1
|
Fong ZW, Tang RMY, Cheah IKM, Leow DMK, Chen L, Halliwell B. Ergothioneine and mitochondria: An important protective mechanism? Biochem Biophys Res Commun 2024; 726:150269. [PMID: 38909533 DOI: 10.1016/j.bbrc.2024.150269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 06/14/2024] [Indexed: 06/25/2024]
Abstract
Mitochondrial dysfunction is implicated in a wide range of human disorders including many neurodegenerative and cardiovascular diseases, metabolic diseases, cancers, and respiratory disorders. Studies have suggested the potential of l-ergothioneine (ET), a unique dietary thione, to prevent mitochondrial damage and improve disease outcome. Despite this, no studies have definitively demonstrated uptake of ET into mitochondria. Moreover, the expression of the known ET transporter, OCTN1, on the mitochondria remains controversial. In this study, we utilise mass spectrometry to demonstrate direct ET uptake in isolated mitochondria as well as its presence in mitochondria isolated from ET-treated cells and animals. Mitochondria isolated from OCTN1 knockout mice tissues, have impaired but still detectable ET uptake, raising the possibility of alternative transporter(s) which may facilitate ET uptake into the mitochondria. Our data confirm that ET can enter mitochondria, providing a basis for further work on ET in the prevention of mitochondrial dysfunction in human disease.
Collapse
Affiliation(s)
- Zachary Weijie Fong
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore, 117596, Singapore; Neurobiology Research Programme, Life Sciences Institute, Centre for Life Sciences, National University of Singapore, 28 Medical Drive, Singapore, 117456, Singapore; Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| | - Richard Ming Yi Tang
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore, 117596, Singapore; Neurobiology Research Programme, Life Sciences Institute, Centre for Life Sciences, National University of Singapore, 28 Medical Drive, Singapore, 117456, Singapore
| | - Irwin Kee-Mun Cheah
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore, 117596, Singapore; Neurobiology Research Programme, Life Sciences Institute, Centre for Life Sciences, National University of Singapore, 28 Medical Drive, Singapore, 117456, Singapore
| | - Damien Meng Kiat Leow
- Neurobiology Research Programme, Life Sciences Institute, Centre for Life Sciences, National University of Singapore, 28 Medical Drive, Singapore, 117456, Singapore; Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, 4 Medical Drive, Singapore, 117594, Singapore
| | - Lucrecia Chen
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore, 117596, Singapore; Neurobiology Research Programme, Life Sciences Institute, Centre for Life Sciences, National University of Singapore, 28 Medical Drive, Singapore, 117456, Singapore
| | - Barry Halliwell
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore, 117596, Singapore; Neurobiology Research Programme, Life Sciences Institute, Centre for Life Sciences, National University of Singapore, 28 Medical Drive, Singapore, 117456, Singapore.
| |
Collapse
|
2
|
Alves LDF, Moore JB, Kell DB. The Biology and Biochemistry of Kynurenic Acid, a Potential Nutraceutical with Multiple Biological Effects. Int J Mol Sci 2024; 25:9082. [PMID: 39201768 PMCID: PMC11354673 DOI: 10.3390/ijms25169082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 09/03/2024] Open
Abstract
Kynurenic acid (KYNA) is an antioxidant degradation product of tryptophan that has been shown to have a variety of cytoprotective, neuroprotective and neuronal signalling properties. However, mammalian transporters and receptors display micromolar binding constants; these are consistent with its typically micromolar tissue concentrations but far above its serum/plasma concentration (normally tens of nanomolar), suggesting large gaps in our knowledge of its transport and mechanisms of action, in that the main influx transporters characterized to date are equilibrative, not concentrative. In addition, it is a substrate of a known anion efflux pump (ABCC4), whose in vivo activity is largely unknown. Exogeneous addition of L-tryptophan or L-kynurenine leads to the production of KYNA but also to that of many other co-metabolites (including some such as 3-hydroxy-L-kynurenine and quinolinic acid that may be toxic). With the exception of chestnut honey, KYNA exists at relatively low levels in natural foodstuffs. However, its bioavailability is reasonable, and as the terminal element of an irreversible reaction of most tryptophan degradation pathways, it might be added exogenously without disturbing upstream metabolism significantly. Many examples, which we review, show that it has valuable bioactivity. Given the above, we review its potential utility as a nutraceutical, finding it significantly worthy of further study and development.
Collapse
Affiliation(s)
- Luana de Fátima Alves
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Building 220, Søltofts Plads, 2800 Kongens Lyngby, Denmark
| | - J. Bernadette Moore
- School of Food Science & Nutrition, University of Leeds, Leeds LS2 9JT, UK;
- Department of Biochemistry, Cell & Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown St., Liverpool L69 7ZB, UK
| | - Douglas B. Kell
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Building 220, Søltofts Plads, 2800 Kongens Lyngby, Denmark
- Department of Biochemistry, Cell & Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown St., Liverpool L69 7ZB, UK
| |
Collapse
|
3
|
Smith E, Ottosson F, Ericson U, Hellstrand S, Rizzo M, Sukruang K, Pizza V, Orho-Melander M, Nilsson PM, Kennbäck C, Fernandez C, Antonini P, Di Somma S, Melander O. Impact of a short-term Mediterranean diet intervention on plasma metabolites: a pilot study. Metabolomics 2024; 20:82. [PMID: 39066903 PMCID: PMC11283393 DOI: 10.1007/s11306-024-02154-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 07/16/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND Dietary habits significantly influence the risks of type 2 diabetes and cardiovascular disease. Through metabolomics, we've previously measured plasma metabolites to gauge dietary quality, introducing a healthy dietary metabolic signature (HDMS) linked to a decreased risk of future type 2 diabetes and coronary artery disease. OBJECTIVES To assess the impact of a 6-day dietary intervention on plasma metabolites and the HDMS. METHODS Fifty-nine Swedish participants (71% women, mean age 69 years) underwent a 6-day Mediterranean diet (MD) intervention in Italy's Cilento region. All meals, crafted from local recipes and ingredients, were provided. Metabolite profiling pre- and post-intervention was conducted with a UHPLC-QTOF. Alterations in metabolite levels and the HDMS were examined using paired T-test. RESULTS The MD intervention notably enhanced the HDMS across participants (mean increase: 1.3 standard deviations (SD), 95% CI 1.1-1.4, p = 6E-25). Out of 109 metabolites, 66 exhibited significant alterations (fdr adjusted p < 0.05). Among the 10 most significant changes, increases were observed in several diet related metabolites such as pipecolate, hippurate, caffeine, homostachydrine, acylcarnitine C11:0, acetylornithine, beta-carotene and 7-methylguanine. The most significant decreases manifested in piperine and 3-methylhistidine. CONCLUSIONS The HDMS, which is linked to a healthy diet and inversely associated with cardiometabolic disease, was significantly improved by the 6-day Mediterranean diet intervention. Notably, metabolite markers previously shown to be indicative of the intake of vegetables, fruits, grains, and legumes increased, while markers previously associated with red meat consumption decreased. These findings highlight the potential of short-term dietary interventions to induce significant changes in plasma metabolite profiles.
Collapse
Affiliation(s)
- E Smith
- Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden.
| | - F Ottosson
- Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
- Department of Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
| | - U Ericson
- Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
| | - S Hellstrand
- Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
| | - M Rizzo
- GREAT Health Sciences, Rome, Italy
| | - K Sukruang
- Faculty of Medicine Ramathibodi Hospital, Chakri Naruebodindra Medical Institute, Mahidol University, Samut Prakan, Thailand
- Institute of Future Studies for Development, Bangkok, Thailand
| | - V Pizza
- Department of Emergency and Time Dependent Networks, Neurology Unit, S.Luca Hospital, Vallo Della Lucania, Italy
| | - M Orho-Melander
- Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
| | - P M Nilsson
- Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
- Department of Emergency and Internal Medicine, Skåne University Hospital, Malmö, Sweden
| | - C Kennbäck
- Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
- Department of Emergency and Internal Medicine, Skåne University Hospital, Malmö, Sweden
| | - C Fernandez
- Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
| | | | - S Di Somma
- GREAT Health Sciences, Rome, Italy
- Department of Medical-Surgery Sciences and Translational Medicine, University of Rome Sapienza, Rome, Italy
| | - O Melander
- Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
- Department of Emergency and Internal Medicine, Skåne University Hospital, Malmö, Sweden
| |
Collapse
|
4
|
Jacquier EF, Kassis A, Marcu D, Contractor N, Hong J, Hu C, Kuehn M, Lenderink C, Rajgopal A. Phytonutrients in the promotion of healthspan: a new perspective. Front Nutr 2024; 11:1409339. [PMID: 39070259 PMCID: PMC11272662 DOI: 10.3389/fnut.2024.1409339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/12/2024] [Indexed: 07/30/2024] Open
Abstract
Considering a growing, aging population, the need for interventions to improve the healthspan in aging are tantamount. Diet and nutrition are important determinants of the aging trajectory. Plant-based diets that provide bioactive phytonutrients may contribute to offsetting hallmarks of aging and reducing the risk of chronic disease. Researchers now advocate moving toward a positive model of aging which focuses on the preservation of functional abilities, rather than an emphasis on the absence of disease. This narrative review discusses the modulatory effect of nutrition on aging, with an emphasis on promising phytonutrients, and their potential to influence cellular, organ and functional parameters in aging. The literature is discussed against the backdrop of a recent conceptual framework which describes vitality, intrinsic capacity and expressed capacities in aging. This aims to better elucidate the role of phytonutrients on vitality and intrinsic capacity in aging adults. Such a review contributes to this new scientific perspective-namely-how nutrition might help to preserve functional abilities in aging, rather than purely offsetting the risk of chronic disease.
Collapse
Affiliation(s)
| | | | - Diana Marcu
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | | | - Jina Hong
- Amway Innovation and Science, Ada, MI, United States
| | - Chun Hu
- Amway Innovation and Science, Ada, MI, United States
| | - Marissa Kuehn
- Amway Innovation and Science, Ada, MI, United States
| | | | - Arun Rajgopal
- Amway Innovation and Science, Ada, MI, United States
| |
Collapse
|
5
|
Kaur B, Bakshi RK, Siwatch S. A Narrative Review of Oxidative Stress and Liver Disease in Pregnancy: The Role of Antioxidants. Cureus 2024; 16:e64714. [PMID: 39156333 PMCID: PMC11327959 DOI: 10.7759/cureus.64714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2024] [Indexed: 08/20/2024] Open
Abstract
Pregnancy brings numerous physiological changes to the body of the pregnant woman. Liver diseases in pregnancy contribute to increased oxidative stress, disrupting the delicate balance between reactive oxygen species and antioxidant defence. Antioxidant supplementation may have potential benefits in addressing pregnancy-related liver disorders, such as HELLP (haemolysis, elevated liver enzymes, low platelet count) and preeclampsia-associated liver dysfunction in pregnancy. The purpose of this narrative review is to review the evidence regarding oxidative stress in liver disorders during pregnancy and the role of antioxidants in alleviating oxidative stress and its effect on maternal and foetal outcomes. A narrative review study design involved a comprehensive search across three scientific databases: PubMed, Embase, and MEDLINE, published in the last 20 years. The searches were performed up to January 2024. Thirty-two studies were included in the narrative review. The most studied antioxidants were vitamins (vitamin C and E) for their role in clinical treatment, prophylaxis, and clearing surrogate oxidative stress markers. The majority of studies were on preeclampsia. Though the existing literature is not robust, available evidence suggests that antioxidant supplementation may have potential benefits in addressing pregnancy-related liver disorders, such as HELLP and preeclampsia-associated liver dysfunction in pregnancy. However, there is a need to establish consistent protocols, ethical standards, and well-designed clinical trials to clarify the timing and dosage of antioxidants in pregnancy. Antioxidants may alleviate the oxidative stress in various liver disorders during pregnancy, which still needs to be studied further for their clinical relevance.
Collapse
Affiliation(s)
- Bandhanjot Kaur
- Department of Obstetrics and Gynaecology, Postgraduate Institute of Medical Education and Research, Chandigarh, IND
| | - Ravleen K Bakshi
- Department of Health Research, Division of Reproductive Biology, Maternal, and Child Health, Indian Council of Medical Research, Ministry of Health and Family Welfare, New Delhi, IND
| | - Sujata Siwatch
- Department of Obstetrics and Gynaecology, Postgraduate Institute of Medical Education and Research, Chandigarh, IND
| |
Collapse
|
6
|
Thomas TA, Francis RO, Zimring JC, Kao JP, Nemkov T, Spitalnik SL. The Role of Ergothioneine in Red Blood Cell Biology: A Review and Perspective. Antioxidants (Basel) 2024; 13:717. [PMID: 38929156 PMCID: PMC11200860 DOI: 10.3390/antiox13060717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/03/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
Oxidative stress can damage tissues and cells, and their resilience or susceptibility depends on the robustness of their antioxidant mechanisms. The latter include small molecules, proteins, and enzymes, which are linked together in metabolic pathways. Red blood cells are particularly susceptible to oxidative stress due to their large number of hemoglobin molecules, which can undergo auto-oxidation. This yields reactive oxygen species that participate in Fenton chemistry, ultimately damaging their membranes and cytosolic constituents. Fortunately, red blood cells contain robust antioxidant systems to enable them to circulate and perform their physiological functions, particularly delivering oxygen and removing carbon dioxide. Nonetheless, if red blood cells have insufficient antioxidant reserves (e.g., due to genetics, diet, disease, or toxin exposure), this can induce hemolysis in vivo or enhance susceptibility to a "storage lesion" in vitro, when blood donations are refrigerator-stored for transfusion purposes. Ergothioneine, a small molecule not synthesized by mammals, is obtained only through the diet. It is absorbed from the gut and enters cells using a highly specific transporter (i.e., SLC22A4). Certain cells and tissues, particularly red blood cells, contain high ergothioneine levels. Although no deficiency-related disease has been identified, evidence suggests ergothioneine may be a beneficial "nutraceutical." Given the requirements of red blood cells to resist oxidative stress and their high ergothioneine content, this review discusses ergothioneine's potential importance in protecting these cells and identifies knowledge gaps regarding its relevance in enhancing red blood cell circulatory, storage, and transfusion quality.
