1
|
Zheng H, Tang Y, Zang H, Luo J, Zhou H, Zhan Y, Zou Y, Wen Q, Ma J, Fan S. Itraconazole Reversing Acquired Resistance to Osimertinib in NSCLC by Inhibiting the SHH/DUSP13B/p-STAT3 Axis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2409416. [PMID: 39721017 DOI: 10.1002/advs.202409416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/17/2024] [Indexed: 12/28/2024]
Abstract
There is an urgent necessity to devise efficient tactics to tackle the inevitable development of resistance to osimertinib, which is a third-generation epidermal growth factor receptor (EGFR) inhibitor used in treating EGFR-mutant nonsmall cell lung cancer (NSCLC). This study demonstrates that combining itraconazole with osimertinib synergistically reduces the proliferation and migration, enhances the apoptosis of osimertinib-resistant cells, and effectively inhibits the growth of osimertinib-resistant tumors. Mechanistically, itraconazole combined with osimertinib promotes the proteasomal degradation of sonic hedgehog (SHH), resulting in inactivation of the SHH/Dual-specificity phosphatase 13B (DUSP13B)/p-STAT3 and Hedgehog pathways, suppressing Myc proto-oncogene protein (c-Myc). Additionally, DUSP13B interacts with signal transducer and activator of transcription 3 (STAT3) and modulates its phosphorylation. Interestingly, it is observed that SHH overexpression partially rescues the synergistic effects of this combination treatment strategy through the SHH/DUSP13B/p-STAT3 signaling axis. Moreover, it is found that SHH, (GLI1), p-STAT3, and DUSP13B play significant predictive roles in osimertinib resistance. In lung adenocarcinoma, p-STAT3 is positively correlated with SHH but negatively correlated with DUSP13B. Together, these results highlight the crucial role of itraconazole in reversing the acquired resistance to osimertinib and provide a scientific rationale for the therapeutic strategy of combining osimertinib with itraconazole.
Collapse
Affiliation(s)
- Hongmei Zheng
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Medical Research Center for Cancer Pathogenic Genes Testing and Diagnosis, Changsha, Hunan, 410011, China
| | - Yaoxiang Tang
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Medical Research Center for Cancer Pathogenic Genes Testing and Diagnosis, Changsha, Hunan, 410011, China
| | - Hongjing Zang
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Medical Research Center for Cancer Pathogenic Genes Testing and Diagnosis, Changsha, Hunan, 410011, China
| | - Jiadi Luo
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Medical Research Center for Cancer Pathogenic Genes Testing and Diagnosis, Changsha, Hunan, 410011, China
| | - Hanqiong Zhou
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Medical Research Center for Cancer Pathogenic Genes Testing and Diagnosis, Changsha, Hunan, 410011, China
| | - Yuting Zhan
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Medical Research Center for Cancer Pathogenic Genes Testing and Diagnosis, Changsha, Hunan, 410011, China
| | - Ying Zou
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Medical Research Center for Cancer Pathogenic Genes Testing and Diagnosis, Changsha, Hunan, 410011, China
| | - Qiuyuan Wen
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Medical Research Center for Cancer Pathogenic Genes Testing and Diagnosis, Changsha, Hunan, 410011, China
| | - Jian Ma
- Cancer Research Institute of Central South University, Changsha, Hunan, 410078, China
| | - Songqing Fan
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Medical Research Center for Cancer Pathogenic Genes Testing and Diagnosis, Changsha, Hunan, 410011, China
| |
Collapse
|
2
|
Wang A, Zhang Y, Lv X, Liang G. Therapeutic potential of targeting protein tyrosine phosphatases in liver diseases. Acta Pharm Sin B 2024; 14:3295-3311. [PMID: 39220870 PMCID: PMC11365412 DOI: 10.1016/j.apsb.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/08/2024] [Accepted: 04/12/2024] [Indexed: 09/04/2024] Open
Abstract
Protein tyrosine phosphorylation is a post-translational modification that regulates protein structure to modulate demic organisms' homeostasis and function. This physiological process is regulated by two enzyme families, protein tyrosine kinases (PTKs) and protein tyrosine phosphatases (PTPs). As an important regulator of protein function, PTPs are indispensable for maintaining cell intrinsic physiology in different systems, as well as liver physiological and pathological processes. Dysregulation of PTPs has been implicated in multiple liver-related diseases, including chronic liver diseases (CLDs), hepatocellular carcinoma (HCC), and liver injury, and several PTPs are being studied as drug therapeutic targets. Therefore, given the regulatory role of PTPs in diverse liver diseases, a collated review of their function and mechanism is necessary. Moreover, based on the current research status of targeted therapy, we emphasize the inclusion of several PTP members that are clinically significant in the development and progression of liver diseases. As an emerging breakthrough direction in the treatment of liver diseases, this review summarizes the research status of PTP-targeting compounds in liver diseases to illustrate their potential in clinical treatment. Overall, this review aims to support the development of novel PTP-based treatment pathways for liver diseases.
Collapse
Affiliation(s)
- Ao Wang
- Department of Pharmacy and Institute of Inflammation, Zhejiang Provincial Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, China
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji 133002, China
| | - Yi Zhang
- Department of Pharmacy and Institute of Inflammation, Zhejiang Provincial Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, China
| | - Xinting Lv
- Department of Pharmacy and Institute of Inflammation, Zhejiang Provincial Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, China
| | - Guang Liang
- Department of Pharmacy and Institute of Inflammation, Zhejiang Provincial Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, China
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji 133002, China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| |
Collapse
|
3
|
Zhong W, Dong S, Wang H, Pan C, Yang S. Functional Mechanism of MicroRNA-25-3p in Hilar Cholangiocarcinoma Cell Proliferation and Migration Through Regulation of Dual Specificity Phosphatase 5. J INVEST SURG 2023; 36:2202768. [PMID: 37394525 DOI: 10.1080/08941939.2023.2202768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/15/2023] [Accepted: 04/06/2023] [Indexed: 07/04/2023]
Abstract
OBJECTIVE Hilar cholangiocarcinoma (HCCA) is a highly aggressive biliary tract tumor. microRNAs (miRs) exert dual actions in various cancers. This paper seeks to expound on the functional mechanisms of miR-25-3p/dual specificity phosphatase 5 (DUSP5) in HCCA cell proliferation and migration. METHODS HCCA-related data were downloaded from GEO database to screen out differentially-expressed genes. The potential target miR (miR-25-3p) and its expression in HCCA were analyzed on Starbase. The binding relation between miR-25-3p and DUSP5 was confirmed by dual-luciferase assay. Levels of miR-25-3p and DUSP5 in FRH-0201 cells and HIBEpics were determined by RT-qPCR and Western blot. miR-25-3p and DUSP5 levels were intervened with to explore their effects on FRH-0201 cells. The apoptosis, proliferation, migration, and invasion of FRH-0201 cells were evaluated by TUNEL, CCK8, scratch healing, and Transwell assays. Flow cytometry was conducted to assess FRH-0201 cell cycle. Levels of cell cycle-related proteins were determined by Western blot. RESULTS DUSP5 was weakly-expressed and miR-25-3p was highly-expressed in HCCA samples and cells. miR-25-3p targeted DUSP5. miR-25-3p suppressed FRH-0201 cell apoptosis and increased cell proliferation, migration, and invasion. DUSP5 overexpression partially abrogated miR-25-3p overexpression-exerted effects on FRH-0201 cells. miR-25-3p stimulated G1/S phase transition of FRH-0201 cells by targeting DUSP5. CONCLUSION miR-25-3p regulated HCCA cell cycle and facilitated cell proliferation and migration by targeting DUSP5.
Collapse
Affiliation(s)
- Wan Zhong
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Shiyang Dong
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Han Wang
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Chao Pan
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Shiyong Yang
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
4
|
Martin-Vega A, Earnest S, Augustyn A, Wichaidit C, Gazdar A, Girard L, Peyton M, Kollipara RK, Minna JD, Johnson JE, Cobb MH. ASCL1-ERK1/2 Axis: ASCL1 restrains ERK1/2 via the dual specificity phosphatase DUSP6 to promote survival of a subset of neuroendocrine lung cancers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.15.545148. [PMID: 37398419 PMCID: PMC10312738 DOI: 10.1101/2023.06.15.545148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
The transcription factor achaete-scute complex homolog 1 (ASCL1) is a lineage oncogene that is central for the growth and survival of small cell lung cancers (SCLC) and neuroendocrine non-small cell lung cancers (NSCLC-NE) that express it. Targeting ASCL1, or its downstream pathways, remains a challenge. However, a potential clue to overcoming this challenage has been information that SCLC and NSCLC-NE that express ASCL1 exhibit extremely low ERK1/2 activity, and efforts to increase ERK1/2 activity lead to inhibition of SCLC growth and surival. Of course, this is in dramatic contrast to the majority of NSCLCs where high activity of the ERK pathway plays a major role in cancer pathogenesis. A major knowledge gap is defining the mechanism(s) underlying the low ERK1/2 activity in SCLC, determining if ERK1/2 activity and ASCL1 function are inter-related, and if manipulating ERK1/2 activity provides a new therapeutic strategy for SCLC. We first found that expression of ERK signaling and ASCL1 have an inverse relationship in NE lung cancers: knocking down ASCL1 in SCLCs and NE-NSCLCs increased active ERK1/2, while inhibition of residual SCLC/NSCLC-NE ERK1/2 activity with a MEK inhibitor increased ASCL1 expression. To determine the effects of ERK activity on expression of other genes, we obtained RNA-seq from ASCL1-expressing lung tumor cells treated with an ERK pathway MEK inhibitor and identified down-regulated genes (such as SPRY4, ETV5, DUSP6, SPRED1) that potentially could influence SCLC/NSCLC-NE tumor cell survival. This led us to discover that genes regulated by MEK inhibition suppress ERK activation and CHIP-seq demonstrated these are bound by ASCL1. In addition, SPRY4, DUSP6, SPRED1 are known suppressors of the ERK1/2 pathway, while ETV5 regulates DUSP6. Survival of NE lung tumors was inhibited by activation of ERK1/2 and a subset of ASCL1-high NE lung tumors expressed DUSP6. Because the dual specificity phosphatase 6 (DUSP6) is an ERK1/2-selective phosphatase that inactivates these kinases and has a pharmacologic inhibitor, we focused mechanistic studies on DUSP6. These studies showed: Inhibition of DUSP6 increased active ERK1/2, which accumulated in the nucleus; pharmacologic and genetic inhibition of DUSP6 affected proliferation and survival of ASCL1-high NE lung cancers; and that knockout of DUSP6 "cured" some SCLCs while in others resistance rapidly developed indicating a bypass mechanism was activated. Thus, our findings fill this knowledge gap and indicate that combined expression of ASCL1, DUSP6 and low phospho-ERK1/2 identify some neuroendocrine lung cancers for which DUSP6 may be a therapeutic target.
Collapse
|
5
|
Yang G, Chen X, Quan Z, Liu M, Guo Y, Tang Y, Peng L, Wang L, Wu Y, Wu X, Liu J, Zheng Y. Comprehensive analysis of the FOXA1-related ceRNA network and identification of the MAGI2-AS3/DUSP2 axis as a prognostic biomarker in prostate cancer. Front Oncol 2023; 13:1048521. [PMID: 36998469 PMCID: PMC10043306 DOI: 10.3389/fonc.2023.1048521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 02/27/2023] [Indexed: 03/16/2023] Open
Abstract
BackgroundProstate cancer (PCa) is the second most common cause of cancer-related deaths in American men. Even though increasing evidence has disclosed the competitive endogenous RNA (ceRNA) regulatory networks among cancers, the complexity and behavior characteristics of the ceRNA network in PCa remain unclear. Our study aimed to investigate the forkhead box A1 (FOXA1)-related ceRNA regulatory network and ascertain potential prognostic markers associated with PCa.MethodsRNA sequence profiles downloaded from The Cancer Genome Atlas (TCGA) were analyzed to recognize differentially expressed genes (DEGs) derived from tumor and non-tumor adjacent samples as well as FOXA1low and FOXA1high tumor samples. The enrichment analysis was conducted for the dysregulated mRNAs. The network for the differentially expressed long non-coding RNA (lncRNA)-associated ceRNAs was then established. Survival analysis and univariate Cox regression analysis were executed to determine independent prognostic RNAs associated with PCa. The correlation between DUSP2 and immune cell infiltration level was analyzed. Tissue and blood samples were collected to verify our network. Molecular experiments were performed to explore whether DUSP2 is involved in the development of PCa.ResultsA ceRNA network related to FOXA1 was constructed and comprised 18 lncRNAs, 5 miRNAs, and 44 mRNAs. The MAGI2-AS3~has-mir-106a/has-mir-204~DUSP2 ceRNA regulatory network relevant to the prognosis of PCa was obtained by analysis. We markedly distinguished the MAGI2-AS3/DUSP2 axis in the ceRNA. It will most likely become a clinical prognostic model and impact the changes in the tumor immune microenvironment of PCa. The abnormal MAGI2-AS3 expression level from the patients’ blood manifested that it would be a novel potential diagnostic biomarker for PCa. Moreover, down-expressed DUSP2 suppressed the proliferation and migration of PCa cells.ConclusionsOur findings provide pivotal clues to understanding the role of the FOXA1-concerned ceRNA network in PCa. Simultaneously, this MAGI2-AS3/DUSP2 axis might be a new significant prognostic factor associated with the diagnosis and prognosis of PCa.
