1
|
Munir R, Zahoor AF, Anjum MN, Mansha A, Irfan A, Chaudhry AR, Irfan A, Kotwica-Mojzych K, Glowacka M, Mojzych M. Yamaguchi esterification: a key step toward the synthesis of natural products and their analogs-a review. Front Chem 2024; 12:1477764. [PMID: 39464384 PMCID: PMC11503016 DOI: 10.3389/fchem.2024.1477764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 09/09/2024] [Indexed: 10/29/2024] Open
Abstract
The Yamaguchi reagent, based on 2,4,6-trichlorobenzoyl chloride (TCBC) and 4-dimethylaminopyridine (DMAP), is an efficient tool for conducting the intermolecular (esterification) reaction between an acid and an alcohol in the presence of a suitable base (Et3N or i Pr2NEt) and solvent (THF, DCM, or toluene). The Yamaguchi protocol is renowned for its ability to efficiently produce a diverse array of functionalized esters, promoting high yields, regioselectivity, and easy handling under mild conditions with short reaction times. Here, the recent utilization of the Yamaguchi reagent was reviewed in the synthesis of various natural products such as macrolides, terpenoids, polyketides, peptides, and metabolites.
Collapse
Affiliation(s)
- Ramsha Munir
- Department of Chemistry, Government College University Faisalabad, Faisalabad, Pakistan
| | - Ameer Fawad Zahoor
- Department of Chemistry, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Naveed Anjum
- Department of Applied Chemistry, Government College University Faisalabad, Faisalabad, Pakistan
| | - Asim Mansha
- Department of Chemistry, Government College University Faisalabad, Faisalabad, Pakistan
| | - Ali Irfan
- Department of Chemistry, Government College University Faisalabad, Faisalabad, Pakistan
| | | | - Ahmad Irfan
- Department of Chemistry, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Katarzyna Kotwica-Mojzych
- Department of Basic Sciences, Department of Histology, Embriology and Cytophysiology, Medical University of Lublin, Lublin, Poland
| | - Mariola Glowacka
- Faculty of Health Sciences Collegium Medicum, The Mazovian Academy in Plock, Płock, Poland
| | - Mariusz Mojzych
- Faculty of Health Sciences Collegium Medicum, The Mazovian Academy in Plock, Płock, Poland
| |
Collapse
|
2
|
Jansen CU, Nørskov A, Mortensen KT, Qvortrup KM. Convergent Total Synthesis of Exochelin 772SM. J Org Chem 2023; 88:8669-8673. [PMID: 37294812 DOI: 10.1021/acs.joc.3c00561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A convergent total synthesis of the natural mycobacterial iron chelator desferri-exochelin 772SM (D-EXO) is described. The synthetic procedure proceeds in 11 steps in the longest linear sequence, with an overall yield of 8.6%. The described procedure uses cheap starting materials and requires a limited number of chromatographic purifications. The concise strategy divides the exochelin into five key building blocks, allowing easy alternation of each single building block. Herein, the presented synthetic strategy is well suited to facilitate the synthesis of analogues and medicinal chemistry development efforts in a time- and resource-efficient manner.
Collapse
Affiliation(s)
| | - Amalie Nørskov
- Department of Chemistry, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Kim T Mortensen
- Department of Chemistry, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Katrine M Qvortrup
- Department of Chemistry, Technical University of Denmark, DK-2800 Lyngby, Denmark
| |
Collapse
|
3
|
McQueen CF, Groves JT. Toxicity of the iron siderophore mycobactin J in mouse macrophages: Evidence for a hypoxia response. J Inorg Biochem 2021; 227:111669. [PMID: 34864292 DOI: 10.1016/j.jinorgbio.2021.111669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/07/2021] [Accepted: 11/07/2021] [Indexed: 11/25/2022]
Abstract
Mycobacterium tuberculosis, the causative agent of tuberculosis, is an obligate intracellular pathogen that lives within the phagosome of macrophages. Here we demonstrate that the siderophore mycobactin J, produced by the closely related intracellular pathogen Mycobacterium paratuberculosis, is toxic to murine macrophage cells. Its median lethal dose, 10 μM, is lower than that of the iron chelators desferrioxamine B and TrenCAM, an enterobactin analog. To determine the source of this toxicity, we conducted microarray, ELISA, and metabolite profiling experiments. The primary response is hypoxia-like, which implies iron starvation as the underlying cause of the toxicity. This observation is consistent with our recent finding that mycobactin J is a stronger iron chelator than had been inferred from previous studies. Mycobactin J is known to partition into cell membranes and hydrophobic organelles indicating that enhanced membrane penetration is also a likely factor. Thus, mycobactin J is shown to be toxic, eliciting a hypoxia-like response under physiological conditions.