Collapse
Affiliation(s)
- Tiffany A. Thomas
- Laboratory of Transfusion Biology, Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA; (T.A.T.)
| | - Richard O. Francis
- Laboratory of Transfusion Biology, Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA; (T.A.T.)
| | - James C. Zimring
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| | - Joseph P. Kao
- Center for Biomedical Engineering, Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Travis Nemkov
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Denver, CO 80203, USA
| | - Steven L. Spitalnik
- Laboratory of Transfusion Biology, Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA; (T.A.T.)
| |
Collapse
|
7
|
Hanayama M, Mori K, Ishimoto T, Kato Y, Kawai J. Effects of an ergothioneine-rich Pleurotus sp. on skin moisturizing functions and facial conditions: a randomized, double-blind, placebo-controlled trial. Front Med (Lausanne) 2024; 11:1396783. [PMID: 38887673 PMCID: PMC11182000 DOI: 10.3389/fmed.2024.1396783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 05/06/2024] [Indexed: 06/20/2024] Open
Abstract
Background L-ergothioneine (EGT), an antioxidative and anti-inflammatory amino acid, is abundant in various mushroom fruiting bodies. Meanwhile, the effects of EGT-containing mushrooms on human skin are unknown. This study investigated the effects of oral ingestion of a novel EGT-rich strain of Pleurotus species (hiratake) on skin conditions in humans. Methods We conducted a 12-week, randomized, double-blind, placebo-controlled, parallel-group trial to evaluate skin moisturizing functions and facial conditions in 80 healthy women who were randomly assigned to either a group that was supplemented with hiratake tablets containing 25 mg of EGT/day or a placebo group. Skin moisture content, transepidermal water loss (TEWL), and facial scores (VISIA scores) were measured at baseline, 8 weeks, and 12 weeks of supplementation. Results At 8 weeks, the skin moisture content was significantly higher on the temple in the hiratake group than in the placebo group. The hiratake group also exhibited a significant increase in skin moisture content on the arm at 8 and 12 weeks compared with baseline. At 12 weeks, wrinkle and texture scores were significantly better in the hiratake group than in the placebo group, and plasma EGT concentrations in the hiratake group were 4.7-fold higher than baseline (from 3.4 to 15.9 μM). Furthermore, EGT concentrations in plasma were significantly correlated with improvements in skin moisture content and TEWL on the arm, implying that these skin moisturizing benefits could be partly attributed to EGT. A stratified analysis of participants with a low baseline plasma EGT concentration (< 3.3 μM) revealed that skin moisture content on the temple was significantly higher at 8 and 12 weeks, and skin moisture content on the arm at 12 weeks tended to be higher (p = 0.074), in the hiratake group than in the placebo group. These findings suggested that oral ingestion of EGT-rich hiratake can improve skin moisturizing functions. Conclusion EGT-rich hiratake may help maintain skin conditions in healthy women, and EGT may play a role in these beneficial effects.
Collapse
Affiliation(s)
- Motoki Hanayama
- Mushroom Research Laboratory, Hokuto Corporation, Nagano, Japan
| | - Koichiro Mori
- Mushroom Research Laboratory, Hokuto Corporation, Nagano, Japan
| | - Takahiro Ishimoto
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Yukio Kato
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Junya Kawai
- Mushroom Research Laboratory, Hokuto Corporation, Nagano, Japan
| |
Collapse
|
8
|
Evans VJ, Wu X, Tran KK, Tabofunda SK, Ding L, Yin L, Edwards P, Zhang QY, Ding X, Van Winkle LS. Impact of aging and ergothioneine pre-treatment on naphthalene toxicity in lung. Toxicol Lett 2024; 397:89-102. [PMID: 38768835 DOI: 10.1016/j.toxlet.2024.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 05/10/2024] [Accepted: 05/17/2024] [Indexed: 05/22/2024]
Abstract
Aging increases susceptibility to lung disease, but the topic is understudied, especially in relation to environmental exposures with the bulk of rodent studies using young adults. This study aims to define the pulmonary toxicity of naphthalene (NA) and the impacts of a dietary antioxidant, ergothioneine (ET), in the liver and lungs of middle-aged mice. NA causes a well-characterized pattern of conducting airway epithelial injury in the lung in young adult mice, but NA's toxicity has not been characterized in middle-aged mice, aged 1-1.5 years. ET is a dietary antioxidant that is synthesized by bacteria and fungi. The ET transporter (ETT), SLC22A4, is upregulated in tissues that experience high levels of oxidative stress. In this study, middle-aged male and female C57BL/6 J mice, maintained on an ET-free synthetic diet from conception, were gavaged with 70 mg/kg of ET for five consecutive days. On day 8, the mice were exposed to a single intraperitoneal NA dose of 50, 100, 150, or 200 mg/kg. At 24 hours post NA injection samples were collected and analyzed for ET concentration and reduced (GSH) and oxidized glutathione (GSSG) concentrations. Histopathology, morphometry, and gene expression were examined. Histopathology of mice exposed to 100 mg/kg of NA suggests reduction in toxicity in the terminal airways of both male (p ≤ 0.001) and female (p ≤ 0.05) middle-aged mice by the ET pretreatment. Our findings in this study are the first to document the toxicity of NA in middle-aged mice and show some efficacy of ET in reducing NA toxicity.
Collapse
Affiliation(s)
- Veneese Jb Evans
- Center for Health and the Environment, School of Veterinary Medicine, University of California-Davis, Davis, CA 95616-8732, USA
| | - Xiangmeng Wu
- Dept of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721-0207
| | - Kyle K Tran
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California-Davis, Davis, CA 95616-8732, USA
| | - Shanlea K Tabofunda
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California-Davis, Davis, CA 95616-8732, USA
| | - Liang Ding
- Dept of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721-0207
| | - Lei Yin
- Dept of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721-0207
| | - Patricia Edwards
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California-Davis, Davis, CA 95616-8732, USA
| | - Qing-Yu Zhang
- Dept of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721-0207
| | - Xinxin Ding
- Dept of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721-0207.
| | - Laura S Van Winkle
- Center for Health and the Environment, School of Veterinary Medicine, University of California-Davis, Davis, CA 95616-8732, USA; Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California-Davis, Davis, CA 95616-8732, USA.
| |
Collapse
|
9
|
Halliwell B, Cheah I. Are age-related neurodegenerative diseases caused by a lack of the diet-derived compound ergothioneine? Free Radic Biol Med 2024; 217:60-67. [PMID: 38492784 DOI: 10.1016/j.freeradbiomed.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/05/2024] [Accepted: 03/13/2024] [Indexed: 03/18/2024]
Abstract
We propose that the diet-derived compound ergothioneine (ET) is an important nutrient in the human body, especially for maintenance of normal brain function, and that low body ET levels predispose humans to significantly increased risks of neurodegenerative (cognitive impairment, dementia, Parkinson's disease) and possibly other age-related diseases (including frailty, cardiovascular disease, and eye disease). Hence, restoring ET levels in the body could assist in mitigating these risks, which are rapidly increasing due to ageing populations globally. Prevention of neurodegeneration is especially important, since by the time dementia is usually diagnosed damage to the brain is extensive and likely irreversible. ET and vitamin E from the diet may act in parallel or even synergistically to protect different parts of the brain; both may be "neuroprotective vitamins". The present article reviews the substantial scientific basis supporting these proposals about the role of ET.
Collapse
Affiliation(s)
- Barry Halliwell
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Centre for Life Sciences, #05-01A, 28 Medical Drive, 117456, Singapore.
| | - Irwin Cheah
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Centre for Life Sciences, #05-01A, 28 Medical Drive, 117456, Singapore.
| |
Collapse
|
10
|
Bauer MA, Bazard P, Acosta AA, Bangalore N, Elessaway L, Thivierge M, Chellani M, Zhu X, Ding B, Walton JP, Frisina RD. L-Ergothioneine slows the progression of age-related hearing loss in CBA/CaJ mice. Hear Res 2024; 446:109004. [PMID: 38608332 PMCID: PMC11112832 DOI: 10.1016/j.heares.2024.109004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 03/25/2024] [Accepted: 04/01/2024] [Indexed: 04/14/2024]
Abstract
The naturally occurring amino acid, l-ergothioneine (EGT), has immense potential as a therapeutic, having shown promise in the treatment of other disease models, including neurological disorders. EGT is naturally uptaken into cells via its specific receptor, OCTN1, to be utilized by cells as an antioxidant and anti-inflammatory. In our current study, EGT was administered over a period of 6 months to 25-26-month-old CBA/CaJ mice as a possible treatment for age-related hearing loss (ARHL), since presbycusis has been linked to higher levels of cochlear oxidative stress, apoptosis, and chronic inflammation. Results from the current study indicate that EGT can prevent aging declines of some key features of ARHL. However, we found a distinct sex difference for the response to the treatments, for hearing - Auditory Brainstem Responses (ABRs) and Distortion Product Otoacoustic Emissions (DPOAEs). Males exhibited lower threshold declines in both low dose (LD) and high dose (HD) test groups throughout the testing period and did not display some of the characteristic aging declines in hearing seen in Control animals. In contrast, female mice did not show any therapeutic effects with either treatment dose. Further confirming this sex difference, EGT levels in whole blood sampling throughout the testing period showed greater uptake of EGT in males compared to females. Additionally, RT-PCR results from three tissue types of the inner ear confirmed EGT activity in the cochlea in both males and females. Males and females exhibited significant differences in biomarkers related to apoptosis (Cas-3), inflammation (TNF-a), oxidative stress (SOD2), and mitochondrial health (PGC1a).These changes were more prominent in males as compared to females, especially in stria vascularis tissue. Taken together, these findings suggest that EGT has the potential to be a naturally derived therapeutic for slowing down the progression of ARHL, and possibly other neurodegenerative diseases. EGT, while effective in the treatment of some features of presbycusis in aging males, could also be modified into a general prophylaxis for other age-related disorders where treatment protocols would include eating a larger proportion of EGT-rich foods or supplements. Lastly, the sex difference discovered here, needs further investigation to see if therapeutic conditions can be developed where aging females show better responsiveness to EGT.
Collapse
Affiliation(s)
- Mark A Bauer
- Department of Medical Engineering, College of Engineering, University of South Florida, Tampa, FL, 33620, USA; Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL 33612, USA
| | - Parveen Bazard
- Department of Medical Engineering, College of Engineering, University of South Florida, Tampa, FL, 33620, USA; Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL 33612, USA.
| | - Alejandro A Acosta
- School of Medicine, University of Puerto Rico, San Juan, 00925 Puerto Rico; Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL 33612, USA
| | - Nidhi Bangalore
- Department of Medical Engineering, College of Engineering, University of South Florida, Tampa, FL, 33620, USA; Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL 33612, USA
| | - Lina Elessaway
- Department of Medical Engineering, College of Engineering, University of South Florida, Tampa, FL, 33620, USA; Biomedical Sciences - Dept. of Chemistry, University of South Florida, Tampa, FL 33620, USA; Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL 33612, USA
| | - Mark Thivierge
- Department of Medical Engineering, College of Engineering, University of South Florida, Tampa, FL, 33620, USA; Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL 33612, USA
| | - Moksheta Chellani
- Department of Medical Engineering, College of Engineering, University of South Florida, Tampa, FL, 33620, USA; Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL 33612, USA
| | - Xiaoxia Zhu
- Department of Medical Engineering, College of Engineering, University of South Florida, Tampa, FL, 33620, USA; Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL 33612, USA
| | - Bo Ding
- Department of Medical Engineering, College of Engineering, University of South Florida, Tampa, FL, 33620, USA; Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL 33612, USA
| | - Joseph P Walton
- Department of Medical Engineering, College of Engineering, University of South Florida, Tampa, FL, 33620, USA; Department Communication Sciences and Disorders, College of Behavioral & Community Sciences, Tampa, FL 33620, USA; Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL 33612, USA
| | - Robert D Frisina
- Department of Medical Engineering, College of Engineering, University of South Florida, Tampa, FL, 33620, USA; Department Communication Sciences and Disorders, College of Behavioral & Community Sciences, Tampa, FL 33620, USA; Morsani College of Medicine, University of South Florida, Tampa, FL 33620, USA; Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL 33612, USA.
| |
Collapse
|
11
|
Renaud D, Höller A, Michel M. Potential Drug-Nutrient Interactions of 45 Vitamins, Minerals, Trace Elements, and Associated Dietary Compounds with Acetylsalicylic Acid and Warfarin-A Review of the Literature. Nutrients 2024; 16:950. [PMID: 38612984 PMCID: PMC11013948 DOI: 10.3390/nu16070950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/19/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024] Open
Abstract
In cardiology, acetylsalicylic acid (ASA) and warfarin are among the most commonly used prophylactic therapies against thromboembolic events. Drug-drug interactions are generally well-known. Less known are the drug-nutrient interactions (DNIs), impeding drug absorption and altering micronutritional status. ASA and warfarin might influence the micronutritional status of patients through different mechanisms such as binding or modification of binding properties of ligands, absorption, transport, cellular use or concentration, or excretion. Our article reviews the drug-nutrient interactions that alter micronutritional status. Some of these mechanisms could be investigated with the aim to potentiate the drug effects. DNIs are seen occasionally in ASA and warfarin and could be managed through simple strategies such as risk stratification of DNIs on an individual patient basis; micronutritional status assessment as part of the medical history; extensive use of the drug-interaction probability scale to reference little-known interactions, and application of a personal, predictive, and preventive medical model using omics.
Collapse
Affiliation(s)
- David Renaud
- DIU MAPS, Fundamental and Biomedical Sciences, Paris-Cité University, 75006 Paris, France
- DIU MAPS, Health Sciences Faculty, Universidad Europea Miguel de Cervantes, 47012 Valladolid, Spain
- Fundacja Recover, 05-124 Skrzeszew, Poland
| | - Alexander Höller
- Department of Nutrition and Dietetics, University Hospital Innsbruck, 6020 Innsbruck, Austria
| | - Miriam Michel
- Department of Child and Adolescent Health, Division of Pediatrics III—Cardiology, Pulmonology, Allergology and Cystic Fibrosis, Medical University of Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
12
|
Vasseur CM, Karunasegaram D, Seebeck FP. Structure and Substrate Specificity of S-Methyl Thiourocanate Hydratase. ACS Chem Biol 2024; 19:718-724. [PMID: 38389448 DOI: 10.1021/acschembio.3c00745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Nicotinamide adenine dinucleotide (NAD+) is a common cofactor in enzyme-catalyzed reactions that involve hydride transfers. In contrast, urocanase and urocanase-like enzymes use NAD+ for covalent electrophilic catalysis. Deciphering avenues by which this unusual catalytic strategy has diversified by evolution may point to approaches for the design of novel enzymes. In this report, we describe the S-methyl thiourocanate hydratase (S-Me-TUC) from Variovorax sp. RA8 as a novel member of this small family of NAD+-dependent hydratases. This enzyme catalyzes the 1,4-addition of water to S-methyl thiourocanate as the second step in the catabolism of S-methyl ergothioneine. The crystal structure of this enzyme in complex with the cofactor and a product analogue identifies critical sequence motifs that explain the narrow and nonoverlapping substrate scopes of S-methyl thiourocanate-, urocanate-, thiourocanate-, and Nτ-methyl urocanate-specific hydratases. The discovery of a S-methyl ergothioneine catabolic pathway also suggests that S-methylation or alkylation may be a significant activity in the biology of ergothioneine.
Collapse
Affiliation(s)
- Camille M Vasseur
- Department of Chemistry, University of Basel, BPR 1096, Mattenstrasse 22, Basel 4002, Switzerland
| | - Dishani Karunasegaram
- Department of Chemistry, University of Basel, BPR 1096, Mattenstrasse 22, Basel 4002, Switzerland
| | - Florian P Seebeck
- Department of Chemistry, University of Basel, BPR 1096, Mattenstrasse 22, Basel 4002, Switzerland
| |
Collapse
|
13
|
Chen L, Zhang L, Ye X, Deng Z, Zhao C. Ergothioneine and its congeners: anti-ageing mechanisms and pharmacophore biosynthesis. Protein Cell 2024; 15:191-206. [PMID: 37561026 PMCID: PMC10903977 DOI: 10.1093/procel/pwad048] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/24/2023] [Indexed: 08/11/2023] Open
Abstract
Ergothioneine, Ovothiol, and Selenoneine are sulfur/selenium-containing histidine-derived natural products widely distributed across different organisms. They exhibit significant antioxidant properties, making them as potential lead compounds for promoting health. Increasing evidence suggests that Ergothioneine is positively correlated with healthy ageing and longevity. The mechanisms underlying Ergothioneine's regulation of the ageing process at cellular and molecular levels are beginning to be understood. In this review, we provide an in-depth and extensive coverage of the anti-ageing studies on Ergothioneine and discuss its possible intracellular targeting pathways. In addition, we highlight the recent efforts in elucidating the biosynthetic details for Ergothioneine, Ovothiol, and Selenoneine, with a particular focus on the study of their pharmacophore-forming enzymology.
Collapse
Affiliation(s)
- Li Chen
- Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
- Key Laboratory of Combinatory Biosynthesis and Drug Discovery, School of Pharmaceutical Sciences, Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Liping Zhang
- Key Laboratory of Combinatory Biosynthesis and Drug Discovery, School of Pharmaceutical Sciences, Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Xujun Ye
- Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
| | - Zixin Deng
- Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
- Key Laboratory of Combinatory Biosynthesis and Drug Discovery, School of Pharmaceutical Sciences, Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Changming Zhao
- Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
- Key Laboratory of Combinatory Biosynthesis and Drug Discovery, School of Pharmaceutical Sciences, Ministry of Education, Wuhan University, Wuhan 430072, China
| |
Collapse
|
14
|
Ishimoto T, Yamashita R, Matsumoto R, Matsumoto S, Matsuo Y, Nakao S, Masuo Y, Suzuki M, Kato Y. TrkB phosphorylation in serum extracellular vesicles correlates with cognitive function enhanced by ergothioneine in humans. NPJ Sci Food 2024; 8:11. [PMID: 38321007 PMCID: PMC10847428 DOI: 10.1038/s41538-024-00250-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 01/18/2024] [Indexed: 02/08/2024] Open
Abstract
Oral administration of the food-derived antioxidant amino acid ergothioneine (ERGO) results in its efficient distribution in the brain and enhances cognitive function. However, effect of ERGO deficiency on cognitive impairment and the underlying mechanisms remain unknown. We revealed that cognitive function and hippocampal neurogenesis were lower in mice fed an ERGO-free diet than in those fed the control diet. Furthermore, ERGO supplementation to achieve the control diet ERGO levels reversed these effects and restored ERGO concentrations in the plasma and hippocampus. The ERGO-induced recovery of cognitive function and hippocampal neurogenesis was blocked by inhibiting the neurotrophic factor receptor tropomyosin receptor kinase B (TrkB), with a concomitant reduction in hippocampal phosphorylated TrkB, suggesting the involvement of TrkB in these events in mice. Phosphorylated TrkB was also detected in extracellular vesicles (EVs) derived from serum of volunteers who had been orally administered placebo or ERGO-containing tablets. Importantly, the ratio of serum EV-derived phosphorylated TrkB was significantly higher in the ERGO-treated group than in the placebo-treated group and was positively correlated with both serum ERGO concentrations and several cognitive domain scores from Cognitrax. Altogether, TrkB phosphorylation is involved in ERGO-induced cognitive enhancement in mice, and TrkB phosphorylation levels in serum EVs may quantitatively represent ERGO-induced cognitive enhancement in humans.
Collapse
Affiliation(s)
- Takahiro Ishimoto
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Ishikawa, 920-1192, Japan
| | - Reiya Yamashita
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Ishikawa, 920-1192, Japan
| | - Ruri Matsumoto
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Ishikawa, 920-1192, Japan
| | - Satoshi Matsumoto
- L·S Corporation Co. Ltd., 3-10-1 Ningyocho-Nihonbashi, Chuo-ku, Tokyo, 103-0013, Japan
| | - Yusuke Matsuo
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Ishikawa, 920-1192, Japan
| | - Shunsuke Nakao
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Ishikawa, 920-1192, Japan
| | - Yusuke Masuo
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Ishikawa, 920-1192, Japan
| | - Makoto Suzuki
- L·S Corporation Co. Ltd., 3-10-1 Ningyocho-Nihonbashi, Chuo-ku, Tokyo, 103-0013, Japan
| | - Yukio Kato
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Ishikawa, 920-1192, Japan.
| |
Collapse
|
15
|
Halliwell B. Understanding mechanisms of antioxidant action in health and disease. Nat Rev Mol Cell Biol 2024; 25:13-33. [PMID: 37714962 DOI: 10.1038/s41580-023-00645-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2023] [Indexed: 09/17/2023]
Abstract
Several different reactive oxygen species (ROS) are generated in vivo. They have roles in the development of certain human diseases whilst also performing physiological functions. ROS are counterbalanced by an antioxidant defence network, which functions to modulate ROS levels to allow their physiological roles whilst minimizing the oxidative damage they cause that can contribute to disease development. This Review describes the mechanisms of action of antioxidants synthesized in vivo, antioxidants derived from the human diet and synthetic antioxidants developed as therapeutic agents, with a focus on the gaps in our current knowledge and the approaches needed to close them. The Review also explores the reasons behind the successes and failures of antioxidants in treating or preventing human disease. Antioxidants may have special roles in the gastrointestinal tract, and many lifestyle features known to promote health (especially diet, exercise and the control of blood glucose and cholesterol levels) may be acting, at least in part, by antioxidant mechanisms. Certain reactive sulfur species may be important antioxidants but more accurate determinations of their concentrations in vivo are needed to help assess their contributions.
Collapse
Affiliation(s)
- Barry Halliwell
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Neurobiology Research Programme, Life Sciences Institute, Centre for Life Sciences, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
16
|
Achouba A, Dumas P, Ayotte P. Simultaneous determination of ergothioneine, selenoneine, and their methylated metabolites in human blood using ID-LC-MS/MS. Anal Bioanal Chem 2023; 415:7259-7267. [PMID: 37914954 DOI: 10.1007/s00216-023-04994-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 11/03/2023]
Abstract
Ergothioneine and selenoneine are structurally related dietary antioxidants and cytoprotectants that may help prevent several chronic diseases associated with inflammation and aging. Both compounds share pharmacokinetic characteristics such as cellular uptake through the ergothioneine transporter, accumulation in red blood cells, and biotransformation to methylated metabolites. A rapid, sensitive, specific, precise, and cost-effective analytical method is required to further investigate the potential health benefits of these compounds, individually or combined, in large epidemiological studies. We developed and validated an isotope-dilution liquid chromatography tandem mass spectrometry (ID-LC-MS/MS) method for the simultaneous specific quantification of these analytes in human blood following a simple sample preparation consisting of dilution in aqueous dithiothreitol followed by centrifugal filtration. Chromatographic separation of the analytes is achieved using a reversed-phase chromatography within an 8-min run. Analyte detection is performed using triple quadrupole mass spectrometry in multiple reaction monitoring mode. Each analyte is quantified against its corresponding isotopically labeled internal standard either commercially available or synthesized in-house (77Se-labeled selenoneine compounds). The validated method demonstrates excellent linearity and very good precision (all CV < 10%). Matrix effects are minimal, suggesting that this method could easily be adapted to other matrices. Freeze/thaw cycles have little effect on methylated metabolites but significantly reduced concentrations of the parent compounds. The method was successfully applied to a small set of volunteer blood samples containing low levels of the analytes. The developed ID-LC-MS/MS method opens new avenues for exploring the roles of these bioactive compounds and their metabolites in human health and disease.
Collapse
Affiliation(s)
- Adel Achouba
- Axe santé des populations et pratiques optimales en santé, Centre de recherche du CHU de Québec-Université Laval, 1050 Chemin Sainte-Foy, Québec, QC, G1S 4L8, Canada
| | - Pierre Dumas
- Centre de toxicologie du Québec, Institut national de santé publique du Québec (INSPQ), 945 Wolfe, Québec, QC, G1V 5B3, Canada
| | - Pierre Ayotte
- Axe santé des populations et pratiques optimales en santé, Centre de recherche du CHU de Québec-Université Laval, 1050 Chemin Sainte-Foy, Québec, QC, G1S 4L8, Canada.
- Centre de toxicologie du Québec, Institut national de santé publique du Québec (INSPQ), 945 Wolfe, Québec, QC, G1V 5B3, Canada.
- Département de médecine sociale et préventive, Université Laval, Pavillon Ferdinand-Vandry, Québec, QC, G1V 0A6, Canada.
| |
Collapse
|
17
|
Mayayo-Vallverdú C, López de Heredia M, Prat E, González L, Espino Guarch M, Vilches C, Muñoz L, Asensi MA, Serra C, Llebaria A, Casado M, Artuch R, Garrabou G, Garcia-Roves PM, Pallardó FV, Nunes V. The antioxidant l-Ergothioneine prevents cystine lithiasis in the Slc7a9 -/- mouse model of cystinuria. Redox Biol 2023; 64:102801. [PMID: 37418888 PMCID: PMC10359938 DOI: 10.1016/j.redox.2023.102801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/21/2023] [Accepted: 06/24/2023] [Indexed: 07/09/2023] Open
Abstract
The high recurrence rate of cystine lithiasis observed in cystinuria patients highlights the need for new therapeutic options to address this chronic disease. There is growing evidence of an antioxidant defect in cystinuria, which has led to test antioxidant molecules as new therapeutic approaches. In this study, the antioxidant l-Ergothioneine was evaluated, at two different doses, as a preventive and long-term treatment for cystinuria in the Slc7a9-/- mouse model. l-Ergothioneine treatments decreased the rate of stone formation by more than 60% and delayed its onset in those mice that still developed calculi. Although there were no differences in metabolic parameters or urinary cystine concentration between control and treated mice, cystine solubility was increased by 50% in the urines of treated mice. We also demonstrate that l-Ergothioneine needs to be internalized by its transporter OCTN1 (Slc22a4) to be effective, as when administrated to the double mutant Slc7a9-/-Slc22a4-/- mouse model, no effect on the lithiasis phenotype was observed. In kidneys, we detected a decrease in GSH levels and an impairment of maximal mitochondrial respiratory capacity in cystinuric mice that l-Ergothioneine treatment was able to restore. Thus, l-Ergothioneine administration prevented cystine lithiasis in the Slc7a9-/- mouse model by increasing urinary cystine solubility and recovered renal GSH metabolism and mitochondrial function. These results support the need for clinical trials to test l-Ergothioneine as a new treatment for cystinuria.
Collapse
Affiliation(s)
- Clara Mayayo-Vallverdú
- Human Molecular Genetics Laboratory, Gene, Disease and Therapy Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Spain; Genetics Section, Physiological Sciences Department, Health Sciences and Medicine Faculty, University of Barcelona, Barcelona, Spain.
| | - Miguel López de Heredia
- Human Molecular Genetics Laboratory, Gene, Disease and Therapy Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) -CB06/07/0069 - CB06/07/0061 - CB06/07/0073 - CB06/07/1002 - Instituto de Salud Carlos III, Madrid, Spain
| | - Esther Prat
- Human Molecular Genetics Laboratory, Gene, Disease and Therapy Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Spain; Genetics Section, Physiological Sciences Department, Health Sciences and Medicine Faculty, University of Barcelona, Barcelona, Spain
| | - Laura González
- Human Molecular Genetics Laboratory, Gene, Disease and Therapy Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) -CB06/07/0069 - CB06/07/0061 - CB06/07/0073 - CB06/07/1002 - Instituto de Salud Carlos III, Madrid, Spain
| | - Meritxell Espino Guarch
- Human Molecular Genetics Laboratory, Gene, Disease and Therapy Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Spain; Immunology Department, Sidra Medicine, Doha, Qatar
| | - Clara Vilches
- Human Molecular Genetics Laboratory, Gene, Disease and Therapy Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Spain; Institut de Ciències Fotòniques (ICFO), The Barcelona Institute of Science and Technology, 08860, Castelldefels, Barcelona, Spain
| | - Lourdes Muñoz
- SIMChem, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona, Spain
| | - Miguel A Asensi
- Departamento de Fisiología. Universidad de Valencia-INCLIVA, Valencia, Spain
| | - Carmen Serra
- SIMChem, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona, Spain
| | - Amadeu Llebaria
- SIMChem, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona, Spain; MCS, Laboratory of Medicinal Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona, Spain
| | - Mercedes Casado
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) -CB06/07/0069 - CB06/07/0061 - CB06/07/0073 - CB06/07/1002 - Instituto de Salud Carlos III, Madrid, Spain; Clinical Biochemistry Department, Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, Esplugues de Llobregat, Spain
| | - Rafael Artuch
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) -CB06/07/0069 - CB06/07/0061 - CB06/07/0073 - CB06/07/1002 - Instituto de Salud Carlos III, Madrid, Spain; Clinical Biochemistry Department, Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, Esplugues de Llobregat, Spain
| | - Gloria Garrabou
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) -CB06/07/0069 - CB06/07/0061 - CB06/07/0073 - CB06/07/1002 - Instituto de Salud Carlos III, Madrid, Spain; Muscle Research and Mitochondrial Function Laboratory, Cellex-Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Internal Medicine Department-Hospital Clínic of Barcelona, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Pablo M Garcia-Roves
- Department of Physiological Sciences, School of Medicine and Health Sciences, Nutrition, Metabolism and Gene therapy Group Diabetes and Metabolism Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), University of Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Federico V Pallardó
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) -CB06/07/0069 - CB06/07/0061 - CB06/07/0073 - CB06/07/1002 - Instituto de Salud Carlos III, Madrid, Spain; Departamento de Fisiología. Universidad de Valencia-INCLIVA, Valencia, Spain
| | - Virginia Nunes
- Human Molecular Genetics Laboratory, Gene, Disease and Therapy Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Spain; Genetics Section, Physiological Sciences Department, Health Sciences and Medicine Faculty, University of Barcelona, Barcelona, Spain.
| |
Collapse
|
18
|
Brandalise F, Roda E, Ratto D, Goppa L, Gargano ML, Cirlincione F, Priori EC, Venuti MT, Pastorelli E, Savino E, Rossi P. Hericium erinaceus in Neurodegenerative Diseases: From Bench to Bedside and Beyond, How Far from the Shoreline? J Fungi (Basel) 2023; 9:jof9050551. [PMID: 37233262 DOI: 10.3390/jof9050551] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 05/27/2023] Open
Abstract
A growing number of studies is focusing on the pharmacology and feasibility of bioactive compounds as a novel valuable approach to target a variety of human diseases related to neurological degeneration. Among the group of the so-called medicinal mushrooms (MMs), Hericium erinaceus has become one of the most promising candidates. In fact, some of the bioactive compounds extracted from H. erinaceus have been shown to recover, or at least ameliorate, a wide range of pathological brain conditions such as Alzheimer's disease, depression, Parkinson's disease, and spinal cord injury. In a large body of in vitro and in vivo preclinical studies on the central nervous system (CNS), the effects of erinacines have been correlated with a significant increase in the production of neurotrophic factors. Despite the promising outcome of preclinical investigations, only a limited number of clinical trials have been carried out so far in different neurological conditions. In this survey, we summarized the current state of knowledge on H. erinaceus dietary supplementation and its therapeutic potential in clinical settings. The bulk collected evidence underlies the urgent need to carry out further/wider clinical trials to prove the safety and efficacy of H. erinaceus supplementation, offering significant neuroprotective applications in brain pathologies.
Collapse
Affiliation(s)
| | - Elisa Roda
- Laboratory of Clinical & Experimental Toxicology, Pavia Poison Centre, National Toxicology Information Centre, Toxicology Unit, Istituti Clinici Scientifici Maugeri IRCCS, 27100 Pavia, Italy
| | - Daniela Ratto
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy
| | - Lorenzo Goppa
- Department of Earth and Environmental Science, University of Pavia, 27100 Pavia, Italy
| | - Maria Letizia Gargano
- Department of Soil, Plant, and Food Sciences, Via G. Amendola, 165/A, 70126 Bari, Italy
| | - Fortunato Cirlincione
- Department of Agricultural, Food and Forest Sciences, University of Palermo, Viale delle Scienze, Bldg. 5, 90128 Palermo, Italy
| | - Erica Cecilia Priori
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy
| | - Maria Teresa Venuti
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy
| | - Emanuela Pastorelli
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy
| | - Elena Savino
- Department of Earth and Environmental Science, University of Pavia, 27100 Pavia, Italy
| | - Paola Rossi
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
19
|
Liu Y, Wang C, Liu R, Zhao M, Ding X, Zhang T, He R, Zhu S, Dong X, Xie J, Gu Z, Zhao Y. Adhesive Ergothioneine Hyaluronate Gel Protects against Radiation Gastroenteritis by Alleviating Apoptosis, Inflammation, and Gut Microbiota Dysbiosis. ACS APPLIED MATERIALS & INTERFACES 2023; 15:19833-19846. [PMID: 37052616 DOI: 10.1021/acsami.2c23142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Radiation gastroenteritis represents one of the most prevalent and hazardous complications of abdominopelvic radiotherapy, which not only severely reduces patients' life quality but also restricts radiotherapy efficacy. However, there is currently no clinically available oral radioprotector for this threatening disease due to its complex pathogenesis and the harsh gastrointestinal environment. To this end, this study developed a facile but effective oral radioprotector, ergothioneine hyaluronate (EGT@HA) gel, protecting against radiation gastroenteritis by synergistically regulating oxidative stress, inflammation, and gut microbiota. In vitro and cellular experiments verified the chemical stability and free radical scavenging ability of EGT and its favorable cellular radioprotective efficacy by inhibiting intracellular reactive oxidative species (ROS) generation, DNA damage, mitochondrial damage, and apoptosis. At the in vivo level, EGT@HA with prolonged gastrointestinal residence mitigated radiation-induced gastrointestinal tissue injury, apoptosis, neutrophil infiltration, and gut flora dysbiosis. For the first time, this work investigated the protective effects of EGT@HA gel on radiation gastroenteritis, which not only hastens the advancement of the novel gastrointestinal radioprotector but also provides a valuable gastrointestinal radioprotection paradigm by synergistically modulating oxidative stress, inflammation, and gut microbiota disturbance.
Collapse
Affiliation(s)
- Yaping Liu
- The First Affiliated Hospital of University of Science and Technology of China, Hefei 230001, Anhui, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics and National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100049, China
| | - Chengyan Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics and National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100049, China
| | - Ruixue Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics and National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100049, China
| | - Maoru Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics and National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100049, China
| | - Xuefeng Ding
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics and National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100049, China
| | - Tingjun Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics and National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100049, China
| | - Rendong He
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics and National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100049, China
| | - Shuang Zhu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics and National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100049, China
| | - Xinghua Dong
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics and National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100049, China
| | - Jiani Xie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics and National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100049, China
- China School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, China
| | - Zhanjun Gu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics and National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100049, China
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuliang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics and National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100049, China
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
20
|
Chen X, Cao J, Geng A, Zhang X, Wang H, Chu Q, Yan Z, Zhang Y, Liu H, Zhang J. Integration of GC-MS and LC-MS for metabolite characteristics of thigh meat between fast- and slow-growing broilers at marketable age. Food Chem 2023; 403:134362. [DOI: 10.1016/j.foodchem.2022.134362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 09/07/2022] [Accepted: 09/18/2022] [Indexed: 11/26/2022]
|
21
|
Safe and Effective Antioxidant: The Biological Mechanism and Potential Pathways of Ergothioneine in the Skin. Molecules 2023; 28:molecules28041648. [PMID: 36838636 PMCID: PMC9967237 DOI: 10.3390/molecules28041648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/02/2023] [Accepted: 02/04/2023] [Indexed: 02/11/2023] Open
Abstract
Ergothioneine, a sulfur-containing micromolecular histidine derivative, has attracted increasing attention from scholars since it was confirmed in the human body. In the human body, ergothioneine is transported and accumulated specifically through OCTN-1, especially in the mitochondria and nucleus, suggesting that it can target damaged cells and tissues as an antioxidant. It shows excellent antioxidant, anti-inflammatory effects, and anti-aging properties, and inhibits melanin production. It is a mega antioxidant that may participate in the antioxidant network system and promote the reducing glutathione regeneration cycle. This review summarizes studies on the antioxidant effects of ergothioneine on various free radicals in vitro to date and systematically introduces its biological activities and potential mechanisms, mostly in dermatology. Additionally, the application of ergothioneine in cosmetics is briefly summarized. Lastly, we propose some problems that require solutions to understand the mechanism of action of ergothioneine. We believe that ergothioneine has good prospects in the food and cosmetics industries, and can thus meet some needs of the health and beauty industry.
Collapse
|
22
|
Protection against Doxorubicin-Induced Cardiotoxicity by Ergothioneine. Antioxidants (Basel) 2023; 12:antiox12020320. [PMID: 36829879 PMCID: PMC9951880 DOI: 10.3390/antiox12020320] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/12/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
Background: Anthracyclines such as doxorubicin remain a primary treatment for hematological malignancies and breast cancers. However, cardiotoxicity induced by anthracyclines, possibly leading to heart failure, severely limits their application. The pathological mechanisms of anthracycline-induced cardiac injury are believed to involve iron-overload-mediated formation of reactive oxygen species (ROS), mitochondrial dysfunction, and inflammation. The dietary thione, ergothioneine (ET), is avidly absorbed and accumulated in tissues, including the heart. Amongst other cytoprotective properties, ET was shown to scavenge ROS, decrease proinflammatory mediators, and chelate metal cations, including Fe2+, preventing them from partaking in redox activities, and may protect against mitochondrial damage and dysfunction. Plasma ET levels are also strongly correlated to a decreased risk of cardiovascular events in humans, suggesting a cardioprotective role. This evidence highlights ET's potential to counteract anthracycline cardiotoxicity. Methods and Findings: We investigated whether ET supplementation can protect against cardiac dysfunction in mice models of doxorubicin-induced cardiotoxicity and revealed that it had significant protective effects. Moreover, ET administration in a mouse breast cancer model did not exacerbate the growth of the tumor or interfere with the chemotherapeutic efficacy of doxorubicin. Conclusion: These results suggest that ET could be a viable co-therapy to alleviate the cardiotoxic effects of anthracyclines in the treatment of cancers.
Collapse
|
23
|
Guo X, Peng H, Liu P, Tang L, Fang J, Aoieong C, Tou T, Tsai T, Liu X. Metabolic profiling identifies the significance of caffeine metabolism in CKD. Front Bioeng Biotechnol 2023; 11:1006246. [PMID: 36873366 PMCID: PMC9981652 DOI: 10.3389/fbioe.2023.1006246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 02/06/2023] [Indexed: 02/19/2023] Open
Abstract
Background: With the development of chronic kidney disease (CKD), there are various changes in metabolites. However, the effect of these metabolites on the etiology, progression and prognosis of CKD remains unclear. Objective: We aimed to identify significant metabolic pathways in CKD progression by screening metabolites through metabolic profiling, thus identifying potential targets for CKD treatment. Methods: Clinical data were collected from 145 CKD participants. GFR (mGFR) was measured by the iohexol method and participants were divided into four groups according to their mGFR. Untargeted metabolomics analysis was performed via UPLC-MS/MSUPLC-MSMS/MS assays. Metabolomic data were analyzed by MetaboAnalyst 5.0, one-way ANOVA, principal component analysis (PCA), and partial least squares discriminant analysis (PLS-DA) to identify differential metabolites for further analysis. The open database sources of MBRole2.0, including KEGG and HMDB, were used to identify significant metabolic pathways in CKD progression. Results: Four metabolic pathways were classified as important in CKD progression, among which the most significant was caffeine metabolism. A total of 12 differential metabolites were enriched in caffeine metabolism, four of which decreased with the deterioration of the CKD stage, and two of which increased with the deterioration of the CKD stage. Of the four decreased metabolites, the most important was caffeine. Conclusion: Caffeine metabolism appears to be the most important pathway in the progression of CKD as identified by metabolic profiling. Caffeine is the most important metabolite that decreases with the deterioration of the CKD stage.
Collapse
Affiliation(s)
- Xinghua Guo
- Department of Rheumatology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Hongquan Peng
- Department of Nephrology, Kiang Wu Hospital, Macau, Macao SAR, China
| | - Peijia Liu
- Department of Nephrology, GuangZhou Eighth People's Hospital, GuangZhou Medical University, Guangzhou, Guangdong, China
| | - Leile Tang
- Department of Cardiovasology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Jia Fang
- Department of Rheumatology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Chiwa Aoieong
- Department of Nephrology, Kiang Wu Hospital, Macau, Macao SAR, China
| | - Tou Tou
- Department of Nephrology, Kiang Wu Hospital, Macau, Macao SAR, China
| | - Tsungyang Tsai
- Department of Nephrology, Kiang Wu Hospital, Macau, Macao SAR, China
| | - Xun Liu
- Department of Nephrology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| |
Collapse
|
24
|
Potential Cytoprotective and Regulatory Effects of Ergothioneine on Gene Expression of Proteins Involved in Erythroid Adaptation Mechanisms and Redox Pathways in K562 Cells. Genes (Basel) 2022; 13:genes13122368. [PMID: 36553634 PMCID: PMC9778224 DOI: 10.3390/genes13122368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/08/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
This study aimed to establish the importance of ergothioneine (ERT) in the erythroid adaptation mechanisms by appraising the expression levels of redox-related genes associated with the PI3K/AKT/FoxO3 and Nrf2-ARE pathways using K562 cells induced to erythroid differentiation and H2O2-oxidative stress. Cell viability and gene expression were evaluated. Two concentrations of ERT were assessed, 1 nM (C1) and 100 µM (C2), with and without stress induction (100 µM H2O2). Assessments were made in three periods of the cellular differentiation process (D0, D2, and D4). The C1 treatment promoted the induction of FOXO3 (D0 and 2), PSMB5, and 6 expressions (D4); C1 + H2O2 treatment showed the highest levels of NRF2 transcripts, KEAP1 (D0), YWHAQ (D2 and 4), PSMB5 (D2) and PSMB6 (D4); and C2 + H2O2 (D2) an increase in FOXO3 and MST1 expression, with a decrease of YWHAQ and NRF2 was observed. in C2 + H2O2 (D2) an increase in FOXO3 and MST1, with a decrease in YWHAQ and NRF2 was observed All ERT treatments increased gamma-globin expression. Statistical multivariate analyzes highlighted that the Nrf2-ARE pathway presented a greater contribution in the production of PRDX1, SOD1, CAT, and PSBM5 mRNAs, whereas the PI3K/AKT/FoxO3 pathway was associated with the PRDX2 and TRX transcripts. In conclusion, ERT presented a cytoprotective action through Nrf2 and FoxO3, with the latter seeming to contribute to erythroid proliferation/differentiation.
Collapse
|
25
|
Discovery and structure of a widespread bacterial ABC transporter specific for ergothioneine. Nat Commun 2022; 13:7586. [PMID: 36481738 PMCID: PMC9732360 DOI: 10.1038/s41467-022-35277-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 11/22/2022] [Indexed: 12/13/2022] Open
Abstract
L-Ergothioneine (ET), the 2-thioimidazole derivative of trimethylhistidine, is biosynthesized by select fungi and bacteria, notably Mycobacterium tuberculosis, and functions as a scavenger of reactive oxygen species. The extent to which ET broadly functions in bacterial cells unable to synthesize it is unknown. Here we show that spd_1642-1643 in Streptococcus pneumoniae, a Gram-positive respiratory pathogen, encodes an ET uptake ATP-binding cassette (ABC) transporter, designated EgtU. The solute binding domain (SBD) of EgtU, EgtUC, binds ET with high affinity and exquisite specificity in a cleft between the two subdomains, with cation-π interactions engaging the betaine moiety and a network of water molecules that surround the thioimidazole ring. EgtU is highly conserved among known quaternary amine compound-specific transporters and widely distributed in Firmicutes, including the human pathogens Listeria monocytogenes, as BilEB, Enterococcus faecalis and Staphylococcus aureus. ET increases the chemical diversity of the low molecular weight thiol pool in Gram-positive human pathogens and may contribute to antioxidant defenses in the infected host.
Collapse
|
26
|
Apparoo Y, Phan CW, Kuppusamy UR, Sabaratnam V. Ergothioneine and its prospects as an anti-ageing compound. Exp Gerontol 2022; 170:111982. [PMID: 36244584 DOI: 10.1016/j.exger.2022.111982] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 10/03/2022] [Accepted: 10/10/2022] [Indexed: 12/29/2022]
Abstract
Healthy ageing is a crucial process that needs to be highlighted as it affects the quality of lifespan. An increase in oxidative stress along with ageing is the major factor related to the age-associated diseases, especially neurodegenerative disorders. An antioxidant-rich diet has been proven to play a significant role in the ageing process. Targeting ageing mechanisms could be a worthwhile approach to improving health standards. Ergothioneine (EGT), a hydrophilic compound with specific transporter known as OCTN1, has been shown to exert anti-ageing properties. In addition to its antioxidant effect, EGT has been reported to have anti-senescence, anti-inflammatory and anti-neurodegenerative properties. This review aims to define the pivotal role of EGT in major signalling pathways in ageing such as insulin/insulin-like growth factor (IGF) signalling (IIS), sirtuin 6 (SIRT6) and mammalian target of rapamycin complex (mTOR) pathways. The review further discusses evidence of EGT on neurodegeneration in its therapeutic context in various model organisms, providing new insights into improving health. In conclusion, an ergothioneine-rich diet may be beneficial in preventing age-related diseases, resulting in a healthy ageing population.
Collapse
Affiliation(s)
- Yasaaswini Apparoo
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Chia Wei Phan
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, Universiti Malaya, 50603 Kuala Lumpur, Malaysia; Clinical Investigation Centre (CIC), 5th Floor, East Tower, University Malaya Medical Centre, 59100 Lembah Pantai Kuala Lumpur, Malaysia; Mushroom Research Centre, Universiti Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Umah Rani Kuppusamy
- Department of Biomedical Science, Faculty of Medicine, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Vikneswary Sabaratnam
- Mushroom Research Centre, Universiti Malaya, 50603 Kuala Lumpur, Malaysia; Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
27
|
Jędrejko K, Kała K, Sułkowska-Ziaja K, Pytko-Polończyk J, Muszyńska B. Effect of Cordyceps spp. and Cordycepin on Functions of Bones and Teeth and Related Processes: A Review. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238170. [PMID: 36500262 PMCID: PMC9737375 DOI: 10.3390/molecules27238170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022]
Abstract
Cordyceps spp. (belonging to the Ascomycota group) are entomopathogenic mushrooms that have traditionally been used in ethnomedicine in Asian countries such as China, Japan, Korea, and India. They are unique parasites of larvae of selected species of moths. Cordyceps militaris is one of the best sources of cordycepin. Worldwide, osteoporosis is one of the most common bone diseases, whose pharmacotherapy includes various medical interventions; however, the research and development of new molecules and new drugs is required. The impact of adenosine receptors (ARs) on the purinergic signaling pathway may regulate proliferation, differentiate dental pulp stem cells and bone marrow, and modulate osteogenesis and bone repair. The aim of the review was to collect and analyze the available data on the effects of Cordyceps spp. or cordycepin on bone function and related processes. To the best of our knowledge, this is the first systematic review in this perspective, not necessarily using mushroom raw material or even the isolated parent compound cordycepin, but new molecules that are analogs of nucleosides, such as those from C. militaris. This review found that Cordyceps spp. or isolated cordycepin interacts via the AR, 5' adenosine monophosphate-activated protein kinase (AMPK), and adenosine-5'-triphosphate (ATP) signaling pathway and evaluated their impact on bones, teeth, and dental pulp. Cordyceps spp. was found to have the potential to develop regenerative medicines, thus providing an opportunity to expand the treatment or intervention methods in the recovery after traumatic injuries, convalescence, and terminal-stage or devastating diseases.
Collapse
Affiliation(s)
- Karol Jędrejko
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Kraków, Poland
- Correspondence: (K.J.); (B.M.)
| | - Katarzyna Kała
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Kraków, Poland
| | - Katarzyna Sułkowska-Ziaja
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Kraków, Poland
| | - Jolanta Pytko-Polończyk
- Chair and Department of Integrated Dentistry, Faculty of Medicine, Jagiellonian University Medical College, 4 Montelupich Street, 31-155 Kraków, Poland
| | - Bożena Muszyńska
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Kraków, Poland
- Correspondence: (K.J.); (B.M.)
| |
Collapse
|
28
|
Low Plasma Ergothioneine Predicts Cognitive and Functional Decline in an Elderly Cohort Attending Memory Clinics. Antioxidants (Basel) 2022; 11:antiox11091717. [PMID: 36139790 PMCID: PMC9495818 DOI: 10.3390/antiox11091717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 12/20/2022] Open
Abstract
Low blood concentrations of the diet-derived compound ergothioneine (ET) have been associated with cognitive impairment and cerebrovascular disease (CeVD) in cross-sectional studies, but it is unclear whether ET levels can predict subsequent cognitive and functional decline. Here, we examined the temporal relationships between plasma ET status and cognition in a cohort of 470 elderly subjects attending memory clinics in Singapore. All participants underwent baseline plasma ET measurements as well as neuroimaging for CeVD and brain atrophy. Neuropsychological tests of cognition and function were assessed at baseline and follow-up visits for up to five years. Lower plasma ET levels were associated with poorer baseline cognitive performance and faster rates of decline in function as well as in multiple cognitive domains including memory, executive function, attention, visuomotor speed, and language. In subgroup analyses, the longitudinal associations were found only in non-demented individuals. Mediation analyses showed that the effects of ET on cognition seemed to be largely explainable by severity of concomitant CeVD, specifically white matter hyperintensities, and brain atrophy. Our findings support further assessment of plasma ET as a prognostic biomarker for accelerated cognitive and functional decline in pre-dementia and suggest possible therapeutic and preventative measures.
Collapse
|
29
|
Ergothioneine Production by Submerged Fermentation of a Medicinal Mushroom Panus conchatus. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8090431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Ergothioneine is a natural and safe antioxidant that plays an important role in anti-aging and the prevention of various diseases. This study aimed to report on a kind of medicinal mushroom of Panus conchatus with great potential for the bioproduction of ergothioneine. The effect of different nutritional and environmental conditions on the growth of Panus conchatus and ergothioneine production were investigated. Molasses and soy peptone were found to promote cell growth of Panus conchatus and enhance ergothioneine accumulation. Adding precursors of histidine, methionine and cysteine could increase ergothioneine production and the highest ergothioneine concentration of 148.79 mg/L was obtained. Finally, the extraction and purification processes were also established to obtain the crude ergothioneine extract for further antioxidant property evaluation. The ergothioneine from Panus conchatus showed high antioxidant activity with good stability in a lower pH environment. This study provided a new strain and process for the bioproduction of ergothioneine.
Collapse
|
30
|
Metabolomics Profiling of Vitamin D Status in Relation to Dyslipidemia. Metabolites 2022; 12:metabo12080771. [PMID: 36005643 PMCID: PMC9416284 DOI: 10.3390/metabo12080771] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 08/08/2022] [Accepted: 08/11/2022] [Indexed: 12/03/2022] Open
Abstract
Vitamin D deficiency is a global disorder associated with several chronic illnesses including dyslipidemia and metabolic syndrome. The impact of this association with both dyslipidemia and vitamin D deficiency on metabolomics profile is not yet fully understood. This study analyses the metabolomics and lipidomic signatures in relation to vitamin D status and dyslipidemia. Metabolomics data were collected from Qatar Biobank database and categorized into four groups based on vitamin D and dyslipidemia status. Metabolomics multivariate analysis was performed using the orthogonal partial least square discriminate analysis (OPLS-DA) whilst linear models were used to assess the per-metabolite association with each of the four dyslipidemia/vitamin D combination groups. Our results indicate a high prevalence of vitamin D deficiency among the younger age group, while dyslipidemia was more prominent in the older group. A significant alteration of metabolomics profile was observed among the dyslipidemic and vitamin D deficient individuals in comparison with control groups. These modifications reflected changes in some key pathways including ceramides, diacylglycerols, hemosylceramides, lysophospholipids, phosphatidylcholines, phosphatidylethanol amines, and sphingomyelins. Vitamin D deficiency and dyslipidemia have a deep impact on sphingomyelins profile. The modifications were noted at the level of ceramides and are likely to propagate through downstream pathways.
Collapse
|
31
|
Katsube M, Watanabe H, Suzuki K, Ishimoto T, Tatebayashi Y, Kato Y, Murayama N. Food-derived antioxidant ergothioneine improves sleep difficulties in humans. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
|
32
|
Nakamichi N, Tsuzuku S, Shibagaki F. Ergothioneine and central nervous system diseases. Neurochem Res 2022; 47:2513-2521. [PMID: 35788879 DOI: 10.1007/s11064-022-03665-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/03/2022] [Accepted: 06/18/2022] [Indexed: 11/26/2022]
Abstract
Ergothioneine (ERGO) is a thiol contained in the food that exhibits an excellent antioxidant effect similar to that of glutathione. Although mammals lack a biosynthetic pathway for ERGO, the carnitine/organic cation transporter OCTN1/SLC22A4, which transports ERGO in vivo, is expressed throughout the body, and ERGO is distributed to various organs after oral intake. ERGO is a stable compound that remains in the body for a long time after ingestion. OCTN1 is also expressed in brain parenchymal cells, including neurons, and ERGO in the blood permeates the blood-brain barrier and is distributed to the brain, exhibiting a neuroprotective effect. Recently, the association between central nervous system (CNS) diseases and ERGO has become a research focus. ERGO concentrations in the blood components are lower in patients with cognitive impairment, Parkinson's disease, and frailty than in healthy subjects. ERGO exerts a protective effect against various neurotoxins and improves the symptoms of cognitive impairment, depression, and epilepsy in animal models. The promotion of neurogenesis and induction of neurotrophic factors, in addition to the antioxidant and anti-inflammatory effects, may be involved in the neuroprotective effect of ERGO. This review shows the association between ERGO and CNS diseases, discusses the possible biomarkers of peripheral ERGO in CNS diseases, and the possible preventive and improvement effects of ERGO on CNS diseases.
Collapse
Affiliation(s)
- Noritaka Nakamichi
- Faculty of Pharmacy, Takasaki University of Health and Welfare, 60 Nakaorui-machi, 370-0033, Takasaki, Gunma, Japan.
| | - Sota Tsuzuku
- Faculty of Pharmacy, Takasaki University of Health and Welfare, 60 Nakaorui-machi, 370-0033, Takasaki, Gunma, Japan
| | - Fumiya Shibagaki
- Faculty of Pharmacy, Takasaki University of Health and Welfare, 60 Nakaorui-machi, 370-0033, Takasaki, Gunma, Japan
| |
Collapse
|
33
|
Sepúlveda M, Arauna D, García F, Albala C, Palomo I, Fuentes E. Frailty in Aging and the Search for the Optimal Biomarker: A Review. Biomedicines 2022; 10:1426. [PMID: 35740447 PMCID: PMC9219911 DOI: 10.3390/biomedicines10061426] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 06/07/2022] [Accepted: 06/07/2022] [Indexed: 01/09/2023] Open
Abstract
In the context of accelerated aging of the population worldwide, frailty has emerged as one of the main risk factors that can lead to loss of self-sufficiency in older people. This syndrome is defined as a reduced state of physiological reserve and functional capacity. The main diagnostic tools for frailty are based on scales that show deficits compared to their clinical application, such as the Fried frailty phenotype, among others. In this context, it is important to have one or more biomarkers with clinical applicability that can objectively and precisely determine the degree or risk of frailty in older people. The objective of this review was to analyze the biomarkers associated with frailty, classified according to the pathophysiological components of this syndrome (inflammation, coagulation, antioxidants, and liver function, among others). The evidence demonstrates that biomarkers associated with inflammation, oxidative stress, skeletal/cardiac muscle function, and platelet function represent the most promising markers of frailty due to their pathophysiological association with this syndrome. To a lesser extent but with the possibility of greater innovation, biomarkers associated with growth factors, vitamins, amino acids, and miRNAs represent alternatives as markers of this geriatric syndrome. Likewise, the incorporation of artificial intelligence represents an interesting approach to strengthening the diagnosis of frailty by biomarkers.
Collapse
Affiliation(s)
- Magdalena Sepúlveda
- Thrombosis Research Center, Medical Technology School, Faculty of Health Sciences, Interuniversity Center for Healthy Aging, Universidad de Talca, Talca 3480094, Chile; (M.S.); (D.A.)
| | - Diego Arauna
- Thrombosis Research Center, Medical Technology School, Faculty of Health Sciences, Interuniversity Center for Healthy Aging, Universidad de Talca, Talca 3480094, Chile; (M.S.); (D.A.)
| | - Francisco García
- Department of Geriatric Medicine, Complejo Hospitalario de Toledo, 45007 Toledo, Spain;
| | - Cecilia Albala
- Unidad de Nutrición Pública, Instituto de Nutrición y Tecnología de los Alimentos, Interuniversity Center for Healthy Aging, Universidad de Chile, Santiago 8320000, Chile;
| | - Iván Palomo
- Thrombosis Research Center, Medical Technology School, Faculty of Health Sciences, Interuniversity Center for Healthy Aging, Universidad de Talca, Talca 3480094, Chile; (M.S.); (D.A.)
| | - Eduardo Fuentes
- Thrombosis Research Center, Medical Technology School, Faculty of Health Sciences, Interuniversity Center for Healthy Aging, Universidad de Talca, Talca 3480094, Chile; (M.S.); (D.A.)
| |
Collapse
|
34
|
Iciek M, Bilska-Wilkosz A, Kozdrowicki M, Górny M. Reactive Sulfur Compounds in the Fight against COVID-19. Antioxidants (Basel) 2022; 11:antiox11061053. [PMID: 35739949 PMCID: PMC9220020 DOI: 10.3390/antiox11061053] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/20/2022] [Accepted: 05/24/2022] [Indexed: 02/04/2023] Open
Abstract
The SARS-CoV-2 coronavirus pandemic outbreak in 2019 resulted in the need to search for an effective and safe strategy for treating infected patients, relieving symptoms, and preventing severe disease. SARS-CoV-2 is an RNA virus that can cause acute respiratory failure and thrombosis, as well as impair circulatory system function. Permanent damage to the heart muscle or other cardiovascular disorders may occur during or after the infection. The severe course of the disease is associated with the release of large amounts of pro-inflammatory cytokines. Due to their documented anti-inflammatory, antioxidant, and antiviral effects, reactive sulfur compounds, including hydrogen sulfide (H2S), lipoic acid (LA), N-acetylcysteine (NAC), glutathione (GSH), and some other lesser-known sulfur compounds, have attracted the interest of scientists for the treatment and prevention of the adverse effects of diseases caused by SARS-CoV-2. This article reviews current knowledge about various endogenous or exogenous reactive sulfur compounds and discusses the possibility, or in some cases the results, of their use in the treatment or prophylaxis of COVID-19.
Collapse
|
35
|
Cheah IK, Lee JZ, Tang RMY, Koh PW, Halliwell B. Does Lactobacillus reuteri influence ergothioneine levels in the human body? FEBS Lett 2022; 596:1241-1251. [PMID: 35486429 DOI: 10.1002/1873-3468.14364] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/08/2022] [Accepted: 04/08/2022] [Indexed: 11/11/2022]
Abstract
The dietary thione-thiol, ergothioneine (ET), accumulates in human and animal tissues and may play important roles in disease prevention. ET biosynthesis has only been described in fungi and certain bacteria, and humans and animals are widely assumed to accumulate ET solely from diet. However, a recent study suggested that Lactobacillus/Limosilactobacillus reuteri, a commensal gut bacterium, may produce ET, thereby protecting the host against social defeat stress and sleep disturbances. Upon our further investigation, no evidence of ET biosynthesis was observed in L. reuteri when a heavy-labelled histidine precursor was administered. Instead, we discovered that L. reuteri avidly accumulates ET. This observation may indicate a possible mechanism by which the gut microbiota could influence tissue levels of ET in the host.
Collapse
Affiliation(s)
- Irwin K Cheah
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117596.,Neurobiology Programme, Centre for Life Sciences, Life Science Institute, National University of Singapore, Singapore, 117456
| | - Jovan Z Lee
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117596
| | - Richard M Y Tang
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117596.,Neurobiology Programme, Centre for Life Sciences, Life Science Institute, National University of Singapore, Singapore, 117456
| | - Pei Wen Koh
- Neurobiology Programme, Centre for Life Sciences, Life Science Institute, National University of Singapore, Singapore, 117456
| | - Barry Halliwell
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117596.,Neurobiology Programme, Centre for Life Sciences, Life Science Institute, National University of Singapore, Singapore, 117456
| |
Collapse
|
36
|
Fu TT, Shen L. Ergothioneine as a Natural Antioxidant Against Oxidative Stress-Related Diseases. Front Pharmacol 2022; 13:850813. [PMID: 35370675 PMCID: PMC8971627 DOI: 10.3389/fphar.2022.850813] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 02/25/2022] [Indexed: 12/15/2022] Open
Abstract
L-Ergothioneine (EGT) is a natural antioxidant derived from microorganisms, especially in edible mushrooms. EGT is found to be highly accumulated in tissues that are susceptible to oxidative damage, and it has attracted extensive attention due to its powerful antioxidant activity and the tight relationships of this natural product with various oxidative stress-related diseases. Herein, we 1) introduce the biological source and in vivo distribution of EGT; 2) review the currently available evidence concerning the relationships of EGT with diabetes, ischemia-reperfusion injury-related diseases like cardiovascular diseases and liver diseases, neurodegenerative diseases, and other diseases pathogenically associated with oxidative stress; 3) summarize the potential action mechanisms of EGT against these diseases; 4) discuss the advantages of EGT over other antioxidants; and 5) also propose several future research perspectives for EGT. These may help to promote the future application of this attractive natural antioxidant.
Collapse
Affiliation(s)
- Tong-Tong Fu
- Institute of Biomedical Research, Shandong University of Technology, Zibo, China
- Shandong Provincial Research Center for Bioinformatic Engineering and Technique, Zibo Key Laboratory of New Drug Development of Neurodegenerative Diseases, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Liang Shen
- Institute of Biomedical Research, Shandong University of Technology, Zibo, China
- Shandong Provincial Research Center for Bioinformatic Engineering and Technique, Zibo Key Laboratory of New Drug Development of Neurodegenerative Diseases, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
- *Correspondence: Liang Shen,
| |
Collapse
|
37
|
Searching for a Longevity Food, We Bump into Hericium erinaceus Primordium Rich in Ergothioneine: The “Longevity Vitamin” Improves Locomotor Performances during Aging. Nutrients 2022; 14:nu14061177. [PMID: 35334834 PMCID: PMC8950371 DOI: 10.3390/nu14061177] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/02/2022] [Accepted: 03/08/2022] [Indexed: 02/06/2023] Open
Abstract
Phenotypic frailty is characterized by a progressive decline in physical functioning. During ageing, morphological and functional alterations involve the brain, and chief theories involve oxidative stress, free radical accumulation, and reduced antioxidant defenses as the most implicated mechanisms. From boosting the immune system to fighting senescence, medicinal mushrooms have been found to have a number of health and longevity benefits. Among them, Hericium erinaceus (He) has been demonstrated to display a variety of physiological effects, including anti-aging properties. Thus, He represents an attractive natural source for developing novel medicines and functional foods, based on the identification of its active ingredients and metabolites. Particularly, H. erinaceus primordium (He2) extract contains a high amount of Ergothioneine (ERGO), the longevity vitamin. Herein, we revealed the preventive effect of ERGO-rich He2 extract in a preclinical model, focusing on locomotor decline during ageing monitored through spontaneous behavioral test. This effect was accompanied by a significant decrease in some oxidative stress markers (NOS2, COX2) paralleled by an increase in P53, showed in cerebellar cortex cells and fibres by immunohistochemistry. In summary, we demonstrated the neuro-protective and preventive effects of He2 extract during aging, probably due to its peculiarly high ERGO content.
Collapse
|
38
|
Effects of 1α,25-dihydroxyvitamin D3 on the pharmacokinetics and biodistribution of ergothioneine, an endogenous organic cation/carnitine transporter 1 substrate, in rats. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2022; 52:341-351. [PMID: 35291466 PMCID: PMC8911105 DOI: 10.1007/s40005-022-00563-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 02/03/2022] [Indexed: 11/25/2022]
Abstract
Purpose This study aimed to investigate the effects of 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3) on the expression levels of organic cation/carnitine transporter 1 (OCTN1) as well as the pharmacokinetics and biodistribution of ergothioneine, an OCTN1 substrate, in rats. Methods Rats pretreated with 1,25(OH)2D3 (2.56 nmol/kg/day) for four days were administered ergothioneine (2 mg/kg) intravenously. The expression levels of rat OCTN1 (rOCTN1) in organs were determined using real-time quantitative polymerase chain reaction. Ergothioneine levels in plasma, urine, and organs (with and without intravenous injection of exogenous ergothioneine) were determined using liquid chromatography-tandem mass spectrometry. Results 1,25(OH)2D3 pretreatment resulted in a significant decrease in rOCTN1 mRNA expression levels in the kidney and brain, a significant increase in basal plasma levels of ergothioneine (from 48 h), and a significant decrease in the tissue-plasma partition coefficient (Kp) in all tissues (except the heart and lungs) and the basal urine levels of ergothioneine. After intravenous administration, the pharmacokinetic profiles of ergothioneine were consistent with the basal levels of endogenous ergothioneine, with an increase in AUC∞ by 85%, a significant decrease in total clearance by 49%, and a decrease in Vss by 32% in 1,25(OH)2D3-treated rats. The Kp value and urinary recovery of ergothioneine also decreased in the 1,25(OH)2D3-treated group. Conclusion This study showed the effects of 1,25(OH)2D3 on the expression and function of rOCTN1 by investigating the interaction between 1,25(OH)2D3 and ergothioneine. Dose adjustment and possible changes in bioavailability should be considered before the co-administration of vitamin D or its active forms and OCTN1 substrates. Supplementary Information The online version contains supplementary material available at 10.1007/s40005-022-00563-1.
Collapse
|
39
|
Fovet T, Guilhot C, Delobel P, Chopard A, Py G, Brioche T. Ergothioneine Improves Aerobic Performance Without Any Negative Effect on Early Muscle Recovery Signaling in Response to Acute Exercise. Front Physiol 2022; 13:834597. [PMID: 35222093 PMCID: PMC8864143 DOI: 10.3389/fphys.2022.834597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/19/2022] [Indexed: 11/14/2022] Open
Abstract
Physical activity is now recognized as an essential element of healthy lifestyles. However, intensive and repeated exercise practice produces a high level of stress that must be managed, particularly oxidative damage and inflammation. Many studies investigated the effect of antioxidants, but reported only few positive effects, or even muscle recovery impairment. Secondary antioxidants are frequently highlighted as a way to optimize these interactions. Ergothioneine is a potential nutritional supplement and a secondary antioxidant that activates the cellular NRF2 pathway, leading to antioxidant response gene activation. Here, we hypothesized that ergothioneine could improve performance during aerobic exercise up to exhaustion and reduce exercise-related stress without impairing early muscle recovery signaling. To test this hypothesis, 5-month-old C56B6J female mice were divided in two groups matched for maximal aerobic speed (MAS): control group (Ctrl; n = 9) and group supplemented with 70 mg ergothioneine/kg/day (ET; n = 9). After 1 week of supplementation (or not), mice performed a maximum time-to-exhaustion test by running on a treadmill at 70% of their MAS, and gastrocnemius and soleus muscles were collected 2 h after exercise. Time to exhaustion was longer in the ET than Ctrl group (+41.22%, p < 0.01). Two hours after exercise, the ET group showed higher activation of protein synthesis and satellite cells, despite their longer effort. Conversely, expression in muscles of metabolic stress and inflammation markers was decreased, as well as oxidative damage markers in the ET group. Moreover, ergothioneine did not seem to impair mitochondrial recovery. These results suggest an important effect of ergothioneine on time-to-exhaustion performance and improved muscle recovery after exercise.
Collapse
Affiliation(s)
- Théo Fovet
- DMEM, INRAE, Montpellier University, Montpellier, France
| | | | - Pierre Delobel
- DMEM, INRAE, Montpellier University, Montpellier, France
| | - Angèle Chopard
- DMEM, INRAE, Montpellier University, Montpellier, France
| | - Guillaume Py
- DMEM, INRAE, Montpellier University, Montpellier, France
| | - Thomas Brioche
- DMEM, INRAE, Montpellier University, Montpellier, France
| |
Collapse
|
40
|
D'Onofrio N, Martino E, Balestrieri A, Mele L, Cautela D, Castaldo D, Balestrieri ML. Diet-derived ergothioneine induces necroptosis in colorectal cancer cells by activating the SIRT3/MLKL pathway. FEBS Lett 2022; 596:1313-1329. [PMID: 35122251 DOI: 10.1002/1873-3468.14310] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/26/2022] [Accepted: 01/26/2022] [Indexed: 11/10/2022]
Abstract
Ergothioneine (Egt) is a dietary amino acid which acts as an antioxidant to protect against aging-related diseases. We investigated the anticancer properties of Egt in colorectal cancer cells (CRC). Egt treatment exerted cytotoxicity in a dose-dependent manner, induced reactive oxygen species accumulation, loss of mitochondrial membrane potential, and upregulation of the histone deacetylase SIRT3. Immunoblotting analysis indicated that the cell death occurred via necroptosis through activation of the RIP1/RIP3/MLKL pathway. An immunoprecipitation assay unveiled that the interaction between the terminal effector in necroptotic signaling MLKL and SIRT3 increased during the Egt treatment. SIRT3 gene silencing blocked the upregulation of MLKL and abolished the ability of Egt to induce necroptosis. The SIRT3-MLKL interaction may mediate the necroptotic effects of Egt in CRC, suggesting the potential of this dietary amino-thione in the prevention of CRC.
Collapse
Affiliation(s)
- Nunzia D'Onofrio
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via L. De Crecchio 7, 80138, Naples, Italy
| | - Elisa Martino
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via L. De Crecchio 7, 80138, Naples, Italy
| | - Anna Balestrieri
- Department of Animal Health, Istituto Zooprofilattico Sperimentale del Mezzogiorno, 80055, Portici, Italy
| | - Luigi Mele
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, Via Luciano Armanni 5, 80138, Naples, Italy
| | - Domenico Cautela
- Stazione Sperimentale per le Industrie delle Essenze e dei Derivati dagli Agrumi (SSEA) - Azienda Speciale CCIAA di Reggio Calabria, Reggio Calabria, Italy
| | - Domenico Castaldo
- Stazione Sperimentale per le Industrie delle Essenze e dei Derivati dagli Agrumi (SSEA) - Azienda Speciale CCIAA di Reggio Calabria, Reggio Calabria, Italy.,Ministero dello Sviluppo Economico (MiSE), Rome, Italy
| | - Maria Luisa Balestrieri
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via L. De Crecchio 7, 80138, Naples, Italy
| |
Collapse
|
41
|
Is Mitochondrial Oxidative Stress a Viable Therapeutic Target in Preeclampsia? Antioxidants (Basel) 2022; 11:antiox11020210. [PMID: 35204094 PMCID: PMC8868187 DOI: 10.3390/antiox11020210] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/15/2022] [Accepted: 01/18/2022] [Indexed: 01/31/2023] Open
Abstract
Despite considerable research efforts over the past few decades, the pathology of preeclampsia (PE) remains poorly understood with no new FDA-approved treatments. There is a substantial amount of work being conducted by investigators around the world to identify targets to develop therapies for PE. Oxidative stress has been identified as one of the crucial players in pathogenesis of PE and has garnered a great deal of attention by several research groups including ours. While antioxidants have shown therapeutic benefit in preclinical models of PE, the clinical trials evaluating antioxidants (vitamin E and vitamin C) were found to be disappointing. Although the idea behind contribution of mitochondrial oxidative stress in PE is not new, recent years have seen an enormous interest in exploring mitochondrial oxidative stress as an important pathological mediator in PE. We and others using animals, cell models, and preeclamptic patient samples have shown the evidence for placental, renal, and endothelial cell mitochondrial oxidative stress, and its significance in PE. These studies offer promising results; however, the important and relevant question is can we translate these results into clinical efficacy in treating PE. Hence, the purpose of this review is to review the existing literature and offer our insights on the potential of mitochondrial antioxidants in treating PE.
Collapse
|
42
|
Booi HN, Lee MK, Fung SY, Ng ST, Tan CS, Lim KH, Roberts R, Ting KN. Medicinal Mushrooms and Their Use to Strengthen Respiratory Health During and Post-COVID-19 Pandemic. Int J Med Mushrooms 2022; 24:1-14. [DOI: 10.1615/intjmedmushrooms.2022045068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
43
|
Beelman RB, Phillips AT, Richie JP, Ba DM, Duiker SW, Kalaras MD. Health Consequences of Improving the Content of Ergothioneine in the Food Supply. FEBS Lett 2021; 596:1231-1240. [PMID: 34954825 DOI: 10.1002/1873-3468.14268] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 11/10/2022]
Abstract
Ergothioneine (ERGO) is a potent antioxidant and anti-inflammatory amino acid that is highly bioavailable to humans from the diet. ERGO is now regarded by some as a "longevity vitamin" that has the potential to mitigate some chronic diseases of aging and thereby increase life expectancy when present in adequate amounts. However, only limited knowledge exists regarding ERGO content in the human diet. Since ERGO is produced primarily by fungi, mushrooms are known to be the leading dietary source, but ERGO is found in relatively low amounts throughout the food chain as a result of soil-borne fungi or bacteria passing it on to plants through their roots. Some conventional agricultural practices that negatively impact soil fungi, such as excessive soil disturbance (plowing), can significantly reduce ERGO content of food crops when compared to regenerative practices such as eliminating tillage of the soil (No-Till). This has led us to the concept that ERGO may be a definitive connection between soil health and human health.
Collapse
Affiliation(s)
- Robert B Beelman
- Department of Food Science, College of Agricultural Sciences, Penn State University, 202 Rodney A. Erickson Food Science Building University Park, State College, PA, 16802, USA
| | - Allen T Phillips
- Department of Biochemistry and Molecular Biology, Eberly College of Science, Penn State University, 203A South Frear Building University Park, State College, PA, 16802, USA
| | - John P Richie
- Department of Public Health Sciences, College of Medicine, Penn State University, 500 University Dr. Hershey, PA, 17033, USA
| | - Djibril M Ba
- Department of Public Health Sciences, College of Medicine, Penn State University, 500 University Dr. Hershey, PA, 17033, USA
| | - Sjoerd W Duiker
- Department of Plant Science, College of Agricultural Sciences, Penn State University, 408 ASI Building, University Park, State College, PA, 16802, USA
| | - Michael D Kalaras
- Department of Food Science, College of Agricultural Sciences, Penn State University, 202 Rodney A. Erickson Food Science Building University Park, State College, PA, 16802, USA
| |
Collapse
|
44
|
Kitsanayanyong L, Ohshima T. Ergothioneine: a potential antioxidative and anti-melanosis agent for food quality preservation. FEBS Lett 2021; 596:1330-1347. [PMID: 34951485 DOI: 10.1002/1873-3468.14267] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 11/09/2022]
Abstract
The global population increase has increased the demand for food products. However, post-harvest deterioration due to oxidation and discoloration results in a drastic loss of food quality and supply. Thus, research has focused on developing strategies to minimize such losses. One of those strategies includes the application of ergothioneine (ET), a potent hydrophilic antioxidant, to several food products so as to overcome their short shelf-life. ET can be synthetic or derived from several species of edible mushrooms and their extracts, which are known sources of natural ET. Given the reported potential of ET in food quality preservation, this review compiles the recent applications of ET as a preservative for maintaining the quality of food commodities.
Collapse
Affiliation(s)
- Lalitphan Kitsanayanyong
- Department of Food Science and Technology, Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology
| | - Toshiaki Ohshima
- Department of Food Science and Technology, Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology
| |
Collapse
|
45
|
Yadan JC. Matching chemical properties to molecular biological activities opens a new perspective on L-ergothioneine. FEBS Lett 2021; 596:1299-1312. [PMID: 34928499 DOI: 10.1002/1873-3468.14264] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 11/10/2022]
Abstract
L-ergothioneine is a low-molecular weight natural product, the chemical structure of which comprises oxygen-, nitrogen- and sulfur-containing functional groups. This gives L-ergothioneine specific physicochemical properties and allows to better understanding its chemical reactivity, which is primarily due to the 2-thio-imidazole group. Here, I review how different modes of chemical reactivity account for the reported molecular biological activities of L-ergothioneine. By matching the physicochemical properties to the biological properties of L-ergothioneine, a new perspective of the function and the mode of action of this enigmatic molecule emerges into the limelight.
Collapse
|
46
|
Wu LY, Cheah IK, Chong JR, Chai YL, Tan JY, Hilal S, Vrooman H, Chen CP, Halliwell B, Lai MKP. Low plasma ergothioneine levels are associated with neurodegeneration and cerebrovascular disease in dementia. Free Radic Biol Med 2021; 177:201-211. [PMID: 34673145 DOI: 10.1016/j.freeradbiomed.2021.10.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/12/2021] [Accepted: 10/17/2021] [Indexed: 12/15/2022]
Abstract
Ergothioneine (ET) is a dietary amino-thione with strong antioxidant and cytoprotective properties and has possible therapeutic potential for neurodegenerative and vascular diseases. Decreased blood concentrations of ET have been found in patients with mild cognitive impairment, but its status in neurodegenerative and vascular dementias is currently unclear. To address this, a cross-sectional study was conducted on 496 participants, consisting of 88 with no cognitive impairment (NCI), 201 with cognitive impairment, no dementia (CIND) as well as 207 with dementia, of whom 160 have Alzheimer's Disease (AD) and 47 have vascular dementia. All subjects underwent blood-draw, neuropsychological assessments, as well as neuroimaging assessments of cerebrovascular diseases (CeVD) and brain atrophy. Plasma ET as well as its metabolite l-hercynine were measured using high sensitivity liquid chromatography tandem-mass spectrometry (LC-MS/MS). Plasma ET concentrations were lowest in dementia (p < 0.001 vs. NCI and CIND), with intermediate levels in CIND (p < 0.001 vs. NCI). A significant increase in l-hercynine to ET ratio was also observed in dementia (p < 0.01 vs. NCI). In multivariate models adjusted for demographic and vascular risk factors, lower levels of ET were significantly associated with dementia both with or without CeVD, while ET associations with CIND were significant only in the presence of CeVD. Furthermore, lower ET levels were also associated with white matter hyperintensities and brain atrophy markers (reduced global cortical thickness and hippocampal volumes). The incremental decreases in ET levels along the CIND-dementia clinical continuum suggest that low levels of ET are associated with disease severity and could be a potential biomarker for cognitive impairment. Deficiency of ET may contribute towards neurodegeneration- and CeVD-associated cognitive impairments, possibly via the exacerbation of oxidative stress in these conditions.
Collapse
Affiliation(s)
- Liu-Yun Wu
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Kent Ridge Singapore; Memory Aging and Cognition Centre, National University Health System, Kent Ridge, Singapore
| | - Irwin K Cheah
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Kent Ridge, Singapore; Life Science Institute, Neurobiology Programme, Centre for Life Sciences, National University of Singapore, Singapore
| | - Joyce Ruifen Chong
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Kent Ridge Singapore; Memory Aging and Cognition Centre, National University Health System, Kent Ridge, Singapore
| | - Yuek Ling Chai
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Kent Ridge Singapore; Memory Aging and Cognition Centre, National University Health System, Kent Ridge, Singapore
| | - Jia Yun Tan
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Kent Ridge, Singapore; Life Science Institute, Neurobiology Programme, Centre for Life Sciences, National University of Singapore, Singapore
| | - Saima Hilal
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Kent Ridge Singapore; Memory Aging and Cognition Centre, National University Health System, Kent Ridge, Singapore; Saw Swee Hock School of Public Health, National University of Singapore, Singapore; Departments of Epidemiology and Radiology and Nuclear Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Henri Vrooman
- Departments of Epidemiology and Radiology and Nuclear Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Christopher P Chen
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Kent Ridge Singapore; Memory Aging and Cognition Centre, National University Health System, Kent Ridge, Singapore; Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Kent Ridge, Singapore
| | - Barry Halliwell
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Kent Ridge, Singapore; Life Science Institute, Neurobiology Programme, Centre for Life Sciences, National University of Singapore, Singapore.
| | - Mitchell K P Lai
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Kent Ridge Singapore; Memory Aging and Cognition Centre, National University Health System, Kent Ridge, Singapore.
| |
Collapse
|
47
|
Jędrejko KJ, Lazur J, Muszyńska B. Cordyceps militaris: An Overview of Its Chemical Constituents in Relation to Biological Activity. Foods 2021; 10:2634. [PMID: 34828915 PMCID: PMC8622900 DOI: 10.3390/foods10112634] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 01/04/2023] Open
Abstract
Cordyceps spp. mushrooms have a long tradition of use as a natural raw material in Asian ethnomedicine because of their adaptogenic, tonic effects and their ability to reduce fatigue and stimulate the immune system in humans. This review aims to present the chemical composition and medicinal properties of Cordyceps militaris fruiting bodies and mycelium, as well as mycelium from in vitro cultures. The analytical results of the composition of C. militaris grown in culture media show the bioactive components such as cordycepin, polysaccharides, γ-aminobutyric acid (GABA), ergothioneine and others described in the review. To summarize, based on the presence of several bioactive compounds that contribute to biological activity, C. militaris mushrooms definitely deserve to be considered as functional foods and also have great potential for medicinal use. Recent scientific reports indicate the potential of cordycepin in antiviral activity, particularly against COVID-19.
Collapse
Affiliation(s)
| | | | - Bożena Muszyńska
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Str., 30–688 Kraków, Poland; (K.J.J.); (J.L.)
| |
Collapse
|
48
|
Tian X, Cioccoloni G, Sier JH, Naseem KM, Thorne JL, Moore JB. Ergothioneine supplementation in people with metabolic syndrome (ErgMS): protocol for a randomised, double-blind, placebo-controlled pilot study. Pilot Feasibility Stud 2021; 7:193. [PMID: 34715934 PMCID: PMC8555363 DOI: 10.1186/s40814-021-00929-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 10/12/2021] [Indexed: 02/06/2023] Open
Abstract
Background Ergothioneine is a naturally occurring metabolite of histidine found in many foods and in high amounts in mushrooms. In vivo, ergothioneine acts as an antioxidant and is widely distributed in most mammalian tissues. While ergothioneine is sold as a dietary supplement for its antioxidant and anti-inflammatory properties, to date there are no published intervention trials examining its health benefits in humans. The aim of this work was to develop a study protocol for a pilot interventional trial that will establish the primary and secondary outcomes, and the power required, for a definitive randomised controlled trial to test the hypothesis that ergothioneine supplementation is beneficial for people with metabolic syndrome. Methods We have designed the ErgMS study as a single-centre, randomised, double-blind, placebo-controlled, 3-arm parallel, pilot intervention trial, which aims to supplement participants with either placebo, 5 or 30 mg/day ergothioneine for 12 weeks. Measurements of metabolic syndrome risk factors, serum markers of oxidative stress (lipid peroxidation), inflammation, blood platelet function and liver function will take place at baseline, and after 6 weeks and 12 weeks of supplementation. In addition, we will examine if there are any changes in the serum metabolome in response to ergothioneine supplementation. Linear regression and two-way ANOVA will be utilised to analyse the association between ergothioneine and measured variables. Discussion The ErgMS study will be the first study to address the question does ergothioneine supplementation have health benefits for people with metabolic syndrome. Study results will provide preliminary data as to which dose may improve inflammatory markers in adults with metabolic syndrome and will inform dose and primary outcome selection for a definitive randomised controlled trial. Trial registration ISRCTN, ISRCTN25890011 Registered February 10th, 2021 Supplementary Information The online version contains supplementary material available at 10.1186/s40814-021-00929-6.
Collapse
Affiliation(s)
- Xiaoying Tian
- School of Food Science & Nutrition, University of Leeds, Leeds, LS2 9JT, UK
| | - Giorgia Cioccoloni
- School of Food Science & Nutrition, University of Leeds, Leeds, LS2 9JT, UK
| | - Joanna H Sier
- School of Food Science & Nutrition, University of Leeds, Leeds, LS2 9JT, UK
| | - Khalid M Naseem
- Leeds Institute of Cardiovascular & Metabolic Medicine, University of Leeds, Leeds, LS2 9JT, UK
| | - James L Thorne
- School of Food Science & Nutrition, University of Leeds, Leeds, LS2 9JT, UK
| | - J Bernadette Moore
- School of Food Science & Nutrition, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
49
|
A novel antioxidant ergothioneine PET radioligand for in vivo imaging applications. Sci Rep 2021; 11:18450. [PMID: 34531467 PMCID: PMC8446031 DOI: 10.1038/s41598-021-97925-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 09/01/2021] [Indexed: 11/09/2022] Open
Abstract
Ergothioneine (ERGO) is a rare amino acid mostly found in fungi, including mushrooms, with recognized antioxidant activity to protect tissues from damage by reactive oxygen species (ROS) components. Prior to this publication, the biodistribution of ERGO has been performed solely in vitro using extracted tissues. The aim of this study was to develop a feasible chemistry for the synthesis of an ERGO PET radioligand, [11C]ERGO, to facilitate in vivo study. The radioligand probe was synthesized with identical structure to ERGO by employing an orthogonal protection/deprotection approach. [11C]methylation of the precursor was performed via [11C]CH3OTf to provide [11C]ERGO radioligand. The [11C]ERGO was isolated by RP-HPLC with a molar activity of 690 TBq/mmol. To demonstrate the biodistribution of the radioligand, we administered approximately 37 MBq/0.1 mL in 5XFAD mice, a mouse model of Alzheimer's disease via the tail vein. The distribution of ERGO in the brain was monitored using 90-min dynamic PET scans. The delivery and specific retention of [11C]ERGO in an LPS-mediated neuroinflammation mouse model was also demonstrated. For the pharmacokinetic study, the concentration of the compound in the serum started to decrease 10 min after injection while starting to distribute in other peripheral tissues. In particular, a significant amount of the compound was found in the eyes and small intestine. The radioligand was also distributed in several regions of the brain of 5XFAD mice, and the signal remained strong 30 min post-injection. This is the first time the biodistribution of this antioxidant and rare amino acid has been demonstrated in a preclinical mouse model in a highly sensitive and non-invasive manner.
Collapse
|
50
|
López de Heredia M, Muñoz L, Carru C, Sotgia S, Zinellu A, Serra C, Llebaria A, Kato Y, Nunes V. S-Methyl-L-Ergothioneine to L-Ergothioneine Ratio in Urine Is a Marker of Cystine Lithiasis in a Cystinuria Mouse Model. Antioxidants (Basel) 2021; 10:antiox10091424. [PMID: 34573056 PMCID: PMC8471778 DOI: 10.3390/antiox10091424] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 11/30/2022] Open
Abstract
Cystinuria, a rare inherited aminoaciduria condition, is characterized by the hyperexcretion of cystine, ornithine, lysine, and arginine. Its main clinical manifestation is cystine stone formation in the urinary tract, being responsible for 1–2% total and 6–8% pediatric lithiasis. Cystinuria patients suffer from recurrent lithiasic episodes that might end in surgical interventions, progressive renal functional deterioration, and kidney loss. Cystinuria is monitored for the presence of urinary cystine stones by crystalluria, imaging techniques or urinary cystine capacity; all with limited predicting capabilities. We analyzed blood and urine levels of the natural antioxidant L-ergothioneine in a Type B cystinuria mouse model, and urine levels of its metabolic product S-methyl-L-ergothioneine, in both male and female mice at two different ages and with different lithiasic phenotype. Urinary levels of S-methyl-L-ergothioneine showed differences related to age, gender and lithiasic phenotype. Once normalized by L-ergothioneine to account for interindividual differences, the S-methyl-L-ergothioneine to L-ergothioneine urinary ratio discriminated between cystine lithiasic phenotypes. Urine S-methyl-L-ergothioneine to L-ergothioneine ratio could be easily determined in urine and, as being capable of discriminating between cystine lithiasis phenotypes, it could be used as a lithiasis biomarker in cystinuria patient management.
Collapse
Affiliation(s)
- Miguel López de Heredia
- Human Molecular Genetics Laboratory, Gene, Disease and Therapy Program, IDIBELL, L’Hospitalet de Llobregat, 08908 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER)-CB06/07/0069, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Correspondence: (M.L.d.H.); (V.N.); Tel.: +34-93-260-4706 (M.L.d.H. & V.N.)
| | - Lourdes Muñoz
- SIMChem, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), 08034 Barcelona, Spain; (L.M.); (C.S.); (A.L.)
| | - Ciriaco Carru
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (C.C.); (S.S.); (A.Z.)
| | - Salvatore Sotgia
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (C.C.); (S.S.); (A.Z.)
| | - Angelo Zinellu
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (C.C.); (S.S.); (A.Z.)
| | - Carmen Serra
- SIMChem, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), 08034 Barcelona, Spain; (L.M.); (C.S.); (A.L.)
| | - Amadeu Llebaria
- SIMChem, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), 08034 Barcelona, Spain; (L.M.); (C.S.); (A.L.)
- MCS, Laboratory of Medicinal Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), 08034 Barcelona, Spain
| | - Yukio Kato
- Faculty of Pharmacy, Kanazawa University, Kanazawa 920-1192, Japan;
| | - Virginia Nunes
- Human Molecular Genetics Laboratory, Gene, Disease and Therapy Program, IDIBELL, L’Hospitalet de Llobregat, 08908 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER)-CB06/07/0069, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Genetics Section, Physiological Sciences Department, Health Sciences and Medicine Faculty, University of Barcelona, 08907 Barcelona, Spain
- Correspondence: (M.L.d.H.); (V.N.); Tel.: +34-93-260-4706 (M.L.d.H. & V.N.)
| |
Collapse
|