cells against Oxidative Stress in Age-Related Cataract by Regulating NF- κB/iNOS and Nrf2/HO-1 Pathways. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7299182. [PMID: 35480872 PMCID: PMC9036166 DOI: 10.1155/2022/7299182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 12/15/2022]
Abstract
Age-related cataract (ARC) is the leading cause of vision impairment globally. It has been widely accepted that excessive reactive oxygen species (ROS) accumulation in lens epithelial cells (LECs) is a critical risk factor for ARC formation. Biliverdin (BV)/bilirubin (BR) redox pair is the active by-product of heme degradation with robust antioxidative stress and antiapoptotic effects. Thus, we purpose that BV and BR may have a therapeutic effect on ARC. In the present study, we determine the expression levels of enzymes regulating BV and BR generation in human lens anterior capsule samples. The therapeutic effect of BV/BR redox pair on ARC was assessed in hydrogen peroxide (H2O2)-damaged mouse LECs in vitro. The NF-κB/inducible nitric oxide synthase (iNOS) and nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) signaling pathways were evaluated to illustrate the molecular mechanism. The results revealed that the mRNA expressions of Nrf2, HO-1, and biliverdin reductase A (BVRA) were all decreased in human samples of age-related nuclear cataract. BV/BR redox pair pretreatment protected LECs against H2O2 damage by prohibiting NF-κB p65 nuclear trafficking, ameliorating iNOS expression, reducing intracellular and mitochondrial ROS levels, and restoring glutathione (GSH) and superoxide dismutase (SOD) levels. BV and BR pretreatment also regulated the expression of apoptotic molecules (Bax, Bcl-2, and cleaved caspase-3), thus decreasing the apoptosis of LECs. In addition, BV/BR pair promoted Nrf2 nuclear accumulation and HO-1 induction, whereas the knockdown of BVRA counteracted the effect of BV on activating Nrf2/HO-1 pathway and antiapoptosis. These findings implicated that BV/BR redox pair protects LECs against H2O2-induced apoptosis by regulating NF-κB/iNOS and Nrf2/HO-1 pathways. Moreover, BVRA is responsible for BV-mediated cytoprotection by reductive conversion of BV to BR. This trial is registered with ChiCTR2000036059.
Collapse
|
25
|
Holoubek J, Bednářová K, Haviernik J, Huvarová I, Dvořáková Z, Černý J, Outlá M, Salát J, Konkol'ová E, Boura E, Růžek D, Vorlíčková M, Eyer L, Renčiuk D. Guanine quadruplexes in the RNA genome of the tick-borne encephalitis virus: their role as a new antiviral target and in virus biology. Nucleic Acids Res 2022; 50:4574-4600. [PMID: 35420134 PMCID: PMC9071444 DOI: 10.1093/nar/gkac225] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 03/21/2022] [Accepted: 03/25/2022] [Indexed: 12/11/2022] Open
Abstract
We have identified seven putative guanine quadruplexes (G4) in the RNA genome of tick-borne encephalitis virus (TBEV), a flavivirus causing thousands of human infections and numerous deaths every year. The formation of G4s was confirmed by biophysical methods on synthetic oligonucleotides derived from the predicted TBEV sequences. TBEV-5, located at the NS4b/NS5 boundary and conserved among all known flaviviruses, was tested along with its mutated variants for interactions with a panel of known G4 ligands, for the ability to affect RNA synthesis by the flaviviral RNA-dependent RNA polymerase (RdRp) and for effects on TBEV replication fitness in cells. G4-stabilizing TBEV-5 mutations strongly inhibited RdRp RNA synthesis and exhibited substantially reduced replication fitness, different plaque morphology and increased sensitivity to G4-binding ligands in cell-based systems. In contrast, strongly destabilizing TBEV-5 G4 mutations caused rapid reversion to the wild-type genotype. Our results suggest that there is a threshold of stability for G4 sequences in the TBEV genome, with any deviation resulting in either dramatic changes in viral phenotype or a rapid return to this optimal level of G4 stability. The data indicate that G4s are critical elements for efficient TBEV replication and are suitable targets to tackle TBEV infection.
Collapse
Affiliation(s)
- Jiří Holoubek
- Veterinary Research Institute, Emerging Viral Diseases, Brno CZ-62100, Czech Republic.,Department of Experimental Biology, Faculty of Science, Masaryk University, CZ-62500 Brno, Czech Republic.,Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, CZ-37005 Ceske Budejovice, Czech Republic
| | - Klára Bednářová
- Department of Biophysics of Nucleic Acids, Institute of Biophysics of the Czech Academy of Sciences, Brno CZ-61200, Czech Republic
| | - Jan Haviernik
- Veterinary Research Institute, Emerging Viral Diseases, Brno CZ-62100, Czech Republic.,Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, CZ-37005 Ceske Budejovice, Czech Republic
| | - Ivana Huvarová
- Veterinary Research Institute, Emerging Viral Diseases, Brno CZ-62100, Czech Republic
| | - Zuzana Dvořáková
- Department of Biophysics of Nucleic Acids, Institute of Biophysics of the Czech Academy of Sciences, Brno CZ-61200, Czech Republic
| | - Jiří Černý
- Faculty of Tropical Agrisciences, Czech University of Life Sciences Prague, CZ-16500 Prague, Czech Republic
| | - Martina Outlá
- Department of Biophysical Chemistry and Molecular Oncology, Institute of Biophysics of the Czech Academy of Sciences, Brno CZ-61200, Czech Republic.,National Centre for Biomolecular Research, Faculty of Science, Masaryk University, CZ-62500 Brno, Czech Republic
| | - Jiří Salát
- Veterinary Research Institute, Emerging Viral Diseases, Brno CZ-62100, Czech Republic.,Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, CZ-37005 Ceske Budejovice, Czech Republic
| | - Eva Konkol'ová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy ofSciences, CZ-16000 Prague, Czech Republic
| | - Evzen Boura
- Institute of Organic Chemistry and Biochemistry of the Czech Academy ofSciences, CZ-16000 Prague, Czech Republic
| | - Daniel Růžek
- Veterinary Research Institute, Emerging Viral Diseases, Brno CZ-62100, Czech Republic.,Department of Experimental Biology, Faculty of Science, Masaryk University, CZ-62500 Brno, Czech Republic.,Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, CZ-37005 Ceske Budejovice, Czech Republic
| | - Michaela Vorlíčková
- Department of Biophysics of Nucleic Acids, Institute of Biophysics of the Czech Academy of Sciences, Brno CZ-61200, Czech Republic
| | - Luděk Eyer
- Veterinary Research Institute, Emerging Viral Diseases, Brno CZ-62100, Czech Republic.,Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, CZ-37005 Ceske Budejovice, Czech Republic
| | - Daniel Renčiuk
- Department of Biophysics of Nucleic Acids, Institute of Biophysics of the Czech Academy of Sciences, Brno CZ-61200, Czech Republic
| |
Collapse
|
26
|
Immune Regulation of Heme Oxygenase-1 in Allergic Airway Inflammation. Antioxidants (Basel) 2022; 11:antiox11030465. [PMID: 35326116 PMCID: PMC8944570 DOI: 10.3390/antiox11030465] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/09/2022] [Accepted: 02/23/2022] [Indexed: 11/17/2022] Open
Abstract
Heme oxygenase-1 (HO-1) is not only a rate-limiting enzyme in heme metabolism but is also regarded as a protective protein with an immunoregulation role in asthmatic airway inflammation. HO-1 exerts an anti-inflammation role in different stages of airway inflammation via regulating various immune cells, such as dendritic cells, mast cells, basophils, T cells, and macrophages. In addition, the immunoregulation role of HO-1 may differ according to subcellular locations.