Collapse
Affiliation(s)
| | - John T Groves
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
4
|
Knobloch P, Koliwer-Brandl H, Arnold FM, Hanna N, Gonda I, Adenau S, Personnic N, Barisch C, Seeger MA, Soldati T, Hilbi H. Mycobacterium marinum produces distinct mycobactin and carboxymycobactin siderophores to promote growth in broth and phagocytes. Cell Microbiol 2020; 22:e13163. [PMID: 31945239 DOI: 10.1111/cmi.13163] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 12/22/2019] [Indexed: 02/06/2023]
Abstract
Mycobacterium marinum is a model organism for pathogenic Mycobacterium species, including Mycobacterium tuberculosis, the causative agent of tuberculosis. These pathogens enter phagocytes and replicate within the Mycobacterium-containing vacuole, possibly followed by vacuole exit and growth in the host cell cytosol. Mycobacteria release siderophores called mycobactins to scavenge iron, an essential yet poorly soluble and available micronutrient. To investigate the role of M. marinum mycobactins, we purified by organic solvent extraction and identified by mass spectrometry the lipid-bound mycobactin (MBT) and the water-soluble variant carboxymycobactin (cMBT). Moreover, we generated by specialised phage transduction a defined M. marinum ΔmbtB deletion mutant predicted to be defective for mycobactin production. The M. marinum ΔmbtB mutant strain showed a severe growth defect in broth and phagocytes, which was partially complemented by supplying the mbtB gene on a plasmid. Furthermore, purified Fe-MBT or Fe-cMBT improved the growth of wild type as well as ΔmbtB mutant bacteria on minimal plates, but only Fe-cMBT promoted the growth of wild-type M. marinum during phagocyte infection. Finally, the intracellular growth of M. marinum ΔmbtB in Acanthamoeba castellanii amoebae was restored by coinfection with wild-type bacteria. Our study identifies and characterises the M. marinum MBT and cMBT siderophores and reveals the requirement of mycobactins for extra- and intracellular growth of the pathogen.
Collapse
Affiliation(s)
- Paulina Knobloch
- Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland
| | | | - Fabian M Arnold
- Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland
| | - Nabil Hanna
- Department of Biochemistry, Faculty of Sciences, University of Geneva, Geneva, Switzerland
| | - Imre Gonda
- Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland
| | - Sophia Adenau
- Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland
| | - Nicolas Personnic
- Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland
| | - Caroline Barisch
- Department of Biochemistry, Faculty of Sciences, University of Geneva, Geneva, Switzerland
| | - Markus A Seeger
- Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland
| | - Thierry Soldati
- Department of Biochemistry, Faculty of Sciences, University of Geneva, Geneva, Switzerland
| | - Hubert Hilbi
- Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland
| |
Collapse
|
5
|
Tullius MV, Nava S, Horwitz MA. PPE37 Is Essential for Mycobacterium tuberculosis Heme-Iron Acquisition (HIA), and a Defective PPE37 in Mycobacterium bovis BCG Prevents HIA. Infect Immun 2019; 87:e00540-18. [PMID: 30455201 PMCID: PMC6346139 DOI: 10.1128/iai.00540-18] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 11/08/2018] [Indexed: 12/26/2022] Open
Abstract
Mycobacterium tuberculosis, one of the world's leading causes of death, must acquire nutrients, such as iron, from the host to multiply and cause disease. Iron is an essential metal and M. tuberculosis possesses two different systems to acquire iron from its environment: siderophore-mediated iron acquisition (SMIA) and heme-iron acquisition (HIA), involving uptake and degradation of heme to release ferrous iron. We have discovered that Mycobacterium bovis BCG, the tuberculosis vaccine strain, is severely deficient in HIA, and we exploited this phenotypic difference between BCG and M. tuberculosis to identify genes involved in HIA by complementing BCG's defect with a fosmid library. We identified ppe37, an iron-regulated PPE family gene, as being essential for HIA. BCG complemented with M. tuberculosisppe37 exhibits HIA as efficient as that of M. tuberculosis, achieving robust growth with <0.2 µM hemin. Conversely, deletion of ppe37 from M. tuberculosis results in a strain severely attenuated in HIA, with a phenotype nearly identical to that of BCG, requiring a 200-fold higher concentration of hemin to achieve growth equivalent to that of its parental strain. A nine-amino-acid deletion near the N terminus of BCG PPE37 (amino acids 31 to 39 of the M. tuberculosis PPE37 protein) underlies BCG's profound defect in HIA. Significant genetic variability exists in ppe37 genes across different M. tuberculosis strains, with more than 60% of sequences from completely sequenced M. tuberculosis genomes having mutations that result in altered PPE37 proteins; furthermore, these altered PPE37 proteins are nonfunctional in HIA. Our findings should allow delineation of the relative roles of HIA and SMIA in M. tuberculosis pathogenesis.
Collapse
Affiliation(s)
- Michael V Tullius
- Division of Infectious Diseases, Department of Medicine, Center for Health Sciences, School of Medicine, University of California-Los Angeles, Los Angeles, California, USA
| | - Susana Nava
- Division of Infectious Diseases, Department of Medicine, Center for Health Sciences, School of Medicine, University of California-Los Angeles, Los Angeles, California, USA
| | - Marcus A Horwitz
- Division of Infectious Diseases, Department of Medicine, Center for Health Sciences, School of Medicine, University of California-Los Angeles, Los Angeles, California, USA
| |
Collapse
|
6
|
Coraça-Huber DC, Dichtl S, Steixner S, Nogler M, Weiss G. Iron chelation destabilizes bacterial biofilms and potentiates the antimicrobial activity of antibiotics against coagulase-negative Staphylococci. Pathog Dis 2019; 76:5026171. [PMID: 29860413 DOI: 10.1093/femspd/fty052] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 05/30/2018] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVES The ability of certain bacteria to form biofilms underlies their capacity to cause medical device-associated infections. Most bacteria need the metal iron for their proliferation but also to form biofilms. The aim of this in vitro study was to investigate whether iron restriction upon application of the iron chelator deferiprone (DFP) impacts on bacterial biofilm formation and whether such an intervention can exert synergistic effects towards the antibacterial activity of three antibiotic compounds against coagulase-negative staphylococci (CNS) residing on titanium plates. METHODS Bacteria were seeded on titanium discs and cultured to obtain biofilms. Biofilms were then exposed to DFP and/or antibiotic treatment with clindamycin, gentamycin or vancomycin. Fluorescence microscopy and scanning electron microscopy (SEM) were used for morphological analysis of the biofilms before and after treatment. RESULTS Whereas DFP alone had only a moderate inhibitory effect on biofilm growth, the combination of DFP with the respective antibiotics resulted in a significant decline of bacterial numbers by two to three logs as compared to the effect of antibiotics alone. Fluorescence staining and SEM demonstrated severe damage to even complete destruction of biofilms after combined treatment with DFP and antibiotics that was not the case upon sole treatment with antibiotics. CONCLUSION Iron chelation is able to potentiate the antibacterial activity of conventional antibiotics by destroying bacterial biofilms that recommends this combination as a promising strategy for the treatment of chronic device infections with biofilm producing CNS.
Collapse
Affiliation(s)
- Débora C Coraça-Huber
- Experimental Orthopedics, Department of Orthopedic Surgery, Medical University of Innsbruck, Innrain 36, 6020, Innsbruck, Austria
| | - Stefanie Dichtl
- Department of Internal Medicine II - Infectious Diseases, Immunology, Rheumatology and Pneumology, Medical University Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Stephan Steixner
- Experimental Orthopedics, Department of Orthopedic Surgery, Medical University of Innsbruck, Innrain 36, 6020, Innsbruck, Austria
| | - Michael Nogler
- Experimental Orthopedics, Department of Orthopedic Surgery, Medical University of Innsbruck, Innrain 36, 6020, Innsbruck, Austria
| | - Günter Weiss
- Department of Internal Medicine II - Infectious Diseases, Immunology, Rheumatology and Pneumology, Medical University Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| |
Collapse
|
7
|
A reevaluation of iron binding by Mycobactin J. J Biol Inorg Chem 2018; 23:995-1007. [DOI: 10.1007/s00775-018-1592-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 07/03/2018] [Indexed: 12/21/2022]
|
8
|
Gallium Compounds Exhibit Potential as New Therapeutic Agents against Mycobacterium abscessus. Antimicrob Agents Chemother 2015; 59:4826-34. [PMID: 26033732 DOI: 10.1128/aac.00331-15] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 05/27/2015] [Indexed: 12/14/2022] Open
Abstract
The rapidly growing nontuberculous mycobacterial species Mycobacterium abscessus has recently emerged as an important pathogen in patients with cystic fibrosis (CF). Treatment options are limited because of the organism's innate resistance to standard antituberculous antibiotics, as well as other currently available antibiotics. New antibiotic approaches to the treatment of M. abscessus are urgently needed. The goal of the present study was to assess the growth-inhibitory activity of different Ga compounds against an American Type Culture Collection (ATCC) strain and clinical isolates of M. abscessus obtained from CF and other patients. In our results, using Ga(NO3)3 and all of the other Ga compounds tested inhibited the growth of ATCC 19977 and clinical isolates of M. abscessus. Inhibition was mediated by disrupting iron uptake, as the addition of exogenous iron (Fe) restored basal growth. There were modest differences in inhibition among the isolates for the same Ga chelates, and for most Ga chelates there was only a slight difference in potency from Ga(NO3)3. In contrast, Ga-protoporphyrin completely and significantly inhibited the ATCC strain and clinical isolates of M. abscessus at much lower concentrations than Ga(NO3)3. In in vitro broth culture, Ga-protoporphyrin was more potent than Ga(NO3)3. When M. abscessus growth inside the human macrophage THP-1 cell line was assessed, Ga-protoporphyrin was >20 times more active than Ga(NO3)3. The present work suggests that Ga exhibits potent growth-inhibitory capacity against the ATCC strain, as well as against antibiotic-resistant clinical isolates of M. abscessus, including the highly antibiotic-resistant strain MC2638. Ga-based therapy offers the potential for further development as a novel therapy against M. abscessus.
Collapse
|