Collapse
Affiliation(s)
- Guo Yang
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiong Chen
- Department of Urology, The Ninth People’s Hospital of Chongqing, Chongqing, China
| | - Zhen Quan
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Miao Liu
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuan Guo
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yangbin Tang
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lang Peng
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Leilei Wang
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Yingying Wu
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Xiaohou Wu
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jiayu Liu
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- *Correspondence: Yongbo Zheng, ; Jiayu Liu,
| | - Yongbo Zheng
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- *Correspondence: Yongbo Zheng, ; Jiayu Liu,
| |
Collapse
|
6
|
Abstract
Phosphatases and kinases maintain an equilibrium of dephosphorylated and phosphorylated proteins, respectively, that are required for critical cellular functions. Imbalance in this equilibrium or irregularity in their function causes unfavorable cellular effects that have been implicated in the development of numerous diseases. Protein tyrosine phosphatases (PTPs) catalyze the dephosphorylation of protein substrates on tyrosine residues, and their involvement in cell signaling and diseases such as cancer and inflammatory and metabolic diseases has made them attractive therapeutic targets. However, PTPs have proved challenging in therapeutics development, garnering them the unfavorable reputation of being undruggable. Nonetheless, great strides have been made toward the inhibition of PTPs over the past decade. Here, we discuss the advancement in small-molecule inhibition for the PTP subfamily known as the mitogen-activated protein kinase (MAPK) phosphatases (MKPs). We review strategies and inhibitor discovery tools that have proven successful for small-molecule inhibition of the MKPs and discuss what the future of MKP inhibition potentially might yield.
Collapse
Affiliation(s)
- Shanelle R Shillingford
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut, USA;
- Department of Chemistry, Yale University, New Haven, Connecticut, USA
| | - Anton M Bennett
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut, USA;
- Yale Center for Molecular and Systems Metabolism, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
7
|
Chang TM, Chu PY, Lin HY, Huang KW, Hung WC, Shan YS, Chen LT, Tsai HJ. PTEN regulates invasiveness in pancreatic neuroendocrine tumors through DUSP19-mediated VEGFR3 dephosphorylation. J Biomed Sci 2022; 29:92. [PMID: 36336681 PMCID: PMC9639322 DOI: 10.1186/s12929-022-00875-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/29/2022] [Indexed: 11/09/2022] Open
Abstract
Background Phosphatase and tensin homolog (PTEN) is a tumor suppressor. Low PTEN expression has been observed in pancreatic neuroendocrine tumors (pNETs) and is associated with increased liver metastasis and poor survival. Vascular endothelial growth factor receptor 3 (VEGFR3) is a receptor tyrosine kinase and is usually activated by binding with vascular endothelial growth factor C (VEGFC). VEGFR3 has been demonstrated with lymphangiogenesis and cancer invasiveness. PTEN is also a phosphatase to dephosphorylate both lipid and protein substrates and VEGFR3 is hypothesized to be a substrate of PTEN. Dual-specificity phosphatase 19 (DUSP19) is an atypical DUSP and can interact with VEGFR3. In this study, we investigated the function of PTEN on regulation of pNET invasiveness and its association with VEGFR3 and DUSP19. Methods PTEN was knocked down or overexpressed in pNET cells to evaluate its effect on invasiveness and its association with VEGFR3 phosphorylation. In vitro phosphatase assay was performed to identify the regulatory molecule on the regulation of VEGFR3 phosphorylation. In addition, immunoprecipitation, and immunofluorescence staining were performed to evaluate the molecule with direct interaction on VEGFR3 phosphorylation. The animal study was performed to validate the results of the in vitro study. Results The invasion and migration capabilities of pNETs were enhanced by PTEN knockdown accompanied with increased VEGFR3 phosphorylation, ERK phosphorylation, and increased expression of epithelial–mesenchymal transition molecules in the cells. The enhanced invasion and migration abilities of pNET cells with PTEN knockdown were suppressed by addition of the VEGFR3 inhibitor MAZ51, but not by the VEGFR3-Fc chimeric protein to neutralize VEGFC. VEGFR3 phosphorylation is responsible for pNET cell invasiveness and is VEGFC-independent. However, an in vitro phosphatase assay failed to show VEGFR3 as a substrate of PTEN. In contrast, DUSP19 was transcriptionally upregulated by PTEN and was shown to dephosphorylate VEGFR3 via direct interaction with VEGFR3 by an in vitro phosphatase assay, immunoprecipitation, and immunofluorescence staining. Increased tumor invasion into peripheral tissues was validated in xenograft mouse model. Tumor invasion was suppressed by treatment with VEGFR3 or MEK inhibitors. Conclusions PTEN regulates pNET invasiveness via DUSP19-mediated VEGFR3 dephosphorylation. VEGFR3 and DUSP19 are potential therapeutic targets for pNET treatment. Supplementary Information The online version contains supplementary material available at 10.1186/s12929-022-00875-2.
Collapse
Affiliation(s)
- Tsung-Ming Chang
- grid.59784.370000000406229172National Institute of Cancer Research, National Health Research Institutes, 1F No 367, Sheng-Li Road, Tainan, 70456 Taiwan ,grid.411447.30000 0004 0637 1806Department of Medical Laboratory Science, College of Medical Science and Technology, I-Shou University, Kaohsiung, Taiwan
| | - Pei-Yi Chu
- grid.59784.370000000406229172National Institute of Cancer Research, National Health Research Institutes, 1F No 367, Sheng-Li Road, Tainan, 70456 Taiwan ,grid.452796.b0000 0004 0634 3637Department of Pathology, Show Chwan Memorial Hospital, Changhua, Taiwan ,grid.256105.50000 0004 1937 1063School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan ,grid.260542.70000 0004 0532 3749Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Hui-You Lin
- grid.59784.370000000406229172National Institute of Cancer Research, National Health Research Institutes, 1F No 367, Sheng-Li Road, Tainan, 70456 Taiwan
| | - Kuo-Wei Huang
- grid.59784.370000000406229172National Institute of Cancer Research, National Health Research Institutes, 1F No 367, Sheng-Li Road, Tainan, 70456 Taiwan
| | - Wen-Chun Hung
- grid.59784.370000000406229172National Institute of Cancer Research, National Health Research Institutes, 1F No 367, Sheng-Li Road, Tainan, 70456 Taiwan
| | - Yan-Shen Shan
- grid.64523.360000 0004 0532 3255Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan ,grid.64523.360000 0004 0532 3255Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Li-Tzong Chen
- grid.59784.370000000406229172National Institute of Cancer Research, National Health Research Institutes, 1F No 367, Sheng-Li Road, Tainan, 70456 Taiwan ,grid.64523.360000 0004 0532 3255Department of Oncology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan ,grid.412019.f0000 0000 9476 5696Department of Internal Medicine, Kaohsiung Medical University Hospital, and Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hui-Jen Tsai
- grid.59784.370000000406229172National Institute of Cancer Research, National Health Research Institutes, 1F No 367, Sheng-Li Road, Tainan, 70456 Taiwan ,grid.64523.360000 0004 0532 3255Department of Oncology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan ,grid.412019.f0000 0000 9476 5696Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
8
|
AGBEKTAS T, ZONTUL C, OZTURK A, HUSEYNZADA A, GANBAROVA R, HASANOVA U, CINAR G, TAS A, KAYA S, CHTITA S, SİLİG Y. EFFECT of AZOMETHINE GROUP CONTAINING COMPOUNDS on GENE PROFILES in Wnt and MAPK SIGNAL PATTERNS in LUNG CANCER CELL LINE: In Silico and In Vitro ANALYSES. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Ahmedy OA, El-Tanbouly DM, Al-Mokaddem AK, El-Said YA. Insights into the role of P2X7R/DUSP6/ERK1/2 and SIRT2/MDM2 signaling in the nephroprotective effect of berberine against cisplatin-induced renal fibrosis in rats. Life Sci 2022; 309:121040. [DOI: 10.1016/j.lfs.2022.121040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/26/2022] [Accepted: 10/01/2022] [Indexed: 11/16/2022]
|
10
|
A positive feedback loop of ARF6 activates ERK1/2 signaling pathway via DUSP6 silencing to promote pancreatic cancer progression. Acta Biochim Biophys Sin (Shanghai) 2022; 54:1431-1440. [PMID: 36017891 PMCID: PMC9827993 DOI: 10.3724/abbs.2022111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
ERK1/2 are essential proteins mediating mitogen-activated protein kinase signaling downstream of RAS in pancreatic adenocarcinoma (PDAC). Our previous study reveals that ARF6 plays a positive regulatory role in ERK1/2 pathway in a feedback loop manner. A significant part of the literature on ARF6 has emphasized its oncogenic effect as an essential downstream molecule of ERK1/2, and no research has been done on the regulation mechanisms of the feedback loop between ARF6 and the ERK1/2 signaling pathway. In the present study, we explore the gene network downstream of ARF6 and find that DUSP6 may be the critical signal molecule in the positive feedback loop between ARF6 and ERK1/2. Specifically, to elucidate the negative correlations between ARF6 and DUSP6 in pancreatic cancer, we examine their expressions in pancreatic cancer tissues by immunohistochemical staining. Then the impact of DUSP6 on the proliferation and apoptosis of PDAC cells are investigated by gain-of-function and loss-of-function approaches. Mechanism explorations uncover that ARF6 suppresses the expression of DUSP6, which is responsible for the dephosphorylation of ERK1/2. Altogether, these results indicate that DUSP6 plays a tumor-suppressive role and acts as an intermediate molecule between ARF6 and ERK1/2 in PDAC cells, thereby forming a positive feedback loop.
Collapse
|
11
|
The role and therapeutic implication of protein tyrosine phosphatases in Alzheimer's disease. Biomed Pharmacother 2022; 151:113188. [PMID: 35676788 DOI: 10.1016/j.biopha.2022.113188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/16/2022] [Accepted: 05/22/2022] [Indexed: 11/24/2022] Open
Abstract
Protein tyrosine phosphatases (PTPs) are important regulator of neuronal signal transduction and a growing number of PTPs have been implicated in Alzheimer's disease (AD). In the brains of patients with AD, there are a variety of abnormally phosphorylated proteins, which are closely related to the abnormal expression and activity of PTPs. β-Amyloid plaques (Aβ) and hyperphosphorylated tau protein are two pathological hallmarks of AD, and their accumulation ultimately leads to neurodegeneration. Studies have shown that protein phosphorylation signaling pathways mediates intracellular accumulation of Aβ and tau during AD development and are involved in synaptic plasticity and other stress responses. Here, we summarized the roles of PTPs related to the pathogenesis of AD and analyzed their therapeutic potential in AD.
Collapse
|
12
|
Pan J, Zhou L, Zhang C, Xu Q, Sun Y. Targeting protein phosphatases for the treatment of inflammation-related diseases: From signaling to therapy. Signal Transduct Target Ther 2022; 7:177. [PMID: 35665742 PMCID: PMC9166240 DOI: 10.1038/s41392-022-01038-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/28/2022] [Accepted: 05/25/2022] [Indexed: 11/09/2022] Open
Abstract
Inflammation is the common pathological basis of autoimmune diseases, metabolic diseases, malignant tumors, and other major chronic diseases. Inflammation plays an important role in tissue homeostasis. On one hand, inflammation can sense changes in the tissue environment, induce imbalance of tissue homeostasis, and cause tissue damage. On the other hand, inflammation can also initiate tissue damage repair and maintain normal tissue function by resolving injury and restoring homeostasis. These opposing functions emphasize the significance of accurate regulation of inflammatory homeostasis to ameliorate inflammation-related diseases. Potential mechanisms involve protein phosphorylation modifications by kinases and phosphatases, which have a crucial role in inflammatory homeostasis. The mechanisms by which many kinases resolve inflammation have been well reviewed, whereas a systematic summary of the functions of protein phosphatases in regulating inflammatory homeostasis is lacking. The molecular knowledge of protein phosphatases, and especially the unique biochemical traits of each family member, will be of critical importance for developing drugs that target phosphatases. Here, we provide a comprehensive summary of the structure, the "double-edged sword" function, and the extensive signaling pathways of all protein phosphatases in inflammation-related diseases, as well as their potential inhibitors or activators that can be used in therapeutic interventions in preclinical or clinical trials. We provide an integrated perspective on the current understanding of all the protein phosphatases associated with inflammation-related diseases, with the aim of facilitating the development of drugs that target protein phosphatases for the treatment of inflammation-related diseases.
Collapse
Affiliation(s)
- Jie Pan
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), Department of Biotechnology and Pharmaceutical Sciences, School of Life Science, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Lisha Zhou
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), Department of Biotechnology and Pharmaceutical Sciences, School of Life Science, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Chenyang Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), Department of Biotechnology and Pharmaceutical Sciences, School of Life Science, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Qiang Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), Department of Biotechnology and Pharmaceutical Sciences, School of Life Science, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Yang Sun
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), Department of Biotechnology and Pharmaceutical Sciences, School of Life Science, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China.
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.
| |
Collapse
|
13
|
Wei G, Zhang X, Cai C, Sheng J, Xu M, Wang C, Gu Q, Guo C, Chen F, Liu D, Qian F. Dual-Specificity Phosphatase 14 Regulates Zebrafish Hair Cell Formation Through Activation of p38 Signaling Pathway. Front Cell Neurosci 2022; 16:840143. [PMID: 35401113 PMCID: PMC8984152 DOI: 10.3389/fncel.2022.840143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/14/2022] [Indexed: 11/13/2022] Open
Abstract
Most cases of acquired hearing loss are due to degeneration and subsequent loss of cochlear hair cells. Whereas mammalian hair cells are not replaced when lost, in zebrafish, they constantly renew and regenerate after injury. However, the molecular mechanism among this difference remains unknown. Dual-specificity phosphatase 14 (DUSP14) is an important negative modulator of mitogen-activated protein kinase (MAPK) signaling pathways. Our study was to investigate the effects of DUSP14 on supporting cell development and hair cell regeneration and explore the potential mechanism. Our results showed that dusp14 gene is highly expressed in zebrafish developing neuromasts and otic vesicles. Behavior analysis showed that dusp14 deficiency resulted in hearing defects in zebrafish larvae, which were reversed by dusp14 mRNA treatment. Moreover, knockdown of dusp14 gene caused a significant decrease in the number of neuromasts and hair cells in both neuromast and otic vesicle, mainly due to the inhibition of the proliferation of supporting cells, which results in a decrease in the number of supporting cells and ultimately in the regeneration of hair cells. We further found significant changes in a series of MAPK pathway genes through transcriptome sequencing analysis of dusp14-deficient zebrafish, especially mapk12b gene in p38 signaling. Additionally, inhibiting p38 signaling effectively rescued all phenotypes caused by dusp14 deficiency, including hair cell and supporting cell reduction. These results suggest that DUSP14 might be a key gene to regulate supporting cell development and hair cell regeneration and is a potential target for the treatment of hearing loss.
Collapse
Affiliation(s)
- Guanyun Wei
- Key Laboratory of Neuroregeneration of MOE, Nantong Laboratory of Development and Diseases, School of Life Sciences, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Xu Zhang
- Key Laboratory of Neuroregeneration of MOE, Nantong Laboratory of Development and Diseases, School of Life Sciences, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
- Translational Medical Research Center, Wuxi No. 2 People’s Hospital, Affiliated Wuxi Clinical College of Nantong University, Wuxi, China
| | - Chengyun Cai
- Key Laboratory of Neuroregeneration of MOE, Nantong Laboratory of Development and Diseases, School of Life Sciences, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Jiajing Sheng
- Key Laboratory of Neuroregeneration of MOE, Nantong Laboratory of Development and Diseases, School of Life Sciences, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Mengting Xu
- Key Laboratory of Neuroregeneration of MOE, Nantong Laboratory of Development and Diseases, School of Life Sciences, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Cheng Wang
- Key Laboratory of Neuroregeneration of MOE, Nantong Laboratory of Development and Diseases, School of Life Sciences, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Qiuxiang Gu
- Key Laboratory of Neuroregeneration of MOE, Nantong Laboratory of Development and Diseases, School of Life Sciences, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Chao Guo
- Key Laboratory of Neuroregeneration of MOE, Nantong Laboratory of Development and Diseases, School of Life Sciences, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Fangyi Chen
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
- Department of Biology, Brain Research Center, Southern University of Science and Technology, Shenzhen, China
- *Correspondence: Fangyi Chen,
| | - Dong Liu
- Key Laboratory of Neuroregeneration of MOE, Nantong Laboratory of Development and Diseases, School of Life Sciences, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
- Dong Liu, ;
| | - Fuping Qian
- Key Laboratory of Neuroregeneration of MOE, Nantong Laboratory of Development and Diseases, School of Life Sciences, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
- Fuping Qian,
| |
Collapse
|
14
|
Nunes-Xavier CE, Zaldumbide L, Mosteiro L, López-Almaraz R, García de Andoin N, Aguirre P, Emaldi M, Torices L, López JI, Pulido R. Protein Tyrosine Phosphatases in Neuroblastoma: Emerging Roles as Biomarkers and Therapeutic Targets. Front Cell Dev Biol 2021; 9:811297. [PMID: 34957126 PMCID: PMC8692838 DOI: 10.3389/fcell.2021.811297] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 11/23/2021] [Indexed: 12/23/2022] Open
Abstract
Neuroblastoma is a type of cancer intimately related with early development and differentiation of neuroendocrine cells, and constitutes one of the pediatric cancers with higher incidence and mortality. Protein tyrosine phosphatases (PTPs) are key regulators of cell growth and differentiation by their direct effect on tyrosine dephosphorylation of specific protein substrates, exerting major functions in the modulation of intracellular signaling during neuron development in response to external cues driving cell proliferation, survival, and differentiation. We review here the current knowledge on the role of PTPs in neuroblastoma cell growth, survival, and differentiation. The potential of PTPs as biomarkers and molecular targets for inhibition in neuroblastoma therapies is discussed.
Collapse
Affiliation(s)
- Caroline E. Nunes-Xavier
- Biomarkers in Cancer Unit, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway
- *Correspondence: Caroline E. Nunes-Xavier, ; Rafael Pulido,
| | - Laura Zaldumbide
- Department of Pathology, Cruces University Hospital, Barakaldo, Spain
| | - Lorena Mosteiro
- Department of Pathology, Cruces University Hospital, Barakaldo, Spain
| | | | | | - Pablo Aguirre
- Department of Pathology, Donostia University Hospital, San Sebastian, Spain
| | - Maite Emaldi
- Biomarkers in Cancer Unit, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Leire Torices
- Biomarkers in Cancer Unit, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - José I. López
- Biomarkers in Cancer Unit, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
- Department of Pathology, Cruces University Hospital, Barakaldo, Spain
| | - Rafael Pulido
- Biomarkers in Cancer Unit, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
- *Correspondence: Caroline E. Nunes-Xavier, ; Rafael Pulido,
| |
Collapse
|
15
|
Gopalakrishnan S, Uma SK, Mohan G, Mohan A, Shanmugam G, Kumar VTV, J S, Chandrika SK, Vasudevan D, Nori SRC, Sathi SN, George S, Maliekal TT. SSTP1, a Host Defense Peptide, Exploits the Immunomodulatory IL6 Pathway to Induce Apoptosis in Cancer Cells. Front Immunol 2021; 12:740620. [PMID: 34867962 PMCID: PMC8639500 DOI: 10.3389/fimmu.2021.740620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 10/27/2021] [Indexed: 12/30/2022] Open
Abstract
While the immunomodulatory pathways initiated in immune cells contribute to therapeutic response, their activation in cancer cells play a role in cancer progression. Also, many of the aberrantly expressed immunomodulators on cancer cells are considered as therapeutic targets. Here, we introduce host defense peptide (HDP), a known immuomodulator, as a therapeutic agent to target them. The cationic host defense peptides (HDPs), an integral part of the innate immune system, possess membranolytic activity, which imparts antimicrobial and antitumor efficacy to it. They act as immunomodulators by activating the immune cells. Though their antimicrobial function has been recently reassigned to immunoregulation, their antitumor activity is still attributed to its membranolytic activity. This membrane pore formation ability, which is proportional to the concentration of the peptide, also leads to side effects like hemolysis, limiting their therapeutic application. So, despite the identification of a variety of anticancer HDPs, their clinical utility is limited. Though HDPs are shown to exert the immunomodulatory activity through specific membrane targets on immune cells, their targets on cancer cells are unknown. We show that SSTP1, a novel HDP identified by shotgun cloning, binds to the active IL6/IL6Rα/gp130 complex on cancer cells, rearranging the active site residues. In contrast to the IL6 blockers inhibiting JAK/STAT activity, SSTP1 shifts the proliferative IL6/JAK/STAT signaling to the apoptotic IL6/JNK/AP1 pathway. In IL6Rα-overexpressing cancer cells, SSTP1 induces apoptosis at low concentration through JNK pathway, without causing significant membrane disruption. We highlight the importance of immunomodulatory pathways in cancer apoptosis, apart from its established role in immune cell regulation and cancer cell proliferation. Our study suggests that identification of the membrane targets for the promising anticancer HDPs might lead to the identification of new drugs for targeted therapy.
Collapse
Affiliation(s)
- Shyla Gopalakrishnan
- Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
- Interdisciplinary Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | - Soumya Krishnan Uma
- Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | - Gayathri Mohan
- Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
- Regional Centre for Biotechnology, Faridabad, India
| | - Amrutha Mohan
- Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
- Manipal Academy of Higher Education, Manipal, India
| | - Geetha Shanmugam
- Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | - Vineeth T. V. Kumar
- Interdisciplinary Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | - Sreekumar J
- Statistics, Section of Extension and Social Science, The Indian Council of Agricultural Research (ICAR) Central Tuber Crops Research Institute, Thiruvananthapuram, India
| | - Sivakumar K. Chandrika
- Genomics Core Facility, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | | | - Sai Ravi Chandra Nori
- Interdisciplinary Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | - Shijulal Nelson Sathi
- Interdisciplinary Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | - Sanil George
- Interdisciplinary Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | | |
Collapse
|
16
|
Kambaru A, Chaudhary N. Role of Protein Tyrosine Phosphatase in Regulation of Cell Signaling Cascades Affecting Tumor Cell Growth: A Future Perspective as Anti- Cancer Drug Target. Curr Pharm Biotechnol 2021; 23:920-931. [PMID: 34375185 DOI: 10.2174/1389201022666210810094739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 06/05/2021] [Accepted: 06/06/2021] [Indexed: 11/22/2022]
Abstract
Protein Tyrosine Phosphatase (PTP) superfamily is a key enzyme involved in the regulation of growth-related cell signaling cascades, such as the RAS/MAPK pathway, that directly affect cancer cell growth and metastasis. Several studies have indicated that the drug resistance observed in several late-stage tumors might also be affected by the levels of PTP in the cell. Hence, these phosphatases have been in the limelight for the past few decades as potential drug-targets and several promising drug candidates have been developed, even though none of these drugs have reached the market yet. In this review, we explore the potential of PTP as a viable anti-cancer drug target by studying PTPs, their regulation of several key cancer cell signaling pathways and how their levels affect various types of cancer. Furthermore, we present the current scenario of PTP as a molecular target and the various challenges faced in the development of PTP-targeting anti-cancer drugs.
Collapse
Affiliation(s)
| | - Nidhee Chaudhary
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| |
Collapse
|
17
|
Liu X, Liu X, Du Y, Hu M, Tian Y, Li Z, Lv L, Zhang X, Liu Y, Zhou Y, Zhang P. DUSP5 promotes osteogenic differentiation through SCP1/2-dependent phosphorylation of SMAD1. STEM CELLS (DAYTON, OHIO) 2021; 39:1395-1409. [PMID: 34169608 PMCID: PMC8518947 DOI: 10.1002/stem.3428] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/27/2021] [Accepted: 05/06/2021] [Indexed: 11/23/2022]
Abstract
Dual‐specificity phosphatases (DUSPs) are defined by their capability to dephosphorylate both phosphoserine/phosphothreonine (pSer/pThr) and phosphotyrosine (pTyr). DUSP5, a member of DUSPs superfamily, is located in the nucleus and plays crucially regulatory roles in the signaling pathway transduction. In our present study, we discover that DUSP5 significantly promotes osteogenic differentiation of mesenchymal stromal cells (MSCs) by activating SMAD1 signaling pathway. Mechanistically, DUSP5 physically interacts with the phosphatase domain of small C‐terminal phosphatase 1/2 (SCP1/2, SMAD1 phosphatases) by the linker region. In addition, we further confirm that DUSP5 activates SMAD1 signaling through a SCP1/2‐dependent manner. Specifically, DUSP5 attenuates the SCP1/2‐SMAD1 interaction by competitively binding to SCP1/2, which is responsible for the SMAD1 dephosphorylation, and thus results in the activation of SMAD1 signaling. Importantly, DUSP5 expression in mouse bone marrow MSCs is significantly reduced in ovariectomized (OVX) mice in which osteogenesis is highly passive, and overexpression of Dusp5 via tail vein injection reverses the bone loss of OVX mice efficiently. Collectively, this work demonstrates that the linker region of DUSP5 maybe a novel chemically modifiable target for controlling MSCs fate choices and for osteoporosis treatment.
Collapse
Affiliation(s)
- Xuejiao Liu
- Department of Prosthodontics, School and Hospital of Stomatology, Peking University, Beijing, People's Republic of China.,National Engineering Lab for Digital and Material Technology of Stomatology, National Clinical Diseases, Peking University School and Hospital of Stomatology, Peking University, Beijing, People's Republic of China
| | - Xuenan Liu
- Department of Prosthodontics, School and Hospital of Stomatology, Peking University, Beijing, People's Republic of China.,National Engineering Lab for Digital and Material Technology of Stomatology, National Clinical Diseases, Peking University School and Hospital of Stomatology, Peking University, Beijing, People's Republic of China
| | - Yangge Du
- Department of Prosthodontics, School and Hospital of Stomatology, Peking University, Beijing, People's Republic of China.,National Engineering Lab for Digital and Material Technology of Stomatology, National Clinical Diseases, Peking University School and Hospital of Stomatology, Peking University, Beijing, People's Republic of China
| | - Menglong Hu
- Department of Prosthodontics, School and Hospital of Stomatology, Peking University, Beijing, People's Republic of China.,National Engineering Lab for Digital and Material Technology of Stomatology, National Clinical Diseases, Peking University School and Hospital of Stomatology, Peking University, Beijing, People's Republic of China
| | - Yueming Tian
- Department of Prosthodontics, School and Hospital of Stomatology, Peking University, Beijing, People's Republic of China.,National Engineering Lab for Digital and Material Technology of Stomatology, National Clinical Diseases, Peking University School and Hospital of Stomatology, Peking University, Beijing, People's Republic of China
| | - Zheng Li
- Department of Prosthodontics, School and Hospital of Stomatology, Peking University, Beijing, People's Republic of China.,National Engineering Lab for Digital and Material Technology of Stomatology, National Clinical Diseases, Peking University School and Hospital of Stomatology, Peking University, Beijing, People's Republic of China
| | - Longwei Lv
- Department of Prosthodontics, School and Hospital of Stomatology, Peking University, Beijing, People's Republic of China.,National Engineering Lab for Digital and Material Technology of Stomatology, National Clinical Diseases, Peking University School and Hospital of Stomatology, Peking University, Beijing, People's Republic of China
| | - Xiao Zhang
- Department of Prosthodontics, School and Hospital of Stomatology, Peking University, Beijing, People's Republic of China.,National Engineering Lab for Digital and Material Technology of Stomatology, National Clinical Diseases, Peking University School and Hospital of Stomatology, Peking University, Beijing, People's Republic of China
| | - Yunsong Liu
- Department of Prosthodontics, School and Hospital of Stomatology, Peking University, Beijing, People's Republic of China.,National Engineering Lab for Digital and Material Technology of Stomatology, National Clinical Diseases, Peking University School and Hospital of Stomatology, Peking University, Beijing, People's Republic of China
| | - Yongsheng Zhou
- Department of Prosthodontics, School and Hospital of Stomatology, Peking University, Beijing, People's Republic of China.,National Engineering Lab for Digital and Material Technology of Stomatology, National Clinical Diseases, Peking University School and Hospital of Stomatology, Peking University, Beijing, People's Republic of China
| | - Ping Zhang
- Department of Prosthodontics, School and Hospital of Stomatology, Peking University, Beijing, People's Republic of China.,National Engineering Lab for Digital and Material Technology of Stomatology, National Clinical Diseases, Peking University School and Hospital of Stomatology, Peking University, Beijing, People's Republic of China
| |
Collapse
|
18
|
Gao PP, Qi XW, Sun N, Sun YY, Zhang Y, Tan XN, Ding J, Han F, Zhang Y. The emerging roles of dual-specificity phosphatases and their specific characteristics in human cancer. Biochim Biophys Acta Rev Cancer 2021; 1876:188562. [PMID: 33964330 DOI: 10.1016/j.bbcan.2021.188562] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 04/15/2021] [Accepted: 05/02/2021] [Indexed: 12/15/2022]
Abstract
Reversible phosphorylation of proteins, controlled by kinases and phosphatases, is involved in various cellular processes. Dual-specificity phosphatases (DUSPs) can dephosphorylate phosphorylated serine, threonine and tyrosine residues. This family consists of 61 members, 44 of which have been identified in human, and these 44 members are classified into six subgroups, the phosphatase and tensin homolog (PTEN) protein phosphatases (PTENs), mitogen-activated protein kinase phosphatases (MKPs), atypical DUSPs, cell division cycle 14 (CDC14) phosphatases (CDC14s), slingshot protein phosphatases (SSHs), and phosphatases of the regenerating liver (PRLs). Growing evidence has revealed dysregulation of DUSPs as one of the common phenomenons and highlighted their key roles in human cancers. Furthermore, their differential expression may be a potential biomarker for tumor prognosis. Despite this, there are still many unstudied members of DUSPs need to further explore their precise roles and mechanism in cancers. Most importantly, the systematic review is very limited on the functional/mechanistic characteristics and clinical application of DUSPs at present. In this review, the structures, functions and underlying mechanisms of DUSPs are systematically reviewed, and the molecular and functional characteristics of DUSPs in different tumor types according to the current researches are summarized. In addition, the potential roles of the unstudied members and the possible different mechanisms of DUSPs in cancer are discussed and classified based on homology alignment and structural domain analyses. Moreover, the specific characteristics of their expression and prognosis are further determined in more than 30 types of human cancers by using the online databases. Finally, their potential application in precise diagnosis, prognosis and treatment of different types of cancers, and the main possible problems for the clinical application at present are prospected.
Collapse
Affiliation(s)
- Ping-Ping Gao
- Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing 400038, China
| | - Xiao-Wei Qi
- Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing 400038, China
| | - Na Sun
- Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing 400038, China
| | - Yuan-Yuan Sun
- Institute of Toxicology, College of Preventive Medicine, Army Medical University, Chongqing 400038, China; Department of Clinical Pharmacy, Jilin University School of Pharmaceutical Sciences, Changchun, Jilin 130023, China
| | - Ye Zhang
- Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing 400038, China
| | - Xuan-Ni Tan
- Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing 400038, China
| | - Jun Ding
- Department of Hepatobiliary Surgery, Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Fei Han
- Institute of Toxicology, College of Preventive Medicine, Army Medical University, Chongqing 400038, China.
| | - Yi Zhang
- Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing 400038, China.
| |
Collapse
|
19
|
Chandrasekhar A, Komirishetty P, Areti A, Krishnan A, Zochodne DW. Dual Specificity Phosphatases Support Axon Plasticity and Viability. Mol Neurobiol 2021; 58:391-407. [PMID: 32959171 DOI: 10.1007/s12035-020-02119-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 09/05/2020] [Indexed: 02/07/2023]
Abstract
In peripheral neuropathies, axonal degeneration (AxD) impairs the prognosis for recovery. Here, we describe a role for dual specificity phosphatases (DUSPs; MAP kinase phosphatases, MKPs), in supporting autonomous axon plasticity and viability. Both DUSPs 1 and 4 were identified within intact or axotomized sensory neurons. Knockdown of DUSP 1 or 4 independently or combined impaired neurite outgrowth in adult dissociated sensory neurons. Furthermore, adult sensory neurons with DUSP knockdown were rendered sensitive to axonopathy in vitro following exposure to low, subtoxic TrpV1 (transient receptor potential cation channel subfamily V member 1) activation by capsaicin, an intervention normally supportive of growth. This was not prevented by concurrent DLK (dual leucine zipper kinase) knockdown. Ex vivo neurofilament dissolution was heightened by DUSP inhibition within explanted nerves. In vivo DUSP knockdown or inhibition was associated with more rapid loss of motor axon excitability. The addition of SARM1 (sterile alpha and TIR motif containing 1) siRNA abrogated DUSP1 and 4 mediated loss of excitability. DUSP knockdown accelerated neurofilament breakdown and there was earlier morphological evidence of myelinated axon degeneration distal to axotomy. Taken together, the findings identify a key role for DUSPs in supporting axon plasticity and survival.
Collapse
Affiliation(s)
- Ambika Chandrasekhar
- Neuroscience and Mental Health Institute and Division of Neurology, Department of Medicine, University of Alberta, 7-132A Clinical Sciences Building, 11350-83 Ave, Edmonton, AB, T6G 2G3, Canada
| | - Prashanth Komirishetty
- Neuroscience and Mental Health Institute and Division of Neurology, Department of Medicine, University of Alberta, 7-132A Clinical Sciences Building, 11350-83 Ave, Edmonton, AB, T6G 2G3, Canada
| | - Aparna Areti
- Neuroscience and Mental Health Institute and Division of Neurology, Department of Medicine, University of Alberta, 7-132A Clinical Sciences Building, 11350-83 Ave, Edmonton, AB, T6G 2G3, Canada
| | - Anand Krishnan
- Neuroscience and Mental Health Institute and Division of Neurology, Department of Medicine, University of Alberta, 7-132A Clinical Sciences Building, 11350-83 Ave, Edmonton, AB, T6G 2G3, Canada
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, Canada
| | - Douglas W Zochodne
- Neuroscience and Mental Health Institute and Division of Neurology, Department of Medicine, University of Alberta, 7-132A Clinical Sciences Building, 11350-83 Ave, Edmonton, AB, T6G 2G3, Canada.
| |
Collapse
|
20
|
Qiao X, Zhu Y, Dang W, Wang R, Sun M, Chen Y, Shi Y, Zhang L. Dual-specificity phosphatase 15 (DUSP15) in the nucleus accumbens is a novel negative regulator of morphine-associated contextual memory. Addict Biol 2021; 26:e12884. [PMID: 32043707 DOI: 10.1111/adb.12884] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 01/18/2020] [Accepted: 01/23/2020] [Indexed: 12/21/2022]
Abstract
Drug relapse among addicts often occurs due to the learned association between drug-paired cues and the rewarding effects of these drugs, such as morphine. Contextual memory associated with morphine has a central role in maintenance and relapse. We showed that morphine-conditioned place preference (CPP) activates extracellular-regulated protein kinase (ERK) in the nucleus accumbens (NAc). The main enzymes that mediate ERK dephosphorylation are members of the dual-specificity phosphatase (DUSP) superfamily. It is unclear which members regulate the morphine CPP-induced activation of ERK. After screening, DUSP15 was found to be decreased during both morphine CPP expression and the reinstatement period. Intra-NAc infusions of AAV-DUSP15 (overexpression) not only prevented the expression of morphine-induced CPP but also facilitated extinction, inhibited reinstatement, and abolished ERK activation. However, after repeated morphine exposure and withdrawal in mice, there was no change in the expression of p-ERK and DUSP15, and the overexpression of DUSP15 in the NAc did not improve the impaired spatial memory or anxiety-like behaviour induced by morphine. Together, these findings indicate that DUSP15 not only prevents the expression of drug-paired contextual memory but also promotes the extinction of existing addiction memories, thus providing a novel therapeutic target for the treatment of drug addiction.
Collapse
Affiliation(s)
- Xiaomeng Qiao
- Department of Forensic Medicine, School of Basic Medical Sciences Zhengzhou University China
| | - Yongsheng Zhu
- College of Forensic Science, School of Medicine, Xi'an Jiaotong University China
| | - Wei Dang
- The Sixth Ward, Xi'an Mental Health Center China
| | - Runzhi Wang
- Department of Forensic Medicine, School of Basic Medical Sciences Zhengzhou University China
| | - Mizhu Sun
- Department of Forensic Medicine, School of Basic Medical Sciences Zhengzhou University China
| | - Yuanyuan Chen
- College of Forensic Science, School of Medicine, Xi'an Jiaotong University China
| | - Yuhui Shi
- College of Forensic Science, School of Medicine, Xi'an Jiaotong University China
| | - Lirong Zhang
- Department of Pharmacology, School of Basic Medical Sciences Zhengzhou University China
| |
Collapse
|
21
|
An N, Bassil K, Al Jowf GI, Steinbusch HWM, Rothermel M, de Nijs L, Rutten BPF. Dual-specificity phosphatases in mental and neurological disorders. Prog Neurobiol 2020; 198:101906. [PMID: 32905807 DOI: 10.1016/j.pneurobio.2020.101906] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 08/26/2020] [Accepted: 09/01/2020] [Indexed: 01/01/2023]
Abstract
The dual-specificity phosphatase (DUSP) family includes a heterogeneous group of protein phosphatases that dephosphorylate both phospho-tyrosine and phospho-serine/phospho-threonine residues within a single substrate. These protein phosphatases have many substrates and modulate diverse neural functions, such as neurogenesis, differentiation, and apoptosis. DUSP genes have furthermore been associated with mental disorders such as depression and neurological disorders such as Alzheimer's disease. Herein, we review the current literature on the DUSP family of genes concerning mental and neurological disorders. This review i) outlines the structure and general functions of DUSP genes, and ii) overviews the literature on DUSP genes concerning mental and neurological disorders, including model systems, while furthermore providing perspectives for future research.
Collapse
Affiliation(s)
- Ning An
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands; European Graduate School of Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Katherine Bassil
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands; European Graduate School of Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Ghazi I Al Jowf
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands; College of Applied Medical Sciences, Department of Public Health, King Faisal University, Al-Ahsa, Saudi Arabia; European Graduate School of Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Harry W M Steinbusch
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands; European Graduate School of Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Markus Rothermel
- European Graduate School of Neuroscience, Maastricht University, Maastricht, the Netherlands; Department of Chemosensation - AG Neuromodulation, RWTH Aachen University, Aachen, Germany
| | - Laurence de Nijs
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands; European Graduate School of Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Bart P F Rutten
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands; European Graduate School of Neuroscience, Maastricht University, Maastricht, the Netherlands.
| |
Collapse
|
22
|
|
23
|
Genome-wide functional analysis of phosphatases in the pathogenic fungus Cryptococcus neoformans. Nat Commun 2020; 11:4212. [PMID: 32839469 PMCID: PMC7445287 DOI: 10.1038/s41467-020-18028-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 07/30/2020] [Indexed: 12/13/2022] Open
Abstract
Phosphatases, together with kinases and transcription factors, are key components in cellular signalling networks. Here, we present a systematic functional analysis of the phosphatases in Cryptococcus neoformans, a fungal pathogen that causes life-threatening fungal meningoencephalitis. We analyse 230 signature-tagged mutant strains for 114 putative phosphatases under 30 distinct in vitro growth conditions, revealing at least one function for 60 of these proteins. Large-scale virulence and infectivity assays using insect and mouse models indicate roles in pathogenicity for 31 phosphatases involved in various processes such as thermotolerance, melanin and capsule production, stress responses, O-mannosylation, or retromer function. Notably, phosphatases Xpp1, Ssu72, Siw14, and Sit4 promote blood-brain barrier adhesion and crossing by C. neoformans. Together with our previous systematic studies of transcription factors and kinases, our results provide comprehensive insight into the pathobiological signalling circuitry of C. neoformans. Phosphatases are key components in cellular signalling networks. Here, the authors present a systematic functional analysis of phosphatases of the fungal pathogen Cryptococcus neoformans, revealing roles in virulence, stress responses, O-mannosylation, retromer function and other processes.
Collapse
|
24
|
Wang CA, Chang IH, Hou PC, Tai YJ, Li WN, Hsu PL, Wu SR, Chiu WT, Li CF, Shan YS, Tsai SJ. DUSP2 regulates extracellular vesicle-VEGF-C secretion and pancreatic cancer early dissemination. J Extracell Vesicles 2020; 9:1746529. [PMID: 32341770 PMCID: PMC7170376 DOI: 10.1080/20013078.2020.1746529] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 02/17/2020] [Accepted: 03/13/2020] [Indexed: 12/21/2022] Open
Abstract
Early dissemination is a unique characteristic and a detrimental process of pancreatic ductal adenocarcinoma (PDAC); however, the underlying mechanism remains largely unknown. Here, we investigate the role of dual-specificity phosphatase-2 (DUSP2)-vascular endothelial growth factor-C (VEGF-C) axis in mediating PDAC lymphangiogenesis and lymphovascular invasion. Expression of DUSP2 is greatly suppressed in PDAC, which results in increased aberrant expression of extracellular vesicle (EV)-associated VEGF-C secretion. EV-VEGF-C exerts paracrine effects on lymphatic endothelial cells and autocrine effects on cancer cells, resulting in the lymphovascular invasion of cancer cells. Tissue-specific knockout of Dusp2 in mouse pancreas recapitulates PDAC phenotype and lymphovascular invasion. Mechanistically, loss-of-DUSP2 enhances proprotein convertase activity and vesicle trafficking to promote the release of the mature form of EV-VEGF-C. Collectively, these findings represent a conceptual advance in understanding pancreatic cancer lymphovascular invasion and suggest that loss-of-DUSP2-mediated VEGF-C processing may play important roles in early dissemination of pancreatic cancer. Abbreviations: DUSP2: dual-specificity phosphatase-2; VEGF-C: vascular endothelial growth factor-C; EV: extracellular vesicles; PDAC: pancreatic ductal adenocarcinoma; KD: knockdown
Collapse
Affiliation(s)
- Chu-An Wang
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - I-Heng Chang
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Livestock Research Institute, Council of Agriculture, Tainan, Taiwan
| | - Pei-Chi Hou
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Jing Tai
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wan-Ning Li
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Pei-Ling Hsu
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shang-Rung Wu
- Institute of Oral Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wen-Tai Chiu
- Department of Biomedical Engineering, College of Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Chien-Feng Li
- Department of Pathology, Chi-Mei Foundational Medical Center, Tainan, Taiwan.,National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan
| | - Yan-Shen Shan
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Surgery, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shaw-Jenq Tsai
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
25
|
Wei Y, Wang G, Wang C, Zhou Y, Zhang J, Xu K. Upregulation of DUSP14 Affects Proliferation, Invasion and Metastasis, Potentially via Epithelial-Mesenchymal Transition and Is Associated with Poor Prognosis in Pancreatic Cancer. Cancer Manag Res 2020; 12:2097-2108. [PMID: 32256117 PMCID: PMC7093097 DOI: 10.2147/cmar.s240040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 02/27/2020] [Indexed: 12/11/2022] Open
Abstract
Background There is a growing number of evidence which report the relationship of the dual-specificity phosphatases 14 (DUSP14) with physiological and pathological mechanisms in the human body. However, it is still not known what if any role DUSP14 plays in pancreatic cancer. Materials and Methods The study evaluates the levels of DUSP14 in the pancreatic cancer tissues and cell lines using Western blotting and qRT-PCR to assess the levels of the DUSP14 and epithelial–mesenchymal transition (EMT) biomarkers. After the DUSP14 was blocked, the following assays were performed: colony formation, assessments of scratch wound and transwell to examine the effects of DUSP14 on the proliferation, migration and invasion of the pancreatic cancer. Results Results showed that there was a significant increase in the level of DUSP14 expression both in the pancreatic cancer tissues and cell lines. Experimental downregulation of DUSP14 induced the inhibition of the capacity of proliferation, migration and invasion of the pancreatic cancer cells. Western blotting analyses showed changes in the levels of expression of the EMT biomarkers, which helped to determine the function of DUSP14 in EMT. Conclusion In conclusion, we suggest that DUSP14 is a novel molecular target that can be used for the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Yajun Wei
- Department of Biliary and Pancreatic Surgery, Anhui Provincial Hospital Affiliated with Anhui Medical University, Hefei, Anhui 230001, People's Republic of China
| | - Gang Wang
- Department of Biliary and Pancreatic Surgery, Anhui Provincial Hospital Affiliated with Anhui Medical University, Hefei, Anhui 230001, People's Republic of China
| | - Cheng Wang
- Department of Biliary and Pancreatic Surgery, Anhui Provincial Hospital Affiliated with Anhui Medical University, Hefei, Anhui 230001, People's Republic of China
| | - Yangming Zhou
- Department of Biliary and Pancreatic Surgery, Anhui Provincial Hospital Affiliated with Anhui Medical University, Hefei, Anhui 230001, People's Republic of China
| | - Jingcheng Zhang
- Department of Biliary and Pancreatic Surgery, Anhui Provincial Hospital Affiliated with Anhui Medical University, Hefei, Anhui 230001, People's Republic of China
| | - Kai Xu
- Department of Biliary and Pancreatic Surgery, Anhui Provincial Hospital Affiliated with Anhui Medical University, Hefei, Anhui 230001, People's Republic of China
| |
Collapse
|
26
|
Manda G, Rojo AI, Martínez-Klimova E, Pedraza-Chaverri J, Cuadrado A. Nordihydroguaiaretic Acid: From Herbal Medicine to Clinical Development for Cancer and Chronic Diseases. Front Pharmacol 2020; 11:151. [PMID: 32184727 PMCID: PMC7058590 DOI: 10.3389/fphar.2020.00151] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 02/05/2020] [Indexed: 12/11/2022] Open
Abstract
Nordihydroguaiaretic acid (NDGA) is a phenolic lignan obtained from Larrea tridentata, the creosote bush found in Mexico and USA deserts, that has been used in traditional medicine for the treatment of numerous diseases such as cancer, renal, cardiovascular, immunological, and neurological disorders, and even aging. NDGA presents two catechol rings that confer a very potent antioxidant activity by scavenging oxygen free radicals and this may explain part of its therapeutic action. Additional effects include inhibition of lipoxygenases (LOXs) and activation of signaling pathways that impinge on the transcription factor Nuclear Factor Erythroid 2-related Factor (NRF2). On the other hand, the oxidation of the catechols to the corresponding quinones my elicit alterations in proteins and DNA that raise safety concerns. This review describes the current knowledge on NDGA, its targets and side effects, and its synthetic analogs as promising therapeutic agents, highlighting their mechanism of action and clinical projection towards therapy of neurodegenerative, liver, and kidney disease, as well as cancer.
Collapse
Affiliation(s)
- Gina Manda
- Department Cellular and Molecular Medicine, Victor Babes National Institute of Pathology, Bucharest, Romania
| | - Ana I Rojo
- Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Investigación Sanitaria la Paz (idiPAZ), Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC, Madrid, Spain
| | - Elena Martínez-Klimova
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), Mexico City, Mexico
| | - José Pedraza-Chaverri
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), Mexico City, Mexico
| | - Antonio Cuadrado
- Department Cellular and Molecular Medicine, Victor Babes National Institute of Pathology, Bucharest, Romania.,Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Investigación Sanitaria la Paz (idiPAZ), Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC, Madrid, Spain
| |
Collapse
|
27
|
Pulido R, Lang R. Dual Specificity Phosphatases: From Molecular Mechanisms to Biological Function. Int J Mol Sci 2019; 20:ijms20184372. [PMID: 31489884 PMCID: PMC6770836 DOI: 10.3390/ijms20184372] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 09/04/2019] [Indexed: 12/16/2022] Open
Affiliation(s)
- Rafael Pulido
- Biomarkers in Cancer Unit, Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain.
- IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain.
| | - Roland Lang
- Institute of Clinical Microbiology, Immunology and Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany.
| |
Collapse
|
28
|
Ding T, Zhou Y, Long R, Chen C, Zhao J, Cui P, Guo M, Liang G, Xu L. DUSP8 phosphatase: structure, functions, expression regulation and the role in human diseases. Cell Biosci 2019; 9:70. [PMID: 31467668 PMCID: PMC6712826 DOI: 10.1186/s13578-019-0329-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 08/12/2019] [Indexed: 12/28/2022] Open
Abstract
Dual-specificity phosphatases (DUSPs) are a subset of protein tyrosine phosphatases (PTPs), many of which dephosphorylate the residues of phosphor-serine/threonine and phosphor-tyrosine on mitogen-activated protein kinases (MAPKs), and hence are also referred to as MAPK phosphatases (MKPs). Homologue of Vaccinia virus H1 phosphatase gene clone 5 (HVH-5), also known as DUSP8, is a unique member of the DUSPs family of phosphatases. Accumulating evidence has shown that DUSP8 plays an important role in phosphorylation-mediated signal transduction of MAPK signaling ranging from cell oxidative stress response, cell apoptosis and various human diseases. It is generally believed that DUSP8 exhibits significant dephosphorylation activity against JNK, however, with the deepening of research, plenty of new literature reports that DUSP8 also has effective dephosphorylation activity on p38 MAPK and ERKs, successfully affects the transduction of MAPKs pathway, indicating that DUSP8 presents a unknown diversity of DUSPs family on distinct corresponding dephosphorylated substrates in different biological events. Therefore, the in-depth study of DUSP8 not only throws a new light on the multi-biological function of DUSPs, but also is much valuable for the reveal of complex pathobiology of clinical diseases. In this review, we provide a detail overview of DUSP8 phosphatase structure, biological function and expression regulation, as well as its role in related clinical human diseases, which might be help for the understanding of biological function of DUSP8 and the development of prevention, diagnosis and therapeutics in related human diseases.
Collapse
Affiliation(s)
- Tao Ding
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi, 563000 Guizhou China.,2Department of Immunology, Zunyi Medical University, Zunyi, 563000 Guizhou China
| | - Ya Zhou
- 3Department of Medical Physics, Zunyi Medical University, Zunyi, 563000 Guizhou China
| | - Runying Long
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi, 563000 Guizhou China.,2Department of Immunology, Zunyi Medical University, Zunyi, 563000 Guizhou China
| | - Chao Chen
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi, 563000 Guizhou China
| | - Juanjuan Zhao
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi, 563000 Guizhou China
| | - Panpan Cui
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi, 563000 Guizhou China
| | - Mengmeng Guo
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi, 563000 Guizhou China
| | - Guiyou Liang
- 4Department of Cardiovascular Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004 Guizhou China.,5Department of Cardiovascular Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000 Guizhou China
| | - Lin Xu
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi, 563000 Guizhou China.,2Department of Immunology, Zunyi Medical University, Zunyi, 563000 Guizhou China
| |
Collapse
|
29
|
Zhao M, Huang X. Downregulation of JKAP is correlated with elevated disease risk, advanced disease severity, higher inflammation, and poor survival in sepsis. J Clin Lab Anal 2019; 33:e22945. [PMID: 31206807 PMCID: PMC6757113 DOI: 10.1002/jcla.22945] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 05/14/2019] [Accepted: 05/17/2019] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE This study aimed to explore the association of JKAP with sepsis risk and investigate its correlation with disease severity, inflammatory cytokines, and survival in sepsis patients. METHODS A hundred and one sepsis patients along with 100 healthy controls were enrolled, and their blood serum samples were collected for JKAP and inflammatory cytokines measurement by enzyme-linked immunoassay. The difference in serum JKAP between sepsis patients and healthy controls was determined. Among sepsis patients, the correlation of JKAP with disease severity, laboratory indexes, inflammatory cytokines, 28-day mortality, and accumulating survival was analyzed. RESULTS JNK pathway-associated phosphatase level was decreased in sepsis patients compared with healthy controls and presented with good value in predicting decreased sepsis risk (AUC = 0.896 [95% CI: 0.851-0.941]). And its low expression was associated with advanced disease severity (APACHE II score and SOFA score) and systemic inflammation (CRP, PCT, TNF-α, IL-1β, IL-6, and IL-17) in sepsis patients. Additionally, JKAP level was decreased in deaths compared with survivors and had good value in distinguishing deaths from survivors (AUC = 0.742 [95% CI: 0.636-0.849]). Further, Kaplan-Meier curve analysis disclosed that JKAP high expression predicted more prolonged accumulating survival in sepsis patients. CONCLUSION JNK pathway-associated phosphatase is of good value in predicting lower sepsis risk, and its downregulation correlates with advanced disease severity, higher level of systemic inflammation, and poor survival in sepsis patients.
Collapse
Affiliation(s)
- Min Zhao
- Department of Emergency Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Xing Huang
- Department of Emergency Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| |
Collapse
|
30
|
Subbannayya Y, Pinto SM, Bösl K, Prasad TSK, Kandasamy RK. Dynamics of Dual Specificity Phosphatases and Their Interplay with Protein Kinases in Immune Signaling. Int J Mol Sci 2019; 20:ijms20092086. [PMID: 31035605 PMCID: PMC6539644 DOI: 10.3390/ijms20092086] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/23/2019] [Accepted: 04/25/2019] [Indexed: 12/12/2022] Open
Abstract
Dual specificity phosphatases (DUSPs) have a well-known role as regulators of the immune response through the modulation of mitogen-activated protein kinases (MAPKs). Yet the precise interplay between the various members of the DUSP family with protein kinases is not well understood. Recent multi-omics studies characterizing the transcriptomes and proteomes of immune cells have provided snapshots of molecular mechanisms underlying innate immune response in unprecedented detail. In this study, we focus on deciphering the interplay between members of the DUSP family with protein kinases in immune cells using publicly available omics datasets. Our analysis resulted in the identification of potential DUSP-mediated hub proteins including MAPK7, MAPK8, AURKA, and IGF1R. Furthermore, we analyzed the association of DUSP expression with TLR4 signaling and identified VEGF, FGFR, and SCF-KIT pathway modules to be regulated by the activation of TLR4 signaling. Finally, we identified several important kinases including LRRK2, MAPK8, and cyclin-dependent kinases as potential DUSP-mediated hubs in TLR4 signaling. The findings from this study have the potential to aid in the understanding of DUSP signaling in the context of innate immunity. Further, this will promote the development of therapeutic modalities for disorders with aberrant DUSP signaling.
Collapse
Affiliation(s)
- Yashwanth Subbannayya
- Centre of Molecular Inflammation Research (CEMIR), Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, N-7491 Trondheim, Norway.
- Center for Systems Biology and Molecular Medicine, Yenepoya (Deemed to be University), Mangalore 575018, India.
| | - Sneha M Pinto
- Centre of Molecular Inflammation Research (CEMIR), Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, N-7491 Trondheim, Norway.
- Center for Systems Biology and Molecular Medicine, Yenepoya (Deemed to be University), Mangalore 575018, India.
| | - Korbinian Bösl
- Centre of Molecular Inflammation Research (CEMIR), Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, N-7491 Trondheim, Norway.
| | - T S Keshava Prasad
- Center for Systems Biology and Molecular Medicine, Yenepoya (Deemed to be University), Mangalore 575018, India.
| | - Richard K Kandasamy
- Centre of Molecular Inflammation Research (CEMIR), Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, N-7491 Trondheim, Norway.
- Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, University of Oslo and Oslo University Hospital, N-0349 Oslo, Norway.
| |
Collapse
|
31
|
The Dual-Specificity Phosphatase 10 (DUSP10): Its Role in Cancer, Inflammation, and Immunity. Int J Mol Sci 2019; 20:ijms20071626. [PMID: 30939861 PMCID: PMC6480380 DOI: 10.3390/ijms20071626] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 03/28/2019] [Accepted: 03/30/2019] [Indexed: 12/22/2022] Open
Abstract
Cancer is one of the most diagnosed diseases in developed countries. Inflammation is a common response to different stress situations including cancer and infection. In those processes, the family of mitogen-activated protein kinases (MAPKs) has an important role regulating cytokine secretion, proliferation, survival, and apoptosis, among others. MAPKs regulate a large number of extracellular signals upon a variety of physiological as well as pathological conditions. MAPKs activation is tightly regulated by phosphorylation/dephosphorylation events. In this regard, the dual-specificity phosphatase 10 (DUSP10) has been described as a MAPK phosphatase that negatively regulates p38 MAPK and c-Jun N-terminal kinase (JNK) in several cellular types and tissues. Several studies have proposed that extracellular signal-regulated kinase (ERK) can be also modulated by DUSP10. This suggests a complex role of DUSP10 on MAPKs regulation and, in consequence, its impact in a wide variety of responses involved in both cancer and inflammation. Here, we review DUSP10 function in cancerous and immune cells and studies in both mouse models and patients that establish a clear role of DUSP10 in different processes such as inflammation, immunity, and cancer.
Collapse
|
32
|
Nunes-Xavier CE, Zaldumbide L, Aurtenetxe O, López-Almaraz R, López JI, Pulido R. Dual-Specificity Phosphatases in Neuroblastoma Cell Growth and Differentiation. Int J Mol Sci 2019; 20:ijms20051170. [PMID: 30866462 PMCID: PMC6429076 DOI: 10.3390/ijms20051170] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 03/01/2019] [Accepted: 03/01/2019] [Indexed: 12/19/2022] Open
Abstract
Dual-specificity phosphatases (DUSPs) are important regulators of neuronal cell growth and differentiation by targeting proteins essential to neuronal survival in signaling pathways, among which the MAP kinases (MAPKs) stand out. DUSPs include the MAPK phosphatases (MKPs), a family of enzymes that directly dephosphorylate MAPKs, as well as the small-size atypical DUSPs, a group of low molecular-weight enzymes which display more heterogeneous substrate specificity. Neuroblastoma (NB) is a malignancy intimately associated with the course of neuronal and neuroendocrine cell differentiation, and constitutes the source of more common extracranial solid pediatric tumors. Here, we review the current knowledge on the involvement of MKPs and small-size atypical DUSPs in NB cell growth and differentiation, and discuss the potential of DUSPs as predictive biomarkers and therapeutic targets in human NB.
Collapse
Affiliation(s)
- Caroline E Nunes-Xavier
- Biomarkers in Cancer Unit, Biocruces-Bizkaia Health Research Institute, Barakaldo, Bizkaia 48903, Spain.
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital HF Radiumhospitalet, Oslo 0424, Norway.
| | - Laura Zaldumbide
- Department of Pathology, Cruces University Hospital, University of the Basque Country (UPV/EHU), Barakaldo, Bizkaia 48903, Spain.
| | - Olaia Aurtenetxe
- Biomarkers in Cancer Unit, Biocruces-Bizkaia Health Research Institute, Barakaldo, Bizkaia 48903, Spain.
| | - Ricardo López-Almaraz
- Pediatric Oncology and Hematology, Cruces University Hospital, Barakaldo, Bizkaia 48903, Spain.
| | - José I López
- Biomarkers in Cancer Unit, Biocruces-Bizkaia Health Research Institute, Barakaldo, Bizkaia 48903, Spain.
- Department of Pathology, Cruces University Hospital, University of the Basque Country (UPV/EHU), Barakaldo, Bizkaia 48903, Spain.
| | - Rafael Pulido
- Biomarkers in Cancer Unit, Biocruces-Bizkaia Health Research Institute, Barakaldo, Bizkaia 48903, Spain.
- IKERBASQUE, Basque Foundation for Science, Bilbao 48011, Spain.
| |
Collapse
|
33
|
DUSP5 expression associates with poor prognosis in human neuroblastoma. Exp Mol Pathol 2018; 105:272-278. [DOI: 10.1016/j.yexmp.2018.08.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 07/23/2018] [Accepted: 08/24/2018] [Indexed: 02/06/2023]
|
34
|
MYC Induces a Hybrid Energetics Program Early in Cell Reprogramming. Stem Cell Reports 2018; 11:1479-1492. [PMID: 30472011 PMCID: PMC6294174 DOI: 10.1016/j.stemcr.2018.10.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 10/25/2018] [Accepted: 10/25/2018] [Indexed: 01/07/2023] Open
Abstract
Cell reprogramming is thought to be associated with a full metabolic switch from an oxidative- to a glycolytic-based metabolism. However, neither the dynamics nor the factors controlling this metabolic switch are fully understood. By using cellular, biochemical, protein array, metabolomic, and respirometry analyses, we found that c-MYC establishes a robust bivalent energetics program early in cell reprogramming. Cells prone to undergo reprogramming exhibit high mitochondrial membrane potential and display a hybrid metabolism. We conclude that MYC proteins orchestrate a rewiring of somatic cell metabolism early in cell reprogramming, whereby somatic cells acquire the phenotypic plasticity necessary for their transition to pluripotency in response to either intrinsic or external cues. Endogenous MYC biological activity is necessary for cell reprogramming MYC drives mitochondrial fission early in cell reprogramming MYC establishes a bivalent energetics state necessary for cell reprogramming MYC polarizes mitochondria, poising cells for reprogramming
Collapse
|
35
|
Van den Eynden J, Umapathy G, Ashouri A, Cervantes-Madrid D, Szydzik J, Ruuth K, Koster J, Larsson E, Guan J, Palmer RH, Hallberg B. Phosphoproteome and gene expression profiling of ALK inhibition in neuroblastoma cell lines reveals conserved oncogenic pathways. Sci Signal 2018; 11:11/557/eaar5680. [PMID: 30459281 DOI: 10.1126/scisignal.aar5680] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Anaplastic lymphoma kinase (ALK) is a tyrosine kinase receptor that is a clinical target of major interest in cancer. Mutations and rearrangements in ALK trigger the activation of the encoded receptor and its downstream signaling pathways. ALK mutations have been identified in both familial and sporadic neuroblastoma cases as well as in 30 to 40% of relapses, which makes ALK a bona fide target in neuroblastoma therapy. Tyrosine kinase inhibitors (TKIs) that target ALK are currently in clinical use for the treatment of patients with ALK-positive non-small cell lung cancer. However, monotherapy with the ALK inhibitor crizotinib has been less encouraging in neuroblastoma patients with ALK alterations, raising the question of whether combinatorial therapy would be more effective. In this study, we established both phosphoproteomic and gene expression profiles of ALK activity in neuroblastoma cells exposed to first- and third-generation ALK TKIs, to identify the underlying molecular mechanisms and identify relevant biomarkers, signaling networks, and new therapeutic targets. This analysis has unveiled various important leads for novel combinatorial treatment strategies for patients with neuroblastoma and an increased understanding of ALK signaling involved in this disease.
Collapse
Affiliation(s)
- Jimmy Van den Eynden
- Department of Medical Biochemistry and Cell Biology, Sahlgrenska Academy, University of Gothenburg, SE-405 30 Göteborg, Sweden.,Department of Human Structure and Repair, Anatomy and Embryology Unit, Ghent University, 9000 Ghent, Belgium
| | - Ganesh Umapathy
- Department of Medical Biochemistry and Cell Biology, Sahlgrenska Academy, University of Gothenburg, SE-405 30 Göteborg, Sweden
| | - Arghavan Ashouri
- Department of Medical Biochemistry and Cell Biology, Sahlgrenska Academy, University of Gothenburg, SE-405 30 Göteborg, Sweden
| | | | - Joanna Szydzik
- Department of Medical Biochemistry and Cell Biology, Sahlgrenska Academy, University of Gothenburg, SE-405 30 Göteborg, Sweden
| | - Kristina Ruuth
- Institution for Molecular Biology, Umeå University, SE-901 87 Umeå, Sweden
| | - Jan Koster
- Department of Oncogenomics, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, Netherlands
| | - Erik Larsson
- Department of Medical Biochemistry and Cell Biology, Sahlgrenska Academy, University of Gothenburg, SE-405 30 Göteborg, Sweden
| | - Jikui Guan
- Department of Medical Biochemistry and Cell Biology, Sahlgrenska Academy, University of Gothenburg, SE-405 30 Göteborg, Sweden.,Children's Hospital affiliated with Zhengzhou University, 450018 Zhengzhou, China
| | - Ruth H Palmer
- Department of Medical Biochemistry and Cell Biology, Sahlgrenska Academy, University of Gothenburg, SE-405 30 Göteborg, Sweden.
| | - Bengt Hallberg
- Department of Medical Biochemistry and Cell Biology, Sahlgrenska Academy, University of Gothenburg, SE-405 30 Göteborg, Sweden.
| |
Collapse
|
36
|
Quattrochi B, Gulvady A, Driscoll DR, Sano M, Klimstra DS, Turner CE, Lewis BC. MicroRNAs of the mir-17~92 cluster regulate multiple aspects of pancreatic tumor development and progression. Oncotarget 2018; 8:35902-35918. [PMID: 28415794 PMCID: PMC5482626 DOI: 10.18632/oncotarget.16277] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 03/08/2017] [Indexed: 12/13/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a lethal malignancy characterized by resistance to currently employed chemotherapeutic approaches. Members of the mir-17~92 cluster of microRNAs (miRNAs) are upregulated in PDAC, but the precise roles of these miRNAs in PDAC are unknown. Using genetically engineered mouse models, we show that loss of mir-17~92 reduces ERK pathway activation downstream of mutant KRAS and promotes the regression of KRASG12D-driven precursor pancreatic intraepithelial neoplasias (PanINs) and their replacement by normal exocrine tissue. In a PDAC model driven by concomitant KRASG12D expression and Trp53 heterozygosity, mir-17~92 deficiency extended the survival of mice that lacked distant metastasis. Moreover, mir-17~92-deficient PDAC cell lines display reduced invasion activity in transwell assays, form fewer invadopodia rosettes than mir-17~92-competent cell lines and are less able to degrade extracellular matrix. Specific inhibition of miR-19 family miRNAs with antagomirs recapitulates these phenotypes, suggesting that miR-19 family miRNAs are important mediators of PDAC cell invasion. Together these data demonstrate an oncogenic role for mir-17~92 at multiple stages of pancreatic tumorigenesis and progression; specifically, they link this miRNA cluster to ERK pathway activation and precursor lesion maintenance in vivo and identify a novel role for miR-19 family miRNAs in promoting cancer cell invasion.
Collapse
Affiliation(s)
- Brian Quattrochi
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Anushree Gulvady
- Department of Cell and Developmental Biology, State University of New York Upstate Medical Center, Syracuse, NY 13210, USA
| | - David R Driscoll
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Makoto Sano
- Division of Pathology, Department of Pathology and Microbiology, Nihon University School of Medicine, Itabashi-ku, Tokyo, 173-8610, Japan
| | - David S Klimstra
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Christopher E Turner
- Department of Cell and Developmental Biology, State University of New York Upstate Medical Center, Syracuse, NY 13210, USA
| | - Brian C Lewis
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA.,Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA.,Department of Radiation Oncology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| |
Collapse
|
37
|
Meurer SK, Weiskirchen R. Usage of Mitogen-Activated Protein Kinase Small Molecule Inhibitors: More Than Just Inhibition! Front Pharmacol 2018; 9:98. [PMID: 29483873 PMCID: PMC5816342 DOI: 10.3389/fphar.2018.00098] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 01/29/2018] [Indexed: 11/13/2022] Open
Abstract
We have identified a phenomenon occurring in the usage of proposed “specific” Mitogen-activated protein kinase (MAPK) inhibitors. We found that especially inhibitors of p38 potentiate the activation of other MAPKs in various cell types. This finding will have tremendous impact on the interpretation of all former studies using MAPK inhibitors.
Collapse
Affiliation(s)
- Steffen K Meurer
- Institute of Molecular Pathobiochemistry, Experimental Gene, and Clinical Chemistry, RWTH Aachen University, Aachen, Germany
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene, and Clinical Chemistry, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
38
|
Álvarez-Carretero S, Pavlopoulou N, Adams J, Gilsenan J, Tabernero L. VSpipe, an Integrated Resource for Virtual Screening and Hit Selection: Applications to Protein Tyrosine Phospahatase Inhibition. Molecules 2018; 23:molecules23020353. [PMID: 29414924 PMCID: PMC6017540 DOI: 10.3390/molecules23020353] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 02/02/2018] [Accepted: 02/04/2018] [Indexed: 11/16/2022] Open
Abstract
The use of computational tools for virtual screening provides a cost-efficient approach to select starting points for drug development. We have developed VSpipe, a user-friendly semi-automated pipeline for structure-based virtual screening. VSpipe uses the existing tools AutoDock and OpenBabel together with software developed in-house, to create an end-to-end virtual screening workflow ranging from the preparation of receptor and ligands to the visualisation of results. VSpipe is efficient and flexible, allowing the users to make choices at different steps, and it is amenable to use in both local and cluster mode. We have validated VSpipe using the human protein tyrosine phosphatase PTP1B as a case study. Using a combination of blind and targeted docking VSpipe identified both new and known functional ligand binding sites. Assessment of different binding clusters using the ligand efficiency plots created by VSpipe, defined a drug-like chemical space for development of PTP1B inhibitors with potential applications to other PTPs. In this study, we show that VSpipe can be deployed to identify and compare different modes of inhibition thus guiding the selection of initial hits for drug discovery.
Collapse
Affiliation(s)
- Sandra Álvarez-Carretero
- School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK.
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK.
| | - Niki Pavlopoulou
- School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK.
- Insight Centre for Data Analytics, NUIG, Galway H91, Ireland.
| | - James Adams
- School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK.
| | - Jane Gilsenan
- School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK.
| | - Lydia Tabernero
- School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK.
| |
Collapse
|
39
|
Abstract
In higher eukaryotes, the Tyr phosphorylation status of cellular proteins results from the coordinated action of Protein Tyrosine Kinases (PTKs) and Protein Tyrosine Phosphatases (PTPs). PTPs have emerged as highly regulated enzymes with diverse substrate specificity, and proteins with Tyr-dephosphorylation or Tyr-dephosphorylation-like properties can be clustered as the PTPome. This includes proteins from the PTP superfamily, which display a Cys-based catalytic mechanism, as well as enzymes from other gene families (Asp-based phosphatases, His-based phosphatases) that have converged in protein Tyr-dephosphorylation-related functions by using non-Cys-based catalytic mechanisms. Within the Cys-based members of the PTPome, classical PTPs dephosphorylate specific phosphoTyr (pTyr) residues from protein substrates, whereas VH1-like dual-specificity PTPs dephosphorylate pTyr, pSer, and pThr residues, as well as nonproteinaceous substrates, including phosphoinositides and phosphorylated carbohydrates. In addition, several PTPs have impaired catalytic activity as a result of amino acid substitutions at their active sites, but retain regulatory functions related with pTyr signaling. As a result of their relevant biological activity, many PTPs are linked to human disease, including cancer, neurodevelopmental, and metabolic diseases, making these proteins important drug targets and molecular markers in the clinic. Here, a brief overview on the biochemistry and physiology of the different groups of proteins that belong to the mammalian PTPome is presented.
Collapse
|
40
|
Ku B, Hong W, Keum CW, Kim M, Ryu H, Jeon D, Shin HC, Kim JH, Kim SJ, Ryu SE. Structural and biochemical analysis of atypically low dephosphorylating activity of human dual-specificity phosphatase 28. PLoS One 2017; 12:e0187701. [PMID: 29121083 PMCID: PMC5679558 DOI: 10.1371/journal.pone.0187701] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 10/24/2017] [Indexed: 12/20/2022] Open
Abstract
Dual-specificity phosphatases (DUSPs) constitute a subfamily of protein tyrosine phosphatases, and are intimately involved in the regulation of diverse parameters of cellular signaling and essential biological processes. DUSP28 is one of the DUSP subfamily members that is known to be implicated in the progression of hepatocellular and pancreatic cancers, and its biological functions and enzymatic characteristics are mostly unknown. Herein, we present the crystal structure of human DUSP28 determined to 2.1 Å resolution. DUSP28 adopts a typical DUSP fold, which is composed of a central β-sheet covered by α-helices on both sides and contains a well-ordered activation loop, as do other enzymatically active DUSP proteins. The catalytic pocket of DUSP28, however, appears hardly accessible to a substrate because of the presence of nonconserved bulky residues in the protein tyrosine phosphatase signature motif. Accordingly, DUSP28 showed an atypically low phosphatase activity in the biochemical assay, which was remarkably improved by mutations of two nonconserved residues in the activation loop. Overall, this work reports the structural and biochemical basis for understanding a putative oncological therapeutic target, DUSP28, and also provides a unique mechanism for the regulation of enzymatic activity in the DUSP subfamily proteins.
Collapse
Affiliation(s)
- Bonsu Ku
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Department of Bioscience, University of Science and Technology KRIBB School, Daejeon, Republic of Korea
| | - Won Hong
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, Republic of Korea
| | - Chae Won Keum
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Department of Bioscience, University of Science and Technology KRIBB School, Daejeon, Republic of Korea
| | - Myeongbin Kim
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, Republic of Korea
| | - Hyunyeol Ryu
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, Republic of Korea
| | - Donghwan Jeon
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, Republic of Korea
| | - Ho-Chul Shin
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Jae Hoon Kim
- Department of Biotechnology, College of Applied Life Science, SARI, Jeju National University, Jeju-do, Republic of Korea
| | - Seung Jun Kim
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Department of Bioscience, University of Science and Technology KRIBB School, Daejeon, Republic of Korea
- * E-mail: (SJK); (SER)
| | - Seong Eon Ryu
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, Republic of Korea
- * E-mail: (SJK); (SER)
| |
Collapse
|
41
|
Cui X, Xin H, Peng H, Chen Y. Comprehensive bioinformatics analysis of the mRNA profile of PLCE1 knockdown in esophageal squamous cell carcinoma. Mol Med Rep 2017; 16:5871-5880. [PMID: 28849204 PMCID: PMC5865764 DOI: 10.3892/mmr.2017.7318] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 07/17/2017] [Indexed: 12/15/2022] Open
Abstract
The authors previously reported that Phospholipase C epsilon 1 (PLCE1) exacerbated esophageal squamous cell carcinoma (ESCC), however, the underlying mechanism remains to be fully elucidated. The present study aimed to identify key differentially expressed genes (DEGs) and signaling pathways regulated by PLCE1 in ESCC. EC9706 and Eca109 cell lines were transfected with the specific small interfering (si) RNA of PLCE1, reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR) and western blotting were performed to detect the expression levels of PLCE1, and subsequently, mRNA array and multiple bioinformatics analysis were conducted. RT‑qPCR was used to verify gene expression array results. The findings of the present study indicated that PLCE1 mRNA and protein expression were significantly suppressed (P<0.05) in the PLCE1 siRNA‑transfected cells. In addition, a total of 223 DEGs with >2‑fold alterations were screened between the PLCE1 siRNA‑treated cells, including 168 upregulated and 53 downregulated DEGs. In particular, inflammation or immune‑associated molecules, including Toll‑like receptor (TLR)‑4 interleukin‑6, ‑8 and chemokine C‑X‑C motif ligand 2 were significantly increased following PLCE1 knockdown. Furthermore, Gene Ontology enrichment revealed terms associated with cell proliferation, differentiation, apoptosis, signal transduction, invasion and metastasis, which may potentially be associated with PLCE1 function. Kyoto Encyclopedia of Genes and Genomes pathway analysis demonstrated 46 pathways were disturbed by DEGs, including focal adhesion, mitogen activated protein kinase, TLR, p53 and janus kinase/signal transducer and activator of transcription signaling pathways. The RT‑qPCR results for validation of the selected DEGs were consistent with that of the microarray data. Overall, the results of the multiple bioinformatic analysis contributes to a systematic understanding of the roles of PLCE1 in ESCC.
Collapse
Affiliation(s)
- Xiaobin Cui
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang 832002, P.R. China
| | - Huahua Xin
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang 832002, P.R. China
| | - Hao Peng
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang 832002, P.R. China
| | - Yunzhao Chen
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang 832002, P.R. China
| |
Collapse
|
42
|
Lee J, Lee J, Yun JH, Choi C, Cho S, Kim SJ, Kim JH. Autocrine DUSP28 signaling mediates pancreatic cancer malignancy via regulation of PDGF-A. Sci Rep 2017; 7:12760. [PMID: 28986588 PMCID: PMC5630619 DOI: 10.1038/s41598-017-13023-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 09/15/2017] [Indexed: 01/17/2023] Open
Abstract
Pancreatic cancer remains one of the most deadly cancers with a grave prognosis. Despite continuous efforts to improve remedial values, limited progress has been made. We have reported that dual specificity phosphatase 28 (DUSP28) has a critical role of chemo-resistance and migration in pancreatic cancers. However, its mechanism remains unclear. Here, we further clarify the function of DUSP28 in pancreatic cancers. Analysis using a public microarray database and in vitro assay indicated a critical role of platelet derived growth factor A (PDGF-A) in pancreatic cancer malignancy. PDGF-A was positively regulated by DUSP28 expression at the mRNA and protein levels. Enhanced DUSP28 sensitized pancreatic cancer cells to exogenous PDGF-A treatment in migration, invasion, and proliferation. Transfection with siRNA targeting DUSP28 blunted the influence of administered PDGF-A by inhibition of phosphorylation of FAK, ERK1/2, and p38 signalling pathways. In addition, DUSP28 and PDGF-A formed an acquired autonomous autocrine-signaling pathway. Furthermore, targeting DUSP28 inhibited the tumor growth and migratory features through the blockade of PDGF-A expression and intracellular signaling in vivo. Our results establish novel insight into DUSP28 and PDGF-A related autonomous signaling pathway in pancreatic cancer.
Collapse
Affiliation(s)
- Jungwhoi Lee
- Department of biotechnology, College of Applied Life Science, SARI, Jeju National University, Jeju-do, 63243, Republic of Korea.
| | - Jungsul Lee
- Department of Bio and Brain Engineering, KAIST, Daejeon, 34141, Republic of Korea
| | - Jeong Hun Yun
- Department of biotechnology, College of Applied Life Science, SARI, Jeju National University, Jeju-do, 63243, Republic of Korea
| | - Chulhee Choi
- Department of Bio and Brain Engineering, KAIST, Daejeon, 34141, Republic of Korea
| | - Sayeon Cho
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Seung Jun Kim
- Division of Strategic Research Planning and Assessment, Korea Research Institute of Bioscience & Biotechnology, Daejeon, 34141, Republic of Korea
| | - Jae Hoon Kim
- Department of biotechnology, College of Applied Life Science, SARI, Jeju National University, Jeju-do, 63243, Republic of Korea.
| |
Collapse
|
43
|
Bhore N, Wang BJ, Chen YW, Liao YF. Critical Roles of Dual-Specificity Phosphatases in Neuronal Proteostasis and Neurological Diseases. Int J Mol Sci 2017; 18:ijms18091963. [PMID: 28902166 PMCID: PMC5618612 DOI: 10.3390/ijms18091963] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 09/01/2017] [Accepted: 09/07/2017] [Indexed: 12/31/2022] Open
Abstract
Protein homeostasis or proteostasis is a fundamental cellular property that encompasses the dynamic balancing of processes in the proteostasis network (PN). Such processes include protein synthesis, folding, and degradation in both non-stressed and stressful conditions. The role of the PN in neurodegenerative disease is well-documented, where it is known to respond to changes in protein folding states or toxic gain-of-function protein aggregation. Dual-specificity phosphatases have recently emerged as important participants in maintaining balance within the PN, acting through modulation of cellular signaling pathways that are involved in neurodegeneration. In this review, we will summarize recent findings describing the roles of dual-specificity phosphatases in neurodegeneration and offer perspectives on future therapeutic directions.
Collapse
Affiliation(s)
- Noopur Bhore
- Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Yang-Ming University and Academia Sinica, Taipei 11529, Taiwan.
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan.
| | - Bo-Jeng Wang
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan.
| | - Yun-Wen Chen
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan.
| | - Yung-Feng Liao
- Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Yang-Ming University and Academia Sinica, Taipei 11529, Taiwan.
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan.
| |
Collapse
|
44
|
Zhou R, Chang Y, Liu J, Chen M, Wang H, Huang M, Liu S, Wang X, Zhao Q. JNK Pathway-Associated Phosphatase/DUSP22 Suppresses CD4 + T-Cell Activation and Th1/Th17-Cell Differentiation and Negatively Correlates with Clinical Activity in Inflammatory Bowel Disease. Front Immunol 2017; 8:781. [PMID: 28725226 PMCID: PMC5496234 DOI: 10.3389/fimmu.2017.00781] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 06/19/2017] [Indexed: 12/19/2022] Open
Abstract
This study aimed to investigate the role of JNK pathway-associated phosphatase (JKAP) in inflammatory bowel disease (IBD). JKAP expression was analyzed in the intestinal mucosa of 81 IBD patients and 25 healthy controls (HCs) by qPCR and immunoblotting. The correlations of JKAP with clinical activity and inflammatory cytokines were performed. JKAP expression before and after infliximab treatment was also measured. CD4+ T cells were isolated from peripheral blood in active IBD patient and HCs and transduced with lentivirus-encoding JKAP (LV-JKAP), anti-JKAP (LV-anti-JKAP), or empty vector (LV-scramble), and JKAP functions on IBD CD4+ T cells were subsequently investigated. JKAP expression was decreased in inflamed mucosa of active IBD patients and was negatively correlated with disease activity [Crohn’s disease activity index (CDAI), Mayo index, C-reactive protein, and erythrocyte sedimentation rate], interleukin-17, and tumor necrosis factor (TNF)-α levels. Anti-TNF-α treatment up-regulated JKAP expression in CD patients, and baseline JKAP expression was elevated in response patients than in failure patients. Transduction of LV-JKAP into CD4+ T cells inhibited the percentages of CD25+ and CD69+ cells and proliferation. Moreover, inhibition of JKAP promotes Th1/Th17 cell differentiation. Our data indicated that the decreased expression of JKAP in intestinal mucosa contributed to the pathogenesis of IBD, through facilitating CD4+ T-cell activation, proliferation, and Th1/Th17-cell differentiation.
Collapse
Affiliation(s)
- Rui Zhou
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,The Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China
| | - Ying Chang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,The Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China
| | - Jing Liu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,The Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China
| | - Min Chen
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,The Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China
| | - Hongling Wang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,The Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China
| | - Meifang Huang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,The Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China
| | - Shi Liu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,The Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China
| | - Xiaobing Wang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,The Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China
| | - Qiu Zhao
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,The Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China
| |
Collapse
|
45
|
Factors regulating capillary remodeling in a reversible model of inflammatory corneal angiogenesis. Sci Rep 2016; 6:32137. [PMID: 27561355 PMCID: PMC4999823 DOI: 10.1038/srep32137] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 08/03/2016] [Indexed: 02/06/2023] Open
Abstract
Newly formed microcapillary networks arising in adult organisms by angiogenic and inflammatory stimuli contribute to pathologies such as corneal and retinal blindness, tumor growth, and metastasis. Therapeutic inhibition of pathologic angiogenesis has focused on targeting the VEGF pathway, while comparatively little attention has been given to remodeling of the new microcapillaries into a stabilized, functional, and persistent vascular network. Here, we used a novel reversible model of inflammatory angiogenesis in the rat cornea to investigate endogenous factors rapidly invoked to remodel, normalize and regress microcapillaries as part of the natural response to regain corneal avascularity. Rapid reversal of an inflammatory angiogenic stimulus suppressed granulocytic activity, enhanced recruitment of remodelling macrophages, induced capillary intussusception, and enriched pathways and processes involving immune cells, chemokines, morphogenesis, axonal guidance, and cell motility, adhesion, and cytoskeletal functions. Whole transcriptome gene expression analysis revealed suppression of numerous inflammatory and angiogenic factors and enhancement of endogenous inhibitors. Many of the identified genes function independently of VEGF and represent potentially new targets for molecular control of the critical process of microvascular remodeling and regression in the cornea.
Collapse
|
46
|
Crystallization of PTP Domains. Methods Mol Biol 2016. [PMID: 27514806 DOI: 10.1007/978-1-4939-3746-2_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Protein crystallography is the most powerful method to obtain atomic resolution information on the three-dimensional structure of proteins. An essential step towards determining the crystallographic structure of a protein is to produce good quality crystals from a concentrated sample of purified protein. These crystals are then used to obtain X-ray diffraction data necessary to determine the 3D structure by direct phasing or molecular replacement if the model of a homologous protein is available. Here, we describe the main approaches and techniques to obtain suitable crystals for X-ray diffraction. We include tools and guidance on how to evaluate and design the protein construct, how to prepare Se-methionine derivatized protein, how to assess the stability and quality of the sample, and how to crystallize and prepare crystals for diffraction experiments. While general strategies for protein crystallization are summarized, specific examples of the application of these strategies to the crystallization of PTP domains are discussed.
Collapse
|
47
|
DUSP28 links regulation of Mucin 5B and Mucin 16 to migration and survival of AsPC-1 human pancreatic cancer cells. Tumour Biol 2016; 37:12193-12202. [PMID: 27230679 DOI: 10.1007/s13277-016-5079-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Accepted: 05/15/2016] [Indexed: 12/20/2022] Open
Abstract
The prognosis of pancreatic cancer has not improved despite considerable and continuous effort. Dual-specificity phosphatase 28 (DUSP28) is highly expressed in human pancreatic cancers and exerts critical effects. However, knowledge of its function in pancreatic cancers is extremely limited. Here, we demonstrate the peculiar role of DUSP28 in pancreatic cancers. Analysis using the Gene Expression Omnibus public microarray database indicated higher DUSP28, MUC1, MUC4, MUC5B, MUC16 and MUC20 messenger RNA (mRNA) levels in pancreatic cancers compared with normal pancreas tissues. DUSP28 expression in human pancreatic cancer correlated positively with those of MUC1, MUC4, MUC5B, MUC16 and MUC20. In contrast, there were no significant correlations between DUSP28 and mucins in normal pancreas tissues. Decreased DUSP28 expression resulted in down-regulation of MUC5B and MUC16 at both the mRNA and protein levels; furthermore, transfection with small interfering RNA (siRNA) for MUC5B and MUC16 inhibited the migration and survival of AsPC-1 cells. In addition, transfection of siRNA for MUC5B and MUC16 resulted in a significant decrease in phosphorylation of FAK and ERK1/2 compared with transfection with scrambled-siRNA. These results collectively indicate unique links between DUSP28 and MUC5B/MUC16 and their roles in pancreatic cancer; moreover, they strongly support a rationale for targeting DUSP28 to inhibit development of malignant pancreatic cancer.
Collapse
|
48
|
Johnson MD, Reeder JE, O'Connell M. p38MAPK activation and DUSP10 expression in meningiomas. J Clin Neurosci 2016; 30:110-114. [PMID: 27050915 DOI: 10.1016/j.jocn.2015.12.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Accepted: 12/29/2015] [Indexed: 11/17/2022]
Abstract
The mitogen activated protein kinase (MAPK) p38MAPK has been implicated in regulation of cell proliferation and apoptosis. However, expression, activation and regulation has not been studied in meningiomas, to our knowledge. p38MAPK is regulated, in part, by dual specificity phosphatases (DUSP) that inactivate signaling by dephosphorylation. DUSP10 is also a likely participant in regulating meningioma proliferation. Five fetal and an adult human leptomeninges and 37 meningioma cultures (MC) were evaluated for DUSP10 as well as phosphorylation of its substrates p38MAPK and p44/42MAPK by western blot and DUSP10 expression by polymerase chain reaction. Platelet derived growth factor-BB (PDGF-BB), transforming growth factor B1 (TGFB1) and cerebrospinal fluid effects on DUSP10 and signaling were also studied in vitro. DUSP10 and phospho-p38MAPK and phospho-p44/42MAPK were detected in all six leptomeninges. DUSP10 was detected in 13 of 17 World Health Organization grade I, 11 of 14 grade II and four of six grade III meningiomas. Phospho-p38MAPK was detected in nine of 17 grade I, two of six grade II, and four of six grade III meningiomas. In the majority of meningiomas DUSP10 expression correlated inversely with phosphorylation of p38MAPK. PDGF-BB increased DUSP10 in MC2 and MC4 and weakly in MC3. TGFB1 increased phosphorylation of p38MAPK and caspase 3 activation. Thus p38MAPK and DUSP10 likely participate in the pathogenesis of meningiomas.
Collapse
Affiliation(s)
- Mahlon D Johnson
- Department of Pathology, Division of Neuropathology, University of Rochester Medical Center, 601 Elmwood Avenue, Box 626, Rochester, NY 14623, USA.
| | - Jay E Reeder
- Department of Obstetrics and Gynecology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Mary O'Connell
- Department of Pathology, Division of Neuropathology, University of Rochester Medical Center, 601 Elmwood Avenue, Box 626, Rochester, NY 14623, USA
| |
Collapse
|
49
|
Influence of the polymorphism of the DUSP14 gene on the expression of immune-related genes and development of pulmonary tuberculosis. Genes Immun 2016; 17:207-12. [DOI: 10.1038/gene.2016.11] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 01/21/2016] [Accepted: 02/01/2016] [Indexed: 12/27/2022]
|
50
|
Nunes-Xavier CE, Pulido R. Global RT-PCR and RT-qPCR Analysis of the mRNA Expression of the Human PTPome. Methods Mol Biol 2016; 1447:25-37. [PMID: 27514798 DOI: 10.1007/978-1-4939-3746-2_2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Comprehensive comparative gene expression analysis of the tyrosine phosphatase superfamily members (PTPome) under cell- or tissue-specific growth conditions may help to define their individual and specific role in physiology and disease. Semi-quantitative and quantitative PCR are commonly used methods to analyze and measure gene expression. Here, we describe technical aspects of PTPome mRNA expression analysis by semi-quantitative RT-PCR and quantitative RT-PCR (RT-qPCR). We provide a protocol for each method consisting in reverse transcription followed by PCR using a global platform of specific PTP primers. The chapter includes aspects from primer validation to the setup of the PTPome RT-qPCR platform. Examples are given of PTP-profiling gene expression analysis using a human breast cancer cell line upon long-term or short-term treatment with cell signaling-activation agents.
Collapse
Affiliation(s)
- Caroline E Nunes-Xavier
- Centro de Investigación Príncipe Felipe, 46013, Valencia, Spain. .,Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, 4950, Nydalen, 0424, Oslo, Norway. .,Biocruces Health Research Institute, Pza Cruces s/n, 48903, Barakaldo, Spain.
| | - Rafael Pulido
- Biocruces Health Research Institute, Pza Cruces s/n, 48903, Barakaldo, Spain. .,IKERBASQUE, Basque Foundation for Science, 48013, Bilbao, Spain.
| |
Collapse
|