Collapse
|
27
|
Olie CS, van Zeijl R, El Abdellaoui S, Kolk A, Overbeek C, Nelissen RGHH, Heijs B, Raz V. The metabolic landscape in chronic rotator cuff tear reveals tissue-region-specific signatures. J Cachexia Sarcopenia Muscle 2022; 13:532-543. [PMID: 34866353 PMCID: PMC8818701 DOI: 10.1002/jcsm.12873] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 10/19/2021] [Accepted: 10/29/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Degeneration of shoulder muscle tissues often result in tearing, causing pain, disability and loss of independence. Differential muscle involvement patterns have been reported in tears of shoulder muscles, yet the molecules involved in this pathology are poorly understood. The spatial distribution of biomolecules across the affected tissue can be accurately obtained with matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI). The goal of this pilot study was to decipher the metabolic landscape across shoulder muscle tissues and to identify signatures of degenerated muscles in chronic conditions. METHODS Paired biopsies of two rotator cuff muscles, torn infraspinatus and intact teres minor, together with an intact shoulder muscle, the deltoid, were collected during an open tendon transfer surgery. Five patients, average age 65.2 ± 3.8 years, were selected for spatial metabolic profiling using high-spatial resolution (MALDI-TOF) and high-mass resolution (MALDI-FTICR) MSI in negative or positive ion mode. Metabolic signatures were identified using data-driven analysis. Verifications of spatial localization for selected metabolic signatures were carried out using antibody immunohistology. RESULTS Data-driven analysis revealed major metabolic differences between intact and degenerated regions across all muscles. The area of degenerated regions, encompassed of fat, inflammation and fibrosis, significantly increased in both rotator cuff muscles, teres minor (27.9%) and infraspinatus (22.8%), compared with the deltoid (8.7%). The intact regions were characterized by 49 features, among which lipids were recognized. Several of the identified lipids were specifically enriched in certain myofiber types. Degenerated regions were specifically marked by the presence of 37 features. Heme was the most abundant metabolite in degenerated regions, whereas Heme oxygenase-1 (HO-1), which catabolizes heme, was found in intact regions. Higher HO-1 levels correlated with lower heme accumulation. CONCLUSIONS Degenerated regions are distinguished from intact regions by their metabolome profile. A muscle-specific metabolome profile was not identified. The area of tissue degeneration significantly differs between the three examined muscles. Higher HO-1 levels in intact regions concurred with lower heme levels in degenerated regions. Moreover, HO-1 levels discriminated between dysfunctional and functional rotator cuff muscles. Additionally, the enrichment of specific lipids in certain myofiber types suggests that lipid metabolism differs between myofiber types. The signature metabolites can open options to develop personalized treatments for chronic shoulder muscles degeneration.
Collapse
Affiliation(s)
| | - René van Zeijl
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Salma El Abdellaoui
- Human Genetics Department, Leiden University Medical Center, Leiden, The Netherlands
| | - Arjen Kolk
- Department of Orthopedics, Leiden University Medical Center, Leiden, The Netherlands
| | - Celeste Overbeek
- Department of Orthopedics, Leiden University Medical Center, Leiden, The Netherlands
| | - Rob G H H Nelissen
- Department of Orthopedics, Leiden University Medical Center, Leiden, The Netherlands
| | - Bram Heijs
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Vered Raz
- Human Genetics Department, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
28
|
Dai JC, Yang JY, Chang RQ, Liang Y, Hu XY, Li H, You S, He F, Hu LN. OUP accepted manuscript. Mol Hum Reprod 2022; 28:6544600. [PMID: 35258594 DOI: 10.1093/molehr/gaac006] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 02/20/2022] [Indexed: 11/12/2022] Open
Affiliation(s)
- Jing-Cong Dai
- Obstetrics and Gynecology Department, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jia-Yan Yang
- Obstetrics and Gynecology Department, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Rui-Qi Chang
- The Center for Reproductive Medicine, Obstetrics and Gynecology Department, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Joint International Research Lab for Reproduction and Development, Ministry of Education, Chongqing, China
| | - Yan Liang
- Obstetrics and Gynecology Department, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiao-Yu Hu
- Obstetrics and Gynecology Department, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hu Li
- Obstetrics and Gynecology Department, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shuang You
- Obstetrics and Gynecology Department, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Fan He
- The Center for Reproductive Medicine, Obstetrics and Gynecology Department, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Joint International Research Lab for Reproduction and Development, Ministry of Education, Chongqing, China
- Reproduction and Stem Cell Therapy Research Center of Chongqing, Chongqing, China
| | - Li-Na Hu
- The Center for Reproductive Medicine, Obstetrics and Gynecology Department, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Joint International Research Lab for Reproduction and Development, Ministry of Education, Chongqing, China
- Reproduction and Stem Cell Therapy Research Center of Chongqing, Chongqing, China
| |
Collapse
|
29
|
Shigetomi H, Imanaka S, Kobayashi H. Effects of iron-related compounds and bilirubin on redox homeostasis in endometriosis and its malignant transformations. Horm Mol Biol Clin Investig 2021; 43:187-192. [PMID: 34854656 DOI: 10.1515/hmbci-2021-0065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 11/22/2021] [Indexed: 12/28/2022]
Abstract
OBJECTIVES The balance between oxidative stress and antioxidant defense has been reported to differ between women with endometriosis and patients with its malignant transformation. The aim of this study is to investigate changes in redox balance in endometriosis and endometriosis-related ovarian cancer (EAOC) by simultaneously measuring iron-related compounds and bilirubin. METHODS This study included 235 patients with a histopathologically confirmed diagnosis of endometriosis (n=178) and EAOC (n=57). Cyst fluid samples were collected in Nara Medical University hospital from January 2013 to May 2019. The levels of iron-related compounds (total iron, heme iron, free iron, oxyhemoglobin [oxyHb], methemoglobin [metHb], and metHb/oxyHb ratio) and bilirubin were measured. RESULTS Total iron, heme iron, free iron, metHb/oxyHb ratio, and bilirubin were significantly elevated in endometriosis compared to EAOC. In both endometriosis and EAOC, iron-related compounds in the cyst were correlated with each other. There was no statistically significant difference in oxyHb and metHb levels between the two groups, but the metHb/oxyHb ratio was significantly higher in endometriosis than in EAOC. Bilirubin was positively correlated with total iron and free iron in EAOC, but there was no correlation between bilirubin and iron-related compounds in endometriosis. CONCLUSIONS Iron-induced oxidative stress in endometriosis may exceed bilirubin-dependent antioxidant capability, while redox homeostasis in EAOC can be maintained by at least bilirubin.
Collapse
Affiliation(s)
- Hiroshi Shigetomi
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Nara, Japan.,Aska Ladies Clinic, Nara, Japan
| | - Shogo Imanaka
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Nara, Japan.,Ms.Clinic MayOne, Kashihara, Japan
| | - Hiroshi Kobayashi
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Nara, Japan.,Ms.Clinic MayOne, Kashihara, Japan
| |
Collapse
|
30
|
Luteolin Confers Cerebroprotection after Subarachnoid Hemorrhage by Suppression of NLPR3 Inflammasome Activation through Nrf2-Dependent Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5838101. [PMID: 34777689 PMCID: PMC8589510 DOI: 10.1155/2021/5838101] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 10/07/2021] [Accepted: 10/08/2021] [Indexed: 02/07/2023]
Abstract
Luteolin (LUT) possesses multiple biologic functions and has beneficial effects for cardiovascular and cerebral vascular diseases. Here, we investigated the protective effects of LUT against subarachnoid hemorrhage (SAH) and the involvement of underlying molecular mechanisms. In a rat model of SAH, LUT significantly inhibited SAH-induced neuroinflammation as evidenced by reduced microglia activation, decreased neutrophil infiltration, and suppressed proinflammatory cytokine release. In addition, LUT markedly ameliorated SAH-induced oxidative damage and restored the endogenous antioxidant systems. Concomitant with the suppressed oxidative stress and neuroinflammation, LUT significantly improved neurologic function and reduced neuronal cell death after SAH. Mechanistically, LUT treatment significantly enhanced the expression of nuclear factor-erythroid 2-related factor 2 (Nrf2), while it downregulated nod-like receptor pyrin domain-containing 3 (NLRP3) inflammasome activation. Inhibition of Nrf2 by ML385 dramatically abrogated LUT-induced Nrf2 activation and NLRP3 suppression and reversed the beneficial effects of LUT against SAH. In neurons and microglia coculture system, LUT also mitigated oxidative stress, inflammatory response, and neuronal degeneration. These beneficial effects were associated with activation of the Nrf2 and inhibitory effects on NLRP3 inflammasome and were reversed by ML385 treatment. Taken together, this present study reveals that LUT confers protection against SAH by inhibiting NLRP3 inflammasome signaling pathway, which may be modulated by Nrf2 activation.
Collapse
|
31
|
Li G, Xu J, Chen S, Tan S, Li H. Pigment concentrations in eggshell and their related gene expressions in uterus of Changshun blue eggshell chickens. Br Poult Sci 2021; 63:421-425. [PMID: 34585996 DOI: 10.1080/00071668.2021.1983919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
1. The goal of this study was to investigate the colour diversity of egg shells and expression of related genes in the uterus of chickens that produce eggs of different colours.2. Four colour types of Changshun blue-shell chickens, producing dark or light blue, greenish-brown and brown shelled eggs, were selected. The eggshell pigment concentration and colour values in each group were examined. The relative gene expression of solute carrier organic anion transporter family member 1C1 (SLCO1C1), ferrochelatase (FECH), haem oxygenase 1 (HO-1), ovotransferrin (OF) and biliverdin reductase A (BLVRA) in eggshell gland were measured.3. The Δb, ΔE and protoporphyrin in brown and greenish-brown groups were significantly higher in the blue egg group (P < 0.01), whereas ΔL was significantly lower than that in the blue eggs (P < 0.01). There was no significant difference in biliverdin concentration between the brown and blue groups.4. The Δa values, in descending order, were 8.27 ± 2.76 in the brown, -3.79 ± 2.39 in the greenish-brown and -7.29 ± 2.27 in the blue groups, respectively. The relative expression of HO-1 in the greenish-brown and light blue groups was significantly higher than in the dark blue and brown groups. The relative expression of FECH in the light blue group was significantly lower than that in the dark blue, greenish-brown or brown group (P < 0.01). The relative expression of HO-1 and BLVRA genes in the dark blue group was significantly higher than that in the light blue, greenish-brown and the brown group (P < 0.01).5. The Δa might provide a better index than protoporphyrin and biliverdin contents for eggshell colour breeding. Overall, HO-1 as well as BLVRA were important candidate genes for the selection of dark blue eggs.
Collapse
Affiliation(s)
- G Li
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, China
| | - J Xu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, China
| | - S Chen
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, China
| | - S Tan
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, China
| | - H Li
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, China.,Breeding Center, Guizhou Changshun Tinoo's Green Shell Laying Hen Industrial Co. Ltd, Changshun, China.,Research and Development Department, Xianxi Biotechnology Co. Ltd, Foshan, China
| |
Collapse
|
32
|
Szkudelski T, Frąckowiak K, Szkudelska K. Hemin attenuates response of primary rat adipocytes to adrenergic stimulation. PeerJ 2021; 9:e12092. [PMID: 34557353 PMCID: PMC8418796 DOI: 10.7717/peerj.12092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 08/09/2021] [Indexed: 11/20/2022] Open
Abstract
Hemin is an activator of heme oxygenase-1 (HO-1), an enzyme catalyzing heme degradation. Up-regulation of HO-1 is observed in response to various pathological conditions. Moreover, pharmacological activation of HO-1 is associated with numerous beneficial effects in the organism. Hemin was shown to exert, among other, anti-diabetic and anti-obesity properties. These effects are strongly linked with adipose tissue. However, the direct influence of hemin on metabolism of the fat cells have not been explored. The present study aimed to determine the short-term effects of hemin on metabolism of the primary rat adipocytes. We focused on processes directly related to lipid accumulation, such as lipogenesis and lipolysis. For this purpose, the isolated cells were subjected for 2 h to 40 µM hemin, and effects of this compound on insulin-stimulated glucose conversion to lipids, lactate release, lipolysis induced by various stimuli, and also on the antilipolytic action of insulin were determined. It was shown that hemin did not affect insulin-induced lipogenesis and lactate release. However, hemin significantly decreased lipolysis stimulated by epinephrine. The inhibitory effect of hemin on epinephrine-induced lipolysis was not abolished in the presence of SnMP, an inhibitor of HO-1, which suggests hemin action irrespective of this enzyme. Similar inhibitory effects on epinephrine-induced lipolysis were observed in the presence of 3 and 12 mM glucose. Moreover, hemin was shown to reduce epinephrine-induced lipolysis also when glucose was replaced by alanine or by succinate. Apart from changes in epinephrine action, it was found that the lipolytic response of the adipocytes to isoproterenol was also diminished by hemin. However, hemin failed to affect lipolysis stimulated by dibutyryl-cAMP (a direct activator of protein kinase A), forskolin (an activator of adenylate cyclase), and also by DPCPX (an adenosine A1 receptor antagonist). Additionally, epinephrine-induced lipolysis was shown to be decreased by insulin, and this effect was deepened in the presence of hemin. These results indicate that short-term exposure of the adipocytes to hemin does not affect processes related to glucose metabolism, such as lipogenesis and lactate release. However, hemin was found to decrease the lipolytic response to adrenergic stimulation, which is associated with reduced lipid release from adipocytes. Moreover, our results indicate that hemin is also capable of diminishing the exaggerated lipolysis, which occurs in the presence of supraphysiological concentrations of glucose.
Collapse
Affiliation(s)
- Tomasz Szkudelski
- Department of Animal Physiology, Biochemistry and Biostructure, Poznań University of Life Sciences, Poznań, Poland
| | - Karina Frąckowiak
- Department of Animal Physiology, Biochemistry and Biostructure, Poznań University of Life Sciences, Poznań, Poland
| | - Katarzyna Szkudelska
- Department of Animal Physiology, Biochemistry and Biostructure, Poznań University of Life Sciences, Poznań, Poland
| |
Collapse
|
33
|
HO-1 and Heme: G-Quadruplex Interaction Choreograph DNA Damage Responses and Cancer Growth. Cells 2021; 10:cells10071801. [PMID: 34359970 PMCID: PMC8307061 DOI: 10.3390/cells10071801] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/06/2021] [Accepted: 07/13/2021] [Indexed: 02/04/2023] Open
Abstract
Many anti-cancer therapeutics lead to the release of danger associated pattern molecules (DAMPs) as the result of killing large numbers of both normal and transformed cells as well as lysis of red blood cells (RBC) (hemolysis). Labile heme originating from hemolysis acts as a DAMP while its breakdown products exert varying immunomodulatory effects. Labile heme is scavenged by hemopexin (Hx) and processed by heme oxygenase-1 (HO-1, Hmox1), resulting in its removal and the generation of biliverdin/bilirubin, carbon monoxide (CO) and iron. We recently demonstrated that labile heme accumulates in cancer cell nuclei in the tumor parenchyma of Hx knockout mice and contributes to the malignant phenotype of prostate cancer (PCa) cells and increased metastases. Additionally, this work identified Hx as a tumor suppressor gene. Direct interaction of heme with DNA G-quadruplexes (G4) leads to altered gene expression in cancer cells that regulate transcription, recombination and replication. Here, we provide new data supporting the nuclear role of HO-1 and heme in modulating DNA damage response, G4 stability and cancer growth. Finally, we discuss an alternative role of labile heme as a nuclear danger signal (NDS) that regulates gene expression and nuclear HO-1 regulated DNA damage responses stimulated by its interaction with G4.
Collapse
|
34
|
Mounier NM, Wahdan SA, Gad AM, Azab SS. Role of inflammatory, oxidative, and ER stress signaling in the neuroprotective effect of atorvastatin against doxorubicin-induced cognitive impairment in rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2021; 394:1537-1551. [PMID: 33755739 DOI: 10.1007/s00210-021-02081-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 03/15/2021] [Indexed: 02/06/2023]
Abstract
Doxorubicin (DOX) is a potent chemotherapeutic agent widely used for the treatment of several malignancies. Despite its effectiveness, DOX has been implicated in induced neurotoxicity manifested as cognitive dysfunction with varying degrees, commonly referred to as chemobrain. DOX-induced chemobrain is presumed to be due to cytokine-induced inflammatory, oxidative, and apoptotic responses damaging the brain. Atorvastatin (ATV), 3-hydroxy 3-methylglutaryl co-enzyme A (HMG Co-A) reductase inhibitor, is a cholesterol-lowering statin possessing beneficial pleiotropic effects, including anti-inflammatory, antioxidant, and anti-apoptotic properties. Therefore, this study aims to investigate the potential neuroprotective effects of ATV against DOX-induced cognitive impairment studying the possible involvement of heme oxygenase-1 (HO-1) and endoplasmic reticulum (ER) stress biomarkers. Rats were treated with DOX (2 mg/kg/week), i.p. for 4 weeks. Oral treatment with ATV (10 mg/kg) ameliorated DOX-induced behavioral alterations, protected brain histological features, and attenuated DOX-induced inflammatory, oxidative, and apoptotic biomarkers. In addition, ATV upregulated the protective HO-1 expression levels and downregulated the DOX-induced apoptotic ER stress biomarkers. In conclusion, ATV (10 mg/kg) exhibited neuroprotective properties against DOX-induced cognitive impairment which could possibly be attributed to their anti-inflammatory, antioxidant, and anti-apoptotic effects in the brain.
Collapse
Affiliation(s)
- Noha M Mounier
- Egyptian Drug Authority (EDA), Formerly National Organization for Drug Control and Research (NODCAR), Cairo, Egypt
| | - Sara A Wahdan
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Amany M Gad
- Egyptian Drug Authority (EDA), Formerly National Organization for Drug Control and Research (NODCAR), Cairo, Egypt
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Sinai University, East Kantara Branch, New City, El Ismailia, Egypt
| | - Samar S Azab
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
35
|
Campbell NK, Fitzgerald HK, Dunne A. Regulation of inflammation by the antioxidant haem oxygenase 1. Nat Rev Immunol 2021; 21:411-425. [PMID: 33514947 DOI: 10.1038/s41577-020-00491-x] [Citation(s) in RCA: 203] [Impact Index Per Article: 67.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2020] [Indexed: 01/30/2023]
Abstract
Haem oxygenase 1 (HO-1), an inducible enzyme responsible for the breakdown of haem, is primarily considered an antioxidant, and has long been overlooked by immunologists. However, research over the past two decades in particular has demonstrated that HO-1 also exhibits numerous anti-inflammatory properties. These emerging immunomodulatory functions have made HO-1 an appealing target for treatment of diseases characterized by high levels of chronic inflammation. In this Review, we present an introduction to HO-1 for immunologists, including an overview of its roles in iron metabolism and antioxidant defence, and the factors which regulate its expression. We discuss the impact of HO-1 induction in specific immune cell populations and provide new insights into the immunomodulation that accompanies haem catabolism, including its relationship to immunometabolism. Furthermore, we highlight the therapeutic potential of HO-1 induction to treat chronic inflammatory and autoimmune diseases, and the issues faced when trying to translate such therapies to the clinic. Finally, we examine a number of alternative, safer strategies that are under investigation to harness the therapeutic potential of HO-1, including the use of phytochemicals, novel HO-1 inducers and carbon monoxide-based therapies.
Collapse
Affiliation(s)
- Nicole K Campbell
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland. .,Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia. .,Department of Molecular and Translational Sciences, Monash University, Clayton, Victoria, Australia.
| | - Hannah K Fitzgerald
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Aisling Dunne
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.,School of Medicine, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
36
|
Sorrenti V, D’Amico AG, Barbagallo I, Consoli V, Grosso S, Vanella L. Tin Mesoporphyrin Selectively Reduces Non-Small-Cell Lung Cancer Cell Line A549 Proliferation by Interfering with Heme Oxygenase and Glutathione Systems. Biomolecules 2021; 11:biom11060917. [PMID: 34205698 PMCID: PMC8235249 DOI: 10.3390/biom11060917] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 12/24/2022] Open
Abstract
In order to maintain redox homeostasis, non-small-cell lung cancer (NSCLC) increases the activation of many antioxidant systems, including the heme-oxygenase (HO) system. The overexpression of HO-1 has been often associated with chemoresistance and tumor aggressiveness. Our results clearly showed an overexpression of the HO-1 protein in A549 NSCLC cell lines compared to that in non-cancerous cells. Thus, we hypothesized that "off-label" use of tin mesoporphyrin, a well-known HO activity inhibitor clinically used for neonatal hyperbilirubinemia, has potential use as an anti-cancer agent. The pharmacological inhibition of HO activity caused a reduction in cell proliferation and migration of A549. SnMP treatment caused an increase in oxidative stress, as demonstrated by the upregulation of reactive oxygen species (ROS) and the depletion of glutathione (GSH) content. To support these data, Western blot analysis was performed to analyze glucose-6-phosphate dehydrogenase (G6PD), TP53-induced glycolysis and the apoptosis regulator (TIGAR), and the glutamate cysteine ligase catalytic (GCLC) subunit, as they represent the main regulators of the pentose phosphate pathway (PPP) and glutathione synthesis, respectively. NCI-H292, a subtype of the NSCLC cell line, did not respond to SnMP treatment, possibly due to low basal levels of HO-1, suggesting a cellular-dependent antitumorigenic effect. Altogether, our results suggest HO activity inhibition may represent a potential target for selective chemotherapy in lung cancer subtypes.
Collapse
|
37
|
Cascardo F, Anselmino N, Páez A, Labanca E, Sanchis P, Antico-Arciuch V, Navone N, Gueron G, Vázquez E, Cotignola J. HO-1 Modulates Aerobic Glycolysis through LDH in Prostate Cancer Cells. Antioxidants (Basel) 2021; 10:966. [PMID: 34208670 PMCID: PMC8235201 DOI: 10.3390/antiox10060966] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 01/13/2023] Open
Abstract
Prostate cancer (PCa) is the second most diagnosed malignancy and the fifth leading cause of cancer associated death in men worldwide. Dysregulation of cellular energetics has become a hallmark of cancer, evidenced by numerous connections between signaling pathways that include oncoproteins and key metabolic enzymes. We previously showed that heme oxygenase 1 (HO-1), a cellular homeostatic regulator counteracting oxidative and inflammatory damage, exhibits anti-tumoral activity in PCa cells, inhibiting cell proliferation, migration, tumor growth and angiogenesis. The aim of this study was to assess the role of HO-1 on the metabolic signature of PCa. After HO-1 pharmacological induction with hemin, PC3 and C4-2B cells exhibited a significantly impaired cellular metabolic rate, reflected by glucose uptake, ATP production, lactate dehydrogenase (LDH) activity and extracellular lactate levels. Further, we undertook a bioinformatics approach to assess the clinical significance of LDHA, LDHB and HMOX1 in PCa, identifying that high LDHA or low LDHB expression was associated with reduced relapse free survival (RFS). Interestingly, the shortest RFS was observed for PCa patients with low HMOX1 and high LDHA, while an improved prognosis was observed for those with high HMOX1 and LDHB. Thus, HO-1 induction causes a shift in the cellular metabolic profile of PCa, leading to a less aggressive phenotype of the disease.
Collapse
Affiliation(s)
- Florencia Cascardo
- Laboratorio de Inflamación y Cáncer, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina; (F.C.); (P.S.); (V.A.-A.); (G.G.)
- CONICET-Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires C1428EGA, Argentina
| | - Nicolás Anselmino
- Department of Genitourinary Medical Oncology, The David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (N.A.); (E.L.); (N.N.)
| | - Alejandra Páez
- Unidad de Transferencia Genética, Instituto de Oncología “Dr. Angel H. Roffo”, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires C1417DTB, Argentina;
| | - Estefanía Labanca
- Department of Genitourinary Medical Oncology, The David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (N.A.); (E.L.); (N.N.)
| | - Pablo Sanchis
- Laboratorio de Inflamación y Cáncer, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina; (F.C.); (P.S.); (V.A.-A.); (G.G.)
- CONICET-Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires C1428EGA, Argentina
| | - Valeria Antico-Arciuch
- Laboratorio de Inflamación y Cáncer, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina; (F.C.); (P.S.); (V.A.-A.); (G.G.)
- CONICET-Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires C1428EGA, Argentina
| | - Nora Navone
- Department of Genitourinary Medical Oncology, The David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (N.A.); (E.L.); (N.N.)
| | - Geraldine Gueron
- Laboratorio de Inflamación y Cáncer, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina; (F.C.); (P.S.); (V.A.-A.); (G.G.)
- CONICET-Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires C1428EGA, Argentina
| | - Elba Vázquez
- Laboratorio de Inflamación y Cáncer, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina; (F.C.); (P.S.); (V.A.-A.); (G.G.)
- CONICET-Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires C1428EGA, Argentina
| | - Javier Cotignola
- Laboratorio de Inflamación y Cáncer, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina; (F.C.); (P.S.); (V.A.-A.); (G.G.)
- CONICET-Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires C1428EGA, Argentina
| |
Collapse
|
38
|
Ríos-Arrabal S, Puentes-Pardo JD, Moreno-SanJuan S, Szuba Á, Casado J, García-Costela M, Escudero-Feliu J, Verbeni M, Cano C, González-Puga C, Martín-Lagos Maldonado A, Carazo Á, León J. Endothelin-1 as a Mediator of Heme Oxygenase-1-Induced Stemness in Colorectal Cancer: Influence of p53. J Pers Med 2021; 11:jpm11060509. [PMID: 34199777 PMCID: PMC8227293 DOI: 10.3390/jpm11060509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 05/26/2021] [Accepted: 06/01/2021] [Indexed: 12/24/2022] Open
Abstract
Heme oxygenase-1 (HO-1) is an antioxidant protein implicated in tumor progression, metastasis, and resistance to therapy. Elevated HO-1 expression is associated with stemness in several types of cancer, although this aspect has not yet been studied in colorectal cancer (CRC). Using an in vitro model, we demonstrated that HO-1 overexpression regulates stemness and resistance to 5-FU treatment, regardless of p53. In samples from CRC patients, HO-1 and endothelin converting enzyme-1 (ECE-1) expression correlated significantly, and p53 had no influence on this result. Carbon monoxide (CO) activated the ECE-1/endothelin-1 (ET-1) pathway, which could account for the protumoral effects of HO-1 in p53 wild-type cells, as demonstrated after treatment with bosentan (an antagonist of both ETRA and ETRB endothelin-1 receptors). Surprisingly, in cells with a non-active p53 or a mutated p53 with gain-of-function, ECE-1-produced ET-1 acted as a protective molecule, since treatment with bosentan led to increased efficiency for spheres formation and percentage of cancer stem cells (CSCs) markers. In these cells, HO-1 could activate or inactivate certain unknown routes that could induce these contrary responses after treatment with bosentan in our cell model. However more research is warranted to confirm these results. Patients carrying tumors with a high expression of both HO-1 and ECE-1 and a non-wild-type p53 should be considered for HO-1 based-therapies instead of ET-1 antagonists-based ones.
Collapse
Affiliation(s)
- Sandra Ríos-Arrabal
- Instituto de Investigación Biosanitaria de Granada, ibs.GRANADA, 18012 Granada, Spain; (S.R.-A.); (J.D.P.-P.); (S.M.-S.); (J.C.); (M.G.-C.); (J.E.-F.); (C.G.-P.); (A.M.-L.M.); (Á.C.)
| | - Jose D. Puentes-Pardo
- Instituto de Investigación Biosanitaria de Granada, ibs.GRANADA, 18012 Granada, Spain; (S.R.-A.); (J.D.P.-P.); (S.M.-S.); (J.C.); (M.G.-C.); (J.E.-F.); (C.G.-P.); (A.M.-L.M.); (Á.C.)
- Departamento de Farmacología, Facultad de Farmacia, Universidad de Granada, 18071 Granada, Spain
| | - Sara Moreno-SanJuan
- Instituto de Investigación Biosanitaria de Granada, ibs.GRANADA, 18012 Granada, Spain; (S.R.-A.); (J.D.P.-P.); (S.M.-S.); (J.C.); (M.G.-C.); (J.E.-F.); (C.G.-P.); (A.M.-L.M.); (Á.C.)
- Cytometry and Microscopy Research Service, Instituto de Investigación Biosanitaria de Granada, ibs.GRANADA, 18012 Granada, Spain
| | - Ágata Szuba
- Unidad de Gestión Clínica de Cirugía, Complejo Hospitalario de Jaén, 23007 Jaén, Spain;
| | - Jorge Casado
- Instituto de Investigación Biosanitaria de Granada, ibs.GRANADA, 18012 Granada, Spain; (S.R.-A.); (J.D.P.-P.); (S.M.-S.); (J.C.); (M.G.-C.); (J.E.-F.); (C.G.-P.); (A.M.-L.M.); (Á.C.)
| | - María García-Costela
- Instituto de Investigación Biosanitaria de Granada, ibs.GRANADA, 18012 Granada, Spain; (S.R.-A.); (J.D.P.-P.); (S.M.-S.); (J.C.); (M.G.-C.); (J.E.-F.); (C.G.-P.); (A.M.-L.M.); (Á.C.)
| | - Julia Escudero-Feliu
- Instituto de Investigación Biosanitaria de Granada, ibs.GRANADA, 18012 Granada, Spain; (S.R.-A.); (J.D.P.-P.); (S.M.-S.); (J.C.); (M.G.-C.); (J.E.-F.); (C.G.-P.); (A.M.-L.M.); (Á.C.)
| | - Michela Verbeni
- Departamento de Ciencias de la Computación e Inteligencia Artificial, E.T.S. de Ingenierías Informática y de Telecomunicación, Universidad de Granada, 18014 Granada, Spain; (M.V.); (C.C.)
| | - Carlos Cano
- Departamento de Ciencias de la Computación e Inteligencia Artificial, E.T.S. de Ingenierías Informática y de Telecomunicación, Universidad de Granada, 18014 Granada, Spain; (M.V.); (C.C.)
| | - Cristina González-Puga
- Instituto de Investigación Biosanitaria de Granada, ibs.GRANADA, 18012 Granada, Spain; (S.R.-A.); (J.D.P.-P.); (S.M.-S.); (J.C.); (M.G.-C.); (J.E.-F.); (C.G.-P.); (A.M.-L.M.); (Á.C.)
- Unidad de Gestión Clínica de Cirugía, Hospital Universitario San Cecilio de Granada, 18016 Granada, Spain
| | - Alicia Martín-Lagos Maldonado
- Instituto de Investigación Biosanitaria de Granada, ibs.GRANADA, 18012 Granada, Spain; (S.R.-A.); (J.D.P.-P.); (S.M.-S.); (J.C.); (M.G.-C.); (J.E.-F.); (C.G.-P.); (A.M.-L.M.); (Á.C.)
- Unidad de Gestión Clínica de Aparato Digestivo, Hospital Universitario San Cecilio de Granada, 18016 Granada, Spain
| | - Ángel Carazo
- Instituto de Investigación Biosanitaria de Granada, ibs.GRANADA, 18012 Granada, Spain; (S.R.-A.); (J.D.P.-P.); (S.M.-S.); (J.C.); (M.G.-C.); (J.E.-F.); (C.G.-P.); (A.M.-L.M.); (Á.C.)
| | - Josefa León
- Instituto de Investigación Biosanitaria de Granada, ibs.GRANADA, 18012 Granada, Spain; (S.R.-A.); (J.D.P.-P.); (S.M.-S.); (J.C.); (M.G.-C.); (J.E.-F.); (C.G.-P.); (A.M.-L.M.); (Á.C.)
- Unidad de Gestión Clínica de Aparato Digestivo, Hospital Universitario San Cecilio de Granada, 18016 Granada, Spain
- Correspondence: ; Tel.: +34-958023199
| |
Collapse
|
39
|
Yang X, Lu W, Hopper CP, Ke B, Wang B. Nature's marvels endowed in gaseous molecules I: Carbon monoxide and its physiological and therapeutic roles. Acta Pharm Sin B 2021; 11:1434-1445. [PMID: 34221861 PMCID: PMC8245769 DOI: 10.1016/j.apsb.2020.10.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 08/03/2020] [Accepted: 09/07/2020] [Indexed: 02/08/2023] Open
Abstract
Nature has endowed gaseous molecules such as O2, CO2, CO, NO, H2S, and N2 with critical and diverse roles in sustaining life, from supplying energy needed to power life and building blocks for life's physical structure to mediating and coordinating cellular functions. In this article, we give a brief introduction of the complex functions of the various gaseous molecules in life and then focus on carbon monoxide as a specific example of an endogenously produced signaling molecule to highlight the importance of this class of molecules. The past twenty years have seen much progress in understanding CO's mechanism(s) of action and pharmacological effects as well as in developing delivery methods for easy administration. One remarkable trait of CO is its pleiotropic effects that have few parallels, except perhaps its sister gaseous signaling molecules such as nitric oxide and hydrogen sulfide. This review will delve into the sophistication of CO-mediated signaling as well as its validated pharmacological functions and possible therapeutic applications.
Collapse
Affiliation(s)
- Xiaoxiao Yang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Wen Lu
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Christopher P. Hopper
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
- Institut für Experimentelle Biomedizin, Universitätsklinikum Würzburg, Würzburg, Bavaria 97080, Germany
| | - Bowen Ke
- Department of Anesthesiology, West China Hospital, Chengdu 610041, China
| | - Binghe Wang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| |
Collapse
|
40
|
Imanaka S, Yamada Y, Kawahara N, Kobayashi H. A delicate redox balance between iron and heme oxygenase-1 as an essential biological feature of endometriosis. Arch Med Res 2021; 52:641-647. [PMID: 33863580 DOI: 10.1016/j.arcmed.2021.03.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 03/08/2021] [Accepted: 03/25/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND Recent studies have focused on the role of oxidative stress, which may be implicated in the development, progression, and pathophysiology of endometriosis. AIM OF THE STUDY The aim of this study is to investigate the redox balance of endometriosis by simultaneously measuring iron-related compounds (total iron, heme iron, free iron, oxyhemoglobin [oxyHb], methemoglobin [metHb] and 8-hydroxy-2-deoxy guanosine [8-OHdG]) and antioxidants (bilirubin, heme oxygenase-1 [HO-1] and total antioxidant capacity [TAC]). METHODS This study includes 236 histopathologically confirmed cases (178 cases of endometriosis and 58 cases of non-endometriosis). Cyst fluid samples were collected from patients admitted to the Department of Gynecology, Nara Medical University, Kashihara, Japan, for surgery. RESULTS Age at diagnosis (p <0.001), the maximum diameter of the cyst (p <0.001) and CA125 levels (p <0.001) differed significantly between the two groups. Total iron, heme iron, free iron, metHb, and oxyHb were markedly higher in endometriosis compared to non-endometriosis. Bilirubin, HO-1 and TAC were significantly higher in endometriosis patients compared with those from non-endometriosis patients. In endometriosis, total iron showed a positive correlation with HO-1 (r, 0.518, p = 0.001), but there were no antioxidants that correlated with iron in non-endometriosis. Iron and HO-1 did not correlate with age or tumor size. CONCLUSIONS HO-1 may regulate the delicate balance of iron-induced oxidative stress in endometriotic cyst fluid.
Collapse
Affiliation(s)
- Shogo Imanaka
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Nara, Japan; Ms.Clinic MayOne, Kashihara, Nara, Japan
| | - Yuki Yamada
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Nara, Japan
| | - Naoki Kawahara
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Nara, Japan
| | - Hiroshi Kobayashi
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Nara, Japan; Ms.Clinic MayOne, Kashihara, Nara, Japan.
| |
Collapse
|
41
|
Macrophage metabolic adaptation to heme detoxification involves CO-dependent activation of the pentose phosphate pathway. Blood 2021; 136:1535-1548. [PMID: 32556090 DOI: 10.1182/blood.2020004964] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 05/08/2020] [Indexed: 02/07/2023] Open
Abstract
Heme is an essential cofactor for numerous cellular functions, but release of free heme during hemolysis results in oxidative tissue damage, vascular dysfunction, and inflammation. Macrophages play a key protective role in heme clearance; however, the mechanisms that regulate metabolic adaptations that are required for effective heme degradation remain unclear. Here we demonstrate that heme loading drives a unique bioenergetic switch in macrophages, which involves a metabolic shift from oxidative phosphorylation toward glucose consumption. Metabolomic and transcriptional analysis of heme-loaded macrophages revealed that glucose is funneled into the pentose phosphate pathway (PPP), which is indispensable for efficient heme detoxification and is required to maintain redox homeostasis. We demonstrate that the metabolic shift to the PPP is controlled by heme oxygenase-dependent generation of carbon monoxide (CO). Finally, we show that PPP upregulation occurs in vivo in organ systems central to heme clearance and that PPP activity correlates with heme levels in mouse sickle cell disease (SCD). Together, our findings demonstrate that metabolic adaptation to heme detoxification in macrophages requires a shift to the PPP that is induced by heme-derived CO, suggesting pharmacologic targeting of macrophage metabolism as a novel therapeutic strategy to improve heme clearance in patients with hemolytic disorders.
Collapse
|
42
|
Hancock JT, Russell G. Downstream Signalling from Molecular Hydrogen. PLANTS (BASEL, SWITZERLAND) 2021; 10:367. [PMID: 33672953 PMCID: PMC7918658 DOI: 10.3390/plants10020367] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/09/2021] [Accepted: 02/09/2021] [Indexed: 12/23/2022]
Abstract
Molecular hydrogen (H2) is now considered part of the suite of small molecules that can control cellular activity. As such, H2 has been suggested to be used in the therapy of diseases in humans and in plant science to enhance the growth and productivity of plants. Treatments of plants may involve the creation of hydrogen-rich water (HRW), which can then be applied to the foliage or roots systems of the plants. However, the molecular action of H2 remains elusive. It has been suggested that the presence of H2 may act as an antioxidant or on the antioxidant capacity of cells, perhaps through the scavenging of hydroxyl radicals. H2 may act through influencing heme oxygenase activity or through the interaction with reactive nitrogen species. However, controversy exists around all the mechanisms suggested. Here, the downstream mechanisms in which H2 may be involved are critically reviewed, with a particular emphasis on the H2 mitigation of stress responses. Hopefully, this review will provide insight that may inform future research in this area.
Collapse
Affiliation(s)
- John T. Hancock
- Department of Applied Sciences, University of the West of England, Bristol BS16 1QY, UK;
| | | |
Collapse
|
43
|
Heme Oxygenase-1 as a Pharmacological Target for Host-Directed Therapy to Limit Tuberculosis Associated Immunopathology. Antioxidants (Basel) 2021; 10:antiox10020177. [PMID: 33530574 PMCID: PMC7911872 DOI: 10.3390/antiox10020177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/22/2021] [Accepted: 01/22/2021] [Indexed: 12/11/2022] Open
Abstract
Excessive inflammation and tissue damage are pathological hallmarks of chronic pulmonary tuberculosis (TB). Despite decades of research, host regulation of these clinical consequences is poorly understood. A sustained effort has been made to understand the contribution of heme oxygenase-1 (HO-1) to this process. HO-1 is an essential cytoprotective enzyme in the host that controls inflammation and oxidative stress in many pathological conditions. While HO-1 levels are upregulated in animals and patients infected with Mycobacterium tuberculosis (Mtb), how it regulates host responses and disease pathology during TB remains unclear. This lack of clarity is due in part to contradictory studies arguing that HO-1 induction contributes to both host resistance as well as disease progression. In this review, we discuss these conflicting studies and the role of HO-1 in modulating myeloid cell functions during Mtb disease progression. We argue that HO-1 is a promising target for host-directed therapy to improve TB immunopathology.
Collapse
|
44
|
Importance of Heme Oxygenase-1 in Gastrointestinal Cancers: Functions, Inductions, Regulations, and Signaling. J Gastrointest Cancer 2021; 52:454-461. [PMID: 33484436 DOI: 10.1007/s12029-021-00587-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/14/2021] [Indexed: 12/15/2022]
Abstract
INTRODUCTION : Colorectal cancer (CRC) is one of the important gastrointestinal tract tumors. Heme is mainly absorbed in the colon and induces nitrosamine formation, genotoxicity, and oxidative stress, and increases the risk of CRC. MATERIALS AND METHODS Information was collected from articles on Scopus, Google Scholar, and PubMed. RESULTS Heme can irritate intestinal epithelial cells and increases the proliferation of colonic mucosa. Heme can be considered as a carcinogenic agent for CRC induction. In typical situations, Heme Oxygenase-1 (HO-1) is expressed at low concentration in the gastrointestinal tract, but its expression is elevated during lesion and inflammation. Based on the multiple reports, the impact of HO-1 on tumor growth is related to the cancer cell type. Increased HO-1 levels were also indicated in different human and animal malignancies, possibly through its contribution to tumor cell growth, metastasis, expression of angiogenic factors, and resistance to chemotherapy. Recent studies noted that HO-1 can act as an immunomodulator that suppresses immune cell maturation, activation, and infiltration. It also inhibits apoptosis through CO production that leads to p53 suppression. The upregulation of HO-1 significantly increases the endurance of colon cancer cell lines. Therefore, it is supposed that HO-1 inhibitors could become a novel antitumor agent. Lactobacillus rhamnosus and its metabolites can activate Nrf2 and improves anti-oxidant levels along with upregulation of its objective genes like HO-1, and downregulation of NF-κB which reduce phosphorylated TNF-α, IL-1β, and PAI-1. CONCLUSION The precise mechanism accountable for the anti-inflammatory features of HO-1 is not completely understood; nevertheless, the CO signaling function associated with the antioxidant property shown by bilirubin possibly will play an act in the improvement of inflammation.
Collapse
|
45
|
Huang Y, Ye Z, Yin Y, Ma T, Zhang Q, Shang K, Chen W, Li Z. Cataract formation in transgenic HO-1 G143H mutant mice: Involvement of oxidative stress and endoplasmic reticulum stress. Biochem Biophys Res Commun 2021; 537:43-49. [PMID: 33383563 DOI: 10.1016/j.bbrc.2020.12.071] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 12/20/2020] [Indexed: 01/27/2023]
Abstract
Oxidative stress and endoplasmic reticulum (ER) stress are the key contributing factors for cataract progression. In our previous studies, we demonstrated that the nuclear factor erythroid 2-like-2 (Nrf-2)/heme oxygenase-1 (HO-1)/carbon monoxide (CO) axis protects lens epithelial cells (LECs) against oxidants and ER stress. In the present study, transgenic FVB/N mice overexpressing the negative dominant mutant HO-1 G143H (TgHO-1 G143H) were generated to evaluate the crosstalk among HO-1, oxidative stress and ER stress in maintaining lens transparency. Slit-lamp examination revealed that nuclear cataracts occurred at 4 months in the TgHO-1 G143H mice, which was 5 months earlier than that of the control mice. The lenses of the transgenic mice showed an accumulation of malondialdehyde and protein carbonyl with a decrease in glutathione and protein sulfhydryl levels. Elevated concentrations of ER stress biomarkers (Bip, PERK, ATF6, IRE1, CHOP, caspase-12 and caspase-3) in the lenses of the TgHO-1 G143H mice were identified by western blotting. Furthermore, we confirmed that overexpressed HO-1 G143H in LECs resulted in oxidative insult and apoptosis in vitro. All of these data suggested that HO-1 enzymatic activity loss induces early-onset nuclear cataracts by activating oxidative stress and ER stress.
Collapse
Affiliation(s)
- Yang Huang
- Department of Ophthalmology, The Chinese People's Liberation Army General Hospital, Beijing, China
| | - Zi Ye
- Department of Ophthalmology, The Chinese People's Liberation Army General Hospital, Beijing, China
| | - Yujing Yin
- Institute of Transfusion Medicine, Academy of Military Medical Sciences, Beijing, China
| | - Tianju Ma
- Department of Ophthalmology, The Chinese People's Liberation Army General Hospital, Beijing, China
| | - Qi Zhang
- Department of Ophthalmology, The Chinese People's Liberation Army General Hospital, Beijing, China
| | - Kun Shang
- Department of Ophthalmology, The Chinese People's Liberation Army General Hospital, Beijing, China
| | - Wenqian Chen
- Department of Ophthalmology, The Chinese People's Liberation Army General Hospital, Beijing, China
| | - Zhaohui Li
- Department of Ophthalmology, The Chinese People's Liberation Army General Hospital, Beijing, China.
| |
Collapse
|
46
|
Haines DD, Tosaki A. Heme Degradation in Pathophysiology of and Countermeasures to Inflammation-Associated Disease. Int J Mol Sci 2020; 21:ijms21249698. [PMID: 33353225 PMCID: PMC7766613 DOI: 10.3390/ijms21249698] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 12/12/2022] Open
Abstract
The class of tetrapyrrol "coordination complexes" called hemes are prosthetic group components of metalloproteins including hemoglobin, which provide functionality to these physiologically essential macromolecules by reversibly binding diatomic gasses, notably O2, which complexes to ferrous (reduced/Fe(II)) iron within the heme porphyrin ring of hemoglobin in a pH- and PCO2-dependent manner-thus allowing their transport and delivery to anatomic sites of their function. Here, pathologies associated with aberrant heme degradation are explored in the context of their underlying mechanisms and emerging medical countermeasures developed using heme oxygenase (HO), its major degradative enzyme and bioactive metabolites produced by HO activity. Tissue deposits of heme accumulate as a result of the removal of senescent or damaged erythrocytes from circulation by splenic macrophages, which destroy the cells and internal proteins, including hemoglobin, leaving free heme to accumulate, posing a significant toxicogenic challenge. In humans, HO uses NADPH as a reducing agent, along with molecular oxygen, to degrade heme into carbon monoxide (CO), free ferrous iron (FeII), which is sequestered by ferritin protein, and biliverdin, subsequently metabolized to bilirubin, a potent inhibitor of oxidative stress-mediated tissue damage. CO acts as a cellular messenger and augments vasodilation. Nevertheless, disease- or trauma-associated oxidative stressors sufficiently intense to overwhelm HO may trigger or exacerbate a wide range of diseases, including cardiovascular and neurologic syndromes. Here, strategies are described for counteracting the effects of aberrant heme degradation, with a particular focus on "bioflavonoids" as HO inducers, shown to cause amelioration of severe inflammatory diseases.
Collapse
Affiliation(s)
- Donald David Haines
- Advanced Biotherapeutics, London W2 1EB, UK;
- Department of Pharmacology, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary
| | - Arpad Tosaki
- Department of Pharmacology, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary
- Correspondence: ; Tel./Fax: +36-52-255586
| |
Collapse
|
47
|
Raut PK, Park PH. Globular adiponectin antagonizes leptin-induced growth of cancer cells by modulating inflammasomes activation: Critical role of HO-1 signaling. Biochem Pharmacol 2020; 180:114186. [DOI: 10.1016/j.bcp.2020.114186] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/28/2020] [Accepted: 07/29/2020] [Indexed: 12/16/2022]
|
48
|
Patrick S, Corrigan R, Grizzanti J, Mey M, Blair J, Pallas M, Camins A, Lee HG, Casadesus G. Neuroprotective Effects of the Amylin Analog, Pramlintide, on Alzheimer's Disease Are Associated with Oxidative Stress Regulation Mechanisms. J Alzheimers Dis 2020; 69:157-168. [PMID: 30958347 DOI: 10.3233/jad-180421] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Administration of the recombinant analog of the pancreatic amyloid amylin, Pramlintide, has shown therapeutic benefits in aging and Alzheimer's disease (AD) models, both on cognition and amyloid-β (Aβ) pathology. However, the neuroprotective mechanisms underlying the benefits of Pramlintide remain unclear. Given the early and critical role of oxidative stress in AD pathogenesis and the known reactive oxygen species (ROS) modulating function of amyloids, we sought to determine whether Pramlintide's neuroprotective effects involve regulation of oxidative stress mechanisms. To address this, we treated APP/PS1 transgenic mice with Pramlintide for 3 months, starting at 5.5 months prior to widespread AD pathology onset, and measured cognition (Morris Water Maze), AD pathology, and oxidative stress-related markers and enzymes in vivo. In vitro, we determined the ability of Pramlintide to modulate H2O2-induced oxidative stress levels. Our data show that Pramlintide improved cognitive function, altered amyloid-processing enzymes, reduced plaque burden in the hippocampus, and regulated endogenous antioxidant enzymes (MnSOD and GPx1) and the stress marker HO-1 in a location specific manner. In vitro, Pramlintide treatment in neuronal models reduced H2O2-induced endogenous ROS production and lipid peroxidation in a dose-dependent manner. Together, these results indicate that Pramlintide's benefits on cognitive function and pathology may involve antioxidant-like properties of this compound.
Collapse
Affiliation(s)
- Sarah Patrick
- School of Biomedical Sciences, Kent State University, Kent, OH, USA
| | - Rachel Corrigan
- School of Biomedical Sciences, Kent State University, Kent, OH, USA
| | - John Grizzanti
- School of Biomedical Sciences, Kent State University, Kent, OH, USA
| | - Megan Mey
- School of Biomedical Sciences, Kent State University, Kent, OH, USA
| | - Jeff Blair
- School of Biomedical Sciences, Kent State University, Kent, OH, USA
| | - Merce Pallas
- Facultat de Farmacia, Universitat de Barcelona, Barcelona, Spain
| | - Antonio Camins
- Facultat de Farmacia, Universitat de Barcelona, Barcelona, Spain
| | - Hyoung-Gon Lee
- Department of Biology, The University of Texas San Antonio, San Antonio, TX, USA
| | - Gemma Casadesus
- School of Biomedical Sciences, Kent State University, Kent, OH, USA.,Department of Biological Sciences, Kent State University, Kent, OH, USA
| |
Collapse
|
49
|
Targeting Heme Oxygenase-1 in the Arterial Response to Injury and Disease. Antioxidants (Basel) 2020; 9:antiox9090829. [PMID: 32899732 PMCID: PMC7554957 DOI: 10.3390/antiox9090829] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 08/31/2020] [Accepted: 09/03/2020] [Indexed: 02/06/2023] Open
Abstract
Heme oxygenase-1 (HO-1) catalyzes the degradation of heme into carbon monoxide (CO), iron, and biliverdin, which is rapidly metabolized to bilirubin. The activation of vascular smooth muscle cells (SMCs) plays a critical role in mediating the aberrant arterial response to injury and a number of vascular diseases. Pharmacological induction or gene transfer of HO-1 improves arterial remodeling in animal models of post-angioplasty restenosis, vascular access failure, atherosclerosis, transplant arteriosclerosis, vein grafting, and pulmonary arterial hypertension, whereas genetic loss of HO-1 exacerbates the remodeling response. The vasoprotection evoked by HO-1 is largely ascribed to the generation of CO and/or the bile pigments, biliverdin and bilirubin, which exert potent antioxidant and anti-inflammatory effects. In addition, these molecules inhibit vascular SMC proliferation, migration, apoptosis, and phenotypic switching. Several therapeutic strategies are currently being pursued that may allow for the targeting of HO-1 in arterial remodeling in various pathologies, including the use of gene delivery approaches, the development of novel inducers of the enzyme, and the administration of unique formulations of CO and bilirubin.
Collapse
|
50
|
Transcriptomic analyses of Aedes aegypti cultured cells and ex vivo midguts in response to an excess or deficiency of heme: a quest for transcriptionally-regulated heme transporters. BMC Genomics 2020; 21:604. [PMID: 32867680 PMCID: PMC7460771 DOI: 10.1186/s12864-020-06981-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 08/11/2020] [Indexed: 12/26/2022] Open
Abstract
Background Aedes aegypti is the principle vector of many arboviruses, including dengue virus and Zika virus, which are transmitted when an infected female mosquito takes a blood meal in order to initiate vitellogenesis. During blood digestion, ~ 10 mM heme-iron is ingested into the midgut lumen. While heme acts as both a nutrient and signaling molecule during blood digestion, it can also be highly toxic if left unchaperoned. Both signaling by, and degradation of, heme are intracellular processes, occurring in the nucleus and cytoplasm, respectively. However, the precise mechanism of heme uptake into the midgut epithelium is not currently known. Results We used next generation RNA sequencing with the goal to identify genes that code for membrane bound heme import protein(s) responsible for heme uptake into the midgut epithelium. Heme deprivation increased uptake of a heme fluorescent analog in cultured cells, while treatment of midguts with an excess of heme decreased uptake, confirming physiological changes were occurring in these heme-sensitive cells/tissues prior to sequencing. A list of candidate genes was assembled for each of the experimental sample sets, which included Aag2 and A20 cultured cells as well as midgut tissue, based on the results of a differential expression analysis, soft cluster analysis and number of predicted transmembrane domains. Lastly, the functions related to heme transport were examined through RNAi knockdown. Conclusions Despite a large number of transmembrane domain containing genes differentially expressed in response to heme, very few were highly differentially expressed in any of the datasets examined. RNAi knockdown of a subset of candidates resulted in subtle changes in heme uptake, but minimal overall disruption to blood digestion/egg production. These results could indicate that heme import in Ae. aegypti may be controlled by a redundant system of multiple distinct transport proteins. Alternatively, heme membrane bound transport in Ae. aegypti could be regulated post-translationally.
Collapse